JP5863532B2 - Activated carbon and manufacturing method thereof - Google Patents

Activated carbon and manufacturing method thereof Download PDF

Info

Publication number
JP5863532B2
JP5863532B2 JP2012075594A JP2012075594A JP5863532B2 JP 5863532 B2 JP5863532 B2 JP 5863532B2 JP 2012075594 A JP2012075594 A JP 2012075594A JP 2012075594 A JP2012075594 A JP 2012075594A JP 5863532 B2 JP5863532 B2 JP 5863532B2
Authority
JP
Japan
Prior art keywords
activated carbon
adsorbent
carbonized product
volume
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012075594A
Other languages
Japanese (ja)
Other versions
JP2013203614A (en
Inventor
木村 俊雄
俊雄 木村
柳 寿一
寿一 柳
茂也 林
茂也 林
温信 西田
温信 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Osaka Gas Chemicals Co Ltd
Ube Corp
Original Assignee
Osaka Gas Co Ltd
Osaka Gas Chemicals Co Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Osaka Gas Chemicals Co Ltd, Ube Industries Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012075594A priority Critical patent/JP5863532B2/en
Publication of JP2013203614A publication Critical patent/JP2013203614A/en
Application granted granted Critical
Publication of JP5863532B2 publication Critical patent/JP5863532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、液相、特に水相の処理に適した活性炭に関する。   The present invention relates to activated carbon suitable for treating a liquid phase, particularly an aqueous phase.

活性炭は、水又は水溶液の処理において、吸着剤として不純物の除去、溶解成分の濃度調整などに使用されている。   Activated carbon is used as an adsorbent in the treatment of water or aqueous solutions to remove impurities and adjust the concentration of dissolved components.

当該活性炭の原料としては、通常木粉、ヤシ殻などの植物系原料、褐炭、亜炭、瀝青炭、無煙炭などの石炭系原料、およびフェノール樹脂、塩化ビニリデン樹脂などの合成系原料が古くから知られている(非特許文献1)。   As raw materials for the activated carbon, plant raw materials such as wood powder and coconut shell, coal-based raw materials such as lignite, lignite, bituminous coal, anthracite, and synthetic raw materials such as phenol resin and vinylidene chloride resin have long been known. (Non-patent Document 1).

例えば、ヤシ殻などの植物系原料は、品質が安定しており、不純物が少なく、大量に入手できる有用な原料であり、しかも硬さが高い活性炭を得ることができることが知られている。また、ヤシ殻などの植物系原料から得られる活性炭は、直径2nm以下のミクロ孔に富み、気相吸着用や、浄水器といった水中の揮発性有機化合物の除去に好適に用いることができるが、脱色性能はあまり高くないとされている。   For example, it is known that plant-based raw materials such as coconut husks are useful raw materials that have a stable quality, are low in impurities, can be obtained in large quantities, and can have high hardness. In addition, activated carbon obtained from plant-based raw materials such as coconut shell is rich in micropores with a diameter of 2 nm or less, and can be suitably used for gas phase adsorption or removal of volatile organic compounds in water such as water purifiers. It is said that decolorization performance is not so high.

一方、石炭系原料からは、石炭の種類によってさまざまな性能の活性炭が得られるが、鉱石中の性状の分布が大きく、均一な性能の活性炭を得ることが難しい。   On the other hand, activated carbon with various performances can be obtained from coal-based raw materials, but it is difficult to obtain activated carbon with uniform performance due to the large distribution of properties in the ore.

そこで、脱色性能が高く、均一な性能の活性炭を得るために、塩化亜鉛賦活法、りん酸賦活法により粒状活性炭を得る方法が工業化されている。しかしながら、当該活性炭は、硬さが不十分であったり、賦活薬品に起因する亜鉛、りん酸が残存したり、また製造工程で環境への負荷が高く、製造にあたっては公害対策を講じることが必要であったりするなど、十分に満足できるものではなかった。   Therefore, in order to obtain activated carbon with high decolorization performance and uniform performance, a method of obtaining granular activated carbon by a zinc chloride activation method or a phosphoric acid activation method has been industrialized. However, the activated carbon has insufficient hardness, remains zinc and phosphoric acid due to activation chemicals, and has a high environmental load in the manufacturing process, and it is necessary to take pollution measures in manufacturing. It was not satisfactory enough.

すなわち、吸着剤として用いられる活性炭について、その脱色性能は検討されてきたものの、食品、医薬品などの工業における活性炭を用いた精製操作において求められる、単に脱色効果が高いだけでなく、目的とする成分(低分子量成分)の吸着が少ない、という観点からの開発はなされていない。また、そのような活性炭の容易な製造方法も実現されていないのが実情である。   That is, the activated carbon used as an adsorbent has been studied for its decolorization performance, but it is not only high in decolorization effect, but also the desired component required in purification operations using activated carbon in industries such as food and pharmaceuticals. No development has been made from the viewpoint of low adsorption of (low molecular weight components). In addition, the fact is that such an easy method for producing activated carbon has not been realized.

新版活性炭−基礎と応用、講談社、1992、p.55New activated carbon-basics and applications, Kodansha, 1992, p.55

本発明の課題は、調製が容易でかつ脱色性能の優れた活性炭、及びその製造方法を提供することにある。また、当該脱色性能の優れた活性炭を含む吸着剤であって、種々の成分を含む溶液を処理したときに、優れた脱色性能を発揮しつつも、必要成分の損失を極力抑制し得る吸着剤を提供することにある。   An object of the present invention is to provide an activated carbon that is easy to prepare and has excellent decolorizing performance, and a method for producing the same. Also, an adsorbent containing activated carbon having excellent decolorization performance, and capable of suppressing loss of necessary components as much as possible while exhibiting excellent decolorization performance when processing a solution containing various components Is to provide.

本発明者らは、上記の課題に鑑み、脱色性能が高く、かつ低分子物質の吸着量を抑制した活性炭を得るべく研究を重ねた結果、特定のメソ孔容積値を有する活性炭が、当該課題を解決することを見出した。また、当該活性炭が、炭素質原料を、特定の条件で炭化処理及び賦活処理を行うことにより製造できることも見出した。   In view of the above problems, the present inventors have conducted research to obtain activated carbon having high decolorization performance and reduced adsorption amount of low-molecular substances, and as a result, activated carbon having a specific mesopore volume value is the subject. Found to solve. It has also been found that the activated carbon can be produced by subjecting a carbonaceous raw material to carbonization treatment and activation treatment under specific conditions.

すなわち、本発明は、次の活性炭及びその製法に係る。
項1.単位体積当たりのメソ孔容積が0.06ml/ml以上であり、かつ、直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合が0.3以上である活性炭。
項2.粒状である、請求項1に記載の活性炭。
項3.JIS K1474で測定した硬さが70質量分率%以上である、項1又は2に記載の活性炭。
項4.項1〜3のいずれかに記載の活性炭を含む液相処理用吸着剤。
項5.項4に記載の液相処理用吸着剤を用いて、水又は水溶液を処理する方法。
項6.活性炭原料を500℃以下で炭化処理し、次いで水蒸気賦活処理することを特徴とする、項1に記載の活性炭の製造方法。
項7.活性炭原料としてヤシ殻原料を用いる、項6に記載の製造方法。
That is, this invention relates to the following activated carbon and its manufacturing method.
Item 1. Activated carbon having a mesopore volume per unit volume of 0.06 ml / ml or more and a mesopore volume ratio of 0.3 or more in the pore volume up to a diameter of 30 nm.
Item 2. The activated carbon according to claim 1, which is granular.
Item 3. Item 3. The activated carbon according to Item 1 or 2, wherein the hardness measured by JIS K1474 is 70% by mass or more.
Item 4. Item 4. An adsorbent for liquid phase treatment comprising the activated carbon according to any one of Items 1 to 3.
Item 5. Item 5. A method for treating water or an aqueous solution using the liquid phase treatment adsorbent according to Item 4.
Item 6. Item 2. The method for producing activated carbon according to Item 1, wherein the activated carbon raw material is carbonized at 500 ° C. or lower and then steam activated.
Item 7. Item 7. The production method according to Item 6, wherein a coconut shell material is used as the activated carbon material.

本発明の活性炭は、優れた脱色性能を有している。
本発明の活性炭を含む液相処理用吸着剤は、脱色性能に優れる上、必要とされる低分子量の有効成分の吸着を極力抑制でき、その結果、有効成分の残存量を大幅に高めることができる。
そのため、広範な化学、食品製造用途に用いることができる。
また、本発明の吸着剤は、調製が容易である。
The activated carbon of the present invention has excellent decolorization performance.
The adsorbent for liquid phase treatment containing the activated carbon of the present invention is excellent in decolorization performance and can suppress the adsorption of the required low molecular weight active ingredient as much as possible. it can.
Therefore, it can be used for a wide range of chemical and food production applications.
The adsorbent of the present invention is easy to prepare.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

活性炭
本発明の活性炭は、単位体積当たりのメソ孔容積が0.06ml/ml以上であり、かつ直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合が0.3以上である活性炭である。ここでメソ孔容積とは、窒素吸着法で測定し、クランストン-インクレー法で計算した直径2〜30nmの細孔容積のことをいい、着色物質の吸着性能に関与する細孔である。一方、直径2nmの細孔はミクロ孔と呼ばれ、気相分子や、揮発性有機化合物や分子量数100以下の分子の吸着に関与する大きさの細孔である。
Activated carbon The activated carbon of the present invention is activated carbon having a mesopore volume per unit volume of 0.06 ml / ml or more and a proportion of the mesopore volume in the pore volume up to 30 nm in diameter being 0.3 or more. Here, the mesopore volume means a pore volume of 2 to 30 nm in diameter measured by the nitrogen adsorption method and calculated by the Cranston-Inclay method, and is a pore involved in the adsorption performance of the colored substance. On the other hand, pores having a diameter of 2 nm are called micropores, and are pores having a size that is involved in adsorption of gas phase molecules, volatile organic compounds, and molecules having a molecular weight of 100 or less.

単位容積当たりのメソ孔容積とは、上記の方法で求めたメソ孔容積と、充てん密度を掛け合わせたものである。   The mesopore volume per unit volume is a product of the mesopore volume determined by the above method and the packing density.

本発明の活性炭において、単位体積当たりのメソ孔容積は、0.06ml/ml以上あればよく、好ましくは0.08ml/ml以上、より好ましくは0.1ml/ml以上である。メソ孔容積が上記数値を有する時に、脱色性能が顕著に向上することから、その上限値は制限されるものではないが、例えば、0.08〜0.2ml/ml程度の範囲が、実用の観点からより好ましい。   In the activated carbon of the present invention, the mesopore volume per unit volume may be 0.06 ml / ml or more, preferably 0.08 ml / ml or more, more preferably 0.1 ml / ml or more. When the mesopore volume has the above numerical value, the decolorization performance is remarkably improved, so the upper limit is not limited, but, for example, a range of about 0.08 to 0.2 ml / ml is more from a practical viewpoint. preferable.

直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合とは、上記の方法で求めたメソ孔容積を、液体窒素沸点温度における相対圧0.931の時の窒素吸着量から算出した直径30nmまでの細孔容積で割ったものである。   The ratio of the mesopore volume to the pore volume up to 30 nm in diameter is the mesopore volume determined by the above method up to the diameter of 30 nm calculated from the nitrogen adsorption amount at the relative pressure of 0.931 at the liquid nitrogen boiling temperature. Divided by the pore volume.

本発明の活性炭において、直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合は、0.3以上であればよく、好ましくは0.4以上、より好ましくは0.5以上である。メソ孔容積の割合の上限値は制限されるものではなく、目的とする吸着物質の種類により適宜設定しうる。好ましくは、0.3〜1.0である。   In the activated carbon of the present invention, the proportion of the mesopore volume in the pore volume up to 30 nm in diameter may be 0.3 or more, preferably 0.4 or more, more preferably 0.5 or more. The upper limit value of the mesopore volume ratio is not limited, and can be set as appropriate depending on the type of the target adsorbent. Preferably, it is 0.3-1.0.

上記メソ孔容積に関する特定の値を満たすことにより、本発明の上記課題を解決することができる。   By satisfying a specific value related to the mesopore volume, the above-mentioned problem of the present invention can be solved.

また、本発明の活性炭をJIS K1474で測定した硬さは70質量分率%以上であることが望ましい。好ましくは80質量分率%以上である。当該硬さが70質量分率%以上であると、粒状炭として使用する場合に、微粉の発生が少ないという観点から好ましい。   The hardness of the activated carbon of the present invention measured by JIS K1474 is preferably 70% by mass or more. Preferably it is 80 mass% or more. When the hardness is 70% by mass or more, it is preferable from the viewpoint of generating less fine powder when used as granular coal.

活性炭の乾燥減量、充てん密度、比表面積は特に限定されない。通常、乾燥減量は5.0質量分率%以下であり、充てん密度は0.15〜0.6g/mLであり、比表面積は700〜2500m2/gの範囲である。 The loss on drying, the packing density, and the specific surface area of the activated carbon are not particularly limited. Usually, the loss on drying is 5.0 mass% or less, the packing density is 0.15 to 0.6 g / mL, and the specific surface area is in the range of 700 to 2500 m 2 / g.

本発明の活性炭は、粉末状活性炭、粒状活性炭(破砕状、球状、円柱状成形炭など)、繊維状活性炭、ハニカム状などに成形された活性炭などのいずれの形態を採っていてもよいが、吸着性能及びハンドリングの観点から、粒状活性炭が好ましい。また、円柱状あるいは球状に成型されていてもよい。   The activated carbon of the present invention may take any form such as powdered activated carbon, granular activated carbon (such as crushed, spherical, cylindrical shaped charcoal), fibrous activated carbon, activated carbon formed into a honeycomb shape, etc. From the viewpoint of adsorption performance and handling, granular activated carbon is preferred. Moreover, you may shape | mold in the column shape or spherical shape.

製造方法
本発明の活性炭は、500℃以下で炭化処理し、その後、水蒸気賦活処理を行うことにより、製造される。
Production Method The activated carbon of the present invention is produced by carbonizing at 500 ° C. or lower and then performing a steam activation treatment.

本発明の活性炭の製造原料としては、一般的に用いられる活性炭の原料を、広く使用することができる。例えば、ヤシ殻(具体例:パームヤシ殻、ココナッツヤシ殻など)、石炭、コークス、木粉、おが屑、天然繊維(具体例:麻、綿など)、合成繊維(具体例:レーヨン、ポリエステルなど)、合成樹脂(具体例:ポリアクリロニトリル、フェノール樹脂、ポリ塩化ビニリデン、ポリカーボネート、ポリビニルアルコールなど)などが挙げられる。これらの中でも、充てん状態での使用に適した、粒状活性炭が得られる原料であることが好ましい。このような観点から、ヤシ殻が好ましく、パームヤシ殻が特に好ましい。   As a raw material for producing the activated carbon of the present invention, generally used raw materials for activated carbon can be widely used. For example, coconut shell (specific examples: palm coconut shell, coconut coconut shell, etc.), coal, coke, wood flour, sawdust, natural fiber (specific example: hemp, cotton, etc.), synthetic fiber (specific example: rayon, polyester, etc.), Synthetic resins (specific examples: polyacrylonitrile, phenol resin, polyvinylidene chloride, polycarbonate, polyvinyl alcohol, etc.) and the like. Among these, a raw material from which granular activated carbon suitable for use in a packed state can be obtained is preferable. From such a viewpoint, a coconut shell is preferable, and a palm coconut shell is particularly preferable.

炭化処理
炭化処理における温度は500℃以下であることが好ましく、さらに好ましくは、200℃〜400℃程度である。通常、活性炭の製造に当たっては、炭化物のガス吸着速度を最大にする観点から、炭化処理は600℃〜800℃で行われるが、本発明では、従来よりも低い500℃以下で炭化処理を行うことにより、賦活反応後にメソ孔が発達した活性炭を得ることができる。
( Carbonization treatment )
The temperature in the carbonization treatment is preferably 500 ° C. or less, and more preferably about 200 ° C. to 400 ° C. Normally, in the production of activated carbon, from the viewpoint of maximizing the gas adsorption rate of carbides, carbonization is performed at 600 ° C to 800 ° C, but in the present invention, carbonization is performed at 500 ° C or lower, which is lower than conventional. Thus, activated carbon having mesopores developed after the activation reaction can be obtained.

炭化時間は、用いる原料、炭化を行う設備によって適宜設定し得るが、0.5〜10時間程度、好ましくは0.5〜5時間、より好ましくは0.5〜2時間程度である。   The carbonization time can be appropriately set depending on the raw materials used and the equipment for carbonization, but is about 0.5 to 10 hours, preferably 0.5 to 5 hours, more preferably about 0.5 to 2 hours.

当該炭化処理は、例えば、ロータリーキルンなどの公知の製造設備を用いて行われる。   The carbonization is performed using a known production facility such as a rotary kiln.

炭化品の揮発分は、5〜40質量分率%、好ましくは10〜40質量分率%、より好ましくは20〜40質量分率%である。   The volatile content of the carbonized product is 5 to 40% by mass, preferably 10 to 40% by mass, and more preferably 20 to 40% by mass.

賦活処理
賦活方法は、特に限定されない。例えば、「活性炭工業」重化学工業通信社出版(1974)p.23〜37に記載されている賦活方法、例えば、水蒸気、酸素、炭酸ガスなどの活性ガスによる賦活方法、りん酸、塩化亜鉛などを用いた薬品による賦活方法などが適宜用いられる。中でも、使用に適した硬さの活性炭を得るという観点から、水蒸気賦活が好ましい。
( Activation processing )
The activation method is not particularly limited. For example, the activation method described in “Activated carbon industry” heavy chemical industry communication company publication (1974) p.23-37, for example, the activation method by active gases, such as water vapor, oxygen, and carbon dioxide, phosphoric acid, zinc chloride, etc. The activation method with the used chemicals is appropriately used. Among these, steam activation is preferable from the viewpoint of obtaining activated carbon having a hardness suitable for use.

当該賦活処理は、ロータリーキルン、流動炉などの公知の製造設備を用いて、750〜1050℃程度の温度範囲で行われる。   The activation process is performed in a temperature range of about 750 to 1050 ° C. using known production equipment such as a rotary kiln and a fluidized furnace.

賦活時間は、用いる原料、賦活温度、製造設備などにより異なり、一概には言えないが、0.5〜24時間程度が望ましい。特に1〜24時間が好ましい。   The activation time varies depending on the raw material used, the activation temperature, the production equipment, etc., and cannot be generally stated, but is preferably about 0.5 to 24 hours. 1 to 24 hours is particularly preferable.

その後、賦活処理した活性炭を篩い分けて粒度を揃える。   Thereafter, the activated carbon that has been subjected to the activation treatment is sieved to obtain a uniform particle size.

本発明の活性炭の、JIS K1474によって測定する粒度は特に限定されないが、通常は0.075〜5mm、好ましくは0.1〜4mm、より好ましくは0.15〜3mmのものが用いられる。   The particle size of the activated carbon of the present invention measured by JIS K1474 is not particularly limited, but usually 0.075 to 5 mm, preferably 0.1 to 4 mm, more preferably 0.15 to 3 mm.

得られた活性炭は、公知の方法で塩酸、硝酸、硫酸、りん酸などの鉱酸を用いて洗浄してもよい。例えば、活性炭を塩酸と接触させることにより、洗浄を行うことができる。該接触は、活性炭を適当な濃度と量の塩酸に浸漬、あるいは塩酸を活性炭に流通するなどして、行うことができる。これにより、塩化物イオンの所望量を活性炭に吸着させることができる。   The obtained activated carbon may be washed with a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid or phosphoric acid by a known method. For example, cleaning can be performed by bringing activated carbon into contact with hydrochloric acid. The contact can be carried out by immersing activated carbon in hydrochloric acid having an appropriate concentration and amount, or circulating hydrochloric acid through activated carbon. Thereby, the desired amount of chloride ions can be adsorbed on the activated carbon.

塩酸の濃度は、活性炭中に含まれるアルカリ分を中和でき、不純物として含まれる金属塩を溶解できる濃度であればよく、例えば、塩化水素として0.1〜15質量分率%、好ましくは0.1〜5質量分率%が挙げられる。   The concentration of hydrochloric acid may be any concentration that can neutralize the alkali content contained in the activated carbon and dissolve the metal salt contained as an impurity. For example, 0.1-15 mass fraction% as hydrogen chloride, preferably 0.1-5 The mass fraction% is mentioned.

洗浄に供される活性炭は、賦活したままの状態であってもよいし、あらかじめ水洗して、水溶性無機成分を除去しておいてもよい。   Activated carbon used for washing may be in an activated state or may be washed with water in advance to remove water-soluble inorganic components.

上記鉱酸による洗浄後、さらに水で洗浄してもよい。また、種々の目的のために薬品などを添着した添着活性炭として使用してもよい。   After washing with the mineral acid, it may be further washed with water. Further, it may be used as an impregnated activated carbon impregnated with chemicals for various purposes.

液相処理用吸着剤
本発明の活性炭は、液相処理用吸着剤とすることができる。
Adsorbent for liquid phase treatment The activated carbon of the present invention can be used as an adsorbent for liquid phase treatment.

本発明における液相処理用吸着剤とは、水を含む液相の処理に用いられる吸着剤を意味するものである。   The adsorbent for liquid phase treatment in the present invention means an adsorbent used for processing a liquid phase containing water.

本発明の液相処理用吸着剤の処理対象となる液相としては、飲料水;地下水;排水;工業用水;化学工場において生成する中間体、反応生成物などの水溶液;食品・飲料品工場における未精製品などが例示される。   The liquid phase to be treated by the adsorbent for liquid phase treatment of the present invention includes drinking water; groundwater; wastewater; industrial water; aqueous solutions such as intermediates and reaction products produced in chemical factories; For example, unfinished products are exemplified.

本発明の液相処理用吸着剤の吸着対象物としては特に限定はなく、例えば、被処理水中に含まれるジオスミン、2−メチルイソボルネオールなどの臭気物質、ジクロロメタン、クロロホルムなどの有機塩素化合物、アルキルベンゼンスルホン酸ナトリウムなどの界面活性剤、色度成分、フミン物質、廃鉱物油などの有機化合物、グルタミン酸ナトリウム、砂糖水溶液、よう素などの中間体や反応生成物、有価物などが挙げられる。   There are no particular limitations on the adsorption target of the adsorbent for liquid phase treatment of the present invention. For example, odorous substances such as diosmin and 2-methylisoborneol contained in the water to be treated, organochlorine compounds such as dichloromethane and chloroform, and alkylbenzene Examples include surfactants such as sodium sulfonate, chromaticity components, humic substances, organic compounds such as waste mineral oil, intermediates such as sodium glutamate, aqueous sugar solution, and iodine, reaction products, and valuables.

本発明の液相処理用吸着剤は、液相中の不純物除去、有効成分の濃度調整、回収などに用いる吸着剤として好ましく用いることができる。特に所望する製品、成分の濃度を維持しながら脱色が必要な用途に適している。そのため、化学・食品工場内での各種水溶液の精製、成分の分離、濃度調整などに好適に用いることができる。   The adsorbent for liquid phase treatment of the present invention can be preferably used as an adsorbent used for removing impurities in the liquid phase, adjusting the concentration of the active ingredient, and collecting the active ingredient. It is particularly suitable for applications that require decolorization while maintaining the desired product and component concentrations. Therefore, it can be suitably used for purification of various aqueous solutions, separation of components, concentration adjustment, etc. in chemical / food factories.

以下に実施例及び試験例を掲げて、本発明を具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples and test examples, but the present invention is not limited thereto.

[実施例1]
インドネシア、スマトラ島産パームヤシ殻を、400℃に保ったロータリーキルンに1時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は31質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.1〜4を得た。
[Example 1]
Carbonated products were prepared by passing palm coconut shells from Sumatra, Indonesia, through a rotary kiln maintained at 400 ° C. over 1 hour. The volatile content of this carbonized product according to JIS M8812 was 31% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product was put into an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 1 to Got 4.

[実施例2]
インドネシア、スマトラ島産パームヤシ殻を、400℃に保ったロータリーキルンに2時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は27質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.5〜8を得た。
[Example 2]
Carbonated products were prepared by passing palm coconut shells from Sumatra, Indonesia, through a rotary kiln maintained at 400 ° C. over 2 hours. The volatile content of this carbonized product according to JIS M8812 was 27 mass%. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product is put into an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 5 to 8 got.

[実施例3]
インドネシア、スマトラ島産パームヤシ殻を、500℃に保ったロータリーキルンに2時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は4.4質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.9〜11を得た。
[Example 3]
Carbonated products were prepared by passing palm coconut shells from Sumatra, Indonesia, through a rotary kiln maintained at 500 ° C. over 2 hours. The volatile content of this carbonized product according to JIS M8812 was 4.4 mass%. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product is put into an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 9 to 11 was obtained.

[実施例4]
インドネシア、スマトラ島産パームヤシ殻を、400℃に保ったロータリーキルンに30分かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は37.1質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.12〜15を得た。
[Example 4]
Carbonated products were prepared by passing palm coconut shells from Sumatra, Indonesia, through a rotary kiln maintained at 400 ° C. over 30 minutes. The volatile content of this carbonized product according to JIS M8812 was 37.1% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product is put into an external heating type electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 12 to I got 15.

[実施例5]
フィリピン、ミンダナオ島産ココナッツヤシ殻を、400℃に保ったロータリーキルンに2時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は24質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、3時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.16を得た。
[Example 5]
Carbonized products were prepared by passing coconut coconut shells from Mindanao, Philippines, through a rotary kiln maintained at 400 ° C. over 2 hours. The volatile content of this carbonized product according to JIS M8812 was 24% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). Adsorbent No. 16 was obtained by placing 200 g of this carbonized product in an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taking it out after 3 hours, and cooling it to room temperature in an inert atmosphere.

[比較例1]
フィリピン、ミンダナオ島産ココナッツヤシ殻を、400℃に保ったロータリーキルンに2時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は24質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.17および18を得た。
[Comparative Example 1]
Carbonized products were prepared by passing coconut coconut shells from Mindanao, Philippines, through a rotary kiln maintained at 400 ° C. over 2 hours. The volatile content of this carbonized product according to JIS M8812 was 24% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product was put into an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, adsorbent No. 17 and 18 was obtained.

[比較例2]
フィリピン、ミンダナオ島産ココナッツヤシ殻を、500℃に保ったロータリーキルンに2時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は5質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.19および20を得た。
[Comparative Example 2]
Carbonized products were prepared by passing coconut coconut shells from Mindanao Island, Philippines, through a rotary kiln maintained at 500 ° C. over 2 hours. The volatile content of this carbonized product according to JIS M8812 was 5% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product was placed in an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 19 and 20 was obtained.

[比較例3]
フィリピン、ミンダナオ島産ココナッツヤシ殻を、400℃に保ったロータリーキルンに1時間かけて通過させて炭化品を調製した。この炭化品のJIS M8812による揮発分は25質量分率%であった。この炭化品を篩および破砕機にかけ2.36〜0.500mm(8/32メッシュ)に粒径を揃えた。この炭化品200gを900℃に保った内容積6Lの外熱式電気炉に入れ、表1に示した種々の時間経過後に取り出し、不活性雰囲気中で室温まで冷却して吸着剤No.21〜23を得た。
[Comparative Example 3]
A coconut coconut shell from Mindanao, Philippines was passed through a rotary kiln maintained at 400 ° C. for 1 hour to prepare a carbonized product. The volatile content of this carbonized product according to JIS M8812 was 25% by mass. This carbonized product was passed through a sieve and a crusher, and the particle size was adjusted to 2.36 to 0.500 mm (8/32 mesh). 200 g of this carbonized product was put into an external heating electric furnace having an internal volume of 6 L maintained at 900 ° C., taken out after various times shown in Table 1, cooled to room temperature in an inert atmosphere, and adsorbent No. 21- Got 23.

得られた実施例、比較例の活性炭について、下記の測定法に従って性能を分析し、結果を表1〜表3に示した。
<細孔容積の測定>
液体窒素の沸点における窒素吸着等温線から、クランストン-インクレー法により細孔分布を算出して求めた。
<充てん密度の測定>
JIS K1474記載の方法により測定した。
<メソ孔容積の測定>
単位体積当たりのメソ孔容積は、窒素吸着等温線からクランストン-インクレー法により直径2〜30nmの範囲の細孔容積を算出し、上記の方法で求めた充てん密度との積を計算して求めた。
また、直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合は、上記の方法で求めたメソ孔容積を、直径30nmまでの細孔容積で割ることにより求めた。
<硬さの測定>
JIS K1474記載の方法により測定した。
<脱色性能の測定>
市販のしょうゆ(登録商標:ヒガシマル)薄口しょうゆ50mLに、粉砕した活性炭を加え、25℃、3時間振とう後、ろ過し、ろ液の波長460nmにおける吸光度を測定し、元の吸光度(3.8)の1/10まで脱色したときの活性炭の単位質量あたりの吸光度吸着量を計算して求めた。
<よう素吸着性能の測定>
JIS K1474記載の方法により求めた。
About the obtained activated carbon of an Example and a comparative example, performance was analyzed according to the following measuring method, and the result was shown in Table 1-Table 3.
<Measurement of pore volume>
The pore distribution was calculated from the nitrogen adsorption isotherm at the boiling point of liquid nitrogen by the Cranston-Inclay method.
<Measurement of packing density>
It was measured by the method described in JIS K1474.
<Measurement of mesopore volume>
The mesopore volume per unit volume is obtained by calculating the pore volume in the range of 2-30 nm in diameter from the nitrogen adsorption isotherm by the Cranston-Inclay method and calculating the product with the packing density obtained by the above method. It was.
Further, the ratio of the mesopore volume to the pore volume up to 30 nm in diameter was obtained by dividing the mesopore volume obtained by the above method by the pore volume up to 30 nm in diameter.
<Measurement of hardness>
It was measured by the method described in JIS K1474.
<Measurement of decolorization performance>
Add pulverized activated carbon to 50 mL of commercially available soy sauce (registered trademark: Higashi Maru), shake at 25 ° C for 3 hours, filter, measure the absorbance of the filtrate at a wavelength of 460 nm, and obtain the original absorbance (3.8) The absorbance adsorption amount per unit mass of the activated carbon when decolored to 1/10 was calculated.
<Measurement of iodine adsorption performance>
It was determined by the method described in JIS K1474.

Figure 0005863532
Figure 0005863532

Figure 0005863532
Figure 0005863532

Figure 0005863532
Figure 0005863532

実施例の活性炭は、比較例の活性炭に比べ、しょうゆ脱色性能が高いながらも、よう素吸着性能は抑えられている。すなわち、本願発明の活性炭は、低分子成分が共存しているなかで、効果的に溶液を脱色できるという、選択的吸着性を有している。   Although the activated carbon of the example has higher soy sauce decolorization performance than the activated carbon of the comparative example, the iodine adsorption performance is suppressed. That is, the activated carbon of the present invention has a selective adsorptive property that the solution can be effectively decolored in the presence of low molecular components.

本発明の活性炭およびそれを含む吸着剤は、低分子量の有効成分を残存させつつ効果的に脱色できることから、水溶液の精製、有効成分の濃度調整、回収などに用いることができる。
そのため、食品、飲料品工場、化学工場内での各種水溶液の精製、成分の分離、濃度調整などに好適に用いることができる。
The activated carbon of the present invention and the adsorbent containing the activated carbon can be effectively decolorized while leaving an active ingredient having a low molecular weight, and thus can be used for purification of an aqueous solution, adjustment of the concentration of the active ingredient, recovery, and the like.
Therefore, it can be suitably used for purification of various aqueous solutions, separation of ingredients, concentration adjustment, etc. in food, beverage factories and chemical factories.

Claims (2)

活性炭原料を500℃以下で炭化処理し、次いで水蒸気賦活処理することを特徴とする、単位体積当たりのメソ孔容積が0.06ml/ml以上であり、かつ、直径30nmまでの細孔容積のうちに占めるメソ孔容積の割合が0.3以上である活性炭の製造方法。 The mesopore volume per unit volume is 0.06 ml / ml or more, and the activated carbon raw material is carbonized at 500 ° C. or lower and then steam activated , and the pore volume is up to 30 nm in diameter. A method for producing activated carbon having a mesopore volume ratio of 0.3 or more . 活性炭原料としてヤシ殻原料を用いる、請求項に記載の製造方法。 Using coconut shell as a raw material of activated carbon raw material, manufacturing method of claim 1.
JP2012075594A 2012-03-29 2012-03-29 Activated carbon and manufacturing method thereof Active JP5863532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075594A JP5863532B2 (en) 2012-03-29 2012-03-29 Activated carbon and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075594A JP5863532B2 (en) 2012-03-29 2012-03-29 Activated carbon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013203614A JP2013203614A (en) 2013-10-07
JP5863532B2 true JP5863532B2 (en) 2016-02-16

Family

ID=49523113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075594A Active JP5863532B2 (en) 2012-03-29 2012-03-29 Activated carbon and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5863532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186965A (en) * 2016-01-19 2021-08-26 Dexerials Corp Porous carbon material, method for manufacturing same, filter, sheet, and catalyst carrier
JP6175552B2 (en) * 2016-01-19 2017-08-02 デクセリアルズ株式会社 Porous carbon material, method for producing the same, filter, sheet, and catalyst carrier
JP7111447B2 (en) * 2016-06-21 2022-08-02 フタムラ化学株式会社 Method for producing radioactive iodine adsorbent
JP7477999B2 (en) 2020-03-17 2024-05-02 株式会社クラレ Activated carbon and method for suppressing moldy odor using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3202119B2 (en) * 1993-12-17 2001-08-27 株式会社クラレ Mold odor remover
JP3224117B2 (en) * 1994-04-07 2001-10-29 株式会社キャタラー Activated carbon
JPH09328308A (en) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp Activated carbon, its production and capacitor using the same
JP3528685B2 (en) * 1999-06-11 2004-05-17 松下電器産業株式会社 Activated carbon and water purifier equipped with it
JP4963616B2 (en) * 2006-03-23 2012-06-27 Jx日鉱日石エネルギー株式会社 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same
JP2008149267A (en) * 2006-12-18 2008-07-03 Unitika Ltd Organic halide based compound removal filter
JP4817075B2 (en) * 2007-09-21 2011-11-16 Jx日鉱日石エネルギー株式会社 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil
WO2009063966A1 (en) * 2007-11-16 2009-05-22 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type storage element

Also Published As

Publication number Publication date
JP2013203614A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
Theydan et al. Optimization of preparation conditions for activated carbons from date stones using response surface methodology
DK2982649T3 (en) Process for the production of activated charcoal
Heidari et al. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: effect of chemical activation
Sekirifa et al. Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide
Pezoti et al. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies
Soleimani et al. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones–An agricultural waste
JP6033396B2 (en) Granular activated carbon with many mesopores and method for producing the same
Ingole et al. Adsorption of phenol onto banana peels activated carbon
Yasin et al. Adsorption of methylene blue onto treated activated carbon
Zyoud et al. Solid olive waste in environmental cleanup: enhanced nitrite ion removal by ZnCl2-activated carbon
KR20150122177A (en) Granular activated carbon, and manufacturing method for same
JP5863532B2 (en) Activated carbon and manufacturing method thereof
Akpa et al. Adsorption of benzene on activated carbon from agricultural waste materials
Alves et al. The potential of activated carbon in the treatment of water for human consumption, a study of the state of the art and its techniques used for its development
Bello-Huitle et al. Adsorption studies of methylene blue and phenol onto pecan and castile nutshells prepared by chemical activation
Andreas Arie et al. Activated carbons from KOH-activation of salacca peels as low cost potential adsorbents for dye removal
Shrestha et al. Removal of Ni (II) from aqueous solution by adsorption onto activated carbon prepared from Lapsi (Choerospondias axillaris) seed stone
KR20170096895A (en) Method for Treating Dyeing Waste Water Using Biochar
JP2006282441A (en) Powdered activated carbon for removing musty odor
JP2007331986A (en) Activated carbon
Soleimani et al. The investigation of the potential of activated hard shell of apricot stones as gold adsorbents
Erdogan et al. Adsorption of sunset yellow FCF onto MCM-41
Liu et al. Mechanisms on formation of hierarchically porous carbon and its adsorption behaviors
Wardani et al. Utilization of activated charcoal from sawdust as an antibiotic adsorbent of tetracycline hydrochloride
Mohan et al. Methylene blue colour removal using physically and chemically activated cashew nut shell activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150429

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350