JP7477999B2 - Activated carbon and method for suppressing moldy odor using the same - Google Patents

Activated carbon and method for suppressing moldy odor using the same Download PDF

Info

Publication number
JP7477999B2
JP7477999B2 JP2020046330A JP2020046330A JP7477999B2 JP 7477999 B2 JP7477999 B2 JP 7477999B2 JP 2020046330 A JP2020046330 A JP 2020046330A JP 2020046330 A JP2020046330 A JP 2020046330A JP 7477999 B2 JP7477999 B2 JP 7477999B2
Authority
JP
Japan
Prior art keywords
activated carbon
pore volume
mib
less
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020046330A
Other languages
Japanese (ja)
Other versions
JP2021147252A (en
Inventor
孝治 山本
治生 中田
充則 人見
光徳 西田
裕昭 北冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2020046330A priority Critical patent/JP7477999B2/en
Publication of JP2021147252A publication Critical patent/JP2021147252A/en
Application granted granted Critical
Publication of JP7477999B2 publication Critical patent/JP7477999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、浄水処理用途に有用な活性炭およびそれを用いてカビ臭を抑制する方法に関する。 The present invention relates to activated carbon useful for water purification applications and a method for suppressing mold odors using the same.

原水の浄水処理施設では、原水中における不純物質を除去するために、活性炭(特に粉末活性炭)が吸着剤として使用されている。このような不純物としては、例えば、ジェオスミンや2-メチルイソボルネオール(以下、単に「2-MIB」とも称する)のようなカビ臭原因物質、クロロホルム、トリハロメタン前駆体物質等を挙げることができる。活性炭によるこれらの不純物質の吸着性能を向上させるために、細孔容積や比表面積等の表面構造を規定した活性炭が提案されている(例えば、特許文献1~特許文献3参照)。 In raw water purification facilities, activated carbon (particularly powdered activated carbon) is used as an adsorbent to remove impurities from raw water. Examples of such impurities include substances that cause moldy odors, such as geosmin and 2-methylisoborneol (hereinafter also simply referred to as "2-MIB"), chloroform, trihalomethane precursors, etc. In order to improve the adsorption performance of activated carbon for these impurities, activated carbon with a specified surface structure, such as pore volume and specific surface area, has been proposed (see, for example, Patent Documents 1 to 3).

一方、近年、原水中における2-MIBの濃度が夏季に顕著に上昇する傾向が見られている。そのため、カビ臭抑制の対策として、2-MIBの吸着性能を向上させた活性炭が着目されている。例えば、特許文献1には、直径1.8nm以下の細孔容積を0.28ml/g以上、かつメジアン径を30μm以下に規定した粉末活性炭が、2-MIB等のカビ臭成分の除去性能を向上できることが記載されている。 On the other hand, in recent years, the concentration of 2-MIB in raw water has tended to rise significantly in the summer. For this reason, activated carbon with improved 2-MIB adsorption performance has been attracting attention as a measure to suppress moldy odors. For example, Patent Document 1 describes that powdered activated carbon with a pore volume of 0.28 ml/g or more for pores with diameters of 1.8 nm or less and a median diameter of 30 μm or less can improve the removal performance of moldy odor components such as 2-MIB.

特開2006-282441号公報JP 2006-282441 A 特開2013-220413号公報JP 2013-220413 A 特開2013-203614号公報JP 2013-203614 A

浄水処理される原水には、通常、フミン酸やフルボ酸等のフミン質(腐植物質)が混入している。フミン質は、植物が細菌やバクテリア等の微生物によって分解された結果物であり、酸性の無定形高分子有機物である。一般的に、浄水処理施設では、原水中にフミン質と2-MIB等のかび臭原因物質とが共に存在している状態(以下、単に「フミン質共存下」とも称する)で、活性炭を投入または供給等を行うことにより2-MIB等のかび臭原因物質が吸着および除去される。2-MIBと比較して大きい分子であるフミン質は、その後、凝集沈殿法または急速濾過法等により除去されることが多い。しかしながら、このような浄水処理工程によると、活性炭により2-MIBが吸着される際にフミン質も活性炭に吸着されてしまうため、2-MIBが良好に吸着されていないということが考えられる。 Raw water to be purified usually contains humic substances (humic substances) such as humic acid and fulvic acid. Humic substances are the result of decomposition of plants by microorganisms such as bacteria, and are acidic amorphous polymeric organic matter. Generally, in water purification facilities, activated carbon is added or supplied to raw water in a state where humic substances and musty odor-causing substances such as 2-MIB are present together (hereinafter simply referred to as "humic substance coexistence"), and musty odor-causing substances such as 2-MIB are adsorbed and removed. Humic substances, which are larger molecules than 2-MIB, are often then removed by coagulation sedimentation or rapid filtration. However, in such water purification processes, when 2-MIB is adsorbed by activated carbon, humic substances are also adsorbed by activated carbon, so it is thought that 2-MIB is not well adsorbed.

前述した特許文献1には、細孔容積とメジアン径だけでなく、さらには比表面積を700~2000m/gに規定した粉末活性炭についても記載されている。しかしながら、これらの粉末活性炭の細孔容積、メジアン径および比表面積の数値は、2-MIBの存在のみを考慮して、その吸着性能から規定されたものである。従って、たとえこのような粉末活性炭を用いた場合でも、前述したような実際の浄水処理施設での処理工程において、2-MIBを良好に吸着できているとは限らない。 The aforementioned Patent Document 1 also describes powdered activated carbon with a pore volume and median diameter, as well as a specific surface area of 700 to 2000 m2 /g. However, the pore volume, median diameter, and specific surface area of these powdered activated carbons are specified from the adsorption performance, taking into account only the presence of 2-MIB. Therefore, even if such powdered activated carbon is used, it is not necessarily the case that 2-MIB can be well adsorbed in the treatment process at an actual water purification facility as described above.

そこで、本発明は、フミン質共存下においても2-MIBを良好に吸着することができる活性炭を提供することを目的とする。 The present invention aims to provide activated carbon that can effectively adsorb 2-MIB even in the presence of humic substances.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、本発明に到達した。すなわち本発明は、以下の好適な態様を包含する。 The inventors conducted extensive research to solve the above problems and arrived at the present invention. That is, the present invention includes the following preferred aspects.

本発明の一局面に係る活性炭は、窒素吸着等温線からBJH法で算出される細孔容積(A)に対する、二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)の比率(B)/(A)が、1.6以上7.0以下である。 In one aspect of the present invention, the activated carbon has a ratio (B)/(A) of the total pore volume (B) calculated from the carbon dioxide adsorption isotherm by DFT analysis to the pore volume (A) calculated from the nitrogen adsorption isotherm by the BJH method, which is 1.6 or more and 7.0 or less.

前述の活性炭は、二酸化炭素吸着等温線からBET法で算出される比表面積(C)が、860m/g以上1500m/g以下であると好ましい。 The above-mentioned activated carbon preferably has a specific surface area (C) calculated by the BET method from the carbon dioxide adsorption isotherm of 860 m 2 /g or more and 1500 m 2 /g or less.

前述の活性炭は、前記二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)が、0.3ml/g以上であるとより好ましい。 The activated carbon preferably has a total pore volume (B) of 0.3 ml/g or more calculated from the carbon dioxide adsorption isotherm by DFT analysis.

前述の活性炭は、平均粒子径が5μm以上15μm以下であるとさらに好ましい。 It is even more preferable that the average particle size of the activated carbon is 5 μm or more and 15 μm or less.

前述の活性炭は、原水処理用であると好ましい。 The aforementioned activated carbon is preferably for use in raw water treatment.

前述の活性炭は、カビ臭抑制用であると好ましい。 The activated carbon mentioned above is preferably used to suppress moldy odors.

あるいは、本発明の別の局面に係るカビ臭を抑制する方法は、前述した本発明の一局面に係る活性炭で被処理液体を処理することを含む。 Alternatively, a method for suppressing a moldy odor according to another aspect of the present invention includes treating a liquid to be treated with the activated carbon according to the aspect of the present invention described above.

本発明によれば、フミン質共存下においても2-MIBを良好に吸着することができる活性炭を提供することができる。さらに、このような活性炭で液体、特に浄水処理施設における原水を処理することによって、カビ臭を抑制することができる。 The present invention provides activated carbon that can effectively adsorb 2-MIB even in the presence of humic substances. Furthermore, by treating liquids, particularly raw water in water purification facilities, with such activated carbon, mold odors can be suppressed.

以下、本発明の実施形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 The following describes in detail an embodiment of the present invention. Note that the scope of the present invention is not limited to the embodiment described here, and various modifications can be made without departing from the spirit of the present invention.

[活性炭]
本実施形態の活性炭は、窒素吸着等温線からBJH法で算出される細孔容積(A)に対する二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)の比率(B)/(A)が、1.6以上7.0以下である多孔質の活性炭である。
[Activated carbon]
The activated carbon of this embodiment is a porous activated carbon in which the ratio (B)/(A) of the pore volume (A) calculated from the nitrogen adsorption isotherm by the BJH method to the total pore volume (B) calculated from the carbon dioxide adsorption isotherm by DFT analysis is 1.6 or more and 7.0 or less.

BJH(Barrett-Joyner-Hallenda)法とは、多孔質体のメソ孔(細孔直径2nm以上50nm以下の細孔)の解析に用いられる方法である。本実施形態において、窒素吸着等温線からBJH法で算出される細孔容積(A)(以下、単に「BJH細孔容積(A)」とも称する)とは、窒素吸着等温線からBJH法を適用することにより算出される、活性炭が有する細孔のうち細孔直径2nm以上50nm以下の範囲のメソ孔の細孔容積(ml/g)をいう。具体的には、後述する実施例に記載する方法によって測定される細孔容積(ml/g)をいう。 The BJH (Barrett-Joyner-Hallenda) method is a method used to analyze mesopores (pores with a pore diameter of 2 nm to 50 nm) in porous bodies. In this embodiment, the pore volume (A) calculated from the nitrogen adsorption isotherm by the BJH method (hereinafter also simply referred to as "BJH pore volume (A)") refers to the pore volume (ml/g) of mesopores with a pore diameter in the range of 2 nm to 50 nm among the pores possessed by activated carbon, calculated by applying the BJH method from the nitrogen adsorption isotherm. Specifically, it refers to the pore volume (ml/g) measured by the method described in the examples described later.

DFT解析(DFT(Density Functional Theory)法)とは、多孔質体のミクロ孔(細孔直径2nm未満の細孔)の解析に用いられる方法である。本実施形態において、二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)(以下、単に「DFT総細孔容積(B)」とも称する)とは、二酸化炭素吸着等温線からDFT解析を適用することにより算出される、活性炭が有する細孔のうち細孔直径2nm未満のミクロ孔の総細孔容積(ml/g)をいう。具体的には、後述する実施例に記載する方法によって測定される総細孔容積(ml/g)をいう。 DFT analysis (DFT (Density Functional Theory) method) is a method used to analyze micropores (pores with a pore diameter of less than 2 nm) in porous bodies. In this embodiment, the total pore volume (B) calculated by DFT analysis from the carbon dioxide adsorption isotherm (hereinafter also simply referred to as "DFT total pore volume (B)") refers to the total pore volume (ml/g) of micropores with a pore diameter of less than 2 nm among the pores possessed by activated carbon, calculated by applying DFT analysis from the carbon dioxide adsorption isotherm. Specifically, it refers to the total pore volume (ml/g) measured by the method described in the examples described later.

活性炭のDFT総細孔容積(B)/BJH細孔容積(A)を1.6以上にすることによって、フミン質共存下においても選択的に2-MIBを良好に吸着することができると考えられる。この理由は、フミン質が吸着され易いメソ孔の細孔が少なく、一方、2-MIBが吸着され易いミクロ孔の細孔が多いことによって、フミン質の活性炭への吸着が妨げられるためと考えられる。加えて、メソ孔の細孔が少ない場合には、大分子であるフミン質が吸着されてミクロ孔の細孔を塞いでしまうことを防止すると考えられ、活性炭は良好な2-MIBの吸着性能を有すると考えられる。DFT総細孔容積(B)/BJH細孔容積(A)は、好ましくは1.8以上、より好ましくは1.9以上、さらに好ましくは2以上、または、よりさらに好ましくは2.1以上、2.2以上、2.3以上もしくは2.32以上である。 By making the DFT total pore volume (B)/BJH pore volume (A) of the activated carbon 1.6 or more, it is believed that 2-MIB can be selectively and effectively adsorbed even in the presence of humic substances. The reason for this is believed to be that the number of mesopores, which are easily adsorbed by humic substances, is small, while the number of micropores, which are easily adsorbed by 2-MIB, is large, which hinders the adsorption of humic substances to the activated carbon. In addition, when there are few mesopores, it is believed that the large molecules of humic substances are adsorbed and the micropores are prevented from being blocked, and the activated carbon is believed to have good 2-MIB adsorption performance. The DFT total pore volume (B)/BJH pore volume (A) is preferably 1.8 or more, more preferably 1.9 or more, even more preferably 2 or more, or even more preferably 2.1 or more, 2.2 or more, 2.3 or more, or 2.32 or more.

また、活性炭のDFT総細孔容積(B)/BJH細孔容積(A)を7.0以下とすることによって、ミクロ孔の細孔の過度の増加により活性炭の構造を変化させてその吸着機能を低下させたり、製造コストを極端に増やしてしまうことを避けることができる。DFT総細孔容積(B)/BJH細孔容積(A)は、好ましくは7未満、より好ましくは6.5以下、または、さらに好ましくは6以下、5.5以下、5以下、4.5以下、4.2以下、4.11以下、4.11未満、3.5以下、3以下、2.8以下もしくは2.5以下である。 In addition, by setting the DFT total pore volume (B)/BJH pore volume (A) of the activated carbon to 7.0 or less, it is possible to avoid an excessive increase in the number of micropores, which would change the structure of the activated carbon and reduce its adsorption function, or an excessive increase in production costs. The DFT total pore volume (B)/BJH pore volume (A) is preferably less than 7, more preferably 6.5 or less, or even more preferably 6 or less, 5.5 or less, 5 or less, 4.5 or less, 4.2 or less, 4.11 or less, less than 4.11, 3.5 or less, 3 or less, 2.8 or less, or 2.5 or less.

このように、本実施形態の活性炭によると、フミン質共存下においてもカビ臭の原因の2-MIBを良好に吸着することができる。そのため、本実施形態の活性炭を、例えば浄水処理施設において原水の浄水処理用として、特にカビ臭抑制用として投入または供給等を行うことによって、好適に用いることができる。 In this way, the activated carbon of this embodiment can effectively adsorb 2-MIB, which causes moldy odors, even in the presence of humic substances. Therefore, the activated carbon of this embodiment can be suitably used, for example, by adding or supplying it to water purification facilities for raw water purification, particularly for suppressing moldy odors.

活性炭のDFT総細孔容積(B)/BJH細孔容積(A)は、例えば、後述する活性炭の原料となる炭素質材料の種類ならびに活性炭の製造の際における炭素質材料の賦活処理方法およびその処理条件(加熱温度および時間等)を適宜選択または調整することによって、その値を制御することができる。 The value of the DFT total pore volume (B)/BJH pore volume (A) of the activated carbon can be controlled, for example, by appropriately selecting or adjusting the type of carbonaceous material that is the raw material for the activated carbon, which will be described later, and the activation treatment method and treatment conditions (heating temperature, time, etc.) of the carbonaceous material during the production of the activated carbon.

また、本実施形態の活性炭は、DFT総細孔容積(B)が0.3ml/g以上であると好ましい。これは、活性炭のDFT総細孔容積(B)を0.3ml/g以上とすることによって、活性炭が有するミクロ孔の総細孔容積自体が大きくなり、その結果、活性炭の2-MIBに対する吸着性能を向上させることができるためである。DFT総細孔容積(B)は、より好ましくは0.31ml/g以上、さらに好ましくは0.32ml/g以上、または、よりさらに好ましくは0.33ml/g以上、0.332ml/g超、0.34ml/g以上、0.35ml/g以上もしくは0.356ml/g以上である。DFT総細孔容積(B)の上限は、特に限定されないが、ミクロ孔の総細孔容積自体を過度に増加させて、活性炭の構造を変化させてその吸着機能に影響を与えたり、製造コストを極端に増加させない値であればよい。 In addition, the activated carbon of this embodiment preferably has a DFT total pore volume (B) of 0.3 ml/g or more. This is because by making the DFT total pore volume (B) of the activated carbon 0.3 ml/g or more, the total pore volume of the micropores of the activated carbon itself becomes large, and as a result, the adsorption performance of the activated carbon for 2-MIB can be improved. The DFT total pore volume (B) is more preferably 0.31 ml/g or more, even more preferably 0.32 ml/g or more, more preferably 0.33 ml/g or more, more than 0.332 ml/g, 0.34 ml/g or more, 0.35 ml/g or more, or 0.356 ml/g or more. The upper limit of the DFT total pore volume (B) is not particularly limited, but it may be a value that does not excessively increase the total pore volume of the micropores itself, change the structure of the activated carbon, affect its adsorption function, or extremely increase the manufacturing cost.

活性炭のDFT総細孔容積(B)についても、例えば、後述する活性炭の原料となる炭素質材料の種類ならびに活性炭の製造の際における炭素質材料の賦活処理方法およびその処理条件(加熱温度および時間等)を適宜選択または調整することによって、その値を制御することができる。例えば、活性炭の製造の際に、比較的高い加熱温度かつ短い時間でガス賦活処理を行うことによって、DFT総細孔容積(B)(ml/g)をより大きくすることができる。 The DFT total pore volume (B) of the activated carbon can also be controlled by, for example, appropriately selecting or adjusting the type of carbonaceous material used as the raw material for the activated carbon (described later) and the activation treatment method and treatment conditions (heating temperature, time, etc.) of the carbonaceous material during the production of the activated carbon. For example, the DFT total pore volume (B) (ml/g) can be increased by performing a gas activation treatment at a relatively high heating temperature for a short time during the production of the activated carbon.

本実施形態の活性炭は、二酸化炭素吸着等温線からBET法で算出される比表面積(C)(以下、単に「BET比表面積(C)」とも称する)が、860m/g以上1500m/g以下であると好ましい。本実施形態において、BET比表面積(C)は、二酸化炭素吸着等温線からBET法を用いて算出される。具体的には、後述する実施例に記載する方法によって算出される値をいう。 The activated carbon of this embodiment preferably has a specific surface area (C) calculated from the carbon dioxide adsorption isotherm by the BET method (hereinafter also simply referred to as "BET specific surface area (C)") of 860 m2 /g or more and 1500 m2 /g or less. In this embodiment, the BET specific surface area (C) is calculated from the carbon dioxide adsorption isotherm by the BET method. Specifically, it refers to a value calculated by the method described in the examples described later.

BET比表面積(C)を860m/g以上とすることによって、吸着可能な面積自体が大きくなり、活性炭の2-MIBに対する吸着性能を向上させることができる。一方、BET比表面積(C)を過度に大きすぎない値とすることによって、活性炭の構造を変化させてその吸着機能に影響を与えたり、活性炭の製造コストを極端に増加させてしまうことを避けることができる。 By setting the BET specific surface area (C) to 860 m 2 /g or more, the adsorption area itself becomes large, and the adsorption performance of the activated carbon for 2-MIB can be improved. On the other hand, by setting the BET specific surface area (C) to a value that is not too large, it is possible to avoid changing the structure of the activated carbon, which would affect its adsorption function, and to avoid an extreme increase in the production cost of the activated carbon.

BET比表面積(C)は、より好ましくは867m/g以上、さらに好ましくは900m/g以上、または、よりさらに好ましくは950m/g以上、968m/g以上、1000m/g以上もしくは1093m/g以上である。加えて、BET比表面積(C)は、より好ましくは1400m/g以下、さらに好ましくは1350m/g以下、よりさらに好ましくは1300m/g以下である。 The BET specific surface area (C) is more preferably 867 m 2 /g or more, even more preferably 900 m 2 /g or more, or even more preferably 950 m 2 /g or more, 968 m 2 /g or more, 1000 m 2 /g or more, or 1093 m 2 /g or more. In addition, the BET specific surface area (C) is more preferably 1400 m 2 /g or less, even more preferably 1350 m 2 /g or less, and even more preferably 1300 m 2 /g or less.

活性炭のBET比表面積(C)は、例えば、後述する活性炭の原料となる炭素質材料の種類ならびに活性炭の製造の際における炭素質材料の賦活処理方法およびその処理条件(加熱温度および時間等)を適宜選択または調整することによって、その値を制御することができる。例えば、活性炭の製造の際に、比較的高い加熱温度かつ短い時間でガス賦活処理を行うことによって、BET比表面積(C)(m/g)をより大きくすることができる。 The BET specific surface area (C) of activated carbon can be controlled by, for example, appropriately selecting or adjusting the type of carbonaceous material used as the raw material for activated carbon described below, and the activation treatment method and treatment conditions (heating temperature, time, etc.) of the carbonaceous material during the production of activated carbon. For example, the BET specific surface area (C) ( m2 /g) can be increased by performing a gas activation treatment at a relatively high heating temperature for a short time during the production of activated carbon.

本実施形態の活性炭の形状は、2-MIBを吸着可能であれば、特に限定されない。例えば、活性炭は、粉末状、粒子状、繊維状(糸状、織り布(クロス)状、フェルト状)等のいずれの形状でもよく、具体的な使用態様に応じて適宜選択できる。これらのうち、単位体積当たりの吸着性能が高いという観点から、本実施形態の活性炭の形状は粉末状が好ましい。 The shape of the activated carbon in this embodiment is not particularly limited as long as it is capable of adsorbing 2-MIB. For example, the activated carbon may be in any shape, such as powder, particles, or fibers (thread, woven fabric (cloth), felt), etc., and can be appropriately selected depending on the specific mode of use. Of these, from the viewpoint of high adsorption performance per unit volume, the activated carbon in this embodiment is preferably in powder form.

本実施形態の活性炭が粉末状である場合、その平均粒子径は特に限定されないが、20μm以下であると好ましく、5μm以上15μm以下であるとより好ましい。活性炭の平均粒子径を20μm以下とすることによって、各々の粉末状の活性炭に2-MIBが接触し易くなるため、活性炭による吸着性能を向上させることができる。一方、平均粒子径が5μm未満である場合、凝集沈殿法や急速濾過法等の処理工程で活性炭漏れや目詰まり等が発生する可能性があり、また、粉砕に掛かる費用が高くなる。本実施形態において、平均粒子径(μm)は、体積基準の累計粒度分布における50%粒子径をいう。平均粒子径(μm)はレーザー回折・散乱法により測定することができる。具体的には、後述する実施例に記載する方法によって算出される平均粒子径(μm)の値をいう。 When the activated carbon of this embodiment is in powder form, its average particle size is not particularly limited, but is preferably 20 μm or less, and more preferably 5 μm to 15 μm. By making the average particle size of the activated carbon 20 μm or less, it becomes easier for 2-MIB to come into contact with each powdered activated carbon, and the adsorption performance of the activated carbon can be improved. On the other hand, if the average particle size is less than 5 μm, there is a possibility that activated carbon leakage or clogging may occur in the treatment process such as the coagulation sedimentation method or the rapid filtration method, and the cost of pulverization will be high. In this embodiment, the average particle size (μm) refers to the 50% particle size in the cumulative particle size distribution based on volume. The average particle size (μm) can be measured by a laser diffraction/scattering method. Specifically, it refers to the value of the average particle size (μm) calculated by the method described in the examples described later.

活性炭の平均粒子径は、より好ましくは15μm未満、さらに好ましくは14μm以下、よりさらに好ましくは12μm以下である。加えて、平均粒子径は、より好ましくは8μm以上、さらに好ましくは10μm以上、よりさらに好ましくは11.7μm以上である。 The average particle size of the activated carbon is more preferably less than 15 μm, even more preferably 14 μm or less, and even more preferably 12 μm or less. In addition, the average particle size is more preferably 8 μm or more, even more preferably 10 μm or more, and even more preferably 11.7 μm or more.

活性炭の平均粒子径は、例えば、後述する活性炭の原料となる炭素質材料の種類と必要に応じて行う粉砕処理方法および/または篩分処理方法ならびにその処理条件とを適宜選択または調整することによって、その数値を制御することができる。 The average particle size of the activated carbon can be controlled, for example, by appropriately selecting or adjusting the type of carbonaceous material that is the raw material for the activated carbon (described below) and the crushing method and/or sieving method and processing conditions that are performed as necessary.

[活性炭の製造方法]
本実施形態の活性炭を製造する方法は、最終的に、活性炭のDFT総細孔容積(B)/BJH細孔容積(A)の比率(B)/(A)が1.6以上7.0以下となっていれば、特に限定されない。
[Method of producing activated carbon]
The method for producing the activated carbon of this embodiment is not particularly limited as long as the ratio (B)/(A) of the DFT total pore volume (B) to the BJH pore volume (A) of the activated carbon is ultimately 1.6 or more and 7.0 or less.

活性炭は、原料となる炭素質材料に対して必要に応じて炭化処理を行った後、賦活処理、ならびに必要に応じて洗浄処理、乾燥処理および粉砕処理を行うことによって得ることができる。 Activated carbon can be obtained by subjecting the raw carbonaceous material to a carbonization process as necessary, followed by an activation process, and, as necessary, a washing process, a drying process, and a pulverization process.

このような炭素質材料としては、特に限定されないが、例えば植物系炭素質材料(例えば、木材、鉋屑、木炭、ヤシ殻やクルミ殻などの果実殻、果実種子、パルプ製造副生成物、リグニン、廃糖蜜などの植物由来の材料)、鉱物系炭素質材料(例えば、泥炭、亜炭、褐炭、瀝青炭、無煙炭、コークス、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの鉱物由来の材料)、合成樹脂系炭素質材料(例えば、フェノール樹脂、ポリ塩化ビニリデン、アクリル樹脂などの合成樹脂由来の材料)、天然繊維系炭素質材料(例えば、セルロースなどの天然繊維、レーヨンなどの再生繊維などの天然繊維由来の材料)等が挙げられる。これらの炭素質材料は、単独で使用してもよく、または2種類以上を組み合わせて使用することができる。 Such carbonaceous materials are not particularly limited, but examples thereof include plant-based carbonaceous materials (e.g., plant-derived materials such as wood, sawdust, charcoal, fruit shells such as coconut shells and walnut shells, fruit seeds, pulp manufacturing by-products, lignin, and blackstrap molasses), mineral-based carbonaceous materials (e.g., mineral-derived materials such as peat, lignite, brown coal, bituminous coal, anthracite, coke, coal tar, coal pitch, petroleum distillation residue, and petroleum pitch), synthetic resin-based carbonaceous materials (e.g., synthetic resin-derived materials such as phenolic resin, polyvinylidene chloride, and acrylic resin), and natural fiber-based carbonaceous materials (e.g., natural fibers such as cellulose, and regenerated fibers such as rayon). These carbonaceous materials may be used alone or in combination of two or more types.

これらのうち、大量に入手することができ、商業的に有利であるという観点から、植物系炭素質材料が好ましい。活性炭の原料を植物系炭素質材料から選択することによって、後述する賦活処理条件の調整等によるDFT総細孔容積(B)/BJH細孔容積(A)の制御を比較的容易に行うことができる。さらに、植物系炭素質材料のうち、活性炭による2-MIBの吸着性能が高いという観点から、ヤシ殻または木材がより好ましく、ヤシ殻がさらに好ましい。 Of these, plant-based carbonaceous materials are preferred from the viewpoint of being available in large quantities and being commercially advantageous. By selecting the raw material for activated carbon from plant-based carbonaceous materials, it is relatively easy to control the DFT total pore volume (B)/BJH pore volume (A) by adjusting the activation treatment conditions described below. Furthermore, of the plant-based carbonaceous materials, coconut shells or wood are more preferred, and coconut shells are even more preferred, from the viewpoint of high adsorption performance of 2-MIB by activated carbon.

炭化処理を必要とする場合、これらの炭素質材料に対して、通常、酸素または空気を遮断した環境下において、例えば400℃以上800℃以下、好ましくは500℃以上800℃以下、さらに好ましくは550℃以上750℃以下程度で炭化処理を行うことができる。その後、必要に応じて粒度調整を行ってもよい。 When carbonization is required, these carbonaceous materials can be carbonized, typically in an environment that is free of oxygen or air, at a temperature of, for example, 400°C to 800°C, preferably 500°C to 800°C, and more preferably 550°C to 750°C. After that, particle size adjustment may be performed as necessary.

その後、炭素質材料に対して賦活処理を行う。賦活処理とは、炭素質材料の表面に細孔を形成し、多孔質体である活性炭に変える処理である。これにより所望するDFT総細孔容積(B)/BJH細孔容積(A)を有する活性炭を得ることができる。賦活処理は、当該技術分野において一般的な方法により行うことができ、特に限定されず、主に、ガス賦活処理または薬剤賦活処理の2種類の処理方法を挙げることができる。これらのうち、浄水処理用として使用する場合、不純物の残留が少ないという観点から、ガス賦活処理が好ましい。 Then, the carbonaceous material is subjected to an activation treatment. The activation treatment is a treatment in which pores are formed on the surface of the carbonaceous material, turning it into a porous body, activated carbon. This makes it possible to obtain activated carbon having the desired DFT total pore volume (B)/BJH pore volume (A). The activation treatment can be performed by a method common in the technical field, and is not particularly limited. Two main types of treatment methods include gas activation treatment and chemical activation treatment. Of these, when used for water purification treatment, gas activation treatment is preferred from the viewpoint of leaving less impurities behind.

ガス賦活処理は、例えば、水蒸気、二酸化炭素、空気、酸素、燃焼ガス、またはこれらの混合ガスの存在下で、炭素質材料を加熱する処理である。加熱は、例えば800℃以上1500℃以下、好ましくは850℃以上1200℃以下、より好ましくは900℃以上1100℃以下の温度において行われる。薬剤賦活処理としては、例えば、塩化亜鉛、塩化カルシウム、リン酸、硫酸、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の賦活剤を炭素質材料と混合し、不活性ガス雰囲気下で加熱する公知の方法で行ってもよい。 The gas activation process is, for example, a process in which the carbonaceous material is heated in the presence of water vapor, carbon dioxide, air, oxygen, combustion gas, or a mixture of these gases. Heating is performed, for example, at a temperature of 800°C to 1500°C, preferably 850°C to 1200°C, and more preferably 900°C to 1100°C. The chemical activation process may be performed by a known method in which an activator such as zinc chloride, calcium chloride, phosphoric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, magnesium hydroxide, or calcium hydroxide is mixed with the carbonaceous material and heated in an inert gas atmosphere.

これらのうち、ガス賦活処理で炭素質材料を賦活させることによって、活性炭のDFT総細孔容積(B)/BJH細孔容積(A)を1.6以上7.0以下に容易に制御することができる。具体的には、上述したような比較的高い加熱温度かつ短い時間でガス賦活処理(好ましくは水蒸気賦活処理)を行うことによって、活性炭におけるメソ孔の細孔容積に対するミクロ孔の総細孔容積の比率を1.6以上7.0以下の範囲内に収まるようにすることができる。 Among these, by activating the carbonaceous material by gas activation treatment, the DFT total pore volume (B)/BJH pore volume (A) of the activated carbon can be easily controlled to 1.6 or more and 7.0 or less. Specifically, by performing gas activation treatment (preferably steam activation treatment) at a relatively high heating temperature and for a short time as described above, the ratio of the total pore volume of micropores to the pore volume of mesopores in the activated carbon can be set to fall within the range of 1.6 or more and 7.0 or less.

賦活処理後の活性炭は、必要に応じて洗浄および乾燥する。具体的には、アルカリ金属、アルカリ土類金属および遷移金属等の不純物を含むヤシ殻等の植物系炭素質材料または鉱物系炭素質材料を活性炭の原料とした場合、灰分や薬剤等を除去するために洗浄する。洗浄には鉱酸や水が用いられ、鉱酸としては洗浄効率の高い塩酸が好ましい。 After activation treatment, the activated carbon is washed and dried as necessary. Specifically, when the raw material for activated carbon is a plant-based carbonaceous material such as coconut shell or a mineral-based carbonaceous material containing impurities such as alkali metals, alkaline earth metals, and transition metals, it is washed to remove ash, chemicals, etc. Mineral acid and water are used for washing, and hydrochloric acid, which has a high cleaning efficiency, is preferred as the mineral acid.

賦活処理後の活性炭は、必要に応じて粉砕処理および/または篩分処理される。粉砕処理は、一般的に活性炭の粉砕に用いられる粉砕装置、例えば、エロフォールミル、ロッドミル、ローラーミル、ハンマーミル、ブレードミル、ピンミル等の高速回転ミル、ボールミル、ジェットミル等を用いて行うことができる。 The activated carbon after the activation treatment is crushed and/or sieved as necessary. The crushing treatment can be carried out using a crushing device generally used for crushing activated carbon, such as aeroform mills, rod mills, roller mills, hammer mills, blade mills, pin mills, and other high-speed rotating mills, ball mills, jet mills, etc.

本実施形態の活性炭は、単独で使用してもよく、必要に応じて他の成分と組み合わせて用いてもよい。他の成分としては、例えば、ハロゲン化物、他の臭気成分を除去するための吸着剤(例えば、ゼオライト、シリカ等のケイ酸塩系吸着剤、薬品無担持活性炭、薬品担持活性炭等)等を挙げることができる。 The activated carbon of this embodiment may be used alone or in combination with other components as necessary. Examples of other components include adsorbents for removing halides and other odorous components (e.g., zeolite, silicate-based adsorbents such as silicate, chemical-free activated carbon, chemical-supported activated carbon, etc.).

[カビ臭を抑制する方法]
本実施形態のカビ臭を抑制する方法は、前述した活性炭で被処理液体を処理することを含む。
[Methods to suppress moldy odor]
The method for suppressing a moldy odor in this embodiment includes treating the liquid to be treated with the activated carbon described above.

被処理液体は、2-MIBを含有する液体であればどのような液体でも構わないが、例えば、原水、水道水、工業用水、廃水、家庭用飲料水等が挙げられる。フミン質共存下で2-MIBを吸着する必要があるという観点から、これらのうち浄水処理施設での原水処理において、本実施形態の方法は有用に適用される。具体的には、例えば、タンク等に貯蔵された河川または湖水等の水源からの原水に、前述した実施形態の活性炭をそのまま、または湿潤状態で投入または供給等を行う。活性炭の供給量は特に限定されず、適宜所望の必要量に応じて供給すればよい。 The liquid to be treated may be any liquid containing 2-MIB, including raw water, tap water, industrial water, wastewater, and household drinking water. From the viewpoint that 2-MIB must be adsorbed in the presence of humic substances, the method of this embodiment is usefully applied to raw water treatment at water purification facilities. Specifically, the activated carbon of the above-mentioned embodiment is introduced or supplied as is or in a wet state to raw water from a water source such as a river or lake water stored in a tank or the like. The amount of activated carbon supplied is not particularly limited, and may be supplied as needed according to the desired amount.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these examples.

各実施例および各比較例の活性炭の物性値およびフミン酸共存下での2-MIB吸着量は、以下に示す方法により測定した。 The physical properties of the activated carbon in each Example and Comparative Example and the amount of 2-MIB adsorption in the presence of humic acid were measured using the methods described below.

[平均粒子径(μm)の測定]
活性炭(具体的には粉末活性炭)の平均粒子径は、レーザー回折測定法により測定した。具体的には、測定対象である活性炭、界面活性剤およびイオン交換水を混合して分散液を得て、レーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル社製、「MT3300II」)を用い、透過法により活性炭の平均粒子径を測定した。分散液における活性炭の濃度は、当該測定装置で表示される測定濃度範囲に収まるように調整した。界面活性剤としては、和光純薬工業社製の「ポリオキシエチレン(10)オクチルフェニルエーテル」を用い、測定に影響する気泡等が発生しない適当な量を添加および混合した。分析条件を以下に示す。
[Measurement of average particle size (μm)]
The average particle size of activated carbon (specifically, powdered activated carbon) was measured by laser diffraction measurement. Specifically, the activated carbon to be measured, the surfactant, and ion-exchanged water were mixed to obtain a dispersion, and the average particle size of the activated carbon was measured by a transmission method using a laser diffraction/scattering particle size distribution measuring device (Microtrack Bell, "MT3300II"). The concentration of activated carbon in the dispersion was adjusted to fall within the measurement concentration range displayed by the measuring device. As the surfactant, "Polyoxyethylene (10) Octylphenyl Ether" manufactured by Wako Pure Chemical Industries, Ltd. was used, and an appropriate amount was added and mixed so that bubbles that would affect the measurement would not be generated. The analysis conditions are shown below.

(分析条件)
測定回数:1回
測定時間:30秒
分布表示:体積
粒径区分:標準
計算モード:MT3000II
溶媒名:WATER
測定上限:2000μm、測定下限:0.021μm
残分比:0.00
通過分比:0.00
残分比設定:無効
粒子透過性:透過
粒子屈折率:1.81
粒子形状:非球形
溶媒屈折率:1.333
DV値:0.0150~0.0700
透過率(TR):0.700~0.950
測定結果において、体積基準の累計粒度分布における50%粒子径であるD50の値を平均粒子径(μm)とした。
(Analysis conditions)
Number of measurements: 1 Measurement time: 30 seconds Distribution display: Volume Particle size classification: Standard Calculation mode: MT3000II
Solvent name: WATER
Upper limit of measurement: 2000 μm, lower limit of measurement: 0.021 μm
Residual ratio: 0.00
Passing ratio: 0.00
Residual ratio setting: Disabled Particle transmittance: Transmitted Particle refractive index: 1.81
Particle shape: non-spherical Solvent refractive index: 1.333
DV value: 0.0150 to 0.0700
Transmittance (TR): 0.700 to 0.950
In the measurement results, the value of D50, which is the 50% particle diameter in the cumulative particle size distribution on a volume basis, was taken as the average particle diameter (μm).

[二酸化炭素吸着等温線の測定]
ガス吸着測定装置(Quantachrome社製、「AUTOSORB-iQ MP-XR」)を使用し、測定対象である活性炭の273Kにおける二酸化炭素の吸着を相対圧P/P0=0.00075~0.030の範囲で測定することにより、当該活性炭の二酸化炭素吸着等温線を得た。
[Measurement of Carbon Dioxide Adsorption Isotherm]
A gas adsorption measuring device ("AUTOSORB-iQ MP-XR" manufactured by Quantachrome) was used to measure the adsorption of carbon dioxide by the activated carbon to be measured at 273 K in a relative pressure range of P/P0 = 0.00075 to 0.030, thereby obtaining a carbon dioxide adsorption isotherm for the activated carbon.

[窒素吸着等温線の測定]
ガス吸着測定装置(マイクロトラック・ベル社製、「BELSORP-mini」)を使用し、測定対象である活性炭を窒素気流下(窒素流量:50mL/分)にて300℃で3時間加熱した後、77Kにおける当該活性炭の窒素吸着等温線を測定した。
[Measurement of Nitrogen Adsorption Isotherm]
Using a gas adsorption measuring device (Microtrac-Bel, "BELSORP-mini"), the activated carbon to be measured was heated at 300° C. for 3 hours under a nitrogen flow (nitrogen flow rate: 50 mL/min), and then the nitrogen adsorption isotherm of the activated carbon at 77 K was measured.

[二酸化炭素吸着等温線によるBET比表面積(C)(m/g)の測定]
上記方法により得られた二酸化炭素吸着等温線において、相対圧P/P0=0.0247~0.0285の範囲のデータを用いてBET法による解析を行い、測定対象である活性炭のBET比表面積(C)(m/g)を算出した。
[Measurement of BET specific surface area (C) (m 2 /g) by carbon dioxide adsorption isotherm]
In the carbon dioxide adsorption isotherm obtained by the above method, analysis was performed by the BET method using data in the relative pressure range P/P0 = 0.0247 to 0.0285, and the BET specific surface area (C) (m 2 /g) of the activated carbon to be measured was calculated.

[窒素吸着等温線によるBJH細孔容積(A)(ml/g)の測定]
上記方法により得られた窒素吸着等温線において、BJH法を適用し、相対圧P/P0=0.99以下の範囲において、測定対象である活性炭が有する細孔のうち細孔直径2nm以上50nm以下の範囲のBJH細孔容積(A)(ml/g)を算出した。BJH法での解析では、マイクロトラック・ベル社製から提供された基準t曲線「NGCB-BEL.t」を解析に用いた。
[Measurement of BJH pore volume (A) (ml/g) by nitrogen adsorption isotherm]
The BJH method was applied to the nitrogen adsorption isotherm obtained by the above method, and the BJH pore volume (A) (ml/g) of the pores in the measurement target activated carbon with a pore diameter in the range of 2 nm to 50 nm was calculated in the relative pressure range of P/P0 = 0.99 or less. In the analysis by the BJH method, the standard t curve "NGCB-BEL.t" provided by Microtrac-Bel was used for the analysis.

[二酸化炭素吸着等温線によるDFT総細孔容積(B)(ml/g)の測定方法]
上記方法により得られた二酸化炭素吸着等温線において、Calculation modelとして「CO at 273K on carbon(NLDFT model)」を適用してNLDFT法での解析を行い、細孔径分布を求め、各細孔直径範囲における細孔容積を測定し、測定対象である活性炭が有する細孔のうち細孔直径2nm未満のDFT総細孔容積(B)(ml/g)を算出した。
[Method for measuring DFT total pore volume (B) (ml/g) by carbon dioxide adsorption isotherm]
In the carbon dioxide adsorption isotherm obtained by the above method, analysis was performed by the NLDFT method using "CO 2 at 273K on carbon (NLDFT model)" as the calculation model to obtain the pore size distribution, measure the pore volume in each pore diameter range, and calculate the DFT total pore volume (B) (ml/g) of pores with a pore diameter of less than 2 nm in the activated carbon to be measured.

[フミン酸共存下での2-MIB吸着量(ng/mg)の測定]
以下に、後述する実施例1の活性炭における当該2-MIB吸着量(ng/mg)の測定方法を詳細に示す。後述する他の実施例および比較例における活性炭についても同様の方法で当該2-MIB吸着量の測定を行った。
[Measurement of 2-MIB adsorption amount (ng/mg) in the presence of humic acid]
The following describes in detail the method for measuring the 2-MIB adsorption amount (ng/mg) of the activated carbon in Example 1. The 2-MIB adsorption amounts of the activated carbons in the other Examples and Comparative Examples were also measured in the same manner.

(1)フミン酸試薬の調整原液の作製
乾燥質量換算で9.9gのフミン酸試薬(和光純薬社製)を500mlの三角フラスコ内に測り取った。次いで、三角フラスコに、1N・NaOHを300ml加えて200rpmで30分間振とうさせた。その後、溶液をビーカーに移し、攪拌しながら(1+1)HSO(体積割合でHSOを1に対してHOを1含む硫酸溶液)を加えて、pH=4.5に調整した。pH調整後、沈殿管に移し、5000rpmで10分間遠心分離を行った。遠心分離後、溶液と沈殿物とを濾別し、溶液に1N・NaOHを攪拌しながら加えて、pH=6.5に調整した。このように調整したフミン酸溶液に、pH=7.4のリン酸緩衝液を当該フミン酸溶液の1/20容量において加えた。その後、当該溶液を0.45μmメンブレンフィルターを用いて吸引ろ過して、フミン酸試薬の調製原液とした。
(1) Preparation of humic acid reagent stock solution 9.9 g of humic acid reagent (manufactured by Wako Pure Chemical Industries, Ltd.) was weighed in a 500 ml Erlenmeyer flask in terms of dry mass. Next, 300 ml of 1N NaOH was added to the Erlenmeyer flask and shaken at 200 rpm for 30 minutes. The solution was then transferred to a beaker and (1+1) H 2 SO 4 (a sulfuric acid solution containing 1 H 2 SO 4 and 1 H 2 O by volume ratio) was added while stirring to adjust the pH to 4.5. After pH adjustment, the solution was transferred to a precipitation tube and centrifuged at 5000 rpm for 10 minutes. After centrifugation, the solution and precipitate were filtered off, and 1N NaOH was added to the solution while stirring to adjust the pH to 6.5. To the humic acid solution thus adjusted, a phosphate buffer solution with a pH of 7.4 was added at 1/20 volume of the humic acid solution. Thereafter, the solution was suction filtered using a 0.45 μm membrane filter to obtain a stock solution of humic acid reagent.

(2)2-MIB-フミン酸混合液の作製
次いで、このように調製したフミン酸試薬の調整原液と、2-MIB標準液(富士フィルム和光純薬社製、「2-メチルイソボルネオール標準液(0.1mg/mlメタノール溶液)」)とを水に混合して、2-MIB濃度が400ng/Lであり、フミン酸濃度がTOC(Total Organic Carbon)濃度として1ppm、4ppm、6ppmまたは8ppmである4種類の2-MIB-フミン酸混合液を調製した。
(2) Preparation of 2-MIB-humic acid mixed solution Next, the thus-prepared humic acid reagent stock solution and a 2-MIB standard solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "2-methylisoborneol standard solution (0.1 mg/ml methanol solution)") were mixed in water to prepare four types of 2-MIB-humic acid mixed solutions having a 2-MIB concentration of 400 ng/L and humic acid concentrations of 1 ppm, 4 ppm, 6 ppm, or 8 ppm in terms of TOC (Total Organic Carbon) concentration.

(3)活性炭懸濁液の作製
約0.2g(乾燥品で秤量)の後述する実施例1の活性炭を蒸留水1Lに分散させた懸濁液を作製した。
(3) Preparation of Activated Carbon Suspension About 0.2 g (weighed on a dry basis) of the activated carbon of Example 1 described below was dispersed in 1 L of distilled water to prepare a suspension.

(4)フミン酸TOC濃度1ppmにおける2-MIB吸着量の測定
上記(2)で調整したフミン酸TOC濃度1ppmの2-MIB-フミン酸混合液を用いて試験を行った。まず、この2-MIB-フミン酸混合液を100mlずつ5つのビーカーに入れ、これらのビーカーに上記(3)で調製した活性炭懸濁液をそれぞれ0ml、2ml、3ml、5mlまたは8mlずつ加え、さらに蒸留水をそれぞれに加えて全量を200mlとした。得られた混合液を、振とう恒温槽(タイテック社製、「振とう恒温槽クールバスシェーカー ML-10F」)を用いて、25℃、150回/分、振幅4cmの条件で60分間振とうした。その後、30分間静置した後、上澄み液を孔径0.45μmのメンブレンフィルター(Sartorius社製、「NMLシリンジフィルター」)を用いた加圧濾過によって濾過した。得られた濾液について、残留している2-MIBの濃度(ng/L)をそれぞれ測定した。両対数方眼紙の縦軸に活性炭の質量当たりの2-MIBの吸着量(ng/mg)を、横軸に残留している2-MIBの濃度(2-MIB平衡濃度、ng/L)をとり、各数値をプロットし回帰直線を引いた。2-MIB平衡濃度が初期値の1/10である20ng/Lとなった際の2-MIBの吸着量を、フミン酸TOC濃度1ppmにおける活性炭の吸着量とした。
(4) Measurement of 2-MIB adsorption amount at humic acid TOC concentration of 1 ppm A test was carried out using the 2-MIB-humic acid mixture with a humic acid TOC concentration of 1 ppm prepared in (2) above. First, 100 ml of this 2-MIB-humic acid mixture was placed in five beakers, and 0 ml, 2 ml, 3 ml, 5 ml, or 8 ml of the activated carbon suspension prepared in (3) above was added to each of these beakers, and distilled water was added to each beaker to make the total amount 200 ml. The resulting mixture was shaken for 60 minutes using a shaking thermostatic bath (manufactured by Taitec, "Shaking Thermostatic Bath Shaker ML-10F") at 25°C, 150 times/min, and an amplitude of 4 cm. After leaving it to stand for 30 minutes, the supernatant was filtered by pressure filtration using a membrane filter with a pore size of 0.45 μm (manufactured by Sartorius, "NML Syringe Filter"). The concentration (ng/L) of residual 2-MIB in each of the obtained filtrates was measured. The vertical axis of a double logarithmic graph paper was the adsorption amount of 2-MIB per mass of activated carbon (ng/mg) and the horizontal axis was the concentration of residual 2-MIB (2-MIB equilibrium concentration, ng/L), and the values were plotted to draw a regression line. The amount of 2-MIB adsorption when the 2-MIB equilibrium concentration reached 20 ng/L, which was 1/10 of the initial value, was regarded as the amount of 2-MIB adsorption by activated carbon at a humic acid TOC concentration of 1 ppm.

(5)フミン酸TOC濃度3ppmにおける2-MIB吸着量の測定
上記(4)と同様にして、フミン酸TOC濃度が4ppm、6ppmまたは8ppmである各混合液についても試験を行った。各試験において、2-MIB平衡濃度が初期値の1/10である20ng/Lとなった際の2-MIBの吸着量を測定した。新たに、縦軸に20ng/Lでの2-MIB吸着量を、横軸にフミン酸TOC濃度をとり、各数値をプロットしグラフを作成した。フミン酸TOC濃度が3ppmの際の2-MIB吸着量(ng/mg)を、実施例1の活性炭の2-MIB吸着量の値(ng/mg)として読み取った。
(5) Measurement of 2-MIB adsorption amount at humic acid TOC concentration of 3 ppm In the same manner as in (4) above, tests were also conducted on each mixed solution having a humic acid TOC concentration of 4 ppm, 6 ppm, or 8 ppm. In each test, the amount of 2-MIB adsorption was measured when the 2-MIB equilibrium concentration was 20 ng/L, which is 1/10 of the initial value. A new graph was created by plotting the 2-MIB adsorption amount at 20 ng/L on the vertical axis and the humic acid TOC concentration on the horizontal axis. The 2-MIB adsorption amount (ng/mg) at a humic acid TOC concentration of 3 ppm was read as the value (ng/mg) of the 2-MIB adsorption amount of the activated carbon of Example 1.

なお、各実施例および各比較例の活性炭は、以下のように製造および入手した。 The activated carbon in each example and comparative example was manufactured and obtained as follows:

<実施例1>
原料である炭化したヤシ殻炭を1000℃に加熱した流動賦活炉に投入し、水蒸気分圧50%の条件下で、賦活処理後のヤシ殻炭のヨウ素吸着量が1500mg/gになるように水蒸気賦活を行った。ヨウ素吸着量はJIS K 1474(2014)に準拠して測定した(後述する実施例2および比較例1~2も同様)。その後、賦活処理後のヤシ殻炭を、粉砕機を用いて調整しながら粉末状に粉砕し、平均粒子径12μmの粉末状の活性炭を得た。得られた粉末状の活性炭について各物性値を測定し、フミン酸共存下での2-MIB吸着量を評価した。測定された各物性値および評価結果を、後の表1にまとめて示す。
Example 1
The raw material, carbonized coconut shell charcoal, was placed in a fluidized bed activation furnace heated to 1000°C, and activated with water vapor under a condition of a water vapor partial pressure of 50% so that the iodine adsorption amount of the coconut shell charcoal after activation treatment was 1500 mg/g. The iodine adsorption amount was measured in accordance with JIS K 1474 (2014) (the same applies to Example 2 and Comparative Examples 1 and 2 described later). Thereafter, the coconut shell charcoal after activation treatment was pulverized into powder while adjusting it using a pulverizer, and a powdered activated carbon with an average particle size of 12 μm was obtained. The physical properties of the obtained powdered activated carbon were measured, and the 2-MIB adsorption amount in the presence of humic acid was evaluated. The measured physical properties and evaluation results are summarized in Table 1 below.

<実施例2>
ヨウ素吸着量が1300mg/gになるように水蒸気賦活を行った以外は、実施例1と同様にして、賦活処理後のヤシ殻炭を得た。その後、賦活処理後のヤシ殻炭を、粉砕機を用いて調整しながら粉末状に粉砕し、平均粒子径11.7μmの粉末状の活性炭を得た。得られた粉末状の活性炭について各物性値を測定し、フミン酸共存下での2-MIB吸着量を評価した。測定された各物性値および評価結果を、後の表1にまとめて示す。
Example 2
Except for performing steam activation so that the iodine adsorption amount was 1,300 mg/g, coconut shell charcoal after activation treatment was obtained in the same manner as in Example 1. The coconut shell charcoal after activation treatment was then pulverized into powder while adjusting the size using a pulverizer, to obtain powdered activated carbon with an average particle size of 11.7 μm. The physical properties of the obtained powdered activated carbon were measured, and the 2-MIB adsorption amount in the presence of humic acid was evaluated. The measured physical properties and evaluation results are summarized in Table 1 below.

<比較例1>
原料である炭化したヤシ殻炭を850℃に加熱した流動賦活炉に投入し、水蒸気分圧15%の条件下で、賦活処理後のヤシ殻炭においてヨウ素吸着量が1000mg/gになるように水蒸気賦活を行った。その後、賦活処理後のヤシ殻炭を、粉砕機を用いて調整しながら粉末状に粉砕し、平均粒子径11.6μmの粉末状の活性炭を得た。得られた粉末状の活性炭について各物性値を測定し、フミン酸共存下での2-MIB吸着量を評価した。測定された各物性値および評価結果を、後の表1にまとめて示す。
<Comparative Example 1>
The raw material, carbonized coconut shell charcoal, was placed in a fluidized activation furnace heated to 850°C, and activated with water vapor under a condition of a water vapor partial pressure of 15% so that the coconut shell charcoal after activation had an iodine adsorption amount of 1000 mg/g. The coconut shell charcoal after activation was then pulverized into powder while adjusting the size using a pulverizer, to obtain powdered activated carbon with an average particle size of 11.6 μm. The physical properties of the obtained powdered activated carbon were measured, and the 2-MIB adsorption amount in the presence of humic acid was evaluated. The measured physical properties and evaluation results are summarized in Table 1 below.

<比較例2(参考例)>
原料として木質系材料が用いられている市販品の活性炭(上海興長社製、商品名「WP160-05」)について、その平均粒子径および各物性値を測定し、フミン酸共存下での2-MIB吸着量を評価した。測定された各物性値および評価結果を、後の表1にまとめて示す。
<Comparative Example 2 (Reference Example)>
The average particle size and various physical properties of a commercially available activated carbon (manufactured by Shanghai Kocho Co., Ltd., product name "WP160-05") that uses wood-based materials as the raw material were measured, and the amount of 2-MIB adsorbed in the presence of humic acid was evaluated. The measured physical properties and evaluation results are summarized in Table 1 below.

実施例1~2および比較例1~の各物性値および評価結果は以下の表1に示す通りであった。 The physical properties and evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 0007477999000001
Figure 0007477999000001

上記表1に示すように、DFT総細孔容積(B)/BJH細孔容積(A)の比率(B)/(A)が1.6以上7.0以下の範囲内にある実施例1および2の活性炭は、2-MIB吸着量が多かった。一方で、前述の比率(B)/(A)が1.6未満または7より大きい比較例1~の2-MIB吸着量は少なかった。 As shown in Table 1 above, the activated carbons of Examples 1 and 2, in which the ratio (B)/(A) of the DFT total pore volume (B) to the BJH pore volume (A) was within the range of 1.6 to 7.0, had a large amount of 2-MIB adsorption. On the other hand, the activated carbons of Comparative Examples 1 and 2 , in which the ratio (B)/(A) was less than 1.6 or more than 7, had a small amount of 2-MIB adsorption.

この結果から、メソ孔の細孔容積(BJH細孔容積())に対するミクロ孔の総細孔容積(DFT総細孔容積())の比率が所定の範囲内にある活性炭は、活性炭としての機能を損なうことなく、フミン酸等のフミン質共存下においても良好に2-MIBを吸着することができることが分かる。 These results show that activated carbon having a ratio of the total micropore volume (DFT total pore volume ( B )) to the mesopore pore volume ( BJH pore volume ( A )) within a specified range can effectively adsorb 2-MIB even in the presence of humic substances such as humic acid without impairing its function as activated carbon.

本発明によれば、フミン質共存下においても2-MIB等のカビ臭原因物質を良好に吸着することができる活性炭を提供することができる。従って、このような活性炭、特に粉末状の活性炭は、浄水処理施設の原水に投入または供給等を行うことによってカビ臭を良好に抑制することができるため、有用である。 According to the present invention, it is possible to provide activated carbon that can effectively adsorb moldy odor-causing substances such as 2-MIB even in the presence of humic substances. Therefore, such activated carbon, particularly powdered activated carbon, is useful because it can effectively suppress moldy odors by being added or supplied to raw water at a water purification facility.

Claims (7)

窒素吸着等温線からBJH法で算出される細孔容積(A)に対する、二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)の比率(B)/(A)が、1.6以上7.0以下であり、
前記細孔容積(A)は、細孔直径2nm以上50nm以下の範囲の細孔の細孔容積であり、
前記総細孔容積(B)は、細孔直径2nm未満の細孔の総細孔容積であり、
平均粒子径が20μm以下の粉末状の活性炭である、活性炭。
the ratio (B)/(A) of the total pore volume (B) calculated from the carbon dioxide adsorption isotherm by DFT analysis to the pore volume (A) calculated from the nitrogen adsorption isotherm by the BJH method is 1.6 or more and 7.0 or less;
The pore volume (A) is the pore volume of pores having a pore diameter in the range of 2 nm to 50 nm,
The total pore volume (B) is the total pore volume of pores having a pore diameter of less than 2 nm;
Activated carbon is a powdered activated carbon having an average particle size of 20 μm or less .
二酸化炭素吸着等温線からBET法で算出される比表面積(C)が、860m/g以上1500m/g以下である、請求項1に記載の活性炭。 The activated carbon according to claim 1, which has a specific surface area (C) calculated from a carbon dioxide adsorption isotherm by a BET method of 860 m 2 /g or more and 1500 m 2 /g or less. 前記二酸化炭素吸着等温線からDFT解析で算出される総細孔容積(B)が、0.3ml/g以上である、請求項1または2に記載の活性炭。 The activated carbon according to claim 1 or 2, wherein the total pore volume (B) calculated from the carbon dioxide adsorption isotherm by DFT analysis is 0.3 ml/g or more. 平均粒子径が5μm以上15μm以下である、請求項1~3のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 3, having an average particle size of 5 μm or more and 15 μm or less. 原水処理用である、請求項1~4のいずれか1項に記載の活性炭。 The activated carbon according to any one of claims 1 to 4, which is used for raw water treatment. カビ臭抑制用である、請求項5に記載の活性炭。 The activated carbon according to claim 5, which is used to suppress mold odor. 請求項1~6のいずれか1項に記載の活性炭で被処理液体を処理することを含む、カビ臭を抑制する方法。 A method for suppressing mold odor, comprising treating a liquid to be treated with the activated carbon according to any one of claims 1 to 6.
JP2020046330A 2020-03-17 2020-03-17 Activated carbon and method for suppressing moldy odor using the same Active JP7477999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020046330A JP7477999B2 (en) 2020-03-17 2020-03-17 Activated carbon and method for suppressing moldy odor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020046330A JP7477999B2 (en) 2020-03-17 2020-03-17 Activated carbon and method for suppressing moldy odor using the same

Publications (2)

Publication Number Publication Date
JP2021147252A JP2021147252A (en) 2021-09-27
JP7477999B2 true JP7477999B2 (en) 2024-05-02

Family

ID=77850897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020046330A Active JP7477999B2 (en) 2020-03-17 2020-03-17 Activated carbon and method for suppressing moldy odor using the same

Country Status (1)

Country Link
JP (1) JP7477999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572983B (en) * 2022-02-21 2024-04-05 江苏联兴成套设备制造有限公司 Preparation method of activated carbon by coupling transition metal catalysis with carbon dioxide activation
CN116351398B (en) * 2023-03-31 2024-08-16 中国科学院生态环境研究中心 Nitrogen modified activated carbon for removing 2-MIB as well as preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319350A (en) 2004-05-06 2005-11-17 Ebara Corp Water treatment activated carbon and its manufacturing method
JP2006282441A (en) 2005-03-31 2006-10-19 Japan Enviro Chemicals Ltd Powdered activated carbon for removing musty odor
JP2011093774A (en) 2009-11-02 2011-05-12 Jx Nippon Oil & Energy Corp Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP2013203614A (en) 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
JP2015093257A (en) 2013-11-13 2015-05-18 水ing株式会社 Method for regenerating vegetable spherical active carbon and method for reutilizing in water treatment of regenerated vegetable spherical active carbon
JP2017165823A (en) 2016-03-14 2017-09-21 宇部興産株式会社 Phenol resin composition for porous carbon material, porous carbon material, and method for producing the same
WO2019167441A1 (en) 2018-03-01 2019-09-06 株式会社クレハ Toxin separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005319350A (en) 2004-05-06 2005-11-17 Ebara Corp Water treatment activated carbon and its manufacturing method
JP2006282441A (en) 2005-03-31 2006-10-19 Japan Enviro Chemicals Ltd Powdered activated carbon for removing musty odor
JP2011093774A (en) 2009-11-02 2011-05-12 Jx Nippon Oil & Energy Corp Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP2013203614A (en) 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
JP2015093257A (en) 2013-11-13 2015-05-18 水ing株式会社 Method for regenerating vegetable spherical active carbon and method for reutilizing in water treatment of regenerated vegetable spherical active carbon
JP2017165823A (en) 2016-03-14 2017-09-21 宇部興産株式会社 Phenol resin composition for porous carbon material, porous carbon material, and method for producing the same
WO2019167441A1 (en) 2018-03-01 2019-09-06 株式会社クレハ Toxin separator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤 克昭 et al.,エバラ時報,日本,2013年,No.238,p.3-p.8

Also Published As

Publication number Publication date
JP2021147252A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
Sayğılı et al. Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption
Gürses et al. Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye
Tan et al. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
da Silva Lacerda et al. Rhodamine B removal with activated carbons obtained from lignocellulosic waste
Phan et al. Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications
Deng et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation
Valix et al. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption
Anirudhan et al. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons
Sayğılı et al. Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: spectroscopic characterization and dye decolorization activity
Bounaas et al. Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue
Abd Wafti et al. Activated carbon from oil palm biomass as potential adsorbent for palm oil mill effluent treatment
Manap et al. Adsorption isotherm and kinetic study of gas-solid system of formaldehyde on oil palm mesocarp bio-char: pyrolysis effect
Danish et al. Characterization of physically activated acacia mangium wood-based carbon for the removal of methyl orange dye
Castro et al. Phenol adsorption by activated carbon produced from spent coffee grounds
JP7477999B2 (en) Activated carbon and method for suppressing moldy odor using the same
KR20160142275A (en) Activated carbon for water purifier
Reddy et al. Sustainable mesoporous graphitic activated carbon as biosorbent for efficient adsorption of acidic and basic dyes from wastewater: Equilibrium, kinetics and thermodynamic studies
Ahmed Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments
Zayed et al. Facile synthesis of eco-friendly activated carbon from leaves of sugar beet waste as a superior nonconventional adsorbent for anionic and cationic dyes from aqueous solutions
Ramírez-Montoya et al. Optimizing the preparation of carbonaceous adsorbents for the selective removal of textile dyes by using Taguchi methodology
JP2006282441A (en) Powdered activated carbon for removing musty odor
Zayed et al. Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems
Mariana et al. Nipa palm shell as a sustainable precursor for synthesizing high-performance activated carbon: Characterization and application for Hg2+ adsorption
TWI755715B (en) Carbonaceous material, method for producing the same, filter for water purification, and water purifier
Fathy et al. Equilibrium removal of Pb (II) ions from aqueous solution onto oxidized-KOH-activated carbons

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240419

R150 Certificate of patent or registration of utility model

Ref document number: 7477999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150