JP2011093774A - Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system - Google Patents

Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system Download PDF

Info

Publication number
JP2011093774A
JP2011093774A JP2009252137A JP2009252137A JP2011093774A JP 2011093774 A JP2011093774 A JP 2011093774A JP 2009252137 A JP2009252137 A JP 2009252137A JP 2009252137 A JP2009252137 A JP 2009252137A JP 2011093774 A JP2011093774 A JP 2011093774A
Authority
JP
Japan
Prior art keywords
activated carbon
liquid
mass
na1n
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009252137A
Other languages
Japanese (ja)
Inventor
Yasuhiro Toida
康宏 戸井田
Seiji Kumagai
誠治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Eneos Corp
Original Assignee
Akita Prefectural University
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University, JX Nippon Oil and Energy Corp filed Critical Akita Prefectural University
Priority to JP2009252137A priority Critical patent/JP2011093774A/en
Publication of JP2011093774A publication Critical patent/JP2011093774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon that retains meso pores suitable for removing trace components in liquid, has a large specific surface area and a high bulk density, and is capable of effectively adsorbing and removing trace components in liquid such as hydrocarbon oil, and to provide a method for producing the same. <P>SOLUTION: The activated carbon has a specific surface area Sa of 800-4,000 m<SP>2</SP>/g, a total pore volume Va of 0.5-1.2 cm<SP>3</SP>/g, and an ash content of 3-10 mass%. The method for producing the activated carbon includes a step of carbonizing a raw material containing ≥40 mass% of chaffs and a step to activate the carbonized product. The method for producing the activated carbon may further include a step of removing ashes in the activated carbon with alkali treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活性炭、活性炭の製造方法、液体の精製方法及び燃料電池システムに関し、特には、特定の活性炭を吸着剤として用いた液体の精製方法、例えば、硫黄化合物を炭化水素油から吸着除去する精製方法、更には、該精製方法を使用する燃料電池システムに関するものである。   The present invention relates to activated carbon, a method for producing activated carbon, a liquid purification method, and a fuel cell system, and in particular, a liquid purification method using a specific activated carbon as an adsorbent, for example, adsorption removal of sulfur compounds from hydrocarbon oil. The present invention also relates to a purification method, and further to a fuel cell system using the purification method.

地球温暖化ガスであるCOガスや、NO等の自動車排出ガスの排出量を削減する観点から、燃料内に含まれる硫黄分の一層の低減が、社会から強く望まれている。我が国では既に、軽油は2007年から、ガソリンは2008年から硫黄分が10質量ppm以下に規制されている。一方、昨今の燃料電池の技術革新には目を見張るものがある。水素源を石油系燃料に求めた場合、燃料油中に含まれる硫黄分をppbレベルまで低減しなければ、燃料電池の改質器及び電極部の触媒が硫黄分により被毒され、燃料電池システムの機能が低下し、所望する寿命が得られない。このような背景から、超低硫黄分の石油系燃料油を得る脱硫技術が盛んに研究されている。 And CO 2 gas as a greenhouse gas, from the viewpoint of reducing the emissions of automotive exhaust gases, such as NO X, further reduction of sulfur content in the fuel, he is strongly desired by society. In Japan, sulfur has already been regulated to 10 mass ppm or less since 2007 for diesel and gasoline since 2008. On the other hand, recent technological innovations in fuel cells are remarkable. When the hydrogen source is determined for petroleum-based fuel, if the sulfur content in the fuel oil is not reduced to the ppb level, the fuel cell reformer and the electrode catalyst are poisoned by the sulfur content, and the fuel cell system Thus, the desired life is not obtained. Against this background, desulfurization technology for obtaining ultra-low sulfur petroleum fuel oil has been actively researched.

従来の水素化脱硫方法で除去が難しい難脱硫化合物の大部分は、ベンゾチオフェン類及びジベンゾチオフェン類である。灯油の場合、特にベンゾチオフェン類の割合が大きく、全硫黄化合物に対するベンゾチオフェン類の割合は、硫黄分として70%以上であることが多い。しかしながら、含有量の少ないジベンゾチオフェン類の方が除去は困難であり、特にアルキル基を多く有するアルキルジベンゾチオフェン類の除去が非常に困難である。一方で、簡単な操作で、容易に効率的に脱硫できる方法が求められており、例えば、還元処理や水素を必要とせず、また、加圧を必要としないで、かつ室温から150℃程度までの比較的低い温度下で、ジベンゾチオフェン類を効率的に除去できる脱硫剤が熱望されている。脱硫剤は、製油所等で大量に使用するには、除去性能だけでなく、安価で経済性も優れていなければならない。   Most of the difficult desulfurization compounds that are difficult to remove by conventional hydrodesulfurization methods are benzothiophenes and dibenzothiophenes. In the case of kerosene, the ratio of benzothiophenes is particularly large, and the ratio of benzothiophenes to the total sulfur compounds is often 70% or more as the sulfur content. However, dibenzothiophenes with a low content are more difficult to remove, and in particular, alkyl dibenzothiophenes having a large number of alkyl groups are very difficult to remove. On the other hand, there is a demand for a method that can be easily and efficiently desulfurized by a simple operation. For example, no reduction treatment or hydrogen is required, no pressure is required, and room temperature to about 150 ° C. Therefore, a desulfurization agent that can efficiently remove dibenzothiophenes at a relatively low temperature is desired. In order to use a large amount of a desulfurizing agent in a refinery or the like, not only the removal performance but also the cost and economy must be excellent.

特定の細孔構造を有する活性炭、特に繊維状活性炭は、軽油や灯油に含まれるジベンゾチオフェン類に対して高い除去性能を有することが報告されている(特許文献1参照)。しかしながら、繊維状活性炭は綿状であるために充填密度を高くできないため、単位容積当たりの吸着性能が高くないこと、製造工程が複雑で製造コストが極めて高く経済的ではないことという課題が存在する。   Activated carbon having a specific pore structure, particularly fibrous activated carbon, has been reported to have high removal performance with respect to dibenzothiophenes contained in light oil and kerosene (see Patent Document 1). However, since the fibrous activated carbon is cottony, the packing density cannot be increased, so there are problems that the adsorption performance per unit volume is not high, the manufacturing process is complicated, the manufacturing cost is extremely high, and it is not economical. .

本発明者らは、植物系バイオマスを減圧下にて300〜900℃で炭化処理することにより、又は減圧下及び/又は不活性雰囲気下にて200〜900℃で炭化処理した後にさらに賦活処理することにより得られた、比表面積200m/g以上、平均細孔幅2.0nm以上である炭化処理物又は賦活処理物が、炭化水素油中の微量成分の除去に好適に使用できること、特には、籾殻を原料として上記にようにして得られる活性炭が燃料油中の難脱硫化合物であるジベンゾチオフェン類の吸着能力に優れていることを見出している(特許文献2参照)。さらに、植物系バイオマス又は植物系バイオマスの予備炭化処理物、特には籾殻の炭化物に、他の炭素源、特には糖類からなるバインダーを加え、混練、成型後、得られた成型物を炭化処理して成型炭化処理物を得る成型炭化処理工程、及び得られた成型炭化処理物にバインダーを含浸させた後、これを賦活処理して成型賦活処理物を得る賦活処理工程を含む製造方法により、比表面積が高く、硬く、かつ、かさ密度の高い活性炭が得られることを見出している(特許文献3参照)。 The present inventors further perform an activation treatment by carbonizing plant biomass at 300 to 900 ° C. under reduced pressure, or after carbonizing at 200 to 900 ° C. under reduced pressure and / or in an inert atmosphere. The carbonized or activated product having a specific surface area of 200 m 2 / g or more and an average pore width of 2.0 nm or more obtained by the above can be suitably used for removing trace components in hydrocarbon oil, particularly It has been found that the activated carbon obtained as described above using rice husk as a raw material is excellent in the adsorption ability of dibenzothiophenes, which are hardly desulfurized compounds in fuel oil (see Patent Document 2). In addition, a binder made of other carbon sources, especially sugars, is added to plant biomass or a pre-carbonized product of plant biomass, particularly carbide of rice husk, and after kneading and molding, the resulting molded product is carbonized. By a manufacturing method including a molding carbonization process for obtaining a molded carbonized product, and an activation process step for impregnating the obtained molded carbonized product with a binder and then activating this to obtain a molded activated product, It has been found that activated carbon having a high surface area, hard and high bulk density can be obtained (see Patent Document 3).

しかしながら、籾殻は灰分、特にはシリカ分を多く含むことから、単位質量当たりの炭素分が少なく、さらに比表面積を大きくするために賦活処理時間を長くすると、炭素分が減少することにより灰分の割合が高くなり、単位質量当たりの比表面積の向上には限界があった。   However, rice husk contains a large amount of ash, especially silica, so the carbon content per unit mass is small, and if the activation treatment time is increased in order to increase the specific surface area, the carbon content decreases and the proportion of ash As a result, the improvement of the specific surface area per unit mass was limited.

国際公開第2003/097771号International Publication No. 2003/097771 特開2007−284337号公報JP 2007-284337 A 特開2009−072712号公報JP 2009-072712 A

そこで、本発明は、液体中の微量成分の除去に好適なメソ孔を保持しつつ、比表面積が高く、かつ、かさ密度の高い活性炭であって、炭化水素油等の液体中の微量成分を効率的に吸着除去することが可能な活性炭を提供することを課題とする。また、本発明は、該活性炭を製造する方法、該活性炭を用いる液体の精製方法、例えば該活性炭を用いて炭化水素油中の微量成分を除去する精製方法、及び該精製方法を使用する燃料電池システムを提供することを課題とする。   Therefore, the present invention is an activated carbon having a high specific surface area and a high bulk density, while retaining mesopores suitable for removing trace components in a liquid, and the trace components in a liquid such as hydrocarbon oil. It is an object to provide activated carbon that can be efficiently adsorbed and removed. The present invention also provides a method for producing the activated carbon, a method for purifying a liquid using the activated carbon, for example, a purification method for removing trace components in hydrocarbon oil using the activated carbon, and a fuel cell using the purification method. The problem is to provide a system.

本発明者らは、上記目的を達成するため、液体中の微量成分を吸着除去する吸着剤の主要材料である活性炭の原料となる籾殻等の前処理方法、籾殻等に追加する炭素源及び適切なバインダーの選択及びその添加量、炭化・賦活処理温度などの製造条件を鋭意検討した結果、植物系バイオマス、好ましくはイネから得られる籾殻の炭化物又は該籾殻の炭化物にさらに追加の炭素源、特には糖類を追加して炭化処理した炭化物を、アルカリ、特には水酸化ナトリウム水溶液で処理して灰分の一部を除去することにより、液体中の微量成分の除去等に好適なメソ孔を保持しつつ、比表面積が高く、かつ、かさ密度の高い活性炭が得られることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have prepared a pretreatment method such as rice husk as a raw material of activated carbon which is a main material of an adsorbent for adsorbing and removing a trace component in a liquid, a carbon source added to rice husk and the like and an appropriate As a result of intensive investigations on the production conditions such as the selection of an appropriate binder and its addition amount, carbonization / activation treatment temperature, etc., as a result of plant biomass, preferably rice husk carbide obtained from rice or carbon sources further added to the rice husk carbide, particularly By maintaining a mesopore that is suitable for removing trace components in a liquid, the carbide obtained by adding carbon is treated with an alkali, especially an aqueous sodium hydroxide solution, to remove a part of the ash. However, the inventors have found that activated carbon having a high specific surface area and a high bulk density can be obtained, and the present invention has been completed.

即ち、本発明は、以下の発明を包含する。
(1) 比表面積Saが800〜4,000m/gで、且つ、全細孔容積Vaが0.5〜1.2cm/gであって、灰分の含有量が3〜10質量%であることを特徴とする活性炭。
(2) 下記式(I)により求めた平均細孔幅dが、1.0〜2.0nmであることを特徴とする上記(1)に記載の活性炭。
d = 2000×Va/Sa ・・・(I)
(3) 細孔幅2.0nm以上50nm未満のメソ孔容積Vmが、0.1〜0.5cm/gであることを特徴とする上記(2)に記載の活性炭。
(4) 全細孔容積Vaに対するメソ孔容積Vmの比Vm/Vaが、0.2〜0.5であることを特徴とする上記(3)に記載の活性炭。
(5) 細孔幅0.7nm以上2.0nm未満のスーパーマイクロ孔容積Vsに対する、細孔幅0.7nm未満のウルトラマイクロ孔容積Vuの比Vu/Vsが、1.0〜2.5であることを特徴とする上記(1)に記載の活性炭。
(6) 籾殻を40質量%以上含む原料を炭化処理及び賦活処理する工程を含む活性炭の製造方法であって、更に、アルカリ処理により前記活性炭の灰分を除去する工程を含むことを特徴とする上記(1)〜(5)のいずれかに記載の活性炭の製造方法。
(7) 籾殻を40質量%以上含む原料を炭化処理して炭化処理物を得、該炭化処理物をアルカリ処理することにより灰分を除去した後に、該炭化処理物を賦活処理することを特徴とする上記(6)に記載の活性炭の製造方法。
(8) アルカリ処理の後に、前記炭化処理物を成型することを特徴とする上記(7)に記載の活性炭の製造方法。
(9) 上記(1)〜(5)のいずれかに記載の活性炭からなる吸着剤又は該活性炭を含む吸着剤と液体とを接触させることにより、該液体に含有される微量成分を吸着除去することを特徴とする液体の精製方法。
(10) 前記液体が灯油又は軽油であることを特徴とする上記(9)に記載の液体の精製方法。
(11) 前記微量成分が芳香族化合物であることを特徴とする上記(9)又は(10)に記載の液体の精製方法。
(12) 前記芳香族化合物が、ベンゾチオフェン類及びジベンゾチオフェン類よりなる群から選ばれる少なくとも1つの硫黄化合物であることを特徴とする上記(11)に記載の液体の精製方法。
(13) 前記吸着剤と前記液体とを接触させる工程の後処理として、固体酸系吸着剤を用いて硫黄化合物を吸着除去することを特徴とする上記(12)に記載の液体の精製方法。
(14) 0〜80℃の温度で前記吸着剤と前記液体とを接触させることを特徴とする上記(9)〜(13)のいずれかに記載の液体の精製方法。
(15) 上記(9)〜(14)のいずれかに記載の液体の精製方法を使用することを特徴とする燃料電池システム。
That is, the present invention includes the following inventions.
(1) The specific surface area Sa is 800 to 4,000 m 2 / g, the total pore volume Va is 0.5 to 1.2 cm 3 / g, and the ash content is 3 to 10% by mass. Activated carbon characterized by being.
(2) The activated carbon as described in (1) above, wherein the average pore width d determined by the following formula (I) is 1.0 to 2.0 nm.
d = 2000 × Va / Sa (I)
(3) The activated carbon as described in (2) above, wherein the mesopore volume Vm having a pore width of 2.0 nm or more and less than 50 nm is 0.1 to 0.5 cm 3 / g.
(4) The activated carbon as described in (3) above, wherein the ratio Vm / Va of the mesopore volume Vm to the total pore volume Va is 0.2 to 0.5.
(5) The ratio Vu / Vs of the ultra micro pore volume Vu having a pore width of less than 0.7 nm to the super micro pore volume Vs having a pore width of 0.7 nm or more and less than 2.0 nm is 1.0 to 2.5. The activated carbon as described in (1) above, wherein
(6) A method for producing activated carbon comprising a step of carbonizing and activating a raw material containing rice husks of 40% by mass or more, further comprising a step of removing ash from the activated carbon by alkali treatment. (1) The manufacturing method of activated carbon in any one of (5).
(7) Carbonizing a raw material containing 40% by mass or more of rice husks to obtain a carbonized product, removing the ash by alkali treatment of the carbonized product, and then activating the carbonized product. The method for producing activated carbon according to (6) above.
(8) The method for producing activated carbon as described in (7) above, wherein the carbonized product is molded after the alkali treatment.
(9) By adsorbing and removing the adsorbent comprising the activated carbon according to any one of (1) to (5) above or the adsorbent containing the activated carbon and the liquid, the liquid is adsorbed and removed. A method for purifying a liquid characterized by the above.
(10) The method for purifying a liquid as described in (9) above, wherein the liquid is kerosene or light oil.
(11) The method for purifying a liquid as described in (9) or (10) above, wherein the trace component is an aromatic compound.
(12) The method for purifying a liquid according to (11), wherein the aromatic compound is at least one sulfur compound selected from the group consisting of benzothiophenes and dibenzothiophenes.
(13) The method for purifying a liquid according to (12), wherein the sulfur compound is adsorbed and removed using a solid acid adsorbent as a post-treatment in the step of bringing the adsorbent into contact with the liquid.
(14) The method for purifying a liquid according to any one of the above (9) to (13), wherein the adsorbent and the liquid are contacted at a temperature of 0 to 80 ° C.
(15) A fuel cell system using the method for purifying a liquid according to any one of (9) to (14).

本発明の活性炭によれば、単位重量(質量)当たりの吸着性能は元より、単位体積(容量)当たりの吸着性能が高いため、液体中の微量成分、特には炭化水素油中の硫黄化合物を効率的に吸着除去することができる。また、かかる活性炭を吸着剤として用いた液体の精製方法、及び該精製方法を使用する燃料電池システムを提供することができる。   According to the activated carbon of the present invention, since the adsorption performance per unit weight (mass) is higher than the original, the adsorption performance per unit volume (volume) is high. Adsorption and removal can be performed efficiently. Further, it is possible to provide a liquid purification method using such activated carbon as an adsorbent, and a fuel cell system using the purification method.

活性炭[N5AC EX 1+2h](比較例1)の製造フローチャートを示す。The manufacturing flowchart of activated carbon [N5AC EX 1 + 2h] (Comparative Example 1) is shown. モデル油を用いた浸漬式脱硫試験−1における各硫黄化合物の吸着等温線を示す。The adsorption isotherm of each sulfur compound in the immersion type desulfurization test-1 using model oil is shown. モデル油を用いた浸漬式脱硫試験−2における硫黄化合物の吸着等温線を示す。The adsorption isotherm of the sulfur compound in the immersion-type desulfurization test-2 using model oil is shown. 活性炭[N5AC60 Na1N EX 0.5h](比較例6)及び活性炭[N5AC60 Na1N EX 0.25+0.5h](比較例7)の製造フローチャートを示す。The manufacturing flowchart of activated carbon [N5AC60 Na1N EX 0.5h] (Comparative Example 6) and activated carbon [N5AC60 Na1N EX 0.25 + 0.5h] (Comparative Example 7) is shown. 活性炭[N5AC85 Na1N EX 0.5h](実施例3)及び活性炭[N5AC85 Na1N EX 0.25+0.5h](比較例8)の製造フローチャートを示す。The manufacturing flowchart of activated carbon [N5AC85 Na1N EX 0.5h] (Example 3) and activated carbon [N5AC85 Na1N EX 0.25 + 0.5h] (Comparative Example 8) is shown. 活性炭[N5AC Na1N EX 0.5h](実施例4)及び活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)の製造フローチャートを示す。The manufacturing flowchart of activated carbon [N5AC Na1N EX 0.5h] (Example 4) and activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5) is shown. モデル油を用いた浸漬式脱硫試験−3における各硫黄化合物の吸着等温線を示す。The adsorption isotherm of each sulfur compound in immersion type desulfurization test -3 using model oil is shown. モデル油を用いた浸漬式脱硫試験−4における各硫黄化合物の吸着等温線を示す。The adsorption isotherm of each sulfur compound in immersion type desulfurization test -4 using model oil is shown. モデル油を用いた浸漬式脱硫試験−5における各硫黄化合物の吸着等温線を示す。The adsorption isotherm of each sulfur compound in immersion type desulfurization test -5 using model oil is shown. 市販灯油を用いた浸漬式脱硫試験におけるジベンゾチオフェン類の吸着等温線を示す。The adsorption isotherm of dibenzothiophenes in the immersion desulfurization test using commercial kerosene is shown.

〔植物系バイオマス〕
本発明の活性炭の製造方法は、植物系バイオマスを主な原料として用いる。ここで、植物系バイオマスは、炭化処理工程、賦活処理工程等の工程を経て、成型賦活処理物となる。また、植物系バイオマスとしては、木材、ヤシ殻、イナワラ、籾殻、パルプ廃液などが挙げられるが、籾殻が好ましく、イネから得られる籾殻が特に好ましい。植物系バイオマス、例えば籾殻から得られた成型賦活処理物はいわゆる活性炭の1種であり、これからなる吸着剤は液体に含有される微量成分、特には、炭化水素油中に含まれる硫黄化合物及び/又は多環芳香族化合物の吸着除去に優れた性能を発揮する。
[Plant biomass]
The activated carbon production method of the present invention uses plant biomass as the main raw material. Here, plant-type biomass turns into a shaping | molding activation process thing through processes, such as a carbonization process process and an activation process process. Examples of plant biomass include wood, coconut husk, rice straw, rice husk, and pulp waste liquor. Rice husk is preferred, and rice husk obtained from rice is particularly preferred. A molded activated product obtained from plant biomass such as rice husk is a kind of so-called activated carbon, and the adsorbent comprising this is a trace component contained in a liquid, particularly a sulfur compound contained in a hydrocarbon oil and / or Or, it exhibits excellent performance in adsorption removal of polycyclic aromatic compounds.

植物系バイオマス、特に籾殻の場合には、含有するシリカなどの灰分(無機成分)が、メソ孔やマクロ孔を発達させているものと推察される。特にメソ孔は、吸着質である微量成分の拡散のルートとして、適当な容量が必要である。植物系バイオマスが含有する灰分の量は、籾殻の場合が20質量%程度で、杉の場合が1質量%程度である。   In the case of plant biomass, particularly rice husk, it is presumed that ash (inorganic components) such as silica contained develops mesopores and macropores. In particular, the mesopores need to have an appropriate capacity as a route for the diffusion of the trace components that are adsorbates. The amount of ash contained in plant biomass is about 20% by mass for rice husks and about 1% by mass for cedars.

さらに、籾殻は毎年安定量産出され、安定的に供給可能であるという利点を有し、また、殆どが焼却処分されていることから資源の有効活用にも資する。なお、本発明の活性炭の製造方法に用いる原料は、籾殻を40質量%以上含む限り特に限定されず、籾殻を該籾殻以外の植物系バイオマスと組み合わせて用いてもよい。   Furthermore, rice husks have the advantage that they are produced in a stable amount each year and can be supplied stably, and most of them are incinerated, which contributes to the effective use of resources. In addition, the raw material used for the manufacturing method of the activated carbon of this invention is not specifically limited as long as it contains 40 mass% or more of rice husk, You may use rice husk in combination with plant-type biomass other than this rice husk.

〔追加炭素源〕
本発明の活性炭の製造方法は、上記の籾殻等の植物系バイオマスからなる原料のほかに、追加の炭素源を用いることが好ましい。上記植物系バイオマスをそのまま活性炭とすると、炭化工程及び賦活処理工程で炭素分が減少し、高い比表面積に必要なマイクロ孔を形成する炭素分までも減少することがあるため、比表面積を十分に向上させることができない場合がある。上記植物系バイオマスにより得られる骨格に、更に炭素源を追加することにより、より多くのマイクロ孔を形成することができる。なお、追加炭素源の使用量(複数回に分割して追加した場合には合計の使用量)は、水分を除いた残量を基準(乾燥基準)として、上記植物系バイオマス100質量部に対し1〜200質量部、好ましくは10〜180質量部、更に好ましくは30〜160質量部の範囲が好ましい。
[Additional carbon source]
In the method for producing activated carbon of the present invention, it is preferable to use an additional carbon source in addition to the raw material made of plant biomass such as rice husk. If the plant biomass is activated carbon as it is, the carbon content is reduced in the carbonization step and the activation treatment step, and even the carbon content that forms micropores necessary for a high specific surface area may be reduced. It may not be possible to improve. By adding a carbon source to the skeleton obtained from the plant-based biomass, more micropores can be formed. In addition, the amount of additional carbon source used (the total amount used in the case where it is added divided into a plurality of times) is based on the remaining amount excluding moisture as a standard (dry standard) with respect to 100 parts by mass of the plant biomass. The range of 1 to 200 parts by mass, preferably 10 to 180 parts by mass, and more preferably 30 to 160 parts by mass is preferable.

追加炭素源としては、炭素含有量や粘性から、糖類が好ましい。糖類としては、甜菜絞り汁、甘しゃ(さとうきび)絞り汁、甜菜糖、甘しゃ糖、糖蜜、廃糖蜜、含蜜糖、分蜜糖、黒糖、砂糖、ショ糖、デンプン、オリゴ糖などが挙げられる。これらは、主にセルロース、糖類、でんぷんなどの炭水化物系の成分で構成され、活性炭の原料である植物系バイオマスと主成分が同じ炭水化物であるせいか、馴染み(親和性、構造類似性)がよく、両者の混合性が良好であり、得られる活性炭の強度は高くなり、また、比表面積も向上する。これらの中でも、比較的容易に入手できる甜菜絞り汁、甘しゃ絞り汁、甜菜糖、甘しゃ糖、黒糖、デンプンが好ましく、甜菜絞り汁、甜菜糖が特に好ましい。   As the additional carbon source, saccharides are preferable from the viewpoint of carbon content and viscosity. Sugars include sugar beet juice, sugar cane juice, sugar beet sugar, sugar cane sugar, molasses, molasses, molasses, molasses sugar, brown sugar, sugar, sucrose, starch, oligosaccharide, etc. It is done. These are mainly composed of carbohydrate-based components such as cellulose, saccharides and starch, and are familiar (affinity, structural similarity) because the main component is the same carbohydrate as the plant-based biomass that is the raw material of activated carbon. The mixing property between the two is good, the strength of the obtained activated carbon is increased, and the specific surface area is also improved. Among these, sugar beet juice, sugar beet juice, beet sugar, sugar cane sugar, brown sugar and starch, which are relatively easily available, are preferred, and beet juice juice and sugar beet sugar are particularly preferred.

上記の糖類は、乾燥状態では粘着性を持たないので、バインダーとして使用するには、例えば絞り汁などのように液状となっている場合はそのまま用いることもできるが、煮詰めて濃縮し粘性を高めて用いることが好ましい。また、上記の糖類は、水分含有量を減じた固形状ないし粉末状で取り扱われることが多い。糖類がこのような固体状態、乾燥状態の場合は、水に溶かして用いるか、絞り汁などと同様に必要によっては、煮詰めて濃縮して用いても良い。   Since the above saccharides are not sticky in the dry state, they can be used as they are when they are in liquid form, such as juice, for use as a binder. Are preferably used. In addition, the saccharide is often handled in a solid or powder form with a reduced water content. When the saccharide is in such a solid state or dry state, it may be used after being dissolved in water, or may be boiled and concentrated as necessary, like juice.

バインダーには、成型加工しにくい植物系バイオマス又は炭化処理物と混ぜ合わせ、バインダーの粘着力を利用して固めて成型炭化処理物などを得るために用いる成型用バインダーと、炭化処理物や成型炭化処理物の比表面積や強度を改善するために、炭化処理をする前に又は賦活処理をする前に植物系バイオマス又は炭化処理物に含浸させて用いる含浸用バインダーがある。   The binder is mixed with plant-based biomass or carbonized material that is difficult to mold, and is hardened by using the adhesive strength of the binder to obtain a molded carbonized material, and the carbonized material or carbonized carbonized material. In order to improve the specific surface area and strength of the treated product, there is an impregnation binder used by impregnating plant biomass or a carbonized product before carbonization treatment or before activation treatment.

成型用バインダーは、例えば、粉末状又は固形状の糖類にほぼ同じ質量の水を加えて撹拌して均一な糖の水溶液を調製することによって得られる。このとき、熱すると溶解性が高くなり、糖類を速く溶解することができる。さらに、沸騰させると、強力な撹拌効果も加わり、効率よく均一な糖の水溶液を得ることができる。穏やかな沸騰を続けて水分を蒸発すると、成型用バインダーとして好適に用いることができる、粘性のあるシロップ状態の液体(糖水溶液)を得ることができる。成型用バインダーは、吸着剤として用いるのに好適な形状に、炭素材料などの成分同士を強力に結合するために、また、その成型加工をしやすくするために用いる。水分の割合が多過ぎると成型できなくなったりして加工の効率が損なわれる。水分が少な過ぎる場合には混合ないし混練中に水を追加して調整することができるので、適度に粘性のある、例えばゆるい蜂蜜程度の粘度を有するシロップ状の糖水溶液を用いることが好ましい。粘度は水分量によって調整することができる。粘度を高くする場合、一旦多めの量の水を添加して十分均一な組成の糖水溶液を調製した後、加熱して水分を蒸発させて、所望の粘度のシロップ状の糖水溶液に調製することが好ましい。   The molding binder can be obtained, for example, by adding approximately the same mass of water to powdered or solid saccharides and stirring to prepare a uniform saccharide aqueous solution. At this time, when heated, the solubility increases and the saccharide can be dissolved quickly. In addition, when the mixture is boiled, a strong stirring effect is added, and a uniform aqueous sugar solution can be obtained efficiently. When the water is evaporated by continuing gentle boiling, a viscous syrupy liquid (aqueous sugar solution) that can be suitably used as a binder for molding can be obtained. The molding binder is used to strongly bond components such as a carbon material in a shape suitable for use as an adsorbent and to facilitate the molding process. If the water content is too high, it becomes impossible to mold and the processing efficiency is impaired. If the amount of water is too small, it can be adjusted by adding water during mixing or kneading. Therefore, it is preferable to use a syrup-like sugar aqueous solution having a moderate viscosity, for example, a viscosity of about loose honey. The viscosity can be adjusted by the amount of moisture. To increase the viscosity, add a large amount of water once to prepare a sugar solution with a sufficiently uniform composition, and then evaporate the water by heating to prepare a syrup-like sugar solution with the desired viscosity. Is preferred.

成型用バインダーの使用量は、植物系バイオマス又は炭化処理物が所望の形状に成型することができる量を配合すればよく、特に限定されないが、成型加工する乾燥させた植物系バイオマス又は炭化処理物100質量部に対して、1〜200質量部程度、好ましくは5〜100質量部程度、更に好ましくは10〜50質量部程度使用することが好ましい。なお、上記のバインダーの使用量は、水分を除いた残量を基準(乾燥基準)とする。   The amount of the binder used for molding is not particularly limited as long as the amount that the plant-based biomass or carbonized product can be molded into a desired shape is not particularly limited, but the dried plant-based biomass or carbonized product to be molded is processed. It is preferable to use about 1 to 200 parts by weight, preferably about 5 to 100 parts by weight, and more preferably about 10 to 50 parts by weight with respect to 100 parts by weight. In addition, the usage-amount of said binder is based on the residual amount except a water | moisture content (dry standard).

含浸用バインダーとしては、粉末状の糖類を1〜20倍の質量の水に約60℃で均一に溶解した、成型用バインダーよりもはるかに低粘度な糖水溶液を用いることができる。
また、これらのバインダーを炭化処理物、賦活処理物、乾燥させた植物系バイオマス、予備炭化処理物等に対して使用してもよく、ここで、炭化処理物又は賦活処理物あるいは乾燥させた植物系バイオマス又は予備炭化処理物に対するバインダーの使用量は、特に限定されるものではないが、上記処理物100質量部に対して、1〜200質量部程度(乾燥基準)、好ましくは5〜160質量部、更に好ましくは20〜140質量部(乾燥基準)であることが好ましい。バインダーの使用量が5質量部よりも少ないと、得られる活性炭の強度が低くなる。また、200質量部よりも多いと、籾殻などの活性炭の特長である細孔構造が十分に得られなくなる。
As the impregnation binder, an aqueous sugar solution having a viscosity much lower than that of the molding binder in which powdered saccharides are uniformly dissolved in water having a mass of 1 to 20 times at about 60 ° C. can be used.
In addition, these binders may be used for carbonized products, activated products, dried plant biomass, pre-carbonized products, etc., where carbonized products or activated products or dried plants Although the usage-amount of the binder with respect to a system biomass or a preliminary carbonization processed material is not specifically limited, About 1-200 mass parts (dry basis) with respect to 100 mass parts of said processed materials, Preferably it is 5-160 mass. Parts, more preferably 20 to 140 parts by weight (dry basis). When the usage-amount of a binder is less than 5 mass parts, the intensity | strength of the activated carbon obtained will become low. On the other hand, when the amount is more than 200 parts by mass, the pore structure which is a feature of activated carbon such as rice husk cannot be obtained sufficiently.

〔予備炭化処理工程(予備炭化処理物を得る工程)〕
本発明の活性炭の製造方法は、まず、不活性雰囲気下において、加熱により植物系バイオマスを予備炭化処理し、予備炭化処理物を得ることが好ましい。ここで、炭化処理温度は、200〜600℃といった比較的低い温度であることが好ましい。なお、本発明において、予備炭化とは、この比較的低い温度で行う炭化を意味する。この予備炭化処理を行うことによって、水分や上記の温度で揮発する揮発成分が取り除かれ、以後の炭化処理工程や賦活処理工程において、これらの揮発成分による処理物の割れなどの不具合や、炭化炉並びに賦活炉の不要な汚れを防止することができ、また、取扱い性も格段に向上するので、以下の工程や貯蔵・運搬が容易になる。
[Pre-carbonization process (process to obtain pre-carbonized product)]
In the method for producing activated carbon of the present invention, it is preferable to first pre-carbonize plant biomass by heating in an inert atmosphere to obtain a pre-carbonized product. Here, the carbonization temperature is preferably a relatively low temperature of 200 to 600 ° C. In the present invention, preliminary carbonization means carbonization performed at a relatively low temperature. By performing this preliminary carbonization treatment, moisture and volatile components that volatilize at the above-mentioned temperature are removed. In the subsequent carbonization treatment process and activation treatment process, problems such as cracks in the processed products due to these volatile components, and the carbonization furnace In addition, unnecessary fouling of the activation furnace can be prevented, and the handleability is remarkably improved, so that the following processes, storage and transportation are facilitated.

不活性雰囲気としては、窒素、アルゴン等の不活性ガス雰囲気や真空雰囲気などが挙げられるが、経済性等の観点から、窒素雰囲気下にて予備炭化処理を行うことが好ましい。なお、予備炭化処理の炭化時間は0.01〜2時間程度行うことが好ましい。また、予備炭化処理を行うにあたって植物系バイオマスは、取り扱いやすい大きさに整えておくことが好ましい。例えば、籾殻はそのままで構わないが、木材、ヤシ殻、イナワラなどは5cm程度のいわゆる木材チップや爪楊枝程度の形に整えておくことが好ましい。
予備炭化処理は、不活性雰囲気下にて炭化処理を行えるものであれば特に限定されないが、例えば、雰囲気炉、ロータリーキルンなどの炉を用いて行うことができる。
Examples of the inert atmosphere include an inert gas atmosphere such as nitrogen and argon, and a vacuum atmosphere. From the viewpoint of economy and the like, it is preferable to perform a preliminary carbonization treatment in a nitrogen atmosphere. In addition, it is preferable to perform the carbonization time of the preliminary carbonization treatment for about 0.01 to 2 hours. Moreover, it is preferable to arrange the plant biomass in a size that is easy to handle when performing the preliminary carbonization treatment. For example, rice husks may be left as they are, but wood, coconut husks, rice straw etc. are preferably arranged in the shape of a so-called wood chip or toothpick of about 5 cm.
The preliminary carbonization treatment is not particularly limited as long as the carbonization treatment can be performed in an inert atmosphere. For example, the preliminary carbonization treatment can be performed using a furnace such as an atmospheric furnace or a rotary kiln.

〔炭化処理工程(炭化処理物を得る工程)〕
次に、本発明の活性炭の製造方法は、植物系バイオマス又は予備炭化処理物を炭化処理することにより、炭化処理物を得る工程を含む。また、該炭化処理工程は、植物系バイオマス又は予備炭化処理物を成型した後、その成型物に対して行われるのが好ましい。
[Carbonization process (process to obtain carbonized product)]
Next, the method for producing activated carbon of the present invention includes a step of carbonizing a plant biomass or a pre-carbonized product to obtain a carbonized product. Moreover, it is preferable that this carbonization process process is performed with respect to the molded material after shape | molding plant-type biomass or a preliminary | backup carbonized material.

ここで、植物系バイオマスをそのまま炭化処理工程に用いる場合は、予め乾燥して使用することが好ましい。例えば、50〜150℃、好ましくは80〜130℃の温度で1〜24時間程度乾燥する。   Here, when using plant-type biomass as it is for a carbonization process, it is preferable to dry and use beforehand. For example, it is dried at a temperature of 50 to 150 ° C., preferably 80 to 130 ° C. for about 1 to 24 hours.

上記乾燥させた植物系バイオマス(以下、乾燥植物系バイオマスともいう)又は予備炭化処理物を1〜500μm程度、好ましくは2〜100μm、更に好ましくは5〜50μmに粉砕し、必要に応じてこれに上記成型用バインダー、好ましくは糖類からなる成型用バインダーを加えて、十分に混合する。成型用バインダーの配合量は、特に限定されるものではないが、乾燥植物系バイオマス又は予備炭化処理物100質量部に対して成型用バインダーを1〜200質量部(乾燥基準)、好ましくは5〜100質量部(乾燥基準)、更に好ましくは10〜50質量部(乾燥基準)を均一に混合させることが好ましい。成型用バインダーは、乾燥植物系バイオマス又は予備炭化処理物の粉砕物と攪拌機、混合機、混練機、捏和機など市販の各種の混合用機械を用いて十分均一に混合することができる。得られる混合物は、例えば、適宜の成型機を用いて成型物に成型される。混合物の状態が、パサパサであったり、ゆるゆるのペースト状の場合、加圧成型できないことがある。パサパサの場合は、水を加えることで、乾燥植物系バイオマス又は予備炭化処理物の粉砕物と成型用バインダー中の糖類との混合比率を変えることなく、混合物を調製することができる。ゆるいペースト状の場合、混合物中の乾燥植物系バイオマス又は予備炭化処理物の粉砕物の含有量を増やすと、上記の混合比率が変化する。したがって、成型用バインダーはこのようなことが生じない程度に糖類の含有量が高いシロップ状の糖水溶液を調製しておくことが好ましい。   The dried plant biomass (hereinafter also referred to as dried plant biomass) or pre-carbonized product is pulverized to about 1 to 500 μm, preferably 2 to 100 μm, more preferably 5 to 50 μm, and if necessary, The molding binder, preferably a molding binder made of sugar, is added and mixed thoroughly. The blending amount of the molding binder is not particularly limited, but the molding binder is 1 to 200 parts by mass (dry basis), preferably 5 to 100 parts by mass of the dried plant biomass or the pre-carbonized product. It is preferable to uniformly mix 100 parts by weight (dry basis), more preferably 10 to 50 parts by weight (dry basis). The molding binder can be sufficiently uniformly mixed using a pulverized product of dried plant biomass or a pre-carbonized product and various commercially available mixing machines such as a stirrer, a mixer, a kneader, and a kneader. The resulting mixture is molded into a molded product using an appropriate molding machine, for example. When the state of the mixture is crumbly or a loose paste, it may not be pressure molded. In the case of papasa, a mixture can be prepared by adding water without changing the mixing ratio between the dried plant biomass or the pre-carbonized product and the saccharide in the molding binder. In the case of a loose paste, when the content of the dried plant biomass or the pre-carbonized product in the mixture is increased, the mixing ratio is changed. Therefore, it is preferable to prepare a syrup-like sugar aqueous solution having a high saccharide content to such an extent that the molding binder does not cause this.

成型物の形状は、特に限定されるものでないが、球状、粒状、柱状(断面は円、角又は四つ葉などの異形など)、筒状、ペレット状、ハニカム状などが挙げられる。最終的に得られる活性炭を吸着剤として用いるとき、吸着質(微量成分)の濃度勾配を大きくするため、流通式の場合には吸着剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状が好ましい。球状の場合の大きさは、直径は0.5〜5mmが好ましく、1〜3mmが特に好ましい。円柱状の場合、直径は0.1〜4mmが好ましく、特に好ましくは0.2〜2mmであり、長さは直径の0.5〜5倍が好ましく、1〜4倍が特に好ましい。このような形状の成型物の成型方法は、特に限定されるものではなく、市販の各種の押出し成型機、プレス成型機、打錠機、錠剤機などを用いて行うことができる。さらに、ニーダーと押出機を組み合わせてペレット状や柱状の成型物を得ることもできる。   The shape of the molded product is not particularly limited, and examples thereof include a spherical shape, a granular shape, a columnar shape (the cross section has a deformed shape such as a circle, a corner, or a four-leaf shape), a cylindrical shape, a pellet shape, and a honeycomb shape. When the activated carbon finally obtained is used as an adsorbent, in order to increase the concentration gradient of the adsorbate (trace component), in the case of flow-through type, the shape is small as long as the differential pressure before and after the container filled with adsorbent does not increase In particular, a spherical shape is preferable. In the case of a spherical shape, the diameter is preferably 0.5 to 5 mm, particularly preferably 1 to 3 mm. In the case of a cylindrical shape, the diameter is preferably 0.1 to 4 mm, particularly preferably 0.2 to 2 mm, and the length is preferably 0.5 to 5 times the diameter, particularly preferably 1 to 4 times. The molding method of the molded product having such a shape is not particularly limited, and can be performed using various commercially available extrusion molding machines, press molding machines, tableting machines, tablet machines, and the like. Further, a pellet or columnar molded product can be obtained by combining a kneader and an extruder.

このようにして得られた、乾燥植物系バイオマス又は予備炭化処理物と成型用バインダーとの混合物からなる成型物を、炭化処理に先立って、例えば、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥してもよい。   Prior to carbonization, the molded product made of a mixture of the dried plant biomass or the pre-carbonized product and the molding binder thus obtained is, for example, 100 to 150 ° C, preferably 105 to 130 ° C. You may dry about 1-2 hours.

次いで、上記乾燥植物系バイオマス、予備炭化処理物の粉砕物又は成型物を、不活性雰囲気下にて好ましくは200〜900℃で、0.01〜2時間炭化処理を行い、(成型)炭化処理物を得る。不活性雰囲気は、予備炭化処理の場合と同様に、窒素、アルゴン等の不活性ガス雰囲気や真空雰囲気などが挙げられるが、経済性等の観点から、炭化処理を窒素気流下にて行うことが好ましい。適宜の量の窒素ガスを流すことによって、成型物等から発生する水分や揮発成分を除去するとともに、炭化炉内の雰囲気を均一にすることができる。炭化処理温度は、400〜900℃がより好ましく、500〜900℃が更に好ましく、700〜900℃が特に好ましい。後述の含浸後の炭化処理(含浸炭化処理)の温度と同じか又はより高い温度で行うことが好ましく、後述の賦活処理の温度と同じ温度で行うことが特に好ましい。また、炭化時間は、0.03〜1時間がより好ましく、0.05〜0.2時間が更に好ましい。なお、上記乾燥植物系バイオマス又は予備炭化処理物の粉砕物を炭化処理した場合には、得られる炭化処理物を成型してもよい。ここで、成型方法及び成型物の形状については、上述の通りである。   Next, the dried plant biomass, pulverized product or molded product of the pre-carbonized product is carbonized in an inert atmosphere, preferably at 200 to 900 ° C. for 0.01 to 2 hours, and (molded) carbonized treatment. Get things. As in the case of the preliminary carbonization treatment, the inert atmosphere includes an inert gas atmosphere such as nitrogen and argon, a vacuum atmosphere, etc. From the viewpoint of economy and the like, the carbonization treatment can be performed under a nitrogen stream. preferable. By flowing an appropriate amount of nitrogen gas, moisture and volatile components generated from a molded product and the like can be removed, and the atmosphere in the carbonization furnace can be made uniform. The carbonization temperature is more preferably 400 to 900 ° C, further preferably 500 to 900 ° C, and particularly preferably 700 to 900 ° C. It is preferable to carry out at a temperature equal to or higher than the temperature of carbonization treatment (impregnation carbonization treatment) after impregnation described below, and it is particularly preferable to carry out at the same temperature as the temperature of activation treatment described later. The carbonization time is more preferably 0.03 to 1 hour, and further preferably 0.05 to 0.2 hour. In addition, when the pulverized product of the dried plant biomass or the pre-carbonized product is carbonized, the obtained carbonized product may be molded. Here, the molding method and the shape of the molded product are as described above.

なお、炭化処理を行う前に、乾燥植物系バイオマス又は予備炭化処理物に、糖類からなる含浸用バインダーを含浸して炭化処理(含浸炭化処理)をしておくことが、細孔構造の局所的なムラを少なく、且つ、比表面積を大きくできることから好ましい。このときの成型炭化処理は、その原料として、乾燥植物系バイオマス又は予備炭化処理物でなく、乾燥植物系バイオマス又は予備炭化処理物に含浸用バインダーを含浸して炭化処理(含浸炭化処理)して得た含浸炭化処理物を使用する以外は、上記の乾燥植物系バイオマス又は予備炭化処理物を用いる場合と全く同じ方法で行うことができる。   In addition, before performing the carbonization treatment, it is possible to impregnate a dry plant biomass or a pre-carbonized product with a binder for impregnation made of saccharides to perform carbonization treatment (impregnation carbonization treatment). This is preferable because it can reduce unevenness and increase the specific surface area. The molding carbonization treatment at this time is carried out by impregnating a dry plant biomass or a pre-carbonized product with a binder for impregnation as a raw material, and carbonizing (impregnating carbonization). Except for using the obtained impregnated carbonized product, the same method as in the case of using the dried plant biomass or the pre-carbonized product can be used.

含浸法としては、公知の方法、例えばスプレー法、浸漬法、蒸発乾固法などを使用できる。操作の容易さの観点から、スプレー法、浸漬法が好ましい。例えば、スプレー法の場合、乾燥植物系バイオマス又は予備炭化処理物に含浸用バインダーを満遍なく吹き付けてできるだけ均一に含浸させる。バインダーの含浸量は、乾燥植物系バイオマス又は予備炭化処理物100質量部に対して、5〜200質量部程度(乾燥基準)使用することが好ましい。一度のスプレーで所望量含浸できない場合には、一旦乾燥して再度含浸用バインダーを吹き付けることによって、さらに必要によりこの操作を繰り返すことによって、所望量のバインダーを含浸させることができる。浸漬して含浸させる場合も、浸漬と乾燥の操作を繰り返すことによって、所望量含浸させることができる。バインダーの含浸量は、乾燥しても、例えば糖類の乾燥基準の質量は変化しないので、含浸後の質量とバインダーの糖類濃度から含浸するたびに求めたそれぞれの含浸量を積算して把握することができる。   As the impregnation method, a known method such as a spray method, a dipping method, or an evaporation to dryness method can be used. From the viewpoint of ease of operation, the spray method and the dipping method are preferable. For example, in the case of the spray method, the impregnation binder is uniformly sprayed on the dried plant biomass or the pre-carbonized product so as to be impregnated as uniformly as possible. The impregnation amount of the binder is preferably about 5 to 200 parts by mass (dry basis) with respect to 100 parts by mass of the dried plant biomass or the pre-carbonized product. If the desired amount cannot be impregnated by a single spray, the desired amount of binder can be impregnated by drying once and then spraying the impregnating binder again, and repeating this operation as necessary. In the case of dipping and impregnation, a desired amount can be impregnated by repeating the dipping and drying operations. The amount of binder impregnation does not change even when dried, for example, the saccharide's dry basis mass does not change, so the amount of each impregnation obtained each time impregnation is determined from the mass after impregnation and the saccharide concentration of the binder. Can do.

バインダーの含浸後、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥し、不活性雰囲気下にて炭化処理(含浸炭化処理)を行い、含浸炭化処理物を得る。この乾燥植物系バイオマス又は予備炭化処理物への含浸、乾燥後の炭化処理(含浸炭化処理)は、200〜900℃で、0.01〜2時間行うことが好ましい。炭化処理温度は、400〜900℃がより好ましく、500〜900℃が更に好ましく、700〜900℃特に好ましい。また、炭化時間は、0.03〜1時間がより好ましく、0.05〜0.2時間が更に好ましい。   After impregnation with the binder, drying is performed at 100 to 150 ° C., preferably 105 to 130 ° C. for about 1 to 2 hours, and carbonization treatment (impregnation carbonization treatment) is performed in an inert atmosphere to obtain an impregnated carbonized product. The impregnation into the dried plant biomass or the pre-carbonized product and the carbonization treatment after the drying (impregnation carbonization treatment) are preferably performed at 200 to 900 ° C. for 0.01 to 2 hours. The carbonization temperature is more preferably 400 to 900 ° C, still more preferably 500 to 900 ° C, and particularly preferably 700 to 900 ° C. The carbonization time is more preferably 0.03 to 1 hour, and further preferably 0.05 to 0.2 hour.

〔アルカリ処理工程〕
本発明の活性炭の製造方法は、更に、アルカリ処理によって活性炭の灰分を除去する工程を含む。詳細には、予備炭化処理物、炭化処理物、或いは、炭化処理工程の途中の中間品などの炭化処理を施した処理物を更にアルカリで処理することにより、シリカ分等の灰分(無機成分)を除去することができる。また、アルカリ処理の前に炭化処理物を成型すると流通式等で実施できるため、アルカリ処理工程が簡便となる。一方、アルカリ処理の後に成型すると、かさ密度をより高くすることができ、吸着剤の性能はより高くなる。なお、成型方法及び成型物の形状については、上述の通りである。また、賦活処理後の成型賦活処理物に対してアルカリ処理を施してもよく、賦活処理後のアルカリ処理によっても、シリカ分等の灰分は除去できる上に、マイクロ孔も形成される。
[Alkali treatment process]
The method for producing activated carbon of the present invention further includes a step of removing the ash content of the activated carbon by alkali treatment. Specifically, ash content (inorganic component) such as silica content by further treating the pre-carbonized product, carbonized product, or carbonized product such as intermediate product in the middle of the carbonization process with an alkali. Can be removed. In addition, if the carbonized product is molded before the alkali treatment, it can be carried out by a flow method or the like, so that the alkali treatment step is simplified. On the other hand, when the molding is performed after the alkali treatment, the bulk density can be further increased, and the performance of the adsorbent becomes higher. The molding method and the shape of the molded product are as described above. In addition, an alkali treatment may be applied to the molded activation treatment product after the activation treatment, and ash such as silica can be removed by the alkali treatment after the activation treatment, and micropores are also formed.

アルカリとしては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸カリウム水溶液、炭酸水素カリウム水溶液、アンモニア水溶液などが挙げられる。例えば、予備炭化物、成型炭化処理物、或いは、成型炭化処理工程の途中の中間品の1質量部を、アルカリ水溶液10〜500質量部、好ましくは50〜200質量部に浸漬させるなどして接触させる。水酸化ナトリウム水溶液の場合、濃度は0.1〜3mol/L、好ましくは0.5〜1mol/Lである。アルカリ処理の温度は10〜90℃が好ましく、30〜80℃が更に好ましい。また、アルカリ処理の時間、例えば浸漬時間は、10〜500時間が好ましく、50〜200時間が更に好ましい。例えば、灰分を抽出した後に、アルカリ処理した炭化処理物を蒸留水で洗浄し、乾燥する。アルカリ水溶液に抽出した灰分は、シリカ分を多く含有するので、回収して、肥料や太陽電池の原料とすることができる。   Examples of the alkali include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous calcium hydroxide solution, an aqueous sodium carbonate solution, an aqueous sodium hydrogen carbonate solution, an aqueous potassium carbonate solution, an aqueous potassium hydrogen carbonate solution, and an aqueous ammonia solution. For example, 1 part by mass of a preliminary carbonized product, a molded carbonized product, or an intermediate product in the middle of the molded carbonization process is brought into contact with 10 to 500 parts by mass, preferably 50 to 200 parts by mass of an aqueous alkaline solution. . In the case of an aqueous sodium hydroxide solution, the concentration is 0.1 to 3 mol / L, preferably 0.5 to 1 mol / L. The alkali treatment temperature is preferably 10 to 90 ° C, more preferably 30 to 80 ° C. The alkali treatment time, for example, the immersion time is preferably 10 to 500 hours, more preferably 50 to 200 hours. For example, after extracting the ash, the carbonized product subjected to alkali treatment is washed with distilled water and dried. The ash extracted in the alkaline aqueous solution contains a large amount of silica, so it can be recovered and used as a fertilizer or a raw material for solar cells.

〔賦活処理工程(賦活処理物を得る工程)〕
次に、本発明の活性炭の製造方法は、上記のようにして得られた炭化処理物を賦活処理することにより、吸着剤に用い得る活性炭としての賦活処理物を得る工程を含む。ここで、炭化処理物に含浸用バインダー(好ましくは、糖類からなるバインダー)を含浸させ、乾燥した後、賦活処理を行うことが好ましい。
[Activation treatment step (step of obtaining an activation treatment product)]
Next, the manufacturing method of the activated carbon of this invention includes the process of obtaining the activation treatment product as activated carbon which can be used for an adsorbent by activating the carbonization treatment product obtained as mentioned above. Here, it is preferable that the carbonized material is impregnated with an impregnation binder (preferably, a binder made of saccharides), dried, and then subjected to an activation treatment.

含浸法としては、公知の方法、例えばスプレー法、浸漬法、蒸発乾固法など、上記の乾燥植物系バイオマス又は予備炭化処理物を含浸した方法を使用することができる。これらの中でも、操作の容易さの観点から、スプレー法、浸漬法が好ましい。1回の含浸操作で所望量の含浸用バインダーを含浸させることができない場合、一旦乾燥させた後、再度含浸操作を行い、バインダーの含浸量を増量することができる。これを繰り返すことよって所望の量の成型用バインダーを含浸させることができる。   As the impregnation method, a known method such as a spray method, a dipping method, an evaporation to dryness method or the like can be used which is impregnated with the above-mentioned dried plant biomass or pre-carbonized product. Among these, the spray method and the dipping method are preferable from the viewpoint of ease of operation. When a desired amount of the binder for impregnation cannot be impregnated by one impregnation operation, the impregnation operation can be performed again after drying once to increase the impregnation amount of the binder. By repeating this, a desired amount of the molding binder can be impregnated.

バインダーを含浸した炭化処理物を、100〜150℃、好ましくは105〜130℃で1〜2時間程度乾燥させ、これに賦活処理を行う。賦活処理としては、ガス賦活、水蒸気賦活、薬剤賦活などが挙げられる。薬剤賦活の場合、賦活処理後に、賦活処理に用いた薬剤(KOH、NaOH、ZnCl、HSOなど)を賦活処理物から取り除く後処理を要するので面倒であり、手間がかかる。一方、ガス賦活又は水蒸気賦活は、ガス雰囲気下又は水蒸気雰囲気にて熱処理を行えばよく、薬剤を取り除く余計な煩雑な操作を必要としない。したがって、水蒸気賦活又はガス賦活が好ましい。 The carbonized product impregnated with the binder is dried at 100 to 150 ° C., preferably 105 to 130 ° C. for about 1 to 2 hours, and subjected to activation treatment. Examples of the activation treatment include gas activation, water vapor activation, and drug activation. In the case of drug activation, after the activation process, a post-treatment that removes the drug (KOH, NaOH, ZnCl 2 , H 2 SO 4, etc.) used in the activation process from the activation process is required, which is troublesome and takes time. On the other hand, gas activation or water vapor activation may be performed by heat treatment in a gas atmosphere or a water vapor atmosphere, and does not require an extra complicated operation for removing the drug. Therefore, steam activation or gas activation is preferred.

水蒸気賦活及びガス賦活に用いるガスとしては、水蒸気、炭酸ガス、空気、燃焼ガスなどが挙げられるが、二酸化炭素を用いるガス賦活を行うことが、賦活処理条件の制御が容易であり、ガスの取扱い並びに賦活処理後の後処理が容易であるので好ましい。具体的には、バインダーを含浸させ、乾燥した炭化処理物を、二酸化炭素雰囲気下に、好ましくは800〜900℃の賦活処理温度で、0.1〜4時間、より好ましくは0.5〜3時間、さらに好ましくは0.7〜2.3時間熱処理する。なお、二酸化炭素雰囲気とは、炭化処理物を収納する炉内の賦活ガスが二酸化炭素であることをいい、100%の二酸化炭素を用いても良いが、窒素ガス、アルゴンガスなどの不活性ガスや、燃焼ガス、水蒸気などに二酸化炭素を混合したガスを用いることが好ましい。   Examples of the gas used for steam activation and gas activation include water vapor, carbon dioxide gas, air, combustion gas, etc., but gas activation using carbon dioxide makes it easy to control the activation treatment conditions and handle the gas. In addition, it is preferable because post-treatment after the activation treatment is easy. Specifically, the carbonized product impregnated with the binder and dried is subjected to an activation treatment temperature of preferably 800 to 900 ° C. for 0.1 to 4 hours, more preferably 0.5 to 3 in a carbon dioxide atmosphere. The heat treatment is performed for a time, more preferably 0.7 to 2.3 hours. The carbon dioxide atmosphere means that the activation gas in the furnace containing the carbonized material is carbon dioxide, and 100% carbon dioxide may be used, but inert gas such as nitrogen gas or argon gas. Alternatively, it is preferable to use a gas in which carbon dioxide is mixed with combustion gas, water vapor or the like.

上記のように含浸用バインダーを含浸させた後、賦活処理して得られた賦活処理物に、再度、含浸用バインダーを含浸させて賦活処理(2段階賦活処理)することもできる。2段階賦活処理によると、得られた2段階賦活処理物は比表面積並びに全細孔容積が比較的大きく、さらに、かさ密度も比較的大きなものが得られるので好ましい。2段階賦活処理における含浸、乾燥、熱処理は上記賦活処理の場合と全く同じ条件下で行うことができる。   After impregnating the binder for impregnation as described above, the activation treatment product obtained by the activation treatment can be impregnated again with the binder for impregnation to carry out the activation treatment (two-stage activation treatment). According to the two-stage activation treatment, the obtained two-stage activation treatment product is preferable because a product having a relatively large specific surface area and total pore volume and a relatively large bulk density can be obtained. The impregnation, drying, and heat treatment in the two-stage activation treatment can be performed under exactly the same conditions as in the activation treatment.

〔活性炭の物性〕
本発明の活性炭は、上述の製造方法により得られる賦活処理物及び/又は2段階賦活処理物であって、該賦活処理物及び/又は2段階賦活処理物の比表面積、平均細孔幅、細孔容積などの細孔特性は、脱硫などの吸着性能に大きく影響する。比表面積が大きいことは、吸着質(微量成分)の吸着サイトが多いことを意味するので好ましいが、いくら比表面積が大きくても平均細孔幅が狭ければ、分子量の大きな吸着質は吸着サイトまで辿り着けず、実使用においては性能が高くならない。平均細孔幅は細孔容量に比例し、比表面積に反比例する。平均細孔幅が大きすぎると、細孔容量が大きすぎて十分な密度が得られなくなり、単位体積当たりの吸着容量が低くなる。また、平均細孔幅が大きすぎると、比表面積が小さすぎて十分な吸着サイトが得られなくなり、やはり吸着容量が低くなる。従って、これらのバランスが重要である。
[Physical properties of activated carbon]
The activated carbon of the present invention is an activation treatment product and / or a two-stage activation treatment product obtained by the above-described production method, and the specific surface area, average pore width, fineness of the activation treatment product and / or the two-stage activation treatment product. Pore characteristics such as pore volume greatly affect adsorption performance such as desulfurization. A large specific surface area is preferable because it means that there are many adsorption sites for adsorbates (trace components), but if the average pore width is narrow, no matter how large the specific surface area is, adsorbates with a large molecular weight are adsorption sites. The performance does not increase in actual use. The average pore width is proportional to the pore volume and inversely proportional to the specific surface area. If the average pore width is too large, the pore volume is too large to obtain a sufficient density, and the adsorption capacity per unit volume becomes low. On the other hand, if the average pore width is too large, the specific surface area is too small to obtain sufficient adsorption sites, and the adsorption capacity is also lowered. Therefore, these balances are important.

本発明の活性炭の比表面積Saは、800〜4,000m/gであることを要し、900〜2,000m/gであることが好ましく、1,000〜1,500m/gが特に好ましい。細孔容積(全細孔容積)Vaは、0.5〜1.2cm/gであることを要し、0.6〜1.0cm/gであることが好ましい。 The specific surface area Sa of the activated carbon of the present invention is required to have a 800~4,000m 2 / g, it is preferably 900~2,000m 2 / g, 1,000~1,500m 2 / g is Particularly preferred. Pore volume (total pore volume) Va is required to be a 0.5~1.2cm 3 / g, it is preferably 0.6~1.0cm 3 / g.

籾殻を原料とした活性炭は、シリカ等の無機成分がメソ孔の骨格の役目を果たし、メソ孔容積は大きいが、一般にミクロ孔容積が小さいことから比表面積があまり大きくならない。甜菜等の追加炭素源を供給することにより比表面積は徐々に大きくなるが、このような細孔特性を実現するためには何回も炭素源追加及び炭化の工程を繰り返し行う必要があり、現実的ではなかった。
本発明者は、籾殻を予備炭化した段階でメソ孔が形成され、大部分のシリカ分の役目は終了しているのにも拘らず、そのまま活性炭に含まれているとミクロ孔の形成が阻害されることを見出し、本発明に至った。即ち、メソ孔が形成された段階で、シリカ等の無機成分を除去し、活性炭に含まれる炭素の割合を高めた後に賦活処理を行うことで、液体中の微量成分の除去に好適なメソ孔を保持しつつ、比表面積が高く、かつ、かさ密度の高い活性炭を製造できること、並びに、当該活性炭は炭化水素油等の液体中の微量成分を効率的に吸着除去できることを見出した。
In activated carbon made from rice husks, inorganic components such as silica serve as a mesopore skeleton, and the mesopore volume is large, but the specific surface area is not so large because the micropore volume is generally small. By supplying an additional carbon source such as sugar beet, the specific surface area gradually increases, but in order to realize such pore characteristics, it is necessary to repeat the carbon source addition and carbonization steps many times. It was not right.
The inventor found that mesopores were formed at the stage where the rice husks were pre-carbonized, and the role of most of the silica was completed, but if included in the activated carbon as it is, the formation of micropores was inhibited. As a result, the present invention has been achieved. That is, when mesopores are formed, inorganic components such as silica are removed, and the activation process is performed after increasing the proportion of carbon contained in the activated carbon, so that mesopores suitable for removing trace components in the liquid are obtained. It has been found that activated carbon having a high specific surface area and high bulk density can be produced while maintaining the above, and that the activated carbon can efficiently adsorb and remove trace components in a liquid such as hydrocarbon oil.

シリカ等の無機成分の除去方法としては、アルカリや酸で溶解する方法が考えられる。炭素分への影響が少ないことからアルカリによる処理が好ましい。   As a method for removing inorganic components such as silica, a method of dissolving with an alkali or an acid can be considered. A treatment with an alkali is preferable because it has little influence on the carbon content.

また、シリカ等の無機成分は、完全に除去してしまうとメソ孔が維持できない。その結果、液体中の微量成分の除去に好適なマイクロ孔容積に対する高いメソ孔容積比率を実現できない。従って、活性炭中の灰分(無機成分)の含有量は、3〜10質量%であることを要し、4〜9質量%であることが好ましく、4〜7質量%であることが特に好ましい。   Moreover, mesopores cannot be maintained if inorganic components such as silica are completely removed. As a result, a high mesopore volume ratio with respect to the micropore volume suitable for removing trace components in the liquid cannot be realized. Therefore, the content of ash (inorganic component) in the activated carbon is required to be 3 to 10% by mass, preferably 4 to 9% by mass, and particularly preferably 4 to 7% by mass.

本発明の活性炭は、下記式(I)により求められる平均細孔幅d[nm]が、吸着質が拡散しやすい程度、即ち1.0〜2.0nmが好ましく、さらには1.2〜1.8nm、特には1.3〜1.7nmが好ましい。
d = 2000×Va/Sa ・・・(I)
上記式(I)中、Va[cm/g]は全細孔容積であり、Sa[m/g]は比表面積である。
In the activated carbon of the present invention, the average pore width d [nm] obtained by the following formula (I) is preferably such that the adsorbate is easily diffused, that is, 1.0 to 2.0 nm, more preferably 1.2 to 1. .8 nm, particularly 1.3 to 1.7 nm is preferable.
d = 2000 × Va / Sa (I)
In the above formula (I), Va [cm 3 / g] is the total pore volume, and Sa [m 2 / g] is the specific surface area.

細孔幅2.0nm以上50nm未満のメソ孔は、吸着質の拡散ルートとして重要であるが、必要以上に多すぎると吸着サイトであるマイクロ孔容積が不足してしまう。従って、本発明の活性炭は、細孔幅2.0nm以上50nm未満のメソ孔容積Vmが、0.1〜0.5cm/gであるのが好ましく、0.1〜0.3cm/gであるのが更に好ましい。また、同様の観点から、全細孔容積Vaに対するメソ孔容積Vmの比Vm/Vaは、0.2〜0.5が好ましく、0.3〜0.4が更に好ましい。 Mesopores having a pore width of 2.0 nm or more and less than 50 nm are important as an adsorbate diffusion route, but if they are more than necessary, the micropore volume that is an adsorption site is insufficient. Therefore, the activated carbon of the present invention preferably has a mesopore volume Vm having a pore width of 2.0 nm or more and less than 50 nm of 0.1 to 0.5 cm 3 / g, preferably 0.1 to 0.3 cm 3 / g. More preferably. From the same viewpoint, the ratio Vm / Va of the mesopore volume Vm to the total pore volume Va is preferably 0.2 to 0.5, and more preferably 0.3 to 0.4.

マイクロ孔は、細孔幅0.7nm以上2.0nm未満のスーパーマイクロ孔と、細孔幅0.7nm未満のウルトラマイクロ孔とに分類できるが、吸着質の吸着サイトをなっているのはウルトラマイクロ孔であり、スーパーマイクロ孔は主に吸着質の拡散に寄与している。従って、ウルトラマイクロ孔容積の大きい方が吸着性能は高いが、ウルトラマイクロ孔まで吸着質が拡散できる程度のスーパーマイクロ孔も必要である。従って、本発明の活性炭は、細孔幅0.7nm以上2.0nm未満のスーパーマイクロ孔容積Vsに対する、細孔幅0.7nm未満のウルトラマイクロ孔容積Vuの比Vu/Vsが、1.0〜2.5であるのが好ましく、1.1〜2.3であるのが更に好ましく、1.2〜1.9であるのが特に好ましい。   Micropores can be classified into supermicropores with a pore width of 0.7 nm or more and less than 2.0 nm, and ultramicropores with a pore width of less than 0.7 nm. It is a micropore, and the supermicropore mainly contributes to the diffusion of the adsorbate. Therefore, although the adsorption performance is higher when the ultra-micro pore volume is larger, super-micro pores that can diffuse the adsorbate to the ultra-micro pores are also required. Therefore, the activated carbon of the present invention has a ratio Vu / Vs of the ultra micro pore volume Vu having a pore width of less than 0.7 nm to the super micro pore volume Vs having a pore width of 0.7 nm or more and less than 2.0 nm of 1.0 μm. Is preferably -2.5, more preferably 1.1-2.3, and particularly preferably 1.2-1.9.

細孔特性は、ガス吸着分析器(例えば、Autosorb−3B、カンタクロム社製、米国フロリダ州)を用いて分析できる。例えば、まず−196℃において、窒素ガスの相対圧力を関数とした窒素ガスの吸着量(これを窒素吸着等温線という)を得る。この窒素吸着等温線から、全細孔容積、BET比表面積、平均細孔幅を算出する。相対圧力が0.995での窒素吸着容積で全細孔容積を決定できる。BET比表面積は0.05−0.10の相対圧力での窒素吸着容積で求められる。平均細孔幅[nm]は細孔がスリット状と仮定して2000×全細孔容積[cm/g]/BET比表面積[m/g]で求めることができる。多孔体の吸着能力は、比表面積や細孔容積によってすべて説明できるものではないが、一般的には高い比表面積、又は大きい全細孔容積が望ましい。細孔は幅が2.0nm未満のマイクロ孔、2.0以上で且つ50nm未満のメソ孔、50nm以上のマクロ孔に分類され、マイクロ孔は、さらに0.7nm未満のウルトラマイクロ孔と0.7nm以上で且つ2.0nm未満のスーパーマイクロ孔に分類される。 Pore characteristics can be analyzed using a gas adsorption analyzer (eg, Autosorb-3B, Cantachrome, Florida, USA). For example, first, at −196 ° C., an adsorption amount of nitrogen gas (referred to as a nitrogen adsorption isotherm) as a function of the relative pressure of nitrogen gas is obtained. From this nitrogen adsorption isotherm, the total pore volume, BET specific surface area, and average pore width are calculated. The total pore volume can be determined by the nitrogen adsorption volume at a relative pressure of 0.995. The BET specific surface area is determined by the nitrogen adsorption volume at a relative pressure of 0.05-0.10. The average pore width [nm] can be determined as 2000 × total pore volume [cm 3 / g] / BET specific surface area [m 2 / g] assuming that the pores are slit-like. The adsorption capacity of the porous body cannot be explained entirely by the specific surface area and pore volume, but generally a high specific surface area or a large total pore volume is desirable. The pores are classified into micropores having a width of less than 2.0 nm, mesopores of 2.0 or more and less than 50 nm, and macropores of 50 nm or more. It is classified as a super micropore of 7 nm or more and less than 2.0 nm.

細孔幅を関数とした細孔容積の細孔分布は、Density Functional Theory (DFT)法を用いて解析できる。DFT法は得られた窒素吸着等温線より数値解析を経て細孔分布を得る方法であり、例えば、DFTソフトウェア(カンタクロム社、Version 1.62)を用いて解析できる。ウルトラマイクロ孔容積が大きいと、比表面積が大きくなることから、吸着サイトが多くなり好ましい。また、メソ孔容積が大きいと、細孔幅が大きくなり、硫黄化合物が吸着サイトまで移動することが容易となる。従って、ウルトラマイクロ孔容積及びメソ孔容積が大きい活性炭が好ましい。籾殻活性炭は、シリカを含むことからメソ孔容積は元来多いので、メソ孔容積を低下させずにウルトラマイクロ孔容積を増大させる製造方法が有効である。上述の活性炭の製造方法によれば、メソ孔容積の低下を最小限に抑制し、尚且つ、ウルトラマイクロ孔容積を増大させる効果が顕著である。   The pore distribution of the pore volume as a function of the pore width can be analyzed using the Density Functional Theory (DFT) method. The DFT method is a method of obtaining a pore distribution through numerical analysis from the obtained nitrogen adsorption isotherm, and can be analyzed using, for example, DFT software (Cantachrome, Version 1.62). A large ultra-micro pore volume is preferable because the specific surface area is large and the number of adsorption sites is large. Further, when the mesopore volume is large, the pore width is increased, and the sulfur compound is easily moved to the adsorption site. Therefore, activated carbon having a large ultramicro pore volume and mesopore volume is preferred. Since rice husk activated carbon contains silica, the mesopore volume is inherently large. Therefore, a production method for increasing the ultramicropore volume without reducing the mesopore volume is effective. According to the above-mentioned method for producing activated carbon, the effect of suppressing the decrease in the mesopore volume to the minimum and increasing the ultramicropore volume is remarkable.

〔液体の精製方法〕
本発明の液体の精製方法は、上記活性炭からなる吸着剤又は該活性炭を含む吸着剤と液体とを接触させることにより、該液体に含有される微量成分を吸着除去することを特徴とし、更に上記吸着剤と液体とを接触させる工程の後処理として、後述する固体酸系吸着剤を用いて硫黄化合物を吸着除去することが好ましい。
[Liquid purification method]
The liquid purification method of the present invention is characterized by adsorbing and removing trace components contained in the liquid by bringing the liquid into contact with an adsorbent comprising the activated carbon or an adsorbent containing the activated carbon. As a post-treatment in the step of bringing the adsorbent into contact with the liquid, it is preferable to adsorb and remove the sulfur compound using a solid acid adsorbent described later.

〔吸着剤〕
本発明の液体の精製方法に用いる吸着剤は、上記活性炭のみからなるか又は該活性炭を含むものであり、このため、活性炭をそのまま吸着剤として用いてもよいし、あるいは後述するように、活性炭をゼオライトなどと混練、成型して用いることも、また活性金属を活性炭に担持し性能を向上させて用いることもできる。また、本発明の液体の精製方法に用いる吸着剤は、活性炭がそのまま使用されることがあるので、活性炭の比表面積、平均細孔幅、細孔容積などの細孔特性は、活性炭に関する上記の範囲と同じ細孔特性を適用することができる。
[Adsorbent]
The adsorbent used in the liquid purification method of the present invention consists of the above-mentioned activated carbon alone or contains the activated carbon. For this reason, the activated carbon may be used as the adsorbent as it is, or activated carbon as described later. Can be used after being kneaded and molded with zeolite or the like, or can be used by improving the performance by supporting active metal on activated carbon. In addition, activated carbon may be used as it is as the adsorbent used in the liquid purification method of the present invention. Therefore, the pore characteristics such as the specific surface area, average pore width and pore volume of the activated carbon are as described above for the activated carbon. The same pore characteristics as the range can be applied.

灯油や軽油などの炭化水素油に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去するとき、粉末状、粒子状、又は球状、ディスク状、円柱状等の成型品など、上述の成型炭化処理工程のおける成型物の形状と同様にいずれの形ででも使用することが可能である。炭化水素油の処理量、設備の状況にあわせて好適な形状の吸着剤を選択、使用すればよい。   When adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oils such as kerosene and light oil, the above-mentioned moldings such as powdered, particulate, or spherical, disc-shaped, cylindrical molded products, etc. It can be used in any form similar to the shape of the molded product in the carbonization process. An adsorbent having a suitable shape may be selected and used in accordance with the processing amount of hydrocarbon oil and the situation of equipment.

粉末状や粒子状で用いる場合には、活性炭を公知の適当な粉砕機で粉砕後、公知の適当な分級機で分級し、平均粒径0.5μm〜0.1mm程度の粉末状、平均粒径0.1〜5mm程度の粒子状の活性炭に篩い分けて、それぞれの活性炭を使用条件に応じて、適宜使用することができる。   When used in powder or particulate form, the activated carbon is pulverized with a known appropriate pulverizer and then classified with a known appropriate classifier to obtain a powder or average particle having an average particle diameter of about 0.5 μm to 0.1 mm. The activated carbon can be appropriately used according to use conditions by sieving it into particulate activated carbon having a diameter of about 0.1 to 5 mm.

吸着剤に炭化水素油を連続的に供給、通油して使用する場合、さらに劣化した吸着剤を再生して繰り返し使用する場合には、活性炭を成型品として使用することが好ましい。本発明の活性炭は、成型炭化処理物を賦活処理するので、そのままでも好適に使用できる。したがって、成型炭化処理物を得る成型炭化処理工程の成型過程で、処理対象の炭化水素油やその処理条件等の用途条件に適した形状に予め成型しておき、賦活処理後さらには金属担持後もその形状を保持することが好ましい。なお、賦活処理後、活性炭を粉砕しゼオライトなどの無機物や担持金属を混合した後、適宜の形状に成型してもよい。   When hydrocarbon oil is continuously supplied to and passed through the adsorbent and used, and when the deteriorated adsorbent is regenerated and used repeatedly, it is preferable to use activated carbon as a molded product. Since the activated carbon of the present invention activates the molded carbonized product, it can be suitably used as it is. Therefore, in the molding process of the molding carbonization process to obtain the molded carbonized product, it is pre-molded into a shape suitable for the application conditions such as the hydrocarbon oil to be processed and its processing conditions, and after activation treatment and after metal loading It is preferable to maintain the shape. After the activation treatment, the activated carbon may be pulverized and mixed with an inorganic substance such as zeolite or a supported metal, and then molded into an appropriate shape.

成型品の形状としては、硫黄化合物など、除去する微量成分の濃度勾配を大きくするため、流通式の場合には吸着剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状が好ましい。球状の場合、大きさは、直径が0.1〜5mm、特には0.3〜3mmが好ましい。円柱状の場合には、直径が0.1〜4mm、特には0.12〜2mmが好ましく、長さは直径の0.5〜5倍、特には1〜4倍が好ましい。成型品は、吸着剤として使用中に割れを生じないように、0.5kg/ペレット以上、特には1.0kg/ペレット以上の破壊強度を有することが好ましい。なお、破壊強度は、例えば、木屋式錠剤破壊強度測定器(富山産業株式会社製、TH−203MP)等の圧縮強度測定器により測定される。   As the shape of the molded product, in order to increase the concentration gradient of trace components to be removed, such as sulfur compounds, in the case of flow-through type, the shape is small, especially spherical, so long as the differential pressure before and after the container filled with the adsorbent does not increase Is preferred. In the case of a spherical shape, the size is preferably 0.1 to 5 mm, particularly 0.3 to 3 mm. In the case of a cylindrical shape, the diameter is preferably 0.1 to 4 mm, particularly preferably 0.12 to 2 mm, and the length is preferably 0.5 to 5 times, particularly 1 to 4 times the diameter. The molded article preferably has a breaking strength of 0.5 kg / pellet or more, particularly 1.0 kg / pellet or more so as not to crack during use as an adsorbent. The breaking strength is measured, for example, by a compressive strength measuring device such as a Kiya tablet breaking strength measuring device (manufactured by Toyama Sangyo Co., Ltd., TH-203MP).

本発明の液体の精製方法において、吸着剤に用いる活性炭は、活性炭が吸着しにくい硫黄化合物などの吸着性能を向上させるために、及び/又はメソ孔及びマクロ孔の存在量を増やして硫黄化合物などの拡散速度を向上させるために、炭化処理、成型、賦活処理の途中又は後で、シリカ、アルミナ、ゼオライトなどの無機物を混合しても良い。   In the liquid purification method of the present invention, the activated carbon used for the adsorbent is a sulfur compound or the like in order to improve the adsorption performance of sulfur compounds and the like that are difficult for activated carbon to adsorb and / or increase the amount of mesopores and macropores. In order to improve the diffusion rate, inorganic substances such as silica, alumina, zeolite and the like may be mixed during or after carbonization, molding, and activation.

また、本発明の液体の精製方法において、吸着剤に用いる活性炭は、銀、水銀、銅、カドミウム、鉛、モリブデン、亜鉛、コバルト、マンガン、ニッケル、白金、パラジウム、鉄などの金属及び/又はそれらの金属酸化物との複合化、すなわちこれらの金属を担持することにより、吸着性能を向上させることもできる。安全性や経済性などから、好ましいのは銅、銀、マンガン、亜鉛、ニッケルの酸化物である。中でも銅は、安価な上に、常温付近から300℃程度の広い温度範囲で、また還元処理を行わない酸化銅の状態のまま、且つ、水素非存在下でも硫黄化合物の吸着に優れた性能を示すので特に好ましい。   In the liquid purification method of the present invention, the activated carbon used for the adsorbent is a metal such as silver, mercury, copper, cadmium, lead, molybdenum, zinc, cobalt, manganese, nickel, platinum, palladium, iron and / or the like. Adsorption performance can also be improved by compounding with these metal oxides, that is, by supporting these metals. From the viewpoint of safety and economy, the oxides of copper, silver, manganese, zinc, and nickel are preferable. Among these, copper is inexpensive and has excellent performance for adsorption of sulfur compounds in a wide temperature range from near room temperature to about 300 ° C., in the state of copper oxide without reduction treatment, and in the absence of hydrogen. This is particularly preferable.

金属の好ましい担持量は、特に限定されるものではなく、金属の種類によっても異なるが、仕上がりの吸着剤に対する金属基準で、貴金属の場合0.1〜20質量%、特には0.5〜5質量%であることが好ましい。金属の担持量が0.1質量%よりも少ないと担持効果が少なく、20質量%よりも多いと経済的でない。銅及びその他の金属の場合には、該金属を0.1〜60質量%、特には3〜20質量%の量で担持することが好ましい。金属の担持量が0.1質量%よりも少ないと担持効果が少なく、60質量%より多いと担体である活性炭との結合が弱い金属が多くなることから、金属成分が脱離する可能性がある。金属担持量が多いと活性炭が吸着しにくいチオフェン類やベンゾチオフェン類などの硫黄化合物の吸着性能をより向上させることができる。   The preferred loading amount of the metal is not particularly limited and varies depending on the type of metal, but is 0.1 to 20% by mass, particularly 0.5 to 5% in the case of a noble metal on the basis of the metal with respect to the finished adsorbent. It is preferable that it is mass%. If the amount of metal supported is less than 0.1% by mass, the effect of supporting is small, and if it exceeds 20% by mass, it is not economical. In the case of copper and other metals, the metal is preferably supported in an amount of 0.1 to 60% by mass, particularly 3 to 20% by mass. If the supported amount of the metal is less than 0.1% by mass, the effect of supporting is small, and if it is more than 60% by mass, the amount of the metal that is weakly bonded to the activated carbon that is the carrier increases, so that the metal component may be detached. is there. When the amount of metal supported is large, the adsorption performance of sulfur compounds such as thiophenes and benzothiophenes that are difficult to adsorb activated carbon can be further improved.

これらの金属の担持方法は、特に限定されるものではなく、所望量の金属が担持され、所望の性能を発揮するどのような方法で行ってもよい。例えば、成型賦活処理物(活性炭)に金属の水酸化物や硝酸化物の水溶液をスプレー法、浸漬法で含浸し、あるいは、活性炭を粉砕し、金属の水酸化物や硝酸化物の水溶液を練り込んで成型し、乾燥後、炭素成分を失わないようにさらに熱して水分、あるいは硝酸分を除去して、吸着剤を得ることができる。   The method for supporting these metals is not particularly limited, and any method that supports a desired amount of metal and exhibits desired performance may be used. For example, a molded activated product (activated carbon) is impregnated with an aqueous solution of metal hydroxide or nitrate by spraying or dipping, or the activated carbon is pulverized and an aqueous solution of metal hydroxide or nitrate is kneaded. After molding and drying, the adsorbent can be obtained by further heating and removing moisture or nitric acid so as not to lose the carbon component.

〔液体〕
本発明の液体の精製方法に用いる吸着剤が適用対象とする液体としては、炭化水素油や各種排水を挙げることができる。液体における吸着(所謂、液相吸着)では、吸着質の分子量が一般的に大きいことや液体の粘性が高いことから、吸着質の拡散が遅く、また、細孔壁の影響を受けやすい。本発明の液体の精製方法に用いる吸着剤は、液相吸着に適した細孔特性を有することから、特に液相吸着において優れた効果を得ることができる。
〔liquid〕
Examples of the liquid to which the adsorbent used in the liquid purification method of the present invention is applicable include hydrocarbon oil and various wastewaters. In the adsorption in liquid (so-called liquid phase adsorption), the molecular weight of the adsorbate is generally large and the viscosity of the liquid is high. Therefore, the diffusion of the adsorbate is slow and it is easily affected by the pore wall. Since the adsorbent used in the liquid purification method of the present invention has pore characteristics suitable for liquid phase adsorption, an excellent effect can be obtained particularly in liquid phase adsorption.

炭化水素油としては、硫黄化合物としてジベンゾチオフェン類を含む、或いは多環芳香族化合物を含む炭素数5〜20の炭化水素油を挙げることができる。具体的には、灯油、軽油などが挙げられ、特には高度に(深度に)脱硫する必要のある燃料電池用の灯油が挙げられる。   Examples of the hydrocarbon oil include hydrocarbon oils containing 5 to 20 carbon atoms containing dibenzothiophenes as sulfur compounds or containing polycyclic aromatic compounds. Specific examples include kerosene and light oil, and particularly kerosene for fuel cells that needs to be highly desulfurized (deep).

これらの炭化水素油は、チオフェン類、メルカプタン類(チオール類)、スルフィド類、ジスルフィド類、二硫化炭素など、どんな種類の硫黄化合物を含有していても構わないが、上記吸着剤は、特に脱硫することが極めて困難なジベンゾチオフェン類などの硫黄化合物を含有した炭化水素油に対して顕著な効果を発揮する。例えば、全硫黄化合物に対するジベンゾチオフェン類の割合は、灯油では30%前後、軽油ではほぼ100%であり、灯油や軽油などの炭化水素油は上記吸着剤の適用対象として好ましい炭化水素油である。もちろん、本発明の液体の精製方法に用いる吸着剤の適用対象は灯油や軽油に限定されるものではない。   These hydrocarbon oils may contain any kind of sulfur compounds such as thiophenes, mercaptans (thiols), sulfides, disulfides, carbon disulfide, etc. It exerts a remarkable effect on hydrocarbon oils containing sulfur compounds such as dibenzothiophenes that are extremely difficult to do. For example, the ratio of dibenzothiophenes to the total sulfur compounds is about 30% for kerosene and almost 100% for light oil, and hydrocarbon oils such as kerosene and light oil are preferred hydrocarbon oils for application of the adsorbent. Of course, the application target of the adsorbent used in the liquid purification method of the present invention is not limited to kerosene or light oil.

これらの硫黄化合物の定性及び定量分析には、ガスクロマトグラフ(Gas Chromatograph:GC)−炎光光度検出器(Flame Photometric Detector:FPD)、GC−原子発光検出器(Atomic Emission Detector:AED)、GC−硫黄化学発光検出器(Sulfur Chemiluminescence Detector:SCD)、GC−誘導結合プラズマ質量分析装置(Inductively Coupled Plasma Mass Spectrometer:ICP−MS)などを用いることができるが、質量ppbレベルの分析にはGC−ICP−MSが最も好ましい(特開2006−145219号公報参照)。   For qualitative and quantitative analysis of these sulfur compounds, Gas Chromatograph (GC) -Flame Photometric Detector (FPD), GC-Atomic Emission Detector (AED), GC- Sulfur Chemiluminescence Detector (SCD), GC-Inductively Coupled Plasma Mass Spectrometer (ICP-MS), etc. can be used, but GC-ICP is used for mass ppb level analysis. -MS is most preferable (see JP 2006-145219 A).

〔微量成分〕
本発明の液体の精製方法に用いる吸着剤が吸着対象とする微量成分としては、芳香族化合物を挙げることができる。活性炭に部分的に存在するグラファイト面のπ電子と、芳香族化合物のベンゼン環のπ電子との相互作用による吸着(所謂、π電子吸着)により、上記吸着剤は、芳香族化合物の吸着に優れた効果を発揮する。
[Minor components]
An aromatic compound can be mentioned as a trace component which the adsorption agent used for the purification method of the liquid of this invention makes adsorption object. Adsorption by the interaction of π electrons on the graphite surface partially present on the activated carbon and π electrons on the benzene ring of the aromatic compound (so-called π electron adsorption) makes the adsorbent superior in adsorbing aromatic compounds. Show the effect.

芳香族化合物としては、ベンゾチオフェン類やジベンゾチオフェン類等の硫黄化合物やベンゼン環を2個以上含む多環芳香族化合物、排水に含まれるフミン類等を挙げることができる。   Examples of aromatic compounds include sulfur compounds such as benzothiophenes and dibenzothiophenes, polycyclic aromatic compounds containing two or more benzene rings, and humins contained in wastewater.

また、多環芳香族化合物は、ベンゼン環を2個以上有する化合物であり、炭素と水素以外のヘテロ原子を含有していても構わないが、2個のベンゼン環を形成する炭素がすべて同一平面上に位置する方が、上記吸着剤とのπ電子相互作用が強く、本発明の効果を顕著に得ることができる。   A polycyclic aromatic compound is a compound having two or more benzene rings and may contain heteroatoms other than carbon and hydrogen, but all the carbons forming the two benzene rings are in the same plane. The one located above has a stronger π-electron interaction with the adsorbent, and the effects of the present invention can be remarkably obtained.

フミン類は、フミン質とも呼ばれ、フミン酸等を含む。植物等が微生物により分解された最終分解生成物であり、芳香族骨格を含む分子量数千以上の化合物である。   Humins are also called humic substances and include humic acid and the like. It is a final decomposition product obtained by decomposition of a plant or the like with a microorganism, and is a compound having an aromatic skeleton and a molecular weight of several thousand or more.

炭化水素油から硫黄分や多環芳香族化合物などの不純物を上記吸着剤で除去する場合、それら不純物の含有量が多すぎると大量の吸着剤を必要とすることになり、不経済である。このような場合、水素化精製法など他の精製法の方が効率的であることから、本発明で取り扱い対象とする炭化水素油中の硫黄分は20質量ppm以下が好ましく、10質量ppm以下が更に好ましく、1質量ppm以下が一層好ましく、多環芳香族化合物の含有量は5質量%以下が好ましく、2質量%以下が更に好ましく、0.5質量%以下が一層好ましい。   When impurities such as sulfur and polycyclic aromatic compounds are removed from the hydrocarbon oil with the above adsorbent, if the content of these impurities is too large, a large amount of adsorbent is required, which is uneconomical. In such a case, since other purification methods such as hydrorefining methods are more efficient, the sulfur content in the hydrocarbon oil to be handled in the present invention is preferably 20 ppm by mass or less, and preferably 10 ppm by mass or less. Is more preferably 1 ppm by mass or less, and the content of the polycyclic aromatic compound is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 0.5% by mass or less.

〔微量成分の吸着除去方法〕
吸着剤は、使用する前に前処理として吸着剤に吸着した微量の水分を除去しておくことが好ましい。水分除去は、空気などの酸化雰囲気下ならば100〜200℃程度で乾燥すればよい。しかし、200℃を超えると空気中の酸素と吸着剤の炭素成分が反応して吸着剤の質量が減少するので好ましくない。一方、窒素などの非酸化雰囲気下では吸着剤を100〜800℃程度で乾燥することができる。特に非酸化雰囲気下で吸着剤を400〜800℃で熱処理を行うと、有機物や酸素含有官能基などが除去され、吸着性能が向上するので一層好ましい。
[Method for adsorption removal of trace components]
It is preferable to remove a small amount of moisture adsorbed on the adsorbent as a pretreatment before use. Moisture removal may be performed at about 100 to 200 ° C. in an oxidizing atmosphere such as air. However, when the temperature exceeds 200 ° C., oxygen in the air reacts with the carbon component of the adsorbent to reduce the mass of the adsorbent, which is not preferable. On the other hand, the adsorbent can be dried at about 100 to 800 ° C. in a non-oxidizing atmosphere such as nitrogen. In particular, it is more preferable to heat-treat the adsorbent at 400 to 800 ° C. in a non-oxidizing atmosphere because organic substances and oxygen-containing functional groups are removed and the adsorption performance is improved.

本発明の液体の精製方法において、吸着剤と炭化水素油とを接触させる方法は、回分式(バッチ式)でも連続式でも良いが、成型品の吸着剤を充填した容器に炭化水素油を流通する連続式が効率的であり好ましい。   In the liquid purification method of the present invention, the method of bringing the adsorbent into contact with the hydrocarbon oil may be batch type (batch type) or continuous type, but the hydrocarbon oil is circulated in the container filled with the adsorbent of the molded product. The continuous system is efficient and preferable.

連続式の場合、接触させる条件としては、圧力は、常圧〜1.0MPaGが好ましく、常圧〜0.1MPaGがより好ましく、特には0.001〜0.03MPaGが好ましい。流量は、液空間速度(LHSV)で0.001〜100hr−1が好ましく、0.01〜10hr−1がより好ましい。見掛けの線速度(液体の流量を吸着剤層の断面積で割った値)は、0.001〜100cm/分、更には0.005〜10cm/分、特には0.01〜1cm/分が好ましい。見掛けの線速度が大きいと、吸着速度(液相から固相への移動速度)に比べて液相自体が吸着剤の充填層を通過する移動速度が速くなり、液相が吸着層出口に到達するまでに吸着質が除去しきれず、除去されない吸着質を含有したまま液体は出口から流出されてしまうといった問題が生じやすくなる。逆に見掛けの線速度が小さいと、吸着剤層の断面積が相対的に大きくなることから、液体の分散状態が不良となり、吸着剤層の流れ方向と直角な断面を通過する液体の流速(流量)にムラが生じ、吸着剤層の断面において吸着した吸着質に分布(ムラ)が生じるため、吸着剤への負荷が不均一になり、やはり十分効率的に脱硫することができない。 In the case of the continuous type, the pressure is preferably from normal pressure to 1.0 MPaG, more preferably from normal pressure to 0.1 MPaG, and particularly preferably from 0.001 to 0.03 MPaG. Flow rate is preferably 0.001~100Hr -1 at a liquid hourly space velocity (LHSV), 0.01~10hr -1 are more preferred. The apparent linear velocity (the value obtained by dividing the liquid flow rate by the cross-sectional area of the adsorbent layer) is 0.001 to 100 cm / min, more preferably 0.005 to 10 cm / min, and particularly 0.01 to 1 cm / min. preferable. If the apparent linear velocity is high, the moving speed of the liquid phase itself passing through the packed bed of adsorbent is faster than the adsorption speed (moving speed from the liquid phase to the solid phase), and the liquid phase reaches the outlet of the adsorbing layer. The adsorbate cannot be completely removed by this time, and the liquid tends to flow out from the outlet while containing the adsorbate that is not removed. Conversely, if the apparent linear velocity is low, the cross-sectional area of the adsorbent layer becomes relatively large, so that the liquid dispersion state becomes poor, and the flow velocity of the liquid passing through the cross section perpendicular to the flow direction of the adsorbent layer ( The flow rate is uneven, and the adsorbate adsorbed in the cross section of the adsorbent layer is distributed (unevenness). Therefore, the load on the adsorbent becomes non-uniform and desulfurization cannot be performed sufficiently efficiently.

吸着処理を行う温度(即ち、吸着剤と液体とを接触させる温度)は、−30〜100℃が好ましく、特には0〜80℃が好ましい。−30℃よりも低温では、吸着される物質(吸着質)の液体中の拡散速度が著しく小さく、吸着されるまでに長時間を要する。また、液体の粘性が高くなるために、カラムに充填した流通式の場合にはカラムでの圧力損失が大きくなり、カラム入口圧力を高くする必要がある。一般的に、0℃以上が特に好ましい。一方、温度が100℃よりも高いと、物理吸着であるために、平衡時の吸着量が著しく減少する。温度は高いほど、吸着速度は向上するが、平衡時の物理吸着量が少なくなるので、80℃以下が特に好ましい。   The temperature at which the adsorption treatment is performed (that is, the temperature at which the adsorbent is brought into contact with the liquid) is preferably -30 to 100 ° C, and particularly preferably 0 to 80 ° C. At a temperature lower than −30 ° C., the diffusion rate of the adsorbed substance (adsorbate) in the liquid is remarkably small, and it takes a long time to be adsorbed. In addition, since the viscosity of the liquid is increased, in the case of a flow type packed in a column, the pressure loss in the column increases, and the column inlet pressure needs to be increased. In general, 0 ° C. or higher is particularly preferable. On the other hand, when the temperature is higher than 100 ° C., the adsorption amount at equilibrium is remarkably reduced due to physical adsorption. The higher the temperature, the higher the adsorption rate, but the lower the amount of physical adsorption at equilibrium, so 80 ° C. or less is particularly preferable.

〔燃料電池システム〕
本発明の燃料電池システムは、上述した液体の精製方法を使用することを特徴とするため、液体から微量成分を吸着除去する吸着手段を備える。微量成分としては、例えば、硫黄化合物を挙げられる。ここで、吸着手段としては、上述した吸着剤を単独で用いることができるが、他の吸着剤と組み合わせて使用してもよい。なお、本発明の燃料電池システムは、該吸着手段の他に、通常、微量成分を除去された炭化水素油を改質して水素を含む改質ガスを生成させる改質手段と、燃料電池とを備える。ここで、改質手段には、通常、公知の改質触媒が使用される。また、本発明の燃料電池システムにおいて、吸着剤、改質触媒と炭化水素とを接触させる方法は、回分式(バッチ式)でも流通式でも良いが、調製された吸着剤等を容器(反応器)に充填して炭化水素油を流通する流通式がより好ましい。
[Fuel cell system]
Since the fuel cell system of the present invention is characterized by using the above-described liquid purification method, the fuel cell system includes an adsorption means for adsorbing and removing trace components from the liquid. As a trace component, a sulfur compound is mentioned, for example. Here, as the adsorbing means, the above-described adsorbent can be used alone, but may be used in combination with other adsorbents. In addition to the adsorbing means, the fuel cell system of the present invention usually includes a reforming means for reforming hydrocarbon oil from which trace components have been removed to generate a reformed gas containing hydrogen, a fuel cell, Is provided. Here, a known reforming catalyst is usually used as the reforming means. In the fuel cell system of the present invention, the adsorbent, the reforming catalyst and the hydrocarbon may be brought into contact with each other by a batch type (batch type) or a flow type. The flow type in which the hydrocarbon oil is circulated while being filled in is more preferable.

本発明の燃料電池システムにおいて、精製方法に用いる吸着剤(以下、本発明の吸着剤ともいう)は、ジベンゾチオフェン類の除去性能に特に優れているので、ベンゾチオフェン類、メルカプタン類、或いは、スルフィド類など、他の種類の硫黄化合物の除去性能に優れた他の吸着剤、例えば、ベンゾチオフェン類の除去については本発明者が先に提案した固体酸触媒及び/又は遷移金属酸化物が担持された活性炭などの脱硫剤(国際公開第WO2005−073348号パンフレット参照)、メルカプタン類の除去については本発明が先に提案した酸化銅担持アルミナ(特開2000−42407号公報参照)、スルフィド類の除去についてはゼオライトなどとの組み合わせが好ましい(特開2001−205004号公報参照)。   In the fuel cell system of the present invention, the adsorbent used in the purification method (hereinafter also referred to as the adsorbent of the present invention) is particularly excellent in the removal performance of dibenzothiophenes, so that benzothiophenes, mercaptans, or sulfides For the removal of other adsorbents, such as benzothiophenes, such as benzothiophenes, the solid acid catalyst and / or transition metal oxide previously proposed by the present inventor is supported. Desulfurization agents such as activated carbon (see WO 2005-073348 pamphlet) and mercaptans for removal of copper oxide-supported alumina previously proposed by the present invention (see JP 2000-42407), removal of sulfides Is preferably a combination with zeolite or the like (see JP 2001-205004 A).

特に、灯油にはベンゾチオフェン類とジベンゾチオフェン類が主に含まれるので、灯油の脱硫には、本発明の吸着剤と固体酸系吸着剤とを組み合わせて使用することが好ましい。固体酸系吸着剤としては、固体超強酸を含有する吸着剤が特に好ましい。固体超強酸とは、ハメット(Hammett)の酸度関数Hが−11.93である100%硫酸よりも酸強度が高い固体酸をいい、珪素、アルミニウム、チタン、ジルコニウム、タングステン、モリブデン、鉄等の水酸化物又は酸化物、或いはグラファイト、イオン交換樹脂等からなる担体に、硫酸根、五フッ化アンチモン、五フッ化タンタル、三フッ化ホウ素等を付着或いは担持したもの、酸化ジルコニウム(ZrO)、酸化第二スズ(SnO)、チタニア(TiO)または酸化第二鉄(Fe)等に酸化タングステン(WO)を担持したもの、さらにはフッ素化スルホン酸樹脂等を例示することができる(国際公開第WO2005−073348号パンフレット参照)。中でも、本発明者らが提案した硫酸根アルミナがより好ましい(国際公開第WO2009−031613号パンフレット参照)。硫酸根アルミナに、銅、銀、ガリウム等を担持した吸着剤も好ましく用いられる。 In particular, since kerosene mainly contains benzothiophenes and dibenzothiophenes, it is preferable to use a combination of the adsorbent of the present invention and a solid acid adsorbent for desulfurization of kerosene. As the solid acid adsorbent, an adsorbent containing a solid super strong acid is particularly preferable. The solid super strong acid means a solid acid having a higher acid strength than 100% sulfuric acid having a Hammett acidity function H 0 of −11.93, such as silicon, aluminum, titanium, zirconium, tungsten, molybdenum, iron, and the like. Zirconium oxide (ZrO 2) , or a carrier made of hydroxide, oxide, graphite, ion exchange resin, or the like, with a sulfate radical, antimony pentafluoride, tantalum pentafluoride, boron trifluoride or the like attached or supported thereon. ), Stannic oxide (SnO 2 ), titania (TiO 2 ), ferric oxide (Fe 2 O 3 ) or the like carrying tungsten oxide (WO 3 ), and further fluorinated sulfonic acid resin, etc. (See International Publication No. WO2005-073348 Pamphlet). Among these, sulfate group alumina proposed by the present inventors is more preferable (see International Publication No. WO2009-031613 pamphlet). An adsorbent in which copper, silver, gallium or the like is supported on sulfate radical alumina is also preferably used.

上述した液体の精製方法において、吸着剤と液体とを接触させる工程の後処理として、固体酸系吸着剤を用いて残留する硫黄化合物を吸着除去することも好ましく用いられる。本発明の吸着剤は、活性炭系吸着剤であり、活性炭系吸着剤における硫黄化合物の吸着等温線はフロイントリッヒ型であるので、硫黄化合物の濃度が高いほど硫黄化合物の吸着活性が高く、硫黄化合物濃度が高い段階で使用することが効果的である。従って、まず、本発明の吸着剤によりジベンゾチオフェン類を吸着除去し、残存したベンゾチオフェン類等を固体酸系吸着剤により吸着除去することが好ましい。   In the liquid purification method described above, as a post-treatment in the step of bringing the adsorbent into contact with the liquid, it is also preferable to adsorb and remove residual sulfur compounds using a solid acid adsorbent. The adsorbent of the present invention is an activated carbon-based adsorbent, and the adsorption isotherm of the sulfur compound in the activated carbon-based adsorbent is Freundlich type. Therefore, the higher the concentration of the sulfur compound, the higher the sulfur compound adsorption activity. It is effective to use at a high concentration stage. Therefore, first, it is preferable to adsorb and remove dibenzothiophenes with the adsorbent of the present invention and to adsorb and remove the remaining benzothiophenes with a solid acid adsorbent.

炭化水素油としては、代表的には灯油や軽油が挙げられ、灯油にナフサなどの軽質な炭化水素油が配合されたかたちのもの、灯油に軽油などの重質な炭化水素油が配合されたかたちのもの、市販の灯油よりも沸点範囲の狭いもの、市販の灯油から芳香族分などの特定成分を除去したもの、軽油に灯油などの軽質な炭化水素油が配合されたかたちのもの、市販の軽油よりも沸点範囲の狭いもの、市販の軽油から芳香族分などの特定成分を除去したものであってもよい。   Typically, hydrocarbon oils include kerosene and light oil. Kerosene with light hydrocarbon oil such as naphtha, and kerosene with heavy hydrocarbon oil such as light oil. In the form, those with a narrower boiling range than commercial kerosene, those obtained by removing certain components such as aromatics from commercial kerosene, light oil blended with light hydrocarbon oils such as kerosene, commercially available Those having a boiling point range narrower than that of the light oil, or those obtained by removing specific components such as aromatic components from commercially available light oil may be used.

また、燃料電池などの水素源として炭化水素油を用いる場合、炭化水素に含まれる硫黄は、水素製造過程で改質触媒の触媒毒であるから厳しく除去する必要がある。本発明の燃料電池システムは、硫黄化合物を極めて微量濃度まで低減することができるので、灯油又は軽油をオンボード改質燃料として燃料電池自動車に使用する場合、特に好ましく用いることができる。したがって、本発明の燃料電池システムは、水素製造用の改質触媒を被毒することなく水素を製造して燃料電池に供給することができる。また、本発明の燃料電池システムは、定置式であっても良いし、可動式(例えば、燃料電池自動車など)であってもよい。   In addition, when hydrocarbon oil is used as a hydrogen source for a fuel cell or the like, sulfur contained in the hydrocarbon must be strictly removed because it is a catalyst poison of the reforming catalyst in the hydrogen production process. The fuel cell system of the present invention can reduce sulfur compounds to a very small concentration, and therefore can be particularly preferably used when kerosene or light oil is used as an onboard reformed fuel in a fuel cell vehicle. Therefore, the fuel cell system of the present invention can produce hydrogen and supply it to the fuel cell without poisoning the reforming catalyst for producing hydrogen. The fuel cell system of the present invention may be stationary or movable (for example, a fuel cell vehicle).

本発明の燃料電池システムは、チオフェン類、ベンゾチオフェン類及びジベンゾチオフェン類の除去に顕著な効果を有することから、その他の硫黄化合物の含有量が少ない炭化水素油、なかでも灯油や軽油に対してより好ましく使用できる。   The fuel cell system of the present invention has a significant effect on the removal of thiophenes, benzothiophenes and dibenzothiophenes, and is therefore suitable for hydrocarbon oils with a low content of other sulfur compounds, especially kerosene and light oil. More preferably it can be used.

灯油は、炭素数12〜16程度の炭化水素を主体とし、密度(15℃)0.79〜0.85g/cm、沸点範囲150〜320℃程度の油である。パラフィン系炭化水素を多く含むが、芳香族系炭化水素を0〜30容量%程度含み、多環芳香族も0〜5容量%程度含む。一般的には、灯火用及び暖房用・ちゅう(厨)房用燃料として日本工業規格JIS K2203に規定される1号灯油が対象となる。品質として、引火点40℃以上、95%留出温度270℃以下、硫黄分0.008質量%以下、煙点23mm以上(寒候用のものは21mm以上)、銅板腐食(50℃、3時間)1以下、色(セーボルト)+25以上の規定がある。通常、硫黄分を数質量ppmから80質量ppm以下、窒素分を数質量ppmから10質量ppm程度含む。 Kerosene is an oil having mainly a hydrocarbon having about 12 to 16 carbon atoms, a density (15 ° C.) of 0.79 to 0.85 g / cm 3 , and a boiling point range of about 150 to 320 ° C. Although it contains a lot of paraffinic hydrocarbons, it contains about 0 to 30% by volume of aromatic hydrocarbons and about 0 to 5% by volume of polycyclic aromatics. In general, No. 1 kerosene defined in Japanese Industrial Standard JIS K2203 is used as a fuel for lighting, heating, and kitchen. Quality: flash point 40 ° C or higher, 95% distillation temperature 270 ° C or lower, sulfur content 0.008% by mass or lower, smoke point 23mm or higher (21mm or higher for cold weather), copper plate corrosion (50 ° C, 3 hours) ) There are provisions of 1 or less and color (Saebold) +25 or more. Usually, the sulfur content is from several ppm to 80 ppm by mass and the nitrogen content is from several ppm to 10 ppm by mass.

軽油は、炭素数16〜20程度の炭化水素を主体とし、密度(15℃)0.82〜0.88g/cm、沸点範囲140〜390℃程度の油である。パラフィン系炭化水素を多く含むが、芳香族系炭化水素も10〜30容量%程度含み、多環芳香族も1〜10容量%程度含む。硫黄分を数質量ppmから100質量ppm以下、窒素分を数質量ppmから数10質量ppm程度含む。 The light oil is an oil having mainly a hydrocarbon having about 16 to 20 carbon atoms, a density (15 ° C.) of 0.82 to 0.88 g / cm 3 , and a boiling point range of about 140 to 390 ° C. Although it contains a lot of paraffinic hydrocarbons, it also contains about 10-30% by volume of aromatic hydrocarbons and about 1-10% by volume of polycyclic aromatics. Sulfur is contained from several ppm to 100 ppm by mass, and nitrogen is contained from several ppm to several tens of ppm.

ベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が1個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ベンゾチオフェンは、チオナフテン、チオクマロンとも呼ばれ、分子式CSで表わせる、分子量134の硫黄化合物である。その他の代表的なベンゾチオフェン類としては、メチルベンゾチオフェン、ジメチルベンゾチオフェン、トリメチルベンゾチオフェン、テトラメチルベンゾチオフェン、ペンタメチルベンゾチオフェン、ヘキサメチルベンゾチオフェン、メチルエチルベンゾチオフェン、ジメチルエチルベンゾチオフェン、トリメチルエチルベンゾチオフェン、テトラメチルエチルベンゾチオフェン、ペンタメチルエチルベンゾチオフェン、メチルジエチルベンゾチオフェン、ジメチルジエチルベンゾチオフェン、トリメチルジエチルベンゾチオフェン、テトラメチルジエチルベンゾチオフェン、メチルプロピルベンゾチオフェン、ジメチルプロピルベンゾチオフェン、トリメチルプロピルベンゾチオフェン、テトラメチルプロピルベンゾチオフェン、ペンタメチルプロピルベンゾチオフェン、メチルエチルプロピルベンゾチオフェン、ジメチルエチルプロピルベンゾチオフェン、トリメチルエチルプロピルベンゾチオフェン、テトラメチルエチルプロピルベンゾチオフェンなどのアルキルベンゾチオフェン、チアクロメン(ベンゾチア−γ−ピラン、分子式CS、分子量148)、ジチアナフタリン(分子式C、分子量166)及びこれらの誘導体が挙げられる。 Benzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which the heterocyclic ring is condensed with one benzene ring and derivatives thereof. Benzothiophene, also called thionaphthene or thiocoumarone, is a sulfur compound with a molecular weight of 134, which can be represented by the molecular formula C 8 H 6 S. Other representative benzothiophenes include methylbenzothiophene, dimethylbenzothiophene, trimethylbenzothiophene, tetramethylbenzothiophene, pentamethylbenzothiophene, hexamethylbenzothiophene, methylethylbenzothiophene, dimethylethylbenzothiophene, trimethylethyl Benzothiophene, tetramethylethylbenzothiophene, pentamethylethylbenzothiophene, methyldiethylbenzothiophene, dimethyldiethylbenzothiophene, trimethyldiethylbenzothiophene, tetramethyldiethylbenzothiophene, methylpropylbenzothiophene, dimethylpropylbenzothiophene, trimethylpropylbenzothiophene , Tetramethylpropylbenzothiophene, penta Chill propyl benzothiophene, methyl ethyl propyl benzothiophene, dimethyl ethyl propyl benzothiophene, trimethyl ethylpropyl benzothiophene, alkyl benzothiophenes such as tetramethyl-ethylpropyl benzothiophene, Chiakuromen (Benzochia -γ- pyran, molecular formula C 9 H 8 S, Molecular weight 148), dithiaphthalene (molecular formula C 8 H 6 S 2 , molecular weight 166) and derivatives thereof.

ジベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が2個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ジベンゾチオフェンは、ジフェニレンスルフィド、ビフェニレンスルフィド、硫化ジフェニレンとも呼ばれ、分子式C12Sで表わせる、分子量184の硫黄化合物である。4−メチルジベンゾチオフェンや4,6−ジメチルジベンゾチオフェンは、水素化精製における難脱硫化合物として良く知られている。その他の代表的なジベンゾチオフェン類としては、トリメチルジベンゾチオフェン、テトラメチルジベンゾチオフェン、ペンタメチルジベンゾチオフェン、ヘキサメチルジベンゾチオフェン、ヘプタメチルジベンゾチオフェン、オクタメチルジベンゾチオフェン、メチルエチルジベンゾチオフェン、ジメチルエチルジベンゾチオフェン、トリメチルエチルジベンゾチオフェン、テトラメチルエチルジベンゾチオフェン、ペンタメチルエチルジベンゾチオフェン、ヘキサメチルエチルジベンゾチオフェン、ヘプタメチルエチルジベンゾチオフェン、メチルジエチルジベンゾチオフェン、ジメチルジエチルジベンゾチオフェン、トリメチルジエチルジベンゾチオフェン、テトラメチルジエチルジベンゾチオフェン、ペンタメチルジエチルジベンゾチオフェン、ヘキサメチルジエチルジベンゾチオフェン、ヘプタメチルジエチルジベンゾチオフェン、メチルプロピルジベンゾチオフェン、ジメチルプロピルジベンゾチオフェン、トリメチルプロピルジベンゾチオフェン、テトラメチルプロピルジベンゾチオフェン、ペンタメチルプロピルジベンゾチオフェン、ヘキサメチルプロピルジベンゾチオフェン、ヘプタメチルプロピルジベンゾチオフェン、メチルエチルプロピルジベンゾチオフェン、ジメチルエチルプロピルジベンゾチオフェン、トリメチルエチルプロピルジベンゾチオフェン、テトラメチルエチルプロピルジベンゾチオフェン、ペンタメチルエチルプロピルジベンゾチオフェン、ヘキサメチルエチルプロピルジベンゾチオフェンなどのアルキルジベンゾチオフェン、チアントレン(ジフェニレンジスルフィド、分子式C12、分子量216)、チオキサンテン(ジベンゾチオピラン、ジフェニルメタンスルフィド、分子式C1310S、分子量198)及びこれらの誘導体が挙げられる。 Dibenzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which a heterocyclic ring is condensed with two benzene rings and derivatives thereof. Dibenzothiophene is also called diphenylene sulfide, biphenylene sulfide, or diphenylene sulfide, and is a sulfur compound having a molecular weight of 184 that can be represented by the molecular formula C 12 H 8 S. 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene are well known as difficult desulfurization compounds in hydrorefining. Other representative dibenzothiophenes include trimethyldibenzothiophene, tetramethyldibenzothiophene, pentamethyldibenzothiophene, hexamethyldibenzothiophene, heptamethyldibenzothiophene, octamethyldibenzothiophene, methylethyldibenzothiophene, dimethylethyldibenzothiophene, Trimethylethyldibenzothiophene, tetramethylethyldibenzothiophene, pentamethylethyldibenzothiophene, hexamethylethyldibenzothiophene, heptamethylethyldibenzothiophene, methyldiethyldibenzothiophene, dimethyldiethyldibenzothiophene, trimethyldiethyldibenzothiophene, tetramethyldiethyldibenzothiophene, Pentamethyldiethyldibenzo Offene, hexamethyldiethyldibenzothiophene, heptamethyldiethyldibenzothiophene, methylpropyldibenzothiophene, dimethylpropyldibenzothiophene, trimethylpropyldibenzothiophene, tetramethylpropyldibenzothiophene, pentamethylpropyldibenzothiophene, hexamethylpropyldibenzothiophene, heptamethylpropyl Alkyl dibenzothiophenes such as dibenzothiophene, methylethylpropyldibenzothiophene, dimethylethylpropyldibenzothiophene, trimethylethylpropyldibenzothiophene, tetramethylethylpropyldibenzothiophene, pentamethylethylpropyldibenzothiophene, hexamethylethylpropyldibenzothiophene, thianthre (Diphenylene disulfide, molecular formula C 12 H 8 S 2, molecular weight 216), thioxanthene (dibenzo thiopyran, diphenylmethane sulfide, molecular formula C 13 H 10 S, molecular weight 198) include and derivatives thereof.

以下に、実施例を挙げて本発明を更に具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

<<賦活処理後アルカリ処理活性炭についてのモデル油浸漬式脱硫試験>>
[活性炭の調製−1]
(比較例1)
籾殻は、2005年秋田県西木村(現、仙北市)産あきたこまちの籾殻を使用した。
蒸留水に乾燥てんさい糖を加え、それをホットスタラで攪拌しつつ、とろみがでるまで保持し、てんさい糖シロップを得た。これを浸透・浸漬用てんさい糖シロップと定義する。
<< Model oil immersion type desulfurization test for activated carbon after activation treatment >>
[Preparation of activated carbon-1]
(Comparative Example 1)
The rice husk used was Akitakomachi rice husk from Nishiki Village, Akita Prefecture (currently Semboku City) in 2005.
Dry sugar beet sugar was added to distilled water, and it was kept until it thickened while stirring with a hot stirrer to obtain a sugar beet sugar syrup. This is defined as sugar syrup for penetration and soaking.

以下の炭化処理および賦活処理は、内径100mm、外径110mmのアルミナ管内に籾殻試料を配置し、雰囲気ガスとして窒素または二酸化炭素ガスを流動させ、電気炉を用いて籾殻試料に熱処理を施すことによって行われた。炭化処理を行う場合は、目標温度まで炉温度を上げ、その温度で保持した。その後、自然冷却し、徐々に温度を下げた。窒素ガス流量を1L/minに制御した。賦活処理を行う場合、二酸化炭素ガスを用いた。800℃以上で炭素が二酸化炭素と反応し、一酸化炭素として炭素が放出される反応を利用するものである。賦活処理も炭化処理と同様に電気炉で行った。窒素ガス雰囲気中で目標温度まで炉温度を上昇させた。目標温度に到達後、窒素ガスを二酸化炭素ガスに切り替えた。二酸化炭素ガスの流量を、窒素ガスの流量と同様に1L/minに制御した。その後、炉温度を保持し、自然冷却により炉温度を徐々に下げた。   The following carbonization treatment and activation treatment are performed by placing a rice husk sample in an alumina tube having an inner diameter of 100 mm and an outer diameter of 110 mm, flowing nitrogen or carbon dioxide gas as an atmospheric gas, and applying heat treatment to the rice husk sample using an electric furnace. It was conducted. When performing carbonization, the furnace temperature was raised to the target temperature and maintained at that temperature. Then, it naturally cooled and gradually lowered the temperature. The nitrogen gas flow rate was controlled at 1 L / min. When performing the activation process, carbon dioxide gas was used. It utilizes a reaction in which carbon reacts with carbon dioxide at 800 ° C. or higher and carbon is released as carbon monoxide. The activation treatment was performed in an electric furnace in the same manner as the carbonization treatment. The furnace temperature was raised to the target temperature in a nitrogen gas atmosphere. After reaching the target temperature, the nitrogen gas was switched to carbon dioxide gas. The flow rate of carbon dioxide gas was controlled to 1 L / min similarly to the flow rate of nitrogen gas. Thereafter, the furnace temperature was maintained, and the furnace temperature was gradually lowered by natural cooling.

250℃で予備炭化した籾殻に浸透・浸漬用てんさい糖シロップを加えた。そして、両方を良くまぶし、一晩放置した。一晩放置したものをさらに窒素中600℃で1時間炭化処理した。   Pencil sugar syrup for infiltration and immersion was added to rice husk pre-carbonized at 250 ° C. And both were well coated and left overnight. What was left overnight was further carbonized at 600 ° C. for 1 hour in nitrogen.

この600℃での炭化処理物を、5〜50μmに粉砕した。この粉砕した炭化処理物100質量部と、てんさい糖と水を混合して熱した高濃度シロップ(成型用てんさい糖シロップと定義)40質量部(乾燥基準)を、乳鉢と乳棒を用いて良くなじむように混ぜ合わせた。その混合物を、φ1.00mm、長さ10mmの小穴が底部にテーパ状につながるφ10mmの穴に充填し、その小穴に混合物を加圧により通過させた。φ1.00mm、長さ10mmの小穴に存在する混合物に印加する圧力は、19GPa程度に調整し、押出成型した。押し出された成型物を適度な長さに切断し、105℃で1時間乾燥した。   The carbonized product at 600 ° C. was pulverized to 5 to 50 μm. 100 parts by mass of the pulverized carbonized product and 40 parts by mass (dry basis) of high-concentration syrup (defined as sugarcane syrup for molding) mixed with sugar and water are thoroughly blended using a mortar and pestle. So mixed. The mixture was filled into a φ10 mm hole in which a small hole with a diameter of φ1.00 mm and a length of 10 mm was tapered at the bottom, and the mixture was passed through the small hole by pressurization. The pressure applied to the mixture existing in a small hole having a diameter of φ1.00 mm and a length of 10 mm was adjusted to about 19 GPa and extruded. The extruded molded product was cut into an appropriate length and dried at 105 ° C. for 1 hour.

乾燥させた押出成型物を窒素中850℃で5分間のみ炭化した。炭化したものを浸透・浸漬用てんさい糖シロップに12時間浸漬させた。その後、成型物をシロップから取り出し、105℃で2時間乾燥させた。乾燥させたものを850℃において二酸化炭素ガスで1時間賦活処理した。それをさらに浸透・浸漬用てんさい糖シロップに12時間浸漬させた。その後、成型物をシロップから取り出し、105℃で2時間乾燥させた。乾燥させたものを850℃において二酸化炭素ガスで、さらに2時間賦活処理した。得られた活性炭を活性炭[N5AC EX 1+2h](比較例1)とする。図1は、比較例1の活性炭の製造フローチャートを示す。   The dried extrudate was carbonized for 5 minutes at 850 ° C. in nitrogen. The carbonized product was immersed in a sugar syrup for penetration and soaking for 12 hours. Thereafter, the molded product was removed from the syrup and dried at 105 ° C. for 2 hours. The dried product was activated with carbon dioxide gas at 850 ° C. for 1 hour. It was further immersed in a sugar syrup for penetration and soaking for 12 hours. Thereafter, the molded product was removed from the syrup and dried at 105 ° C. for 2 hours. The dried product was further activated with carbon dioxide gas at 850 ° C. for 2 hours. The obtained activated carbon is defined as activated carbon [N5AC EX 1 + 2h] (Comparative Example 1). FIG. 1 shows a production flowchart of the activated carbon of Comparative Example 1.

(比較例2)
活性炭[N5AC EX 1+2h]1質量部を、0.1mol/L水酸化ナトリウム水溶液100質量部に、25℃で、25時間浸漬させた後、蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC EX 1+2h Na0.1N25C25hR100](比較例2)とする。
(Comparative Example 2)
1 part by weight of activated carbon [N5AC EX 1 + 2h] was immersed in 100 parts by weight of a 0.1 mol / L aqueous sodium hydroxide solution at 25 ° C. for 25 hours, washed thoroughly with distilled water and dried to obtain activated carbon. Got. The obtained activated carbon is defined as activated carbon [N5AC EX 1 + 2h Na0.1N25C25hR100] (Comparative Example 2).

(比較例3)
活性炭[N5AC EX 1+2h]1質量部を、0.1mol/L水酸化ナトリウム水溶液100質量部に、25℃で、100時間浸漬した後、蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC EX 1+2h Na0.1N25C100hR100](比較例3)とする。
(Comparative Example 3)
1 part by weight of activated carbon [N5AC EX 1 + 2h] is immersed in 100 parts by weight of a 0.1 mol / L aqueous sodium hydroxide solution at 25 ° C. for 100 hours, washed thoroughly with distilled water and dried to obtain activated carbon. Obtained. The obtained activated carbon is referred to as activated carbon [N5AC EX 1 + 2h Na0.1N25C100hR100] (Comparative Example 3).

(比較例4)
活性炭[N5AC EX 1+2h]1質量部を、1mol/L水酸化ナトリウム水溶液100質量部に、25℃で、100時間浸漬させた後、蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC EX 1+2h Na1N25C100hR100](比較例4)とする。
(Comparative Example 4)
1 part by weight of activated carbon [N5AC EX 1 + 2h] is immersed in 100 parts by weight of 1 mol / L aqueous sodium hydroxide solution at 25 ° C. for 100 hours, and then washed thoroughly with distilled water and dried to obtain activated carbon. It was. The obtained activated carbon is defined as activated carbon [N5AC EX 1 + 2h Na1N25C100hR100] (Comparative Example 4).

(実施例1)
活性炭[N5AC EX 1+2h]1質量部を、1mol/L水酸化ナトリウム水溶液100質量部に、80℃で、100時間浸漬させた後、蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)とする。
Example 1
1 part by weight of activated carbon [N5AC EX 1 + 2h] is immersed in 100 parts by weight of 1 mol / L aqueous sodium hydroxide solution at 80 ° C. for 100 hours, then washed thoroughly with distilled water and dried to obtain activated carbon. It was. The obtained activated carbon is referred to as activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 1).

上記5種類の活性炭の細孔特性、灰分および充てん密度を表1に示す。尚、充てん密度は10mLのメスシリンダに試料を入れた後、100回タッピングして測定した。灰分はおよそ50mgの活性炭試料を空気中で950℃まで加熱し、その質量残存率から求めた。また、甜菜糖シロップのみを850℃で1時間賦活処理を施した活性炭(参考例)も表1に記載する。   Table 1 shows the pore characteristics, ash content, and packing density of the five types of activated carbon. The packing density was measured by tapping 100 times after putting a sample in a 10 mL measuring cylinder. The ash content was determined from the mass residual rate of approximately 50 mg of activated carbon sample heated to 950 ° C. in air. In addition, Table 1 also shows activated carbon (reference example) in which only sugar beet syrup is activated at 850 ° C. for 1 hour.

Figure 2011093774
Figure 2011093774

[モデル油を用いた浸漬式脱硫試験−1]
灯油のモデル油として、n−デカン(C1022)85質量%、tert−ブチルベンゼン(C−C−(CH))15質量%の比率で混合した溶剤を調製した。この溶剤にベンゾチオフェン(BT)、ジベンゾチオフェン(DBT)、4,6−ジメチルジベンゾチオフェン(DMDBT)をそれぞれ10質量ppm−Sになるように添加し、モデル油Aとした。
[Dip-type desulfurization test-1 using model oil]
As a model oil for kerosene, a solvent mixed at a ratio of 85% by mass of n-decane (C 10 H 22 ) and 15% by mass of tert-butylbenzene (C 6 H 5 -C— (CH 3 ) 3 ) was prepared. Benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (DMDBT) were added to this solvent so that each became 10 mass ppm-S, and it was set as the model oil A.

あらかじめ130℃で3時間以上乾燥させた活性炭を、表2に示す液固比で、30cmのグラス容器内のモデル油Aに浸漬し、25℃で168時間(1週間)浸漬させた。1日1回軽く手でグラス容器を攪拌した。168時間経過後、モデル油Aの上澄み液を採取し、ガスクロマトグラフ−質量分析装置(GC−MS)で、モデル油A中のBT、DBT、DMDBTを定量した。BT、DBT、DMDBTを含むモデル油Aを用いた浸漬式脱硫試験における各硫黄化合物の吸着等温線を図2に示す。 Activated carbon previously dried at 130 ° C. for 3 hours or more was immersed in model oil A in a 30 cm 3 glass container at a liquid-solid ratio shown in Table 2, and was immersed at 25 ° C. for 168 hours (one week). The glass container was stirred by hand once a day. After 168 hours, the supernatant of model oil A was collected, and BT, DBT, and DMDBT in model oil A were quantified with a gas chromatograph-mass spectrometer (GC-MS). The adsorption isotherm of each sulfur compound in the immersion type desulfurization test using model oil A containing BT, DBT, and DMDBT is shown in FIG.

賦活処理後にアルカリ処理を行った籾殻活性炭は、その灰分が低下するに従い、細孔が発達し、活性炭の吸着対象硫黄化合物であるDBTおよびDMDBTの吸着能力が向上した。BTの吸着能力は極めて低く、本発明の吸着剤はDBTおよびDMDBTをほぼ選択的に吸着していることが分かる。尚、BTについても、アルカリ処理を行うことにより、吸着性能は僅かに向上した。   In the rice husk activated carbon subjected to the alkali treatment after the activation treatment, pores developed as the ash content decreased, and the adsorption ability of DBT and DMDBT, which are sulfur compounds to be adsorbed on the activated carbon, was improved. It can be seen that the adsorption capacity of BT is extremely low, and the adsorbent of the present invention adsorbs DBT and DMDBT almost selectively. Incidentally, the adsorption performance of BT was slightly improved by performing the alkali treatment.

単位質量当たり、同じ平衡濃度で比較すると、活性炭[N5AC EX 1+2h](比較例1)に比べて、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)のDBTおよびDMDBTの吸着量は約2倍になった。例えば、DMDBTの吸着等温線において、平衡硫黄濃度1.0質量ppmで比較すると、活性炭[N5AC EX 1+2h](比較例1)の吸着量は0.9mg−S/g−Ads.であるのに対し、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)の吸着量は1.8mg−S/g−Ads.であった。活性炭のDMDBT吸着量は、ウルトラマイクロ孔容積とほぼ比例関係にあった。   Compared to the activated carbon [N5AC EX 1 + 2h] (Comparative Example 1), the amount of DBT and DMDBT adsorbed on the activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 1) per unit mass is the same as the equilibrium concentration. Doubled. For example, when the adsorption isotherm of DMDBT is compared at an equilibrium sulfur concentration of 1.0 mass ppm, the adsorption amount of activated carbon [N5AC EX 1 + 2h] (Comparative Example 1) is 0.9 mg-S / g-Ads. On the other hand, the adsorption amount of activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 1) was 1.8 mg-S / g-Ads. The DMDBT adsorption amount of the activated carbon was almost proportional to the ultra micro pore volume.

アルカリ処理を行うと、充てん密度は低下したが、活性炭[N5AC EX 1+2h](比較例1)の充てん密度0.51g/cmに対して、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)の充てん密度は0.31g/cmであるから、4割程度の低下であり、単位体積(容量)当たりでもアルカリ処理を行った活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)の方が吸着脱硫性能は高かった。 When the alkali treatment was performed, the packing density decreased, but the activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (implemented for the packing density of 0.51 g / cm 3 of activated carbon [N5AC EX 1 + 2h] (Comparative Example 1)) Since the packing density of Example 1) is 0.31 g / cm 3, it is about 40% lower, and activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] that has been subjected to alkali treatment per unit volume (capacity) (Example 1) ) Had higher adsorptive desulfurization performance.

Figure 2011093774
Figure 2011093774

[モデル油を用いた浸漬式脱硫試験−2]
(比較例5及び実施例2)
軽油のモデル油として、n−デカン(C1022)85質量%、tert−ブチルベンゼン(C−C−(CH))15質量%の比率で混合した溶剤に、DMDBTのみを10質量ppm−Sになるように添加し、モデル油Bとした。また、上記比較例1及び実施例1の活性炭をそれぞれ活性炭[N5AC EX 1+2h](比較例5)及び活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例2)とし、これらの活性炭について、上記モデル油を用いた浸漬式脱硫試験−1と同様に実験を実施した。DMDBTの吸着等温線を図3に示す。
[Dip-type desulfurization test-2 using model oil]
(Comparative Example 5 and Example 2)
As a model oil of light oil, only DMDBT is mixed with a solvent mixed at a ratio of 85% by mass of n-decane (C 10 H 22 ) and 15% by mass of tert-butylbenzene (C 6 H 5 -C— (CH 3 ) 3 ). Was added so that it might become 10 mass ppm-S, and it was set as model oil B. The activated carbons of Comparative Example 1 and Example 1 were activated carbon [N5AC EX 1 + 2h] (Comparative Example 5) and activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 2), respectively. The experiment was conducted in the same manner as in the immersion type desulfurization test-1 using model oil. The adsorption isotherm of DMDBT is shown in FIG.

単位質量当たり、同じ平衡濃度で比較すると、活性炭[N5AC EX 1+2h](比較例5)に比べて、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例2)のDMDBTの吸着量は約2倍になった。   Compared with activated carbon [N5AC EX 1 + 2h] (Comparative Example 5), the amount of DMDBT adsorbed on activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 2) is about 2 when compared at the same equilibrium concentration per unit mass. Doubled.

<<アルカリ処理後成型賦活処理活性炭についてのモデル油浸漬式脱硫試験>>
[活性炭の調製−2]
(比較例6〜7)
賦活処理後アルカリ処理活性炭と同様に、籾殻は、2005年秋田県西木村(現、仙北市)産あきたこまちの籾殻を使用した。押出成型前の籾殻炭化処理物に対して、水酸化ナトリウム水溶液を用いてシリカ分を溶出除去した。
<< Model oil immersion type desulfurization test for activated carbon activated after activated alkali treatment >>
[Preparation of activated carbon-2]
(Comparative Examples 6-7)
As with the alkali-treated activated carbon after the activation treatment, rice husks from Akita Komachi produced in Nishikimura, Akita Prefecture (currently Semboku City) in 2005 were used. The silica content was removed by elution using an aqueous sodium hydroxide solution from the carbonized rice husks before extrusion.

生籾殻を600℃で予備炭化したものを、1mol/Lの水酸化ナトリウム水溶液に、液固比20で、80℃において10時間浸漬させてアルカリ処理を行った。室温まで冷却した後、ろ紙を使用して炭化物を回収した。その炭化物を蒸留水で十分に洗浄し、105℃で12時間乾燥させた。その後、炭化物100質量部にてんさい糖40質量部(乾燥基準)を加え、φ1.00mmで押出成型し、105℃で1時間乾燥した。乾燥させた押出成型物を窒素中850℃で5分間のみ炭化した。炭化したものを浸透・浸漬用てんさい糖シロップに12時間浸漬させた。その後、成型物をシロップから取り出し、105℃で2時間乾燥させた。乾燥させたものを850℃で賦活処理して活性炭を製造した。賦活処理は、1段階で0.5時間のみと、2段階で0.25時間及び0.5時間の条件で実施された。1段階の賦活処理で得た活性炭を活性炭[N5AC60 Na1N EX 0.5h](比較例6)とし、2段階の賦活処理で得た活性炭を活性炭[N5AC60 Na1N EX 0.25+0.5h](比較例7)とする。   The raw carbonized coconut shell was carbonized at 600 ° C. in a 1 mol / L sodium hydroxide aqueous solution at a liquid-solid ratio of 20 at 80 ° C. for 10 hours for alkali treatment. After cooling to room temperature, the carbide was recovered using filter paper. The carbide was thoroughly washed with distilled water and dried at 105 ° C. for 12 hours. Thereafter, 40 parts by mass of sugar sugar (dry basis) was added at 100 parts by mass of carbide, extruded at φ1.00 mm, and dried at 105 ° C. for 1 hour. The dried extrudate was carbonized for 5 minutes at 850 ° C. in nitrogen. The carbonized product was immersed in a sugar syrup for penetration and soaking for 12 hours. Thereafter, the molded product was removed from the syrup and dried at 105 ° C. for 2 hours. The dried product was activated at 850 ° C. to produce activated carbon. The activation treatment was performed under the conditions of only 0.5 hours in one stage and 0.25 hours and 0.5 hours in two stages. Activated carbon obtained by one-stage activation treatment is activated carbon [N5AC60 Na1N EX 0.5h] (Comparative Example 6), and activated carbon obtained by two-stage activation treatment is activated carbon [N5AC60 Na1N EX 0.25 + 0.5h] (Comparative Example 7). And

図4に活性炭[N5AC60 Na1N EX 0.5h](比較例6)及び活性炭[N5AC60 Na1N EX 0.25+0.5h](比較例7)の製造フローチャートを示す。ここで、図1に示される活性炭[N5AC EX 1+2h](比較例1)の製造工程と異なる点は、生籾殻を600℃で予備炭化したものを水酸化ナトリウム水溶液に浸漬して、シリカ分を除去する点である。   FIG. 4 shows a production flowchart of activated carbon [N5AC60 Na1N EX 0.5h] (Comparative Example 6) and activated carbon [N5AC60 Na1N EX 0.25 + 0.5h] (Comparative Example 7). Here, the difference from the manufacturing process of activated carbon [N5AC EX 1 + 2h] (Comparative Example 1) shown in FIG. 1 is that a raw rice husk is pre-carbonized at 600 ° C. and immersed in an aqueous solution of sodium hydroxide to obtain silica. The point is to remove minutes.

(実施例3及び比較例8)
次に、生籾殻を600℃で予備炭化したものに代えて、生籾殻を850℃で予備炭化したものを使用した以外は、上記活性炭[N5AC60 Na1N EX 0.5h](比較例6)及び活性炭[N5AC60 Na1N EX 0.25+0.5h](比較例7)と同様の方法で活性炭を製造した。得られた活性炭を活性炭[N5AC85 Na1N EX 0.5h](実施例3)及び活性炭[N5AC85 Na1N EX 0.25+0.5h](比較例8)とする。図5に活性炭[N5AC85 Na1N EX 0.5h](実施例3)及び活性炭[N5AC85 Na1N EX 0.25+0.5h](比較例8)の製造フローチャートを示す。
(Example 3 and Comparative Example 8)
Next, the activated carbon [N5AC60 Na1N EX 0.5h] (Comparative Example 6) and the activated carbon [Comparative Example 6] except that the raw rice husk was pre-carbonized at 850 ° C. instead of the pre-carbonized raw rice husk at 600 ° C. N5AC60 Na1N EX 0.25 + 0.5h] (Comparative Example 7) was used to produce activated carbon. The obtained activated carbon is referred to as activated carbon [N5AC85 Na1N EX 0.5h] (Example 3) and activated carbon [N5AC85 Na1N EX 0.25 + 0.5h] (Comparative Example 8). FIG. 5 shows a production flow chart of activated carbon [N5AC85 Na1N EX 0.5h] (Example 3) and activated carbon [N5AC85 Na1N EX 0.25 + 0.5h] (Comparative Example 8).

(実施例4〜5)
次に、生籾殻を600℃で予備炭化したものに代えて、生籾殻を250℃で予備炭化したもの100質量部に、てんさい糖100質量部(乾燥基準)を添加して、600℃で炭化したものを使用した以外は、上記活性炭[N5AC60 Na1N EX 0.5h](比較例6)及び活性炭[N5AC60 Na1N EX 0.25+0.5h](比較例7)と同様の方法で活性炭を製造した。得られた活性炭を活性炭[N5AC Na1N EX 0.5h](実施例4)及び活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)とする。図6に活性炭[N5AC Na1N EX 0.5h](実施例4)及び活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)の製造フローチャートを示す。
(Examples 4 to 5)
Next, instead of the pre-carbonized ginger husk at 600 ° C., 100 parts by mass of sugar beet sugar (dry basis) was added to 100 parts by mass of the ginger husk pre-carbonized at 250 ° C., and carbonized at 600 ° C. Activated carbon was produced in the same manner as the above activated carbon [N5AC60 Na1N EX 0.5h] (Comparative Example 6) and activated carbon [N5AC60 Na1N EX 0.25 + 0.5h] (Comparative Example 7) except that the above was used. The obtained activated carbon is referred to as activated carbon [N5AC Na1N EX 0.5h] (Example 4) and activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5). FIG. 6 shows a production flow chart of activated carbon [N5AC Na1N EX 0.5h] (Example 4) and activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5).

なお、上記6種類の活性炭の細孔特性、灰分および充てん密度を表3に示す。   Table 3 shows the pore characteristics, ash content, and packing density of the six types of activated carbon.

Figure 2011093774
Figure 2011093774

[モデル油を用いた浸漬式脱硫試験−3]
賦活処理後アルカリ処理活性炭と同様に、モデル油Aを用いた浸漬式脱硫試験を実施した。BT、DBT、DMDBTを含むモデル油Aを用いた浸漬式脱硫試験における各硫黄化合物の吸着等温線を図7に示す。
[Dip-type desulfurization test-3 using model oil]
After the activation treatment, the immersion type desulfurization test using the model oil A was performed in the same manner as the alkali-treated activated carbon. FIG. 7 shows adsorption isotherms of each sulfur compound in the immersion desulfurization test using model oil A containing BT, DBT, and DMDBT.

アルカリ処理後に成型及び賦活処理を行った籾殻活性炭は、賦活処理後アルカリ処理活性炭と同様に、灰分が低下して、細孔が発達し、単位質量当たり、DBTおよびDMDBTの吸着能力が向上した。BTの吸着能力は極めて低く、本発明の吸着剤はDBTおよびDMDBTをほぼ選択的に吸着していることが分かる。尚、BTについても、アルカリ処理を行うことにより、吸着性能はやや向上した。   In the rice husk activated carbon that was molded and activated after the alkali treatment, as in the case of the alkali treated activated carbon after the activation treatment, the ash content decreased and pores developed, and the adsorption capacity of DBT and DMDBT was improved per unit mass. It can be seen that the adsorption capacity of BT is extremely low, and the adsorbent of the present invention adsorbs DBT and DMDBT almost selectively. Incidentally, the adsorption performance of BT was slightly improved by performing the alkali treatment.

単位質量当たり、同じ平衡濃度で比較すると、アルカリ処理を行わない活性炭[N5AC EX 1+2h](比較例1)に比べて、活性炭[N5AC85 Na1N EX 0.5h](実施例3)、活性炭[N5AC Na1N EX 0.5h](実施例4)及び活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)のDBTおよびDMDBTの吸着量は約2倍になった。   When compared at the same equilibrium concentration per unit mass, activated carbon [N5AC85 Na1N EX 0.5h] (Example 3) and activated carbon [N5AC] are compared to activated carbon [N5AC EX 1 + 2h] (Comparative Example 1) that is not subjected to alkali treatment. The adsorption amount of DBT and DMDBT of Na1N EX 0.5h] (Example 4) and activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5) was about doubled.

アルカリ処理後に成型及び賦活処理を行うと、賦活処理後にアルカリ処理を行う場合よりも充てん密度の低下が少なく、単位体積(容量)当たりではより高い吸着脱硫性能となった。例えば、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)の充てん密度は0.31g/cmであったが、活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)の充てん密度は0.47g/cmであった。両者の単位質量当たりのDMDBT吸着性能は同等であるが、単位体積(容量)当たりでは、活性炭[N5AC Na1N EX 0.25+0.5h](実施例5)の方が約1.5倍大きかった。 When the molding and activation treatment were performed after the alkali treatment, the decrease in packing density was less than when the alkali treatment was carried out after the activation treatment, and higher adsorptive desulfurization performance was obtained per unit volume (capacity). For example, the packing density of activated carbon [N5AC EX1 + 2h Na1N80C100hR100] (Example 1) was 0.31 g / cm 3 , but the packing density of activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5) was It was 0.47 g / cm 3 . Although the DMDBT adsorption performance per unit mass of both was the same, activated carbon [N5AC Na1N EX 0.25 + 0.5h] (Example 5) was about 1.5 times larger per unit volume (capacity).

[活性炭の調製−3]
(実施例6)
アルカリ処理後成型賦活処理活性炭の調製方法を検討するため、上記活性炭[N5AC Na1N EX 0.5h](実施例4)と同一条件で、活性炭[N5AC Na1N EX 0.5h](実施例6)を調製した。
[Preparation of activated carbon-3]
(Example 6)
Activated carbon [N5AC Na1N EX 0.5h] (Example 6) was prepared under the same conditions as the activated carbon [N5AC Na1N EX 0.5h] (Example 4) in order to examine the preparation method of the activated activated carbon after alkali treatment. .

(比較例9)
活性炭[N5AC Na1N EX 0.5h](実施例6)の製造工程において(図6参照)、乾燥させた押出成型物を、窒素中850℃で5分間炭化させた後、その炭化処理物1質量部を、1mol/L水酸化ナトリウム水溶液100質量部に、80℃で、10時間浸漬させた。そして、その浸漬処理物を蒸留水で十分に洗浄した後、窒素中850℃で15分間炭化させた後、さらに、その処理物1質量部を1mol/L水酸化ナトリウム水溶液100質量部に、80℃で10時間、再度浸漬した。そして、浸漬処理物を蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC Na1N EX Na1N N15min Na1N](比較例9)とする。
(Comparative Example 9)
In the production process of activated carbon [N5AC Na1N EX 0.5h] (Example 6) (see FIG. 6), the dried extruded product was carbonized in nitrogen at 850 ° C. for 5 minutes, and then 1 part by mass of the carbonized product. Was immersed in 100 parts by mass of a 1 mol / L aqueous sodium hydroxide solution at 80 ° C. for 10 hours. And after washing | cleaning the immersion treatment material sufficiently with distilled water, after carbonizing for 15 minutes at 850 degreeC in nitrogen, Furthermore, 1 mass part of the treatment material was added to 100 mass parts of 1 mol / L sodium hydroxide aqueous solution, and 80 mass parts. It was immersed again at 10 ° C. for 10 hours. And the immersion treatment product was sufficiently washed with distilled water and dried to obtain activated carbon. The obtained activated carbon is referred to as activated carbon [N5AC Na1N EX Na1N N15min Na1N] (Comparative Example 9).

(比較例10)
活性炭[N5AC Na1N EX 0.5h](実施例6)の製造工程において(図6参照)、乾燥させた押出成型物を、窒素中850℃で5分間炭化処理した後、この炭化処理物1質量部を、1mol/L水酸化ナトリウム水溶液100質量部に、80℃で、10時間浸漬させた。そして、その浸漬処理物を蒸留水で十分に洗浄した後、二酸化炭素中850℃で5分間賦活処理した後、処理物1質量部を1mol/L水酸化ナトリウム水溶液の100質量部に、80℃で10時間、再度浸漬した。そして、浸漬処理物を蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC Na1N EX Na1N C5min Na1N](比較例10)とする。
(Comparative Example 10)
In the production process of activated carbon [N5AC Na1N EX 0.5h] (Example 6) (see FIG. 6), the dried extruded product was carbonized in nitrogen at 850 ° C. for 5 minutes, and then 1 part by mass of the carbonized product. Was immersed in 100 parts by mass of a 1 mol / L aqueous sodium hydroxide solution at 80 ° C. for 10 hours. And after washing | cleaning the immersion treatment material sufficiently with distilled water, after carrying out activation processing at 850 degreeC for 5 minutes in a carbon dioxide, 1 mass part of processed material is added to 100 mass parts of 1 mol / L sodium hydroxide aqueous solution at 80 degreeC. Soaked again for 10 hours. And the immersion treatment product was sufficiently washed with distilled water and dried to obtain activated carbon. The obtained activated carbon is referred to as activated carbon [N5AC Na1N EX Na1N C5min Na1N] (Comparative Example 10).

(実施例7)
活性炭[N5AC Na1N EX 0.5h](実施例6)を、更に、二酸化炭素中850℃で5分間追加賦活処理した。得られた活性炭を活性炭[N5AC Na1N EX 0.5h+5min](実施例7)とする。
(Example 7)
Activated carbon [N5AC Na1N EX 0.5h] (Example 6) was further subjected to additional activation treatment at 850 ° C. in carbon dioxide for 5 minutes. The obtained activated carbon is defined as activated carbon [N5AC Na1N EX 0.5h + 5min] (Example 7).

(実施例8)
活性炭[N5AC Na1N EX 0.5h](実施例6)を、更に、二酸化炭素中850℃で15分間追加賦活処理した。得られた活性炭を活性炭[N5AC Na1N EX 0.5h+15min](実施例8)とする。
(Example 8)
Activated carbon [N5AC Na1N EX 0.5h] (Example 6) was further subjected to additional activation treatment at 850 ° C. for 15 minutes in carbon dioxide. The obtained activated carbon is referred to as activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 8).

(実施例9)
活性炭[N5AC Na1N EX 0.5h](実施例6)を、更に、二酸化炭素中850℃で45分間追加賦活処理した。得られた活性炭を活性炭[N5AC Na1N EX 0.5h+45min](実施例9)とする。
Example 9
Activated carbon [N5AC Na1N EX 0.5h] (Example 6) was further subjected to additional activation treatment at 850 ° C. for 45 minutes in carbon dioxide. The obtained activated carbon is referred to as activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 9).

活性炭[N5AC Na1N EX Na1N N15min Na1N](比較例9)、活性炭[N5AC Na1N EX Na1N C5min Na1N](比較例10)、活性炭[N5AC Na1N EX 0.5h+5min](実施例7)、活性炭[N5AC Na1N EX 0.5h+15min](実施例8)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例9)の細孔特性、灰分および充てん密度を表4に示す。   Activated carbon [N5AC Na1N EX Na1N N15min Na1N] (Comparative Example 9), Activated carbon [N5AC Na1N EX Na1N C5min Na1N] (Comparative Example 10), Activated carbon [N5AC Na1N EX 0.5h + 5min] (Example 7), Activated carbon [N5AC Na1N Table 4 shows the pore characteristics, ash content and packing density of EX 0.5h + 15min] (Example 8) and activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 9).

Figure 2011093774
Figure 2011093774

[モデル油を用いた浸漬式脱硫試験−4]
モデル油を用いた浸漬式脱硫試験−1のモデル油Aに加えて、n−デカン(C1022)85質量%、tert−ブチルベンゼン(C−C−(CH))15質量%の比率で混合した溶剤にベンゾチオフェン(BT)、ジベンゾチオフェン(DBT)、4,6−ジメチルジベンゾチオフェン(DMDBT)をそれぞれ100質量ppm−Sになるように添加して調製したモデル油Cを用いた。モデル油Aについては液固比を20、50、100及び200とし、モデル油Cについては液固比を50及び100として、浸漬式脱硫試験を行った。BT、DBT、DMDBTを含むモデル油A及びモデル油Cを用いた浸漬式脱硫試験における各硫黄化合物の吸着等温線を図8に示す。
[Dip-type desulfurization test using model oil-4]
In addition to the model oil A of immersion desulfurization test -1 using a model oil, n- decane (C 10 H 22) 85 wt%, tert-butyl benzene (C 6 H 5 -C- (CH 3) 3) Model oil prepared by adding benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) to a solvent mixed at a ratio of 15% by mass to 100 mass ppm-S. C was used. The immersion desulfurization test was conducted with the liquid-solid ratio of 20, 50, 100, and 200 for the model oil A, and with the liquid-solid ratio of 50 and 100 for the model oil C. The adsorption isotherm of each sulfur compound in the immersion type desulfurization test using model oil A and model oil C containing BT, DBT, and DMDBT is shown in FIG.

活性炭[N5AC Na1N EX 0.5h](実施例6)、活性炭[N5AC Na1N EX 0.5h+5min](実施例7)、活性炭[N5AC Na1N EX 0.5h+15min](実施例8)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例9)は、活性炭[N5AC Na1N EX Na1N N15min Na1N](比較例9)及び活性炭[N5AC Na1N EX Na1N C5min Na1N](比較例10)に比べて吸着性能が高かった。活性炭[N5AC Na1N EX Na1N N15min Na1N](比較例9)及び活性炭[N5AC Na1N EX Na1N C5min Na1N](比較例10)は、灰分が低いため、灰分が少ないほど脱硫性能が高い訳ではないことが分かる。特に、活性炭[N5AC Na1N EX Na1N C5min Na1N](比較例10)は、活性炭[N5AC EX 1+2h](比較例1)と比べて、比表面積は同等で灰分を少なくしているものの、単位質量当たりの性能は向上しなかった。これらのことから、適度な灰分を残し、適した細孔構造を維持することが、吸着性能には重要であることが分かる。   Activated carbon [N5AC Na1N EX 0.5h] (Example 6), Activated carbon [N5AC Na1N EX 0.5h + 5min] (Example 7), Activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 8) and Activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 9) had higher adsorption performance than activated carbon [N5AC Na1N EX Na1N N15min Na1N] (Comparative Example 9) and activated carbon [N5AC Na1N EX Na1N C5min Na1N] (Comparative Example 10) . Since the activated carbon [N5AC Na1N EX Na1N N15min Na1N] (Comparative Example 9) and the activated carbon [N5AC Na1N EX Na1N C5min Na1N] (Comparative Example 10) have low ash content, it is understood that the desulfurization performance is not high as the ash content is low. . In particular, activated carbon [N5AC Na1N EX Na1N C5min Na1N] (Comparative Example 10) has the same specific surface area and lower ash content than activated carbon [N5AC EX 1 + 2h] (Comparative Example 1), but unit mass The hit performance did not improve. From these facts, it can be seen that it is important for the adsorption performance to leave an appropriate ash content and maintain a suitable pore structure.

[活性炭の調製−4]
(実施例10)
アルカリ処理後成型賦活処理活性炭の調製方法を検討するため、上記活性炭[N5AC Na1N EX 0.5h](実施例4)の調製条件において、250℃で予備炭化した籾殻にてんさい糖を添加した後の炭化温度を600℃から850℃に変えた以外は、上記活性炭[N5AC Na1N EX 0.5h](実施例4)と同様の方法で活性炭を製造し、活性炭[N5AC N1h Na1N EX 0.5h](実施例10)を調製した。
[Preparation of activated carbon-4]
(Example 10)
Carbonization after adding sugar beet sugar in rice husk pre-carbonized at 250 ° C. under the preparation conditions of activated carbon [N5AC Na1N EX 0.5h] (Example 4) in order to examine the preparation method of activated activated carbon after alkali treatment Except for changing the temperature from 600 ° C. to 850 ° C., activated carbon was produced in the same manner as the activated carbon [N5AC Na1N EX 0.5h] (Example 4), and activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10). ) Was prepared.

(比較例11)
活性炭[N5AC N1h Na1N EX 0.5h](実施例10)の製造工程において、乾燥させた押出成型物を、窒素中850℃で5分間炭化処理した後、この炭化処理物1質量部を、1mol/L水酸化ナトリウム水溶液100質量部に、80℃で、10時間浸漬させた。そして、その浸漬処理物を蒸留水で十分に洗浄した後、二酸化炭素中850℃で2分間賦活処理した後、賦活処理物1質量部を1mol/L水酸化ナトリウム水溶液の100質量部に、80℃で10時間、再度浸漬した。そして、浸漬処理物を蒸留水で十分に洗浄し、乾燥させて活性炭を得た。得られた活性炭を活性炭[N5AC N1h Na1N EX Na1N C2min Na1N](比較例11)とする。
(Comparative Example 11)
In the production process of activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10), the dried extruded product was carbonized in nitrogen at 850 ° C. for 5 minutes, and then 1 part by mass of this carbonized product was 1 mol / wt. It was immersed in 100 mass parts of L sodium hydroxide aqueous solution at 80 degreeC for 10 hours. And after washing | cleaning the immersion treatment material sufficiently with distilled water, after activating treatment for 2 minutes at 850 degreeC in a carbon dioxide, 1 mass part of activation treatment products are made into 100 mass parts of 1 mol / L sodium hydroxide aqueous solution, and 80 mass parts. It was immersed again at 10 ° C. for 10 hours. And the immersion treatment product was sufficiently washed with distilled water and dried to obtain activated carbon. The obtained activated carbon is referred to as activated carbon [N5AC N1h Na1N EX Na1N C2min Na1N] (Comparative Example 11).

(実施例11)
活性炭[N5AC N1h Na1N EX 0.5h](実施例10)を、更に、二酸化炭素中850℃で15分間追加賦活処理した。得られた活性炭を活性炭[N5AC N1h Na1N EX 0.5h+15min](実施例11)とする。
(Example 11)
Activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10) was further subjected to additional activation treatment at 850 ° C. for 15 minutes in carbon dioxide. The obtained activated carbon is referred to as activated carbon [N5AC N1h Na1N EX 0.5h + 15min] (Example 11).

(実施例12)
活性炭[N5AC N1h Na1N EX 0.5h](実施例10)を、更に、二酸化炭素中850℃で45分間追加賦活処理した。得られた活性炭を活性炭[N5AC N1h Na1N EX 0.5h+45min](実施例12)とする。
(Example 12)
Activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10) was further subjected to additional activation treatment at 850 ° C. in carbon dioxide for 45 minutes. The obtained activated carbon is referred to as activated carbon [N5AC N1h Na1N EX 0.5h + 45min] (Example 12).

活性炭[N5AC N1h Na1N EX 0.5h](実施例10)、活性炭[N5AC N1h Na1N EX Na1N C2min Na1N](比較例11)、活性炭[N5AC N1h Na1N EX 0.5h+15min](実施例11)及び活性炭[N5AC N1h Na1N EX 0.5h+45min](実施例12)の細孔特性、灰分および充てん密度を表5に示す。   Activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10), activated carbon [N5AC N1h Na1N EX Na1N C2min Na1N] (Comparative Example 11), activated carbon [N5AC N1h Na1N EX 0.5h + 15min] (Example 11) and activated carbon [Example 11] Table 5 shows the pore characteristics, ash content and packing density of N5AC N1h Na1N EX 0.5h + 45 min] (Example 12).

Figure 2011093774
Figure 2011093774

[モデル油を用いた浸漬式脱硫試験−5]
モデル油を用いた浸漬式脱硫試験−4と同様に、BT、DBT、DMDBTを含むモデル油A及びモデル油Cを用いた浸漬式脱硫試験における各硫黄化合物の吸着等温線を図9に示す。
[Dip-type desulfurization test using model oil-5]
Similarly to the immersion type desulfurization test -4 using model oil, the adsorption isotherm of each sulfur compound in the immersion type desulfurization test using model oil A and model oil C including BT, DBT, and DMDBT is shown in FIG.

活性炭[N5AC N1h Na1N EX 0.5h](実施例10)、活性炭[N5AC N1h Na1N EX 0.5h+15min](実施例11)及び活性炭[N5AC N1h Na1N EX 0.5h+45min](実施例12)は、活性炭[N5AC N1h Na1N EX Na1N C2min Na1N](比較例11)に比べて吸着性能が高かった。活性炭[N5AC N1h Na1N EX Na1N C2min Na1N](比較例11)は、灰分が低いため、灰分が少ないほど脱硫性能が高い訳ではないことが分かる。活性炭[N5AC N1h Na1N EX Na1N C2min Na1N](比較例11)は、活性炭[N5AC EX 1+2h](比較例1)と比べて、比表面積は同等で灰分を少なくしているものの、単位質量当たりの性能は向上しなかった。これらのことから、適度な灰分を残し、適した細孔構造を維持することが、吸着性能には重要であることが分かる。   Activated carbon [N5AC N1h Na1N EX 0.5h] (Example 10), activated carbon [N5AC N1h Na1N EX 0.5h + 15min] (Example 11) and activated carbon [N5AC N1h Na1N EX 0.5h + 45min] (Example 12) The adsorption performance was higher than that of activated carbon [N5AC N1h Na1N EX Na1N C2min Na1N] (Comparative Example 11). Since activated carbon [N5AC N1h Na1N EX Na1N C2min Na1N] (Comparative Example 11) has a low ash content, it can be seen that the less the ash content, the higher the desulfurization performance. Activated carbon [N5AC N1h Na1N EX Na1N C2min Na1N] (Comparative Example 11) is equivalent to activated carbon [N5AC EX 1 + 2h] (Comparative Example 1) and has a smaller specific ash content, but per unit mass The performance did not improve. From these facts, it can be seen that it is important for the adsorption performance to leave an appropriate ash content and maintain a suitable pore structure.

<<賦活処理後アルカリ処理活性炭についての市販灯油浸漬式脱硫試験>>
[活性炭]
アルカリ処理後成型賦活処理活性炭についてのモデル油浸漬式脱硫試験で用いた活性炭[N5AC EX 1+2h](比較例1)、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例1)、活性炭[N5AC Na1N EX 0.5h+15min](実施例8)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例9)と同一の活性炭をそれぞれ活性炭[N5AC EX 1+2h](比較例12)、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例13)、活性炭[N5AC Na1N EX 0.5h+15min](実施例14)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例15)として使用した。
<< Commercial kerosene immersion type desulfurization test for alkali-treated activated carbon after activation treatment >>
[Activated carbon]
Activated carbon [N5AC EX 1 + 2h] (Comparative Example 1), activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 1), activated carbon [N5AC] Na1N EX 0.5h + 15min] (Example 8) and activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 9) are the same activated carbon [N5AC EX 1 + 2h] (Comparative Example 12), activated carbon [ N5AC EX 1 + 2h Na1N80C100hR100] (Example 13), activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 14) and activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 15) were used.

[市販灯油を用いた浸漬式脱硫試験]
活性炭[N5AC EX 1+2h](比較例12)、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例13)、活性炭[N5AC Na1N EX 0.5h+15min](実施例14)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例15)を用い、灯油への浸漬式脱硫試験を実施した。
[Immersion desulfurization test using commercial kerosene]
Activated carbon [N5AC EX 1 + 2h] (Comparative Example 12), Activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 13), Activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 14) and Activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 15) was used, and an immersion type desulfurization test in kerosene was performed.

灯油(ジャパンエナジー社製)は、沸点範囲158.0〜271.5℃、5%留出点170.5℃、10%留出点175.5℃、20%留出点183.0℃、30%留出点190.0℃、40%留出点197.5℃、50%留出点206.0℃、60%留出点215.0℃、70%留出点224.0℃、80%留出点234.0℃、90%留出点248.0℃、95%留出点259.5℃、97%留出点269.0℃、密度(15℃)0.7940g/ml、芳香族分16.9容量%、飽和分83.1容量%、硫黄分6.7質量ppm、硫黄分の内、ジベンゾチオフェン類(4−メチルジベンゾチオフェン及び4−メチルジベンゾチオフェンよりも重質の硫黄化合物、分子量198以上の重質硫黄化合物)に由来する硫黄分0.9質量ppm、窒素分1質量ppm以下のものを使用した。   Kerosene (manufactured by Japan Energy) has a boiling range of 158.0 to 271.5 ° C, a 5% distillation point of 170.5 ° C, a 10% distillation point of 175.5 ° C, a 20% distillation point of 183.0 ° C, 30% distillation point 190.0 ° C, 40% distillation point 197.5 ° C, 50% distillation point 206.0 ° C, 60% distillation point 215.0 ° C, 70% distillation point 224.0 ° C, 80% distillation point 234.0 ° C, 90% distillation point 248.0 ° C, 95% distillation point 259.5 ° C, 97% distillation point 269.0 ° C, density (15 ° C) 0.7940 g / ml , Aromatic content 16.9 vol%, saturation content 83.1 vol%, sulfur content 6.7 mass ppm, among the sulfur content, dibenzothiophenes (heavier than 4-methyldibenzothiophene and 4-methyldibenzothiophene) Sulfur compounds derived from heavy sulfur compounds having a molecular weight of 198 or more) Nitrogen content of 1 mass ppm or less was used ones.

それぞれの活性炭に対する灯油の質量比率(液固比)を30、120及び240として、灯油中に活性炭を浸漬させ、10℃にて10日間以上静置して十分に吸着平衡状態とさせた後、灯油を取り出した。GC-ICP-MSで分析することにより、ジベンゾチオフェン類に由来する硫黄分の濃度を求めた。   After setting the mass ratio (liquid / solid ratio) of kerosene to each activated carbon to 30, 120 and 240, the activated carbon was immersed in kerosene and allowed to stand at 10 ° C. for 10 days or more to obtain a sufficiently adsorption equilibrium state. Kerosene was removed. By analyzing by GC-ICP-MS, the concentration of sulfur derived from dibenzothiophenes was determined.

市販灯油を用いた浸漬式脱硫試験におけるジベンゾチオフェン類の吸着等温線を図10に示す。   FIG. 10 shows an adsorption isotherm of dibenzothiophenes in an immersion desulfurization test using commercial kerosene.

賦活処理後にアルカリ処理を行った籾殻活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例13)は、モデル油の結果と同様に、市販灯油においても、単位質量当たりのジベンゾチオフェン類の吸着脱硫性能が、活性炭[N5AC EX 1+2h](比較例12)の約2倍となった。充てん密度は4割程度低下しているものの、単位体積(容量)当たりでもアルカリ処理を行った活性炭[N5AC EX 1+2h Na1N25C100hR100](実施例13)の方が吸着脱硫性能は高かった。さらに、活性炭[N5AC Na1N EX 0.5h+15min](実施例14)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例15)は、活性炭[N5AC EX 1+2h Na1N80C100hR100](実施例13)よりも脱硫性能が高い上に、充てん密度も高かった。   The activated rice husk activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 13) is similar to the model oil in the case of commercial kerosene, and the adsorptive desulfurization performance of dibenzothiophenes per unit mass is similar to that of model oil. This was about twice that of activated carbon [N5AC EX 1 + 2h] (Comparative Example 12). Although the packing density was reduced by about 40%, the activated carbon [N5AC EX 1 + 2h Na1N25C100hR100] (Example 13) subjected to alkali treatment per unit volume (capacity) had higher adsorptive desulfurization performance. Furthermore, activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 14) and activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 15) are obtained from activated carbon [N5AC EX 1 + 2h Na1N80C100hR100] (Example 13). In addition to its high desulfurization performance, the packing density was also high.

活性炭[N5AC Na1N EX 0.5h+15min](実施例14)及び活性炭[N5AC Na1N EX 0.5h+45min](実施例15)の質量比率(液固比)が30の場合について、多環芳香族分を原料灯油と比較した。芳香族分は、英国石油協会(The Institute of Petroleum)規格IP標準法391/95(屈折率検出器を用いた高速液体クロマトグラフによる中間留出物の芳香族炭化水素の分析)に準拠して測定した。結果を表6に示す。多環芳香族分が吸着除去されていることが分かる。   When the mass ratio (liquid-solid ratio) of activated carbon [N5AC Na1N EX 0.5h + 15min] (Example 14) and activated carbon [N5AC Na1N EX 0.5h + 45min] (Example 15) is 30, the polycyclic aromatic component Was compared with raw material kerosene. Aromatic content is based on British Institute of Petroleum standard IP standard method 391/95 (analysis of aromatic hydrocarbons in middle distillates by high performance liquid chromatograph using refractive index detector). It was measured. The results are shown in Table 6. It can be seen that the polycyclic aromatic component is removed by adsorption.

Figure 2011093774
Figure 2011093774

〔試験方法〕
なお、上記で特に説明をしていない、活性炭、モデル油、灯油の物性等の測定は、次の試験方法に準じて行った。
・蒸留性状:JIS K2254に準拠して測定した。
・密度(15℃):JIS K2249に準拠して測定した。
・炭化水素の成分組成(芳香族分、飽和分、オレフィン分):JPI-5S-49-97に準拠して測定した。
・硫黄分(全硫黄分):燃焼酸化−紫外蛍光法で分析した。
・硫黄化合物タイプ分析(ベンゾチオフェンより軽質な留分中の硫黄分、ベンゾチオフェン類、ジベンゾチオフェン類、):GC−ICP−MSで分析した。
・窒素分:JIS K2609に記載の微量電量滴定法に準拠して測定した。
・アルミナ含有量:試料をアルカリ融解したものを酸性溶液中に溶解し、ICP−AES(誘導結合プラズマ発光分析装置)で分析した。
・比表面積:窒素吸着法により測定し、BET(Brunouer-Emmett-Teller)法により算出した。
・細孔容積:窒素吸着法により測定した。
〔Test method〕
The physical properties of activated carbon, model oil, and kerosene, which are not specifically described above, were measured according to the following test method.
Distillation property: Measured according to JIS K2254.
Density (15 ° C.): Measured according to JIS K2249.
Hydrocarbon component composition (aromatic content, saturated content, olefin content): Measured according to JPI-5S-49-97.
Sulfur content (total sulfur content): analyzed by combustion oxidation-ultraviolet fluorescence method.
Sulfur compound type analysis (sulfur content in fractions lighter than benzothiophene, benzothiophenes, dibenzothiophenes): Analyzed by GC-ICP-MS.
Nitrogen content: Measured according to the microcoulometric titration method described in JIS K2609.
-Alumina content: An alkali-melted sample was dissolved in an acidic solution and analyzed with ICP-AES (inductively coupled plasma emission spectrometer).
Specific surface area: measured by a nitrogen adsorption method and calculated by a BET (Brunouer-Emmett-Teller) method.
-Pore volume: measured by a nitrogen adsorption method.

Claims (15)

比表面積Saが800〜4,000m/gで、且つ、全細孔容積Vaが0.5〜1.2cm/gであって、灰分の含有量が3〜10質量%であることを特徴とする活性炭。 The specific surface area Sa is 800 to 4,000 m 2 / g, the total pore volume Va is 0.5 to 1.2 cm 3 / g, and the ash content is 3 to 10% by mass. Characteristic activated carbon. 下記式(I)により求めた平均細孔幅dが、1.0〜2.0nmであることを特徴とする請求項1に記載の活性炭。
d = 2000×Va/Sa ・・・(I)
The activated carbon according to claim 1, wherein an average pore width d obtained by the following formula (I) is 1.0 to 2.0 nm.
d = 2000 × Va / Sa (I)
細孔幅2.0nm以上50nm未満のメソ孔容積Vmが、0.1〜0.5cm/gであることを特徴とする請求項1に記載の活性炭。 2. The activated carbon according to claim 1, wherein the mesopore volume Vm having a pore width of 2.0 nm or more and less than 50 nm is 0.1 to 0.5 cm 3 / g. 全細孔容積Vaに対するメソ孔容積Vmの比Vm/Vaが、0.2〜0.5であることを特徴とする請求項3に記載の活性炭。   The activated carbon according to claim 3, wherein the ratio Vm / Va of the mesopore volume Vm to the total pore volume Va is 0.2 to 0.5. 細孔幅0.7nm以上2.0nm未満のスーパーマイクロ孔容積Vsに対する、細孔幅0.7nm未満のウルトラマイクロ孔容積Vuの比Vu/Vsが、1.0〜2.5であることを特徴とする請求項1に記載の活性炭。   The ratio Vu / Vs of the ultra micro pore volume Vu having a pore width of less than 0.7 nm to the super micro pore volume Vs having a pore width of 0.7 nm or more and less than 2.0 nm is 1.0 to 2.5. The activated carbon according to claim 1, wherein 籾殻を40質量%以上含む原料を炭化処理及び賦活処理する工程を含む活性炭の製造方法であって、
更に、アルカリ処理により前記活性炭の灰分を除去する工程を含むことを特徴とする請求項1〜5のいずれかに記載の活性炭の製造方法。
A method for producing activated carbon comprising a step of carbonizing and activating a raw material containing 40% by mass or more of rice husk,
Furthermore, the process of removing the ash content of the said activated carbon by alkali treatment is included, The manufacturing method of the activated carbon in any one of Claims 1-5 characterized by the above-mentioned.
籾殻を40質量%以上含む原料を炭化処理して炭化処理物を得、該炭化処理物をアルカリ処理することにより灰分を除去した後に、該炭化処理物を賦活処理することを特徴とする請求項6に記載の活性炭の製造方法。   A carbonized material is obtained by carbonizing a raw material containing rice husks of 40% by mass or more, and after the ash is removed by subjecting the carbonized product to an alkali treatment, the carbonized product is activated. 6. The method for producing activated carbon according to 6. アルカリ処理の後に、前記炭化処理物を成型することを特徴とする請求項7に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 7, wherein the carbonized product is molded after the alkali treatment. 請求項1〜5のいずれかに記載の活性炭からなる吸着剤又は該活性炭を含む吸着剤と液体とを接触させることにより、該液体に含有される微量成分を吸着除去することを特徴とする液体の精製方法。   A liquid characterized by adsorbing and removing a trace component contained in the liquid by contacting the liquid with an adsorbent comprising the activated carbon according to claim 1 or an adsorbent containing the activated carbon. Purification method. 前記液体が灯油又は軽油であることを特徴とする請求項9に記載の液体の精製方法。   The method for purifying a liquid according to claim 9, wherein the liquid is kerosene or light oil. 前記微量成分が芳香族化合物であることを特徴とする請求項9又は10に記載の液体の精製方法。   The method for purifying a liquid according to claim 9 or 10, wherein the trace component is an aromatic compound. 前記芳香族化合物が、ベンゾチオフェン類及びジベンゾチオフェン類よりなる群から選ばれる少なくとも1つの硫黄化合物であることを特徴とする請求項11に記載の液体の精製方法。   The method for purifying a liquid according to claim 11, wherein the aromatic compound is at least one sulfur compound selected from the group consisting of benzothiophenes and dibenzothiophenes. 前記吸着剤と前記液体とを接触させる工程の後処理として、固体酸系吸着剤を用いて硫黄化合物を吸着除去することを特徴とする請求項12に記載の液体の精製方法。   The method for purifying a liquid according to claim 12, wherein as a post-treatment in the step of bringing the adsorbent into contact with the liquid, a sulfur compound is adsorbed and removed using a solid acid adsorbent. 0〜80℃の温度で前記吸着剤と前記液体とを接触させることを特徴とする請求項9〜13のいずれかに記載の液体の精製方法。   The method for purifying a liquid according to any one of claims 9 to 13, wherein the adsorbent and the liquid are contacted at a temperature of 0 to 80 ° C. 請求項9〜14のいずれかに記載の液体の精製方法を使用することを特徴とする燃料電池システム。   A fuel cell system using the liquid purification method according to claim 9.
JP2009252137A 2009-11-02 2009-11-02 Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system Pending JP2011093774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252137A JP2011093774A (en) 2009-11-02 2009-11-02 Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252137A JP2011093774A (en) 2009-11-02 2009-11-02 Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system

Publications (1)

Publication Number Publication Date
JP2011093774A true JP2011093774A (en) 2011-05-12

Family

ID=44111138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252137A Pending JP2011093774A (en) 2009-11-02 2009-11-02 Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system

Country Status (1)

Country Link
JP (1) JP2011093774A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246179A (en) * 2011-05-27 2012-12-13 Panasonic Corp Hydrogen generation apparatus and fuel cell system
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013136478A (en) * 2011-12-28 2013-07-11 Shinshu Univ Activated carbon and manufacturing method therefor
WO2013142528A1 (en) * 2012-03-20 2013-09-26 Haycarb PLC Low ash activated carbon and methods of making same
JP2014012236A (en) * 2012-07-03 2014-01-23 Univ Of Shiga Prefecture Absorption board
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
JP2014523652A (en) * 2011-07-19 2014-09-11 コーニング インコーポレイテッド Steam activated non-lignocellulose-based carbon for ultracapacitors
CN104877708A (en) * 2015-04-30 2015-09-02 茂名市凯跃特种油剂有限公司 Method for catalytically cracking oil slurry to remove ash, aluminum and silicon
JP2015526372A (en) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション Porous carbon and method for producing the same
WO2016168731A1 (en) * 2015-04-17 2016-10-20 Cabot Corporation Sulfur removal from petroleum fluids
JP2017001028A (en) * 2015-06-09 2017-01-05 ユニチカ株式会社 Oil purification device filter
JP2017091822A (en) * 2015-11-10 2017-05-25 三重県 Negative electrode active material for nonaqueous electrolyte secondary battery using chaff or rice straw carbide
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
JP2017178723A (en) * 2016-03-31 2017-10-05 昭和産業株式会社 Manufacturing method of active charcoal
JP2020006319A (en) * 2018-07-09 2020-01-16 日揮触媒化成株式会社 Sulfur compound adsorbent comprising carbon-containing compounds
WO2020045721A1 (en) * 2018-08-31 2020-03-05 주식회사 티씨케이 Activated carbon and method for manufacturing same
CN114302769A (en) * 2019-08-20 2022-04-08 二村化学株式会社 Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242409A (en) * 1988-03-24 1989-09-27 Osaka Gas Co Ltd Production of activated carbon
JP2002161278A (en) * 2000-11-28 2002-06-04 National Institute Of Advanced Industrial & Technology Method for producing carbonized product
JP2006213544A (en) * 2005-02-02 2006-08-17 Kuraray Chem Corp Granular active carbon and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242409A (en) * 1988-03-24 1989-09-27 Osaka Gas Co Ltd Production of activated carbon
JP2002161278A (en) * 2000-11-28 2002-06-04 National Institute Of Advanced Industrial & Technology Method for producing carbonized product
JP2006213544A (en) * 2005-02-02 2006-08-17 Kuraray Chem Corp Granular active carbon and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013046601; KIM M. S. et al: 'Preparation and properties of activated carbon from rice hulls' Extended Abstracts and Program. Biennial Conference on Carbon 23rd Biennial Conference on Carbon, 1997, Page.104-105 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246179A (en) * 2011-05-27 2012-12-13 Panasonic Corp Hydrogen generation apparatus and fuel cell system
JP2014523652A (en) * 2011-07-19 2014-09-11 コーニング インコーポレイテッド Steam activated non-lignocellulose-based carbon for ultracapacitors
WO2013054697A1 (en) * 2011-10-12 2013-04-18 ソニー株式会社 Adsorbent, method for producing same, adsorbent for water purification, mask and adsorptive sheet
JP2013136478A (en) * 2011-12-28 2013-07-11 Shinshu Univ Activated carbon and manufacturing method therefor
WO2013142528A1 (en) * 2012-03-20 2013-09-26 Haycarb PLC Low ash activated carbon and methods of making same
JP2014012236A (en) * 2012-07-03 2014-01-23 Univ Of Shiga Prefecture Absorption board
JP2015526372A (en) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション Porous carbon and method for producing the same
US9919924B2 (en) 2012-07-27 2018-03-20 Hanwha Chemical Corporation Porous carbon and method of preparing the same
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
WO2016168731A1 (en) * 2015-04-17 2016-10-20 Cabot Corporation Sulfur removal from petroleum fluids
US10081768B2 (en) 2015-04-17 2018-09-25 Cabot Corporation Sulfur removal from petroleum fluids
CN104877708A (en) * 2015-04-30 2015-09-02 茂名市凯跃特种油剂有限公司 Method for catalytically cracking oil slurry to remove ash, aluminum and silicon
CN104877708B (en) * 2015-04-30 2016-07-20 茂名市凯跃特种油剂有限公司 The method of catalytic cracked oil pulp elimination ash and aluminum, element silicon
JP2017001028A (en) * 2015-06-09 2017-01-05 ユニチカ株式会社 Oil purification device filter
JP2017091822A (en) * 2015-11-10 2017-05-25 三重県 Negative electrode active material for nonaqueous electrolyte secondary battery using chaff or rice straw carbide
WO2017146044A1 (en) * 2016-02-23 2017-08-31 ソニー株式会社 Solidified porous carbon material and production method thereof
JP2022008312A (en) * 2016-02-23 2022-01-13 ソニーグループ株式会社 Material with functional material attached thereon and production method thereof, water purifying device and production method thereof, water purifying device cartridge and production method thereof, air purifier and production method thereof, filter member and production method thereof, support member and production method thereof, expanded polyurethane foam and production method thereof, bottle and production method thereof, container and production method thereof, member composed of cap or lid and production method thereof, material composed of solidified porous carbon material or ground product of porous carbon material and binder and production method thereof, and porous carbon material and production method thereof
CN108698833A (en) * 2016-02-23 2018-10-23 索尼公司 Solidified porous carbon materials and its manufacturing method
JPWO2017146044A1 (en) * 2016-02-23 2018-11-22 ソニー株式会社 Solidified porous carbon material, method for producing the same, and water purifier
JP2019131460A (en) * 2016-02-23 2019-08-08 ソニー株式会社 Solidified porous carbon material and method of manufacturing the same
US11707727B2 (en) 2016-02-23 2023-07-25 Sony Corporation Solidified porous carbon material and method of manufacturing the same
JP7255647B2 (en) 2016-02-23 2023-04-11 ソニーグループ株式会社 A material to which a functional material is attached and its manufacturing method, a water purifier and its manufacturing method, a water purifier cartridge and its manufacturing method, an air purifier and its manufacturing method, a filter member and its manufacturing method, a support member and its manufacturing method, Polyurethane foam and manufacturing method thereof, bottle and manufacturing method thereof, container and manufacturing method thereof, member comprising cap or lid and manufacturing method thereof, solidified porous carbon material or pulverized product of said porous carbon material combined with A material comprising an adhesive, a method for producing the same, and a porous carbon material and a method for producing the same
JP2020124710A (en) * 2016-02-23 2020-08-20 ソニー株式会社 Material to which functional material is attached and its production method, water cleaner and its production method, water cleaner cartridge and its production method, air cleaner and its production method, filter member and its production method, support member and its production method, foamed polyurethane foam and its production method, bottle and its production method, container and its production method, cap or member made of lid and its production method, solidified porous carbon material or material made of pulverized product of the porous carbon material and binder and its production method, and porous carbon material and its production method
CN111960400A (en) * 2016-02-23 2020-11-20 索尼公司 Solidified porous carbon material and method for producing same
JP2017178723A (en) * 2016-03-31 2017-10-05 昭和産業株式会社 Manufacturing method of active charcoal
JP7185993B2 (en) 2018-07-09 2022-12-08 日揮触媒化成株式会社 Sulfur compound adsorbent and method for producing the same
JP2020006319A (en) * 2018-07-09 2020-01-16 日揮触媒化成株式会社 Sulfur compound adsorbent comprising carbon-containing compounds
WO2020045721A1 (en) * 2018-08-31 2020-03-05 주식회사 티씨케이 Activated carbon and method for manufacturing same
CN114302769A (en) * 2019-08-20 2022-04-08 二村化学株式会社 Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds
CN114302769B (en) * 2019-08-20 2024-03-19 二村化学株式会社 Activated carbon for adsorbing perfluoro and polyfluoroalkyl compounds

Similar Documents

Publication Publication Date Title
JP2011093774A (en) Activated carbon, process for producing the same, method of refining liquid using the same, and fuel cell system
JP4963616B2 (en) Adsorbent for removing trace components in hydrocarbon oil and method for producing the same
JP4817075B2 (en) Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil
CN102031141B (en) Method for preparing gasoline desulfurization adsorbent
JP4424586B2 (en) Method for desulfurization of liquid hydrocarbons containing organic sulfur compounds
Patil et al. Investigating role of sulphur specific carbon adsorbents in deep desulphurization
Kakamouka et al. Dynamic/column tests for dibenzothiophene (DBT) removal using chemically functionalized carbons: Exploring the effect of physicochemical features and breakthrough modeling
Azeez et al. Review of biomass derived-activated carbon for production of clean fuels by adsorptive desulfurization: Insights into processes, modifications, properties, and performances
EP1888226B8 (en) Process for removing color bodies from hydrocarbon-based fuels using actived carbon
Ahmedzeki et al. Reduction of sulfur compounds from petroleum fraction using oxidation-adsorption technique
MX2007011759A (en) Process for removing color bodies from hydrocarbon-based fuels using activated carbon.
Mhemed et al. A novel low-cost material for thiophene and toluene removal: Study of the tire pyrolysis volatiles
JP5294927B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
JP5476180B2 (en) Method for reducing peroxide value of hydrocarbon oil, method for desulfurizing hydrocarbon oil, and fuel cell system
CN110354813B (en) With SiO2Method for removing thiophene sulfides in fuel oil by taking-MTES-graphene oxide composite aerogel as adsorbent
JP6895561B2 (en) Desulfurizer for fuel gas
CN101285003B (en) Applications of molybdenum based metal carbonitride mesenchymal alloy for sulfur removal in fuel
JP5334630B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
WO2006104780A1 (en) Activated carbon for fuel purification
JPH10202003A (en) Mercury adsorbent and method for removing mercury in hydrocarbon oil with the same
WO2006104781A2 (en) Activated carbon for fuel purification
NEEL SYNOPSIS OF
WO2006104784A1 (en) Activated carbon for fuel purification
WO2006104782A2 (en) Activated carbon for fuel purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217