JP4963616B2 - Adsorbent for removing trace components in hydrocarbon oil and method for producing the same - Google Patents

Adsorbent for removing trace components in hydrocarbon oil and method for producing the same Download PDF

Info

Publication number
JP4963616B2
JP4963616B2 JP2007066492A JP2007066492A JP4963616B2 JP 4963616 B2 JP4963616 B2 JP 4963616B2 JP 2007066492 A JP2007066492 A JP 2007066492A JP 2007066492 A JP2007066492 A JP 2007066492A JP 4963616 B2 JP4963616 B2 JP 4963616B2
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
activated carbon
carbon
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066492A
Other languages
Japanese (ja)
Other versions
JP2007284337A (en
Inventor
康宏 戸井田
誠治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007066492A priority Critical patent/JP4963616B2/en
Publication of JP2007284337A publication Critical patent/JP2007284337A/en
Application granted granted Critical
Publication of JP4963616B2 publication Critical patent/JP4963616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Description

本発明は、炭化水素油中の微量成分、例えば硫黄化合物や多環芳香族化合物を吸着除去する吸着剤及びその製造方法に関する。さらに、該吸着剤を用いる炭化水素油中の微量成分の除去方法、及び該吸着剤を用いた燃料電池システムに関するものである。   The present invention relates to an adsorbent that adsorbs and removes trace components in hydrocarbon oil, such as sulfur compounds and polycyclic aromatic compounds, and a method for producing the same. Furthermore, the present invention relates to a method for removing trace components in hydrocarbon oil using the adsorbent, and a fuel cell system using the adsorbent.

21世紀に入り、環境問題に配慮して地球温暖化ガスであるCOガスの排出削減とNO等の自動車排出ガスの削減との両方の観点から、燃料内に含まれる硫黄分を一層低減することが求められている。近い将来には、ガソリン及び軽油に含まれる硫黄分は10ppm以下に規制されるものと予想される。また、オンボード改質方式燃料電池が搭載された自動車等の燃料電池の普及により、さらに低硫黄分の石油系液体燃料油が求められる可能性が有る。それゆえ、現在、超低硫黄分の石油系液体燃料油を得るために必要な脱硫技術が盛んに研究されている。 In the 21st century, and environmentally friendly both in terms of the reduction of automobile exhaust gas emissions such as reduction and NO X in the CO 2 gas is greenhouse gas, further reducing the sulfur content in the fuel It is requested to do. In the near future, the sulfur content in gasoline and light oil is expected to be regulated to 10 ppm or less. In addition, with the spread of fuel cells such as automobiles equipped with on-board reforming fuel cells, there is a possibility that petroleum liquid fuel oil having a lower sulfur content is required. Therefore, desulfurization technology necessary for obtaining an ultra-low sulfur petroleum-based liquid fuel oil is currently being actively researched.

従来、軽油の脱硫技術として主に用いられてきた方法に水素化脱硫方法がある。しかしながら、水素化脱硫方法を用いて軽油を15ppm以下の低硫黄濃度に脱硫するためには、反応温度を上げる必要があり、反応温度を上げると製品軽油の色相が悪化するという問題が生じる。この軽油の色相の問題を改善する方法として、色相の悪化した軽油留分を活性炭と接触させる方法が提案されている(特許文献1、2)。また、第VI金属及び第VIII族金属のいずれか一方又は双方を担持させた結晶性アルミノ酸塩含有無機酸化物触媒又は活性炭触媒の存在下で水素化処理を行うことにより軽油を脱色する方法も提案されている(特許文献3)。また、水素化脱硫方法以外の脱硫技術に関しても様々なプロセス開発が行われており、例えば、炭化水素油に含まれる微量の硫黄化合物を除去するために、アルミナ担体に銅成分が担持された硫黄化合物吸着剤を用いた例がある(特許文献4)。   Conventionally, a hydrodesulfurization method is a method mainly used as a desulfurization technique for light oil. However, in order to desulfurize light oil to a low sulfur concentration of 15 ppm or less using the hydrodesulfurization method, it is necessary to increase the reaction temperature, and raising the reaction temperature causes a problem that the hue of the product light oil deteriorates. As a method for improving the hue problem of light oil, there has been proposed a method in which a gas oil fraction having deteriorated hue is brought into contact with activated carbon (Patent Documents 1 and 2). There is also a method of decolorizing light oil by performing a hydrogenation treatment in the presence of a crystalline aluminate-containing inorganic oxide catalyst or activated carbon catalyst supporting either or both of Group VI metal and Group VIII metal. It has been proposed (Patent Document 3). In addition, various process developments have been made with respect to desulfurization techniques other than hydrodesulfurization methods, for example, sulfur in which a copper component is supported on an alumina carrier in order to remove trace amounts of sulfur compounds contained in hydrocarbon oils. There is an example using a compound adsorbent (Patent Document 4).

ところで、水素化脱硫方法により、軽油留分に残存する4−メチルジベンゾチオフェン(4−MDBT)、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)などの難脱硫化合物を除去して硫黄分を15ppm以下にするためには、膨大な量の触媒と水素が必要である。特に、水素は高価であり精製された軽油の価格に影響を与える。また、難脱硫化合物の脱硫に関して様々なプロセスの研究が行われているが、現状ではリアクターを増設して対処するしかない。それゆえ、軽油留分の低硫黄化を実現するために、簡便な設備でしかも低い運転コストで脱硫することができる革新的な技術が要求されている。   By the way, by the hydrodesulfurization method, it is possible to remove difficult desulfurization compounds such as 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) remaining in the light oil fraction, and to remove sulfur content. An enormous amount of catalyst and hydrogen are required to reduce the carbon content to 15 ppm or less. In particular, hydrogen is expensive and affects the price of refined gas oil. In addition, various processes for desulfurization of difficult-to-desulfurize compounds have been studied, but at present, there is no choice but to deal with an additional reactor. Therefore, in order to reduce the sulfur content of the gas oil fraction, there is a demand for innovative technology that can be desulfurized with simple equipment and low operating costs.

また、最近では、ディーゼルエンジンの排ガス中に含まれる多環芳香族化合物(Polycyclic Aromatic Hydrocarbon chemicals: PAH's)を低減する技術も求められている。すなわち、硫黄分やPAH'sの極めて少ない軽油は、大都市の大気汚染防止及び地球環境の保護という点で、社会へ大きく貢献できる可能性を秘めている。   Recently, a technique for reducing polycyclic aromatic compounds (PAH's) contained in exhaust gas from diesel engines is also required. That is, diesel oil with extremely low sulfur content and PAH's has the potential to make a significant contribution to society in terms of preventing air pollution in large cities and protecting the global environment.

一方、家庭用などの定置式燃料電池で使用する灯油の脱硫は、主にニッケル系脱硫剤を200℃前後で使用する化学吸着脱硫法が検討されているが、加熱のためのエネルギーを消費すること、起動に時間を要すること、灯油の気化を防止するために加圧条件で行う必要があり、システムが複雑になることなどの問題点があった。銅を添加したニッケル系脱硫剤は、150℃程度のより低温でもある程度の活性を有するが、上記問題を解決するまでには至っていない。また、ニッケル系脱硫剤はあらかじめ還元処理を施す必要があり、酸素と接触することにより急激な発熱反応が起きて活性が低下することから、脱硫剤の保管方法や燃料電池の停止方法にも問題がある。さらに、ニッケル化合物は毒性を有することから、一般家庭に普及した場合には管理方法を厳格にする必要もあるという問題も有する。(特許文献5、特許文献6、特許文献7、特許文献8)   On the other hand, for desulfurization of kerosene used in stationary fuel cells for home use and the like, a chemisorption desulfurization method using a nickel-based desulfurization agent at around 200 ° C. has been studied, but it consumes energy for heating. In addition, it takes time to start up, and it is necessary to carry out under pressurized conditions in order to prevent the vaporization of kerosene, resulting in a complicated system. The nickel-based desulfurizing agent to which copper is added has a certain activity even at a lower temperature of about 150 ° C., but has not yet solved the above problem. In addition, nickel-based desulfurization agents need to be subjected to a reduction treatment in advance, and a sudden exothermic reaction occurs due to contact with oxygen, resulting in a decrease in activity. There is. Furthermore, since nickel compounds are toxic, there is also a problem that the management method must be strict when they are spread to ordinary households. (Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8)

また、酸化銅系脱硫剤は、120℃前後の比較的低温で、メルカプタン類などの硫黄化合物を含むナフサ留分の脱硫には利用されている(特許文献4)が、ベンゾチオフェン類やジベンゾチオフェン類を含む灯油やジベンゾチオフェン類を含む軽油などの脱硫に十分な性能を有する酸化銅系脱硫剤は存在しなかった。   Copper oxide desulfurization agents are used for desulfurization of naphtha fractions containing sulfur compounds such as mercaptans at a relatively low temperature of around 120 ° C. (Patent Document 4). However, benzothiophenes and dibenzothiophenes are used. There was no copper oxide-based desulfurization agent having sufficient performance for desulfurization such as kerosene containing bismuth and light oil containing dibenzothiophenes.

一方、ゼオライトや活性炭等を常温付近で使用する物理吸着脱硫法も検討されている(特許文献9、特許文献10)が、硫黄化合物と競争吸着となる芳香族化合物を含む灯油や軽油などの炭化水素油の脱硫については性能の高い物理吸着剤が存在せず、所望の効果を得るためには非常に大量の物理吸着剤を必要とすることから実用的ではなかった。   On the other hand, a physical adsorption desulfurization method using zeolite, activated carbon or the like at around room temperature has been studied (Patent Document 9 and Patent Document 10), but carbonization of kerosene, light oil, etc. containing aromatic compounds that are competitively adsorbed with sulfur compounds. The desulfurization of hydrogen oil is not practical because there is no physical adsorbent with high performance and a very large amount of physical adsorbent is required to obtain the desired effect.

灯油に含まれる硫黄化合物のタイプは、ベンゾチオフェン類及びジベンゾチオフェン類が大部分であり、特にベンゾチオフェン類の割合が大きく、全硫黄化合物に対するベンゾチオフェン類の割合は、硫黄分として70%以上である場合が多い。ベンゾチオフェン類の除去については、本発明者が先に提案した固体酸触媒及び/又は遷移金属酸化物が担持された活性炭などの脱硫剤を使用することで、比較的容易に除去することができる(特許文献11)。しかしながら、含有量の少ないジベンゾチオフェン類の除去は困難であり、特にアルキル基を多く有するアルキルジベンゾチオフェン類の除去が困難であった。本発明者は、先に軽油や灯油に含まれるジベンゾチオフェン類に対して高い除去性能を有する特定の細孔構造を有する活性炭、特に繊維状活性炭を提案した(特許文献12)。しかし、繊維状活性炭は綿状であり充填密度を高くできないため単位体積当たりの吸着性能を高くできないこと、製造工程が複雑で製造コストが高いことなどから、製油所などで大量に使用するには経済的でないと見込まれる。
従って、還元処理や水素を必要とせず、また、加圧を必要としない室温から150℃程度までの温度で、ジベンゾチオフェン類を効率的にかつ経済的に除去することができる脱硫剤及びその製造方法が求められている。
特開平6−136370号公報 特開2000−192054号公報 特開2000−282059号公報 特許第3324746号公報 特公平6−65602号公報 特公平7−115842号公報 特許第3410147号公報 特許第3261192号公報 特開2003−49172号公報 特開2005−2317号公報 WO2005−073348 WO2003−097771
The types of sulfur compounds contained in kerosene are mostly benzothiophenes and dibenzothiophenes, and the ratio of benzothiophenes is particularly large. The ratio of benzothiophenes to the total sulfur compounds is 70% or more as the sulfur content. There are many cases. About removal of benzothiophenes, it can remove comparatively easily by using desulfurization agents, such as activated carbon with which the solid acid catalyst and / or transition metal oxide which the inventor proposed previously were supported. (Patent Document 11). However, it is difficult to remove dibenzothiophenes having a small content, and it is particularly difficult to remove alkyldibenzothiophenes having a large number of alkyl groups. The present inventor previously proposed activated carbon having a specific pore structure, particularly fibrous activated carbon, having high removal performance with respect to dibenzothiophenes contained in light oil and kerosene (Patent Document 12). However, fibrous activated carbon is cotton-like and the packing density cannot be increased, so the adsorption performance per unit volume cannot be increased, and the manufacturing process is complicated and the manufacturing cost is high. Expected not economical.
Therefore, a desulfurizing agent that can efficiently and economically remove dibenzothiophenes at a temperature from room temperature to about 150 ° C. that does not require reduction treatment or hydrogen and that does not require pressurization, and its production There is a need for a method.
JP-A-6-136370 JP 2000-192054 A JP 2000-282059 A Japanese Patent No. 3324746 Japanese Examined Patent Publication No. 6-65602 Japanese Patent Publication No.7-115842 Japanese Patent No. 3410147 Japanese Patent No. 3261192 JP 2003-49172 A JP 2005-2317 A WO2005-073348 WO2003-077771

本発明は、灯油や軽油などの炭化水素油に含まれる硫黄化合物や多環芳香族化合物などを効率的にかつ経済的に吸着除去する吸着剤及びその製造方法を提供することを課題とし、特には充填密度を高くすることができるため単位体積当たりの吸着性能が高い吸着剤、及び製造工程が複雑ではなく安価な製造コストで前記吸着剤を製造する吸着剤の製造方法を提供することを課題とする。また、本発明は、かかる吸着剤を用いる炭化水素油中の微量成分、特には硫黄化合物の除去方法を提供すること、さらに前記吸着剤を装備した燃料電池システムを提供することを課題とする。   An object of the present invention is to provide an adsorbent that efficiently and economically removes sulfur compounds, polycyclic aromatic compounds, and the like contained in hydrocarbon oils such as kerosene and light oil, and a method for producing the same. It is an object to provide an adsorbent having a high adsorption performance per unit volume because the packing density can be increased, and an adsorbent production method for producing the adsorbent at a low production cost without complicated production processes And Moreover, this invention makes it a subject to provide the removal method of the trace component in hydrocarbon oil using this adsorption agent, especially a sulfur compound, and also to provide the fuel cell system equipped with the said adsorption agent.

本発明者は、上記課題を解決するために鋭意研究を進めた結果、植物系バイオマス、特に稲から得られる籾殻を原料として、特定の製造方法により製造した活性炭からなる吸着剤は、炭化水素油に含まれる硫黄化合物や多環芳香族化合物の単位重量当たりの吸着除去性能が優れる上に、充填密度を高くすることができるため単位体積当たりの吸着性能も高く、かつ、製造工程が複雑ではなく製造コストが安いという特段の効果を有することを見出し、本発明に想到した。   As a result of diligent research to solve the above-mentioned problems, the present inventor, as an adsorbent composed of activated carbon produced by a specific production method using rice husk obtained from plant biomass, particularly rice, is a hydrocarbon oil. In addition to excellent adsorption removal performance per unit weight of sulfur compounds and polycyclic aromatic compounds contained in the product, the packing density can be increased, so the adsorption performance per unit volume is also high, and the manufacturing process is not complicated It has been found that it has a special effect that the manufacturing cost is low, and has arrived at the present invention.

すなわち、本発明は、下記の吸着剤の製造方法、及び該方法で製造された吸着剤、該吸着剤を用いる炭化水素油中の微量成分の除去方法、及び該吸着剤を装備した燃料電池システムに関する。
(1)植物系バイオマスを(A)減圧下にて300〜900℃で炭化処理することにより、又は(B)減圧下及び/又は不活性雰囲気下に200〜900℃で炭化処理した後にさらに賦活処理することにより、比表面積が200m/g以上、及び平均細孔径が20Å以上である炭化処理物又は賦活処理物を得た後、該炭化処理物又は賦活処理物を用いて吸着剤を製造することを特徴とする炭化水素油中の微量成分を除去する吸着剤の製造方法。
That is, the present invention provides a method for producing an adsorbent described below, an adsorbent produced by the method, a method for removing trace components in hydrocarbon oil using the adsorbent, and a fuel cell system equipped with the adsorbent. About.
(1) Further activation after carbonizing (A) plant biomass at 300-900 ° C under reduced pressure or (B) carbonizing at 200-900 ° C under reduced pressure and / or inert atmosphere By processing, after obtaining a carbonized product or activated product having a specific surface area of 200 m 2 / g or more and an average pore diameter of 20 mm or more, an adsorbent is produced using the carbonized product or activated product. A method for producing an adsorbent for removing trace components in a hydrocarbon oil.

(2)(A)の炭化処理が、300〜500℃で実施され、(B)の炭化処理が、200〜500℃で実施される前記(1)に記載の吸着剤の製造方法。
(3)賦活処理は、二酸化炭素雰囲気下にて800〜900℃で0.1〜4時間実施される前記(1)又は(2)に記載の吸着剤の製造方法。
(4)炭化処理により得られた炭化処理物に、糖類からなるバインダーを加えて成形し、次いで得られた成形物を賦活処理する前記(1)〜(3)のいずれかに記載の吸着剤の製造方法。
(5)植物系バイオマスが、籾殻又は杉である前記(1)〜(4)のいずれかに記載の吸着剤の製造方法。
(6)さらに、金属及び/又は金属酸化物を混合、担持する工程を含む、前記(1)〜(5)の何れかに記載の吸着剤の製造方法。
(2) The method for producing an adsorbent according to (1), wherein the carbonization treatment of (A) is performed at 300 to 500 ° C, and the carbonization treatment of (B) is performed at 200 to 500 ° C.
(3) The method for producing an adsorbent according to (1) or (2), wherein the activation treatment is performed at 800 to 900 ° C. for 0.1 to 4 hours in a carbon dioxide atmosphere.
(4) The adsorbent according to any one of (1) to (3), wherein the carbonized product obtained by the carbonization treatment is molded by adding a binder composed of a saccharide, and then the obtained molded product is activated. Manufacturing method.
(5) The method for producing an adsorbent according to any one of (1) to (4), wherein the plant biomass is rice husk or cedar.
(6) The method for producing an adsorbent according to any one of (1) to (5), further including a step of mixing and supporting a metal and / or a metal oxide.

(7)植物系バイオマスを(A)減圧下にて300〜900℃で炭化処理することにより製造された、又は(B)減圧下及び/又は不活性雰囲気下に200〜900℃で炭化処理した後にさらに賦活処理を行うことにより製造された、比表面積が200m/g以上、及び平均細孔径が20Å以上である炭化処理物又は賦活処理物からなることを特徴とする炭化水素油中の微量成分を除去する吸着剤。
(8)(A)の炭化処理が、300〜500℃で実施され、及び(B)の炭化処理が、200〜500℃で実施される前記(7)に記載の吸着剤。
(9)賦活処理が、二酸化炭素雰囲気下にて800〜900℃で0.1〜4時間実施された前記(7)又は(8)に記載の吸着剤。
(10)炭化処理により得られた炭化処理物に、糖類からなるバインダーを加えて成形し、次いで得られた成形物を賦活処理して得られた前記(7)〜(9)のいずれかに記載の吸着剤。
(11)植物系バイオマスが、籾殻又は杉である前記(7)〜(10)のいずれかに記載の吸着剤。
(12)吸着剤が、さらに金属及び/又は金属酸化物が担持されているものである前記(7)〜(11)の何れかに記載の吸着剤。
(7) produced by carbonizing plant biomass at (A) 300-900 ° C. under reduced pressure, or (B) carbonized at 200-900 ° C. under reduced pressure and / or inert atmosphere. A trace amount in a hydrocarbon oil, characterized by comprising a carbonized product or an activated product having a specific surface area of 200 m 2 / g or more and an average pore diameter of 20 mm or more, which is produced by performing an activation treatment later. An adsorbent that removes components.
(8) The adsorbent according to (7), wherein the carbonization treatment of (A) is performed at 300 to 500 ° C, and the carbonization treatment of (B) is performed at 200 to 500 ° C.
(9) The adsorbent according to (7) or (8), wherein the activation treatment is performed at 800 to 900 ° C. for 0.1 to 4 hours in a carbon dioxide atmosphere.
(10) In any one of (7) to (9), the carbonized product obtained by carbonization treatment is molded by adding a saccharide binder, and then the resulting molded product is activated. The adsorbent described.
(11) The adsorbent according to any one of (7) to (10), wherein the plant biomass is rice husk or cedar.
(12) The adsorbent according to any one of (7) to (11), wherein the adsorbent further supports a metal and / or a metal oxide.

(13)前記(7)〜(12)のいずれかに記載の吸着剤を用い、炭化水素油中に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去することを特徴とする炭化水素油中の微量成分の除去方法。
(14)炭化水素油が灯油又は軽油である前記(13)に記載の除去方法。
(15)150℃以下の温度において灯油中の硫黄化合物を吸着除去する前記(13)又は(14)に記載の除去方法。
(16)前記(7)〜(12)のいずれかに記載の炭化水素油中の微量成分を除去する吸着剤を装備したことを特徴とする燃料電池システム。
(13) A hydrocarbon characterized by adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds contained in hydrocarbon oil using the adsorbent according to any one of (7) to (12). A method for removing trace components in oil.
(14) The removal method according to (13), wherein the hydrocarbon oil is kerosene or light oil.
(15) The removal method according to (13) or (14), wherein the sulfur compound in kerosene is adsorbed and removed at a temperature of 150 ° C. or lower.
(16) A fuel cell system equipped with an adsorbent that removes trace components in the hydrocarbon oil according to any one of (7) to (12).

本発明の吸着剤によれば、植物系バイオマス、特に稲から得られる籾殻を炭化処理し、さらには賦活処理して得た活性炭からなる吸着剤であるから、炭化水素油、特には硫黄化合物としてジベンゾチオフェン類を含む、あるいは多環芳香族化合物を含む灯油や軽油などの炭化水素油と、還元処理や水素添加を行わず、室温から150℃程度までの温度で、液相状態で接触させることにより硫黄化合物及び/又は多環芳香族化合物を効率よく経済的に吸着除去できる。そのため、灯油や軽油に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去する場合には、従来よりコンパクトな設備で、かつ、より低廉なコストで除去することが可能である。さらに、燃料電池の原燃料である灯油などの脱硫に適用した場合には、起動やメンテナンスが比較的容易であり、また燃料電池のシステムを簡略化することが可能である。   According to the adsorbent of the present invention, since it is an adsorbent made of activated carbon obtained by carbonizing and further activating rice husk obtained from plant biomass, particularly rice, as hydrocarbon oil, particularly as a sulfur compound Contact with hydrocarbon oils such as kerosene and light oil containing dibenzothiophenes or polycyclic aromatic compounds at room temperature to about 150 ° C without liquid reduction or hydrogenation. Thus, the sulfur compound and / or polycyclic aromatic compound can be adsorbed and removed efficiently and economically. Therefore, when the sulfur compound and / or polycyclic aromatic compound contained in kerosene or light oil is removed by adsorption, it can be removed with a more compact facility and at a lower cost. Furthermore, when applied to desulfurization of kerosene or the like, which is the raw fuel of the fuel cell, startup and maintenance are relatively easy, and the fuel cell system can be simplified.

本発明の吸着剤が適用対象とする炭化水素油としては、硫黄化合物としてジベンゾチオフェン類を含む、或いは、多環芳香族化合物を含む炭素数5〜20の炭化水素油を挙げることができる。これらの炭化水素油は、チオフェン類、メルカプタン類(チオール類)、スルフィド類、ジスルフィド類、二硫化炭素など、どんな種類の硫黄化合物を含有していても構わないが、本発明の吸着剤は、特に脱硫することが極めて困難なジベンゾチオフェン類などの硫黄化合物を含有した炭化水素油に対して顕著な効果を発揮する。例えば、全硫黄化合物に対するジベンゾチオフェン類の割合は、灯油では30%前後、軽油ではほぼ100%であり、灯油や軽油などの炭化水素油は本発明の吸着剤の適用対象として好ましい炭化水素油である。もちろん、本発明の吸着剤の適用対象は灯油や軽油に限定されるものではない。また、多環芳香族化合物は、ベンゼン環を2個以上有する化合物であり、炭素と水素以外のヘテロ原子を含有していても構わないが、2個のベンゼン環を形成する炭素がすべて同一平面上に位置する方が、本発明の吸着剤とのπ電子相互作用が強く、本発明の効果を顕著に得ることができる。   Examples of the hydrocarbon oil to which the adsorbent of the present invention is applied include hydrocarbon oils containing 5 to 20 carbon atoms containing dibenzothiophenes as sulfur compounds or containing polycyclic aromatic compounds. These hydrocarbon oils may contain any kind of sulfur compounds such as thiophenes, mercaptans (thiols), sulfides, disulfides, carbon disulfide, etc. In particular, it exhibits a remarkable effect on hydrocarbon oils containing sulfur compounds such as dibenzothiophenes that are extremely difficult to desulfurize. For example, the ratio of dibenzothiophenes to the total sulfur compounds is about 30% for kerosene and almost 100% for light oil. Hydrocarbon oils such as kerosene and light oil are preferred hydrocarbon oils for application of the adsorbent of the present invention. is there. Of course, the application target of the adsorbent of the present invention is not limited to kerosene or light oil. A polycyclic aromatic compound is a compound having two or more benzene rings and may contain heteroatoms other than carbon and hydrogen, but all the carbons forming the two benzene rings are in the same plane. The one located above has a stronger π-electron interaction with the adsorbent of the present invention, and the effects of the present invention can be remarkably obtained.

炭化水素油から硫黄分や多環芳香族化合物などを本発明の吸着剤で除去する場合、それらの含有量が多すぎると大量の吸着剤を必要とすることになり、水素化精製法など他の精製法の方が効率的であることから、硫黄分は20質量ppm以下、好ましくは10質量ppm以下、さらに好ましくは1質量ppm以下、多環芳香族化合物含有量は5質量%以下、好ましくは2質量%以下、さらに好ましくは0.5質量%以下である。   When removing sulfur and polycyclic aromatic compounds from hydrocarbon oil with the adsorbent of the present invention, if the content is too large, a large amount of adsorbent will be required. Since the purification method is more efficient, the sulfur content is 20 mass ppm or less, preferably 10 mass ppm or less, more preferably 1 mass ppm or less, and the polycyclic aromatic compound content is 5 mass% or less, preferably Is 2% by mass or less, more preferably 0.5% by mass or less.

本発明の吸着剤で処理する対象として好適な一例である灯油は、一般的には、炭素数12〜16程度の炭化水素を主体とし、密度(15℃)0.790〜0.850g/cm、沸点範囲150〜320℃程度の油であり、パラフィン系炭化水素を主成分として多く含むが、芳香族系炭化水素を0〜30容量%程度含み、多環芳香族化合物も0〜5容量%程度含む。また、普通灯油といえば、灯火用及び暖房用・ちゅう(厨)房用燃料として日本工業規格JIS K2203に規定される1号灯油を指す。JISでは品質として、引火点40℃以上、95%留出温度270℃以下、硫黄分0.008質量%以下、煙点23mm以上(寒候用のものは21mm以上)、銅板腐食(50℃、3時間)1以下、色(セーボルト)+25以上と規定されている。通常、硫黄分は6ppm程度から80ppm以下、窒素分は数ppmから十ppm程度である。 Kerosene, which is a preferred example of an object to be treated with the adsorbent of the present invention, is generally composed mainly of hydrocarbons having about 12 to 16 carbon atoms, and has a density (15 ° C.) of 0.790 to 0.850 g / cm. 3 , an oil having a boiling range of about 150 to 320 ° C., containing a large amount of paraffinic hydrocarbons as a main component, containing about 0 to 30% by volume of aromatic hydrocarbons, and 0 to 5 volumes of polycyclic aromatic compounds Including about%. Speaking of ordinary kerosene, it refers to No. 1 kerosene defined in Japanese Industrial Standard JIS K2203 as a fuel for lighting, heating, and kitchen. In JIS, the flash point is 40 ° C or higher, 95% distillation temperature 270 ° C or lower, sulfur content 0.008% by mass or lower, smoke point 23mm or higher (21mm or higher for cold weather), copper plate corrosion (50 ° C, 3 hours) 1 or less, color (Saebold) +25 or more. Usually, the sulfur content is about 6 ppm to 80 ppm and the nitrogen content is about several ppm to about 10 ppm.

本発明の吸着剤で処理する対象として好適な別の一例である軽油は、炭素数16〜20程度の炭化水素を主体とする油であり、密度(15℃)0.820〜0.880g/cm、沸点範囲140〜390℃程度で、パラフィン系炭化水素を多く含むが、芳香族系炭化水素を0〜30容量%程度含み、多環芳香族化合物も0〜10容量%程度含む。なお、一般的には、自動車用ディーゼルエンジンの燃料としてJIS K2204に「軽油」として標準的な性状が規定されている。 The light oil which is another example suitable as the object to be treated with the adsorbent of the present invention is an oil mainly composed of hydrocarbons having about 16 to 20 carbon atoms, and has a density (15 ° C.) of 0.820 to 0.880 g / It contains cm 3 and a boiling point range of about 140 to 390 ° C. and contains a large amount of paraffinic hydrocarbons, but contains about 0 to 30% by volume of aromatic hydrocarbons and also contains about 0 to 10% by volume of polycyclic aromatic compounds. In general, JIS K2204 defines a standard property as “light oil” as fuel for automobile diesel engines.

灯油や軽油に含まれる主な硫黄化合物は、ベンゾチオフェン類及びジベンゾチオフェン類であるが、チオフェン類、メルカプタン類(チオール類)、スルフィド類、ジスルフィド類、二硫化炭素などを含む場合もある。これらの硫黄化合物の定性及び定量分析には、ガスクロマトグラフ(Gas Chromatograph:GC)−炎光光度検出器(Flame Photometric Detector:FPD)、GC−原子発光検出器(Atomic Emission Detector:AED)、GC−硫黄化学発光検出器(Sulfur Chemiluminescence Detector:SCD)、GC−誘導結合プラズマ質量分析装置(Inductively Coupled Plasma Mass Spectrometer:ICP−MS)などを用いることができるが、質量ppbレベルの分析にはGC−ICP−MSが最も好ましい。   The main sulfur compounds contained in kerosene and light oil are benzothiophenes and dibenzothiophenes, but may include thiophenes, mercaptans (thiols), sulfides, disulfides, carbon disulfide, and the like. For qualitative and quantitative analysis of these sulfur compounds, Gas Chromatograph (GC) -Flame Photometric Detector (FPD), GC-Atomic Emission Detector (AED), GC- Sulfur Chemiluminescence Detector (SCD), GC-Inductively Coupled Plasma Mass Spectrometer (ICP-MS), etc. can be used, but GC-ICP is used for mass ppb level analysis. -MS is most preferred.

ジベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が2個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ジベンゾチオフェンはジフェニレンスルフィド、ビフェニレンスルフィド、硫化ジフェニレンとも呼ばれ、分子式C12Sで表わせる、分子量184の硫黄化合物である。4−メチルジベンゾチオフェンや4,6−ジメチルジベンゾチオフェンは、水素化精製における難脱硫化合物として良く知られている。その他の代表的なジベンゾチオフェン類として、トリメチルジベンゾチオフェン、テトラメチルジベンゾチオフェン、ペンタメチルジベンゾチオフェン、ヘキサメチルジベンゾチオフェン、ヘプタメチルジベンゾチオフェン、オクタメチルジベンゾチオフェン、メチルエチルジベンゾチオフェン、ジメチルエチルジベンゾチオフェン、トリメチルエチルジベンゾチオフェン、テトラメチルエチルジベンゾチオフェン、ペンタメチルエチルジベンゾチオフェン、ヘキサメチルエチルジベンゾチオフェン、ヘプタメチルエチルジベンゾチオフェン、メチルジエチルジベンゾチオフェン、ジメチルジエチルジベンゾチオフェン、トリメチルジエチルジベンゾチオフェン、テトラメチルジエチルジベンゾチオフェン、ペンタメチルジエチルジベンゾチオフェン、ヘキサメチルジエチルジベンゾチオフェン、ヘプタメチルジエチルジベンゾチオフェン、メチルプロピルジベンゾチオフェン、ジメチルプロピルジベンゾチオフェン、トリメチルプロピルジベンゾチオフェン、テトラメチルプロピルジベンゾチオフェン、ペンタメチルプロピルジベンゾチオフェン、ヘキサメチルプロピルジベンゾチオフェン、ヘプタメチルプロピルジベンゾチオフェン、メチルエチルプロピルジベンゾチオフェン、ジメチルエチルプロピルジベンゾチオフェン、トリメチルエチルプロピルジベンゾチオフェン、テトラメチルエチルプロピルジベンゾチオフェン、ペンタメチルエチルプロピルジベンゾチオフェン、ヘキサメチルエチルプロピルジベンゾチオフェンなどのアルキルジベンゾチオフェン、チアントレン(ジフェニレンジスルフィド、分子式C12、分子量216)、チオキサンテン(ジベンゾチオピラン、ジフェニルメタンスルフィド、分子式C1310S、分子量198)及びこれらの誘導体が挙げられる。 Dibenzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which a heterocyclic ring is condensed with two benzene rings and derivatives thereof. Dibenzothiophene is also called diphenylene sulfide, biphenylene sulfide, or diphenylene sulfide, and is a sulfur compound having a molecular weight of 184 that can be represented by the molecular formula C 12 H 8 S. 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene are well known as difficult desulfurization compounds in hydrorefining. Other typical dibenzothiophenes include trimethyldibenzothiophene, tetramethyldibenzothiophene, pentamethyldibenzothiophene, hexamethyldibenzothiophene, heptamethyldibenzothiophene, octamethyldibenzothiophene, methylethyldibenzothiophene, dimethylethyldibenzothiophene, trimethyl Ethyl dibenzothiophene, tetramethylethyl dibenzothiophene, pentamethylethyl dibenzothiophene, hexamethylethyl dibenzothiophene, heptamethylethyl dibenzothiophene, methyldiethyldibenzothiophene, dimethyldiethyldibenzothiophene, trimethyldiethyldibenzothiophene, tetramethyldiethyldibenzothiophene, penta Methyldiethyldibenzothi Phen, hexamethyldiethyldibenzothiophene, heptamethyldiethyldibenzothiophene, methylpropyldibenzothiophene, dimethylpropyldibenzothiophene, trimethylpropyldibenzothiophene, tetramethylpropyldibenzothiophene, pentamethylpropyldibenzothiophene, hexamethylpropyldibenzothiophene, heptamethylpropyl Alkyl dibenzothiophenes such as dibenzothiophene, methylethylpropyldibenzothiophene, dimethylethylpropyldibenzothiophene, trimethylethylpropyldibenzothiophene, tetramethylethylpropyldibenzothiophene, pentamethylethylpropyldibenzothiophene, hexamethylethylpropyldibenzothiophene, thianthrene Diphenylene disulfide, molecular formula C 12 H 8 S 2, molecular weight 216), thioxanthene (dibenzo thiopyran, diphenylmethane sulfide, molecular formula C 13 H 10 S, include molecular weight 198) and derivatives thereof.

ベンゾチオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環が1個のベンゼン環と縮合している硫黄化合物及びその誘導体である。ベンゾチオフェンは、チオナフテン、チオクマロンとも呼ばれ、分子式CSで表わせる、分子量134の硫黄化合物である。その他の代表的なベンゾチオフェン類として、メチルベンゾチオフェン、ジメチルベンゾチオフェン、トリメチルベンゾチオフェン、テトラメチルベンゾチオフェン、ペンタメチルベンゾチオフェン、ヘキサメチルベンゾチオフェン、メチルエチルベンゾチオフェン、ジメチルエチルベンゾチオフェン、トリメチルエチルベンゾチオフェン、テトラメチルエチルベンゾチオフェン、ペンタメチルエチルベンゾチオフェン、メチルジエチルベンゾチオフェン、ジメチルジエチルベンゾチオフェン、トリメチルジエチルベンゾチオフェン、テトラメチルジエチルベンゾチオフェン、メチルプロピルベンゾチオフェン、ジメチルプロピルベンゾチオフェン、トリメチルプロピルベンゾチオフェン、テトラメチルプロピルベンゾチオフェン、ペンタメチルプロピルベンゾチオフェン、メチルエチルプロピルベンゾチオフェン、ジメチルエチルプロピルベンゾチオフェン、トリメチルエチルプロピルベンゾチオフェン、テトラメチルエチルプロピルベンゾチオフェンなどのアルキルベンゾチオフェン、チアクロメン(ベンゾア-γ-ピラン、分子式CS、分子量148)、ジチアナフタリン(分子式C、分子量166)及びこれらの誘導体が挙げられる。 Benzothiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (two or more double bonds in the heterocycle). And a sulfur compound in which the heterocyclic ring is condensed with one benzene ring and derivatives thereof. Benzothiophene, also called thionaphthene or thiocoumarone, is a sulfur compound with a molecular weight of 134, which can be represented by the molecular formula C 8 H 6 S. Other representative benzothiophenes include methylbenzothiophene, dimethylbenzothiophene, trimethylbenzothiophene, tetramethylbenzothiophene, pentamethylbenzothiophene, hexamethylbenzothiophene, methylethylbenzothiophene, dimethylethylbenzothiophene, trimethylethylbenzo Thiophene, tetramethylethylbenzothiophene, pentamethylethylbenzothiophene, methyldiethylbenzothiophene, dimethyldiethylbenzothiophene, trimethyldiethylbenzothiophene, tetramethyldiethylbenzothiophene, methylpropylbenzothiophene, dimethylpropylbenzothiophene, trimethylpropylbenzothiophene, Tetramethylpropylbenzothiophene, pentame Le propyl benzothiophene, methyl ethyl propyl benzothiophene, dimethyl ethyl propyl benzothiophene, trimethyl ethylpropyl benzothiophene, alkyl benzothiophenes such as tetramethyl-ethylpropyl benzothiophene, Chiakuromen (Benzoa -γ- pyran, molecular formula C 9 H 8 S, Molecular weight 148), dithiaphthalene (molecular formula C 8 H 6 S 2 , molecular weight 166) and derivatives thereof.

チオフェン類は、1個以上の硫黄原子を異原子として含む複素環式化合物のうち、複素環が五原子環又は六原子環で且つ芳香性をもち(複素環に二重結合を2個以上有し)、さらに複素環がベンゼン環と縮合していない硫黄化合物及びその誘導体である。複素環同士が縮合した化合物も含む。チオフェンは、チオフランとも呼ばれ、分子式CSで表わせる、分子量84.1の硫黄化合物である。その他の代表的なチオフェン類として、メチルチオフェン(チオトレン、分子式CS、分子量98.2)、チアピラン(ペンチオフェン、分子式CS、分子量98.2)、チオフテン(分子式C、分子量140)、テトラフェニルチオフェン(チオネサル、分子式C2020S、分子量388)、ジチエニルメタン(分子式C、分子量180)及びこれらの誘導体が挙げられる。 Thiophenes are heterocyclic compounds containing one or more sulfur atoms as heteroatoms, and the heterocycle is a penta- or hexa-atom ring and has aromaticity (has two or more double bonds in the heterocycle). And a sulfur compound in which a heterocyclic ring is not condensed with a benzene ring and derivatives thereof. Also included are compounds in which heterocycles are fused together. Thiophene, also called thiofuran, is a sulfur compound with a molecular weight of 84.1 that can be represented by the molecular formula C 4 H 4 S. Other typical thiophenes include methylthiophene (thiotolene, molecular formula C 5 H 6 S, molecular weight 98.2), thiapyran (pentthiophene, molecular formula C 5 H 6 S, molecular weight 98.2), thiophene (molecular formula C 6 H 4 S 2 , molecular weight 140), tetraphenylthiophene (thionesal, molecular formula C 20 H 20 S, molecular weight 388), dithienylmethane (molecular formula C 9 H 8 S 2 , molecular weight 180) and derivatives thereof.

チオフェン類もベンゾチオフェン類も硫黄原子を異原子として含む複素環の反応性が高く、固体酸系脱硫剤存在下で、複素環の解裂や複素環と芳香環との反応、或いは、分解が容易に起こる。ジベンゾチオフェン類はチオフェン環の両側にベンゼン環が結合していることから、チオフェン類やベンゾチオフェン類に比べて反応性が低い。トリメチルジベンゾチオフェン、テトラメチルジベンゾチオフェン、ペンタメチルジベンゾチオフェンなどのアルキル基を多く有するジベンゾチオフェン類は、固体酸系脱硫剤による除去が特に困難である。   Both thiophenes and benzothiophenes are highly reactive with heterocycles containing sulfur atoms as heteroatoms, and in the presence of a solid acid desulfurizing agent, the heterocycles can be cleaved or the heterocycles react with or decompose with aromatic rings. It happens easily. Dibenzothiophenes are less reactive than thiophenes and benzothiophenes because benzene rings are bonded to both sides of the thiophene ring. Dibenzothiophenes having many alkyl groups such as trimethyldibenzothiophene, tetramethyldibenzothiophene, and pentamethyldibenzothiophene are particularly difficult to remove with a solid acid desulfurization agent.

また、メルカプタン類は、メルカプト基(-SH)を有する硫黄化合物RSH(Rはアルキル基やアリール基などの炭化水素基)であり、チオール又はチオアルコールとも呼ばれる。メルカプト基は反応性が高く、特に金属と容易に反応する。代表的なメルカプタン類として、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン(異性体を含む)、ブチルメルカプタン(ターシャリーブチルメルカプタンなどの異性体を含む)、ペンチルメルカプタン、ヘキシルメルカプタン、ヘプチルメルカプタン、オクチルメルカプタン、ノニルメルカプタン、デシルメルカプタンやチオフェノール類Ar−SH(Arはアリール基)などが挙げられる。   Further, mercaptans are sulfur compounds RSH (R is a hydrocarbon group such as an alkyl group or an aryl group) having a mercapto group (—SH), and are also called thiols or thioalcohols. Mercapto groups are highly reactive and react particularly easily with metals. Typical mercaptans include methyl mercaptan, ethyl mercaptan, propyl mercaptan (including isomers), butyl mercaptan (including isomers such as tertiary butyl mercaptan), pentyl mercaptan, hexyl mercaptan, heptyl mercaptan, octyl mercaptan, nonyl Examples include mercaptans, decyl mercaptans, and thiophenols Ar-SH (Ar is an aryl group).

スルフィド類は、チオエーテルとも呼ばれ、硫化アルキル及び硫化アリールの総称であり、一般式R−S−R’(R及びR’はアルキル基やアリール基などの炭化水素基)で表わされる硫黄化合物である。硫化水素の水素2原子をアルキル基などで置換した形の化合物である。スルフィド類は、鎖状スルフィド類と環状スルフィド類に分けられる。鎖状スルフィド類は、スルフィド類のうち、硫黄原子を異原子として含む複素環をもたない硫黄化合物である。代表的な鎖状スルフィド類として、ジメチルスルフィド、メチルエチルスルフィド、メチルプロピルスルフィド、ジエチルスルフィド、メチルブチルスルフィド、エチルプロピルスルフィド、メチルペンチルスルフィド、エチルブチルスルフィド、ジプロピルスルフィド、メチルヘキシルスルフィド、エチルペンチルスルフィド、プロピルブチルスルフィド、メチルヘプチルスルフィド、エチルヘキシルスルフィド、プロピルペンチルスルフィド、ジブチルスルフィドなどが挙げられる。環状スルフィド類は、スルフィド類のうち、1個以上の硫黄原子を異原子として含む複素環をもち、芳香性をもたない(五原子環又は六原子環で且つ二重結合を2個以上もつ複素環をもたない)硫黄化合物である。代表的な環状スルフィド類として、テトラヒドロチオフェン(硫化テトラメチレン、分子式CS、分子量88.1)、メチルテトラチオフェンなどが挙げられる。 Sulfides, also called thioethers, are a generic term for alkyl sulfides and aryl sulfides, and are sulfur compounds represented by the general formula R—S—R ′ (R and R ′ are hydrocarbon groups such as alkyl groups and aryl groups). is there. This is a compound in which two hydrogen atoms of hydrogen sulfide are substituted with an alkyl group or the like. Sulfides are classified into chain sulfides and cyclic sulfides. The chain sulfides are sulfur compounds that do not have a heterocyclic ring containing a sulfur atom as a heteroatom among the sulfides. Typical chain sulfides include dimethyl sulfide, methyl ethyl sulfide, methyl propyl sulfide, diethyl sulfide, methyl butyl sulfide, ethyl propyl sulfide, methyl pentyl sulfide, ethyl butyl sulfide, dipropyl sulfide, methyl hexyl sulfide, ethyl pentyl sulfide. Propyl butyl sulfide, methyl heptyl sulfide, ethyl hexyl sulfide, propyl pentyl sulfide, dibutyl sulfide and the like. Cyclic sulfides have a heterocyclic ring containing at least one sulfur atom as a heteroatom among the sulfides and have no aromaticity (a penta- or hexa-atom ring and two or more double bonds). It is a sulfur compound that does not have a heterocyclic ring. Typical cyclic sulfides include tetrahydrothiophene (tetramethylene sulfide, molecular formula C 4 H 8 S, molecular weight 88.1), methyltetrathiophene, and the like.

ジスルフィド類は、二硫化物のことである。二硫化アルキル及び二硫化アリールの総称であり、一般式R-S-S-R’(R及びR’はアルキル基などの炭化水素基)で表わされる硫黄化合物である。R及びR’を構成する炭化水素基の炭素数の和は2〜8個が好ましく、具体的には、ジメチルジスルフィド、メチルエチルジスルフィド、メチルプロピルジスルフィド、ジエチルジスルフィド、メチルブチルジスルフィド、エチルプロピルジスルフィド、メチルペンチルジスルフィド、エチルブチルジスルフィド、ジプロピルジスルフィド、メチルヘキシルジスルフィド、エチルペンチルジスルフィド、プロピルブチルジスルフィド、メチルヘプチルジスルフィド、エチルヘキシルジスルフィド、プロピルペンチルジスルフィド、ジブチルジスルフィドなどの鎖状ジスルフィドなどが例示できる。   Disulfides are disulfides. It is a general term for alkyl disulfide and aryl disulfide, and is a sulfur compound represented by the general formula R—S—S—R ′ (R and R ′ are hydrocarbon groups such as alkyl groups). The sum of the carbon number of the hydrocarbon group constituting R and R ′ is preferably 2 to 8, specifically, dimethyl disulfide, methyl ethyl disulfide, methyl propyl disulfide, diethyl disulfide, methyl butyl disulfide, ethyl propyl disulfide, Examples thereof include chain disulfides such as methylpentyl disulfide, ethylbutyl disulfide, dipropyl disulfide, methylhexyl disulfide, ethylpentyl disulfide, propylbutyl disulfide, methylheptyl disulfide, ethylhexyl disulfide, propylpentyl disulfide, and dibutyl disulfide.

燃料電池の原燃料として灯油や軽油を用いる場合、灯油や軽油に含まれる硫黄は、水素製造過程で改質触媒の触媒毒であるから厳しく除去する必要がある。脱硫後の硫黄分として、50質量ppb以下、好ましくは20質量ppb以下、さらに好ましくは5質量ppb以下にする必要がある。   When kerosene or light oil is used as the raw fuel of the fuel cell, the sulfur contained in kerosene or light oil is a catalyst poison of the reforming catalyst in the hydrogen production process, so it is necessary to remove it strictly. The sulfur content after desulfurization needs to be 50 mass ppb or less, preferably 20 mass ppb or less, and more preferably 5 mass ppb or less.

本発明の吸着剤は、灯油又は軽油に含まれるジベンゾチオフェン類などの脱硫しにくい硫黄化合物及び/又は多環芳香族化合物などを吸着除去するとき、特に顕著な効果が得られる。本発明の吸着する除去方法を適用する前及び/又は後に、別の硫黄化合物や多環芳香族化合物の除去方法を組み合わせることも有用であり、特に、灯油又は軽油に含まれる硫黄分を除去する場合、極めて低い値にまで脱硫することが可能である。具体的には、固体酸系脱硫剤などによるベンゾチオフェン類の吸着脱硫などと組み合わせると、一層大きな効果が得られる。また、ニッケル系脱硫剤などによる200℃前後の高温脱硫を行う前に、本発明の吸着剤により多環芳香族化合物を吸着除去しておくと、ニッケル系脱硫剤などによる炭素析出を低減することができ、脱硫剤の寿命を長くすることができる。   The adsorbent of the present invention is particularly effective when adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds that are difficult to desulfurize such as dibenzothiophenes contained in kerosene or light oil. It is also useful to combine a method for removing another sulfur compound or polycyclic aromatic compound before and / or after applying the method for removing adsorbing of the present invention, and in particular, to remove sulfur contained in kerosene or light oil. In that case, it is possible to desulfurize to very low values. Specifically, when combined with adsorption desulfurization of benzothiophenes using a solid acid desulfurization agent, a greater effect can be obtained. In addition, if the polycyclic aromatic compound is adsorbed and removed by the adsorbent of the present invention before performing high-temperature desulfurization at around 200 ° C. with a nickel-based desulfurizing agent, etc., carbon deposition due to the nickel-based desulfurizing agent is reduced. And the life of the desulfurizing agent can be extended.

本発明の吸着剤は、植物系バイオマスを(A)減圧下にて300〜900℃で炭化処理することにより製造された、又は(B)減圧下及び/又は不活性雰囲気下に200〜900℃で炭化処理した後にさらに賦活処理することにより製造された比表面積が200m/g以上、及び平均細孔径が20Å以上である炭化処理物又は賦活処理物からなる吸着剤であり、炭化水素油中の微量成分を除去することができる。 The adsorbent of the present invention was produced by carbonizing plant biomass at (A) 300-900 ° C under reduced pressure, or (B) 200-900 ° C under reduced pressure and / or inert atmosphere. It is an adsorbent comprising a carbonized product or an activated product having a specific surface area of 200 m 2 / g or more and an average pore diameter of 20 mm or more produced by further activation treatment after carbonization treatment in a hydrocarbon oil. Can be removed.

炭化処理物又は賦活処理物は、植物系バイオマスである植物系有機物(炭素質物質)を炭化処理して、さらに必要に応じて賦活処理して製造された、実質的に炭素のみからなる孔隙構造の発達した炭素質物質であり、一般的に活性炭と称される(以下、炭化処理物及び賦活処理物を単に活性炭ということもある)。   The carbonized product or activated product is a pore structure substantially made of carbon produced by carbonizing a plant-based organic substance (carbonaceous material) which is plant-based biomass, and further activating the carbon-based material as necessary. A carbonaceous material that has been developed and is generally referred to as activated carbon (hereinafter, the carbonized product and the activated product may be simply referred to as activated carbon).

一般的に活性炭の原料としては、多くの炭素質物質が考えられ、原料の種類によって活性炭の製造条件が異なる。活性炭原料としては、木材、のこくず、ヤシ殻、籾殻、パルプ廃液などの植物系バイオマスと、石炭、石油重質油、或いはそれらを熱分解したピッチやコークスなどの化石燃料系の原料がある。また、活性炭は形状によって粉末活性炭、粒状活性炭、及び繊維状活性炭に分類される。粉末活性炭は、100メッシュより小さな粉末の活性炭であり、通常はおがくず、木材チップ、木炭、草炭等から製造される。粒状活性炭は、1〜3mm程度の大きさの粒状であり、木炭、ヤシ殻炭、石炭、石油コークス等から製造される。また、繊維状活性炭は、一般的には合成高分子、タールピッチ或いは石油系ピッチを紡糸した繊維を出発原料とする高価な炭素繊維を賦活処理して製造される。   In general, many carbonaceous materials are considered as raw materials for activated carbon, and the production conditions of activated carbon differ depending on the type of raw material. Activated carbon raw materials include plant biomass such as wood, sawdust, coconut husk, rice husk, and pulp waste liquid, and coal, heavy petroleum oil, or fossil fuel-based raw materials such as pitch and coke obtained by pyrolyzing them. . Activated carbon is classified into powdered activated carbon, granular activated carbon, and fibrous activated carbon depending on the shape. Powdered activated carbon is powdered activated carbon smaller than 100 mesh, and is usually manufactured from sawdust, wood chips, charcoal, grass charcoal and the like. Granular activated carbon is granular having a size of about 1 to 3 mm, and is manufactured from charcoal, coconut shell charcoal, coal, petroleum coke, or the like. Fibrous activated carbon is generally produced by activating an expensive carbon fiber starting from a fiber obtained by spinning a synthetic polymer, tar pitch or petroleum pitch.

本発明の吸着剤に用いる活性炭は、植物系バイオマス、特に籾殻及び/又は杉などの木材の活性炭原料から得られたものが好ましく、炭化水素油に含まれる硫黄化合物及び/又は多環芳香族化合物の除去性能に優れた性能を発揮する。
植物系バイオマス、特に籾殻及び/又は杉などの木材は、導管などの水の通路が発達しており、活性炭とした際にも導管などに由来するメソ孔やマクロ孔が形成される。導管は、被子植物の維管束の主要な構成要素で、管状細胞(導管細胞)の上下の隔壁が消失し、縦に連なった組織で、根から吸収した水分の通路である。細胞壁は部分的に肥厚し、いろいろな模様を生じる。さらに、籾殻の場合には、含有するシリカなどの無機成分が、メソ孔やマクロ孔を形成する。
The activated carbon used in the adsorbent of the present invention is preferably obtained from plant-based biomass, particularly wood activated carbon raw materials such as rice husk and / or cedar, and is a sulfur compound and / or polycyclic aromatic compound contained in hydrocarbon oil. Demonstrates excellent removal performance.
Plant biomass, especially wood such as rice husk and / or cedar, has developed water passages such as conduits, and even when activated carbon is formed, mesopores and macropores derived from the conduits are formed. The conduit is a main component of the vascular bundle of angiosperms, and is a passage of moisture absorbed from the roots in a vertically connected tissue in which the upper and lower partition walls of the tubular cells (conduit cells) disappear. The cell wall is partially thickened and produces various patterns. Further, in the case of rice husks, the inorganic components such as silica contained form mesopores and macropores.

稲は、東南アジア原産のイネ科の一年草である。高さ1メートル前後、葉は線形で互生する。夏から秋の頃、茎頂に多数の小穂からなる花穂をつける。籾殻は、米を包んでいる外皮であり、籾米の殻である。水分を5〜10質量%程度含んでおり、50質量%前後が、無酸素雰囲気中で400℃まで加熱することで揮発する。さらに800℃まで加熱すると60〜70質量%程度が揮発する。800℃加熱後の炭化籾殻の組成は、炭素が30〜40質量%、水素が1質量%前後、窒素が1質量%前後、残りの60〜70質量%は無機成分である。無機成分うち、90質量%以上がSiOであり、残りはKO、P,CaOなどである。これらの組成は、土壌や気候などの影響を受け、産地により異なる。活性炭の原料としては、ミクロ孔を形成する炭素分が多い籾殻が好ましく、すなわち無機成分が少ない方が好ましい。 Rice is an annual plant of the grass family native to Southeast Asia. Around 1 meter in height, the leaves are linear and alternate. From summer to autumn, a flower spike consisting of many spikelets is attached to the top of the stem. Rice husk is the outer shell that wraps rice and is the shell of rice. About 5 to 10% by mass of water is contained, and about 50% by mass is volatilized by heating to 400 ° C. in an oxygen-free atmosphere. Further, when heated to 800 ° C., about 60 to 70% by mass is volatilized. The composition of the carbonized rice husk after heating at 800 ° C. is 30 to 40% by mass of carbon, about 1% by mass of hydrogen, about 1% by mass of nitrogen, and the remaining 60 to 70% by mass are inorganic components. Among the inorganic components, 90% by mass or more is SiO 2 , and the rest is K 2 O, P 2 O 5 , CaO and the like. These compositions are affected by soil and climate, and vary depending on the production area. As a raw material for the activated carbon, rice husk having a high carbon content to form micropores is preferable, that is, it is preferable that there are few inorganic components.

杉は、スギ科の常緑高木であり、日本の特産種で各地に植林される。幹は直立し、枝には針状の葉を螺旋(らせん)状に密につける。寿命が長く、高さ50メートル以上、径5メートル以上の巨木となるものもある。材は芳香があって木目がよく通り、軽くて軟らかいので、建築・家具・器具材などに多用されている。活性炭をつくる杉材としては、どのような形態のものであっても使用できるが、おがくず、木材チップなどの形が好ましく、また、杉の間伐材を用いることは資源の有効活用の観点からも好ましい。   Cedar is an evergreen Takagi of the cedar family and is planted in various places with Japanese special species. The trunk is upright, and needle-like leaves are closely attached in a spiral shape to the branches. Some have long lives and become giant trees with a height of 50 meters or more and a diameter of 5 meters or more. The material is aromatic and has a good grain texture, and it is light and soft, so it is often used for construction, furniture, and equipment. Any form of cedar that makes activated carbon can be used, but sawwood, wood chips, etc. are preferred. The use of cedar thinning is also effective from the viewpoint of effective use of resources. preferable.

炭化とは有機物の加熱変化によっておこる結合の解裂と、より安定な結合への組替えをもたらす分解、重縮合、芳香族環化など、炭素が濃縮され、炭素質の固体状生成物を与える一連の多種多様の化学反応の総称である。原料を高熱で炭化処理して、コークやチャーを得ることができると同時に、この炭化反応過程で水、酸化炭素、軽質の炭化水素が揮発すると同時に液体が留出する。活性炭の吸着特性に大きな影響を及ぼす細孔構造は、炭化処理温度によって変化する。本発明においては、200〜900℃の温度範囲で炭化処理を行う。炭化処理後、賦活処理を行わない場合は300〜900℃で炭化処理を行う。
炭化の温度は、植物系バイオマスを原料とすることから、前記の温度範囲においていずれの場合も高温側が低い方が好ましく、具体的には600℃以下が好ましく、500℃以下がより好ましく、特に好ましくは400℃以下である。
Carbonization is a series of carbon enrichment, resulting in carbonaceous solid products, such as bond breakage caused by heat changes in organic matter and decomposition, polycondensation, aromatic cyclization, etc. It is a general term for a wide variety of chemical reactions. The raw material can be carbonized with high heat to obtain coke and char. At the same time, water, carbon oxide and light hydrocarbons volatilize and liquid is distilled off during this carbonization reaction process. The pore structure that greatly affects the adsorption characteristics of activated carbon varies depending on the carbonization temperature. In the present invention, carbonization is performed in a temperature range of 200 to 900 ° C. If the activation treatment is not performed after the carbonization treatment, the carbonization treatment is performed at 300 to 900 ° C.
Since the temperature of carbonization uses plant-based biomass as a raw material, it is preferable that the high temperature side is lower in any of the above temperature ranges, specifically 600 ° C. or lower is preferable, 500 ° C. or lower is more preferable, and particularly preferable. Is 400 ° C. or lower.

また、炭化処理は、減圧下に行うか、あるいは不活性雰囲気下に行う。減圧下かつ不活性雰囲気下に行うこともできる。減圧とは、50〜500hPaの範囲の圧力をいい、100〜300hPaがより好ましい。減圧が不十分な場合は、炭素成分が空気中の酸素と反応して消失する。一方、減圧が過度に進行した状態の真空下に炭化処理を行った場合、賦活化されなくなるので、別途賦活処理を行う必要がある。なお、ここで、真空とは、雰囲気の圧力が50hPa未満の状態をいう。   Further, the carbonization treatment is performed under reduced pressure or in an inert atmosphere. It can also be performed under reduced pressure and in an inert atmosphere. The reduced pressure refers to a pressure in the range of 50 to 500 hPa, and more preferably 100 to 300 hPa. When the decompression is insufficient, the carbon component reacts with oxygen in the air and disappears. On the other hand, when carbonization is performed under a vacuum in which the pressure reduction has proceeded excessively, the carbonization process is not performed, and therefore a separate activation process is required. Here, the vacuum refers to a state where the atmospheric pressure is less than 50 hPa.

不活性雰囲気下に炭化処理を行う場合、窒素やアルゴンなどの不活性ガスの雰囲気下に行うことが好ましく、特に窒素ガスの流通下に行うことが経済的で好ましい。不活性雰囲気下とする理由は、空気中の酸素との反応を防止するためであり、酸素の混入を防止できる圧力であれば良く、大気圧前後の0.05〜0.2MPa(絶対圧力)が好ましい。0.05MPa(500hPa)以下まで減圧にするならば、十分に酸素は少ないので不活性雰囲気下とする必要がない。また、0.2MPa以上に加圧すると設備が高価となる上に圧力調整が必要となり、経済的ではない。炭化処理を、窒素雰囲気下で行う場合、200〜600℃で1〜3時間行う。その後、二酸化炭素雰囲気下800〜900℃で1〜3時間賦活処理を行うと、比表面積が大きく、かつ、細孔容積の大きい活性炭が得られる。また、減圧下800〜950℃で1〜3時間炭化処理を行っても、比表面積、及び細孔容積の大きい活性炭を得ることができる。   When the carbonization treatment is performed in an inert atmosphere, it is preferably performed in an atmosphere of an inert gas such as nitrogen or argon, and it is particularly economical and preferable to perform in a nitrogen gas flow. The reason why the inert atmosphere is used is to prevent reaction with oxygen in the air, and any pressure that prevents the mixing of oxygen may be used. 0.05 to 0.2 MPa (absolute pressure) around atmospheric pressure Is preferred. If the pressure is reduced to 0.05 MPa (500 hPa) or less, there is no need for an inert atmosphere because oxygen is sufficiently small. Further, if the pressure is increased to 0.2 MPa or more, the equipment becomes expensive and pressure adjustment is required, which is not economical. When performing a carbonization process in nitrogen atmosphere, it is performed at 200-600 degreeC for 1-3 hours. Thereafter, when an activation treatment is performed at 800 to 900 ° C. for 1 to 3 hours in a carbon dioxide atmosphere, activated carbon having a large specific surface area and a large pore volume is obtained. Moreover, even if it carbonizes at 800-950 degreeC under reduced pressure for 1-3 hours, activated carbon with a large specific surface area and pore volume can be obtained.

本発明に用いる活性炭の製造における炭化処理後の賦活処理の方法としては、特に限定するものでなく、一般的に用いられている従来の賦活法、例えばガス賦活法、薬品賦活法などを挙げることができる。我が国では、水蒸気を用いるガス賦活法が主流であるが、粉末活性炭の製造では、現在も塩化亜鉛を用いる薬品賦活法が用いられている。また、近年、新たな薬品賦活法であるアルカリ賦活法も報告されている。   The method of activation treatment after carbonization treatment in the production of activated carbon used in the present invention is not particularly limited, and examples include conventional activation methods that are generally used, such as gas activation methods and chemical activation methods. Can do. In Japan, the gas activation method using water vapor is the mainstream, but the chemical activation method using zinc chloride is still used in the production of powdered activated carbon. In recent years, an alkali activation method, which is a new chemical activation method, has also been reported.

なかでもガス賦活法はより好ましい方法であり、物理的な活性化とも言われ、炭素材料を高温で、例えば800〜900℃で水蒸気、二酸化炭素、酸素などのガスと一定時間、好ましくは0.1〜4時間接触反応させて、良好な性能を有する微細な多孔質の活性炭を製造することができる。賦活過程は二段階で進行すると考えられており、第一段階の加熱過程では炭素結晶化があまり進行していない未組織化部分の炭素が選択的に、一酸化炭素や二酸化炭素へ分解消費され、炭素結晶間の閉ざされていた微細な孔隙が開放されて、比表面積を急激に増加する。第二段階のガス化反応過程では、炭素結晶などの炭素が一酸化炭素や二酸化炭素へ反応消耗して、メソ孔、マクロ孔が形成される。   Among these, the gas activation method is a more preferable method, which is also referred to as physical activation. The carbon material is heated at a high temperature, for example, at 800 to 900 ° C. with a gas such as water vapor, carbon dioxide, oxygen, and the like for a certain period of time, preferably 0.8. A fine porous activated carbon having good performance can be produced by contact reaction for 1 to 4 hours. The activation process is thought to proceed in two stages, and in the first heating process, the carbon in the unorganized portion where carbon crystallization has not progressed so much is selectively decomposed and consumed into carbon monoxide and carbon dioxide. Then, the closed fine pores between the carbon crystals are opened, and the specific surface area is rapidly increased. In the second stage gasification reaction process, carbon such as carbon crystals is consumed by reaction to carbon monoxide and carbon dioxide, and mesopores and macropores are formed.

薬品賦活法は、原料に賦活薬品を均等に含浸させて、不活性ガス雰囲気中で加熱・焼成することにより、薬品の脱水及び酸化反応により、微細な多孔質の活性炭を製造する方法である。賦活薬品は、塩化亜鉛、硫酸、ホウ酸、硝酸、塩酸、リン酸、リン酸ナトリウム、塩化カルシウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム、硫酸カリウム、硫酸ナトリウム、亜硝酸カリウム、塩化カリウム、過マンガン酸カリウム、硫化カリウム、チオシアン酸カリウムなどの脱水、酸化、浸食性の薬品が用いられる。薬品賦活では、炭素質原料に対して、含浸させる薬品の質量比が活性化の重要な尺度であり、具体的には質量比は0.5〜2.0程度が好ましい。質量比が小さい場合にはミクロ孔を生成し、質量比が大きくなるにつれて孔径の大きい細孔を発達させて細孔容積も増大する。   The chemical activation method is a method for producing fine porous activated carbon by dehydration and oxidation reaction of chemicals by impregnating raw materials evenly with an activation chemical and heating and baking in an inert gas atmosphere. Activating chemicals are zinc chloride, sulfuric acid, boric acid, nitric acid, hydrochloric acid, phosphoric acid, sodium phosphate, calcium chloride, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, calcium carbonate, potassium sulfate, sodium sulfate, sodium sulfate Dehydrated, oxidized, and erodible chemicals such as potassium nitrate, potassium chloride, potassium permanganate, potassium sulfide, and potassium thiocyanate are used. In the chemical activation, the mass ratio of the chemical to be impregnated with respect to the carbonaceous raw material is an important measure of activation, and specifically, the mass ratio is preferably about 0.5 to 2.0. When the mass ratio is small, micropores are generated, and as the mass ratio increases, pores having a large pore diameter are developed and the pore volume increases.

植物系バイオマスは、水を運搬するための導管などが発達しておりメソ孔やマクロ孔を形成しやすい。また、籾殻の場合にはさらにシリカ成分を含むことにより、シリカ成分がメソ孔やマクロ孔を形成することから、シリカ成分を含まない木材よりもさらにメソ孔やマクロ孔を形成しやすい。従って、植物系バイオマス、特に籾殻は元来、メソ孔やマクロ孔を容易に形成できるので、メソ孔やマクロ孔を形成するための薬品賦活法は必ずしも必要ではなく、水蒸気や二酸化炭素、特に二酸化炭素によるガス賦活法が簡便で好ましい。   Plant-based biomass develops conduits for transporting water and tends to form mesopores and macropores. In addition, in the case of rice husk, the silica component further forms mesopores and macropores by including the silica component, so that it is easier to form mesopores and macropores than wood not containing the silica component. Therefore, since plant biomass, especially rice husks, can easily form mesopores and macropores, a chemical activation method for forming mesopores and macropores is not always necessary. A gas activation method using carbon is simple and preferable.

活性炭による吸着特性は、本質的には活性炭の表面と吸着質分子との接触、及びその場における相互作用エネルギーによって決まる。従って、細孔分布と吸着質分子径との関係が接触に影響し、吸着質分子の構造とその物性が相互作用の強度に影響する。すなわち、吸着質がジベンゾチオフェン類のように比較的大きい硫黄化合物の場合には、活性炭の吸着サイトであるミクロ孔が発達しているだけではなく、ミクロ孔までの通路となるメソ孔やマクロ孔も発達していることが必要である。また、活性炭の表面に部分的に存在する多環芳香族分子集合構造(グラファイト構造とも呼ぶ)のπ電子軌道とジベンゾチオフェン類や多環芳香族類のベンゼン環のπ電子軌道との相互作用により、活性炭にジベンゾチオフェン類が吸着するものと考えられる。さらに、液相吸着では、多くの場合、多成分系競争吸着であり、溶媒と溶質分子との相互作用、溶媒や溶質分子の吸着剤への吸着力が関係して複雑である。本発明者は、硫黄化合物の吸着容量は、単に比表面積だけに比例するのではないことを見出した。   The adsorption characteristics by activated carbon are essentially determined by the contact between the surface of the activated carbon and adsorbate molecules and the in-situ interaction energy. Therefore, the relationship between the pore distribution and the adsorbate molecular diameter affects the contact, and the structure and physical properties of the adsorbate molecule affect the strength of the interaction. That is, when the adsorbate is a relatively large sulfur compound such as dibenzothiophenes, not only the micropores that are the adsorption sites of activated carbon have developed, but also mesopores and macropores that serve as a passage to the micropores. Need to be well developed. Also, due to the interaction between the π-electron orbitals of polycyclic aromatic molecular assemblies (also called graphite structures) partially present on the surface of activated carbon and the π-electron orbitals of benzene rings of dibenzothiophenes and polycyclic aromatics It is considered that dibenzothiophenes are adsorbed on activated carbon. Furthermore, in many cases, liquid phase adsorption is multi-component competitive adsorption, and is complicated by the interaction between the solvent and the solute molecule and the adsorption force of the solvent or solute molecule to the adsorbent. The present inventor has found that the adsorption capacity of sulfur compounds is not simply proportional to the specific surface area.

比表面積が大きい粉末活性炭よりも相対的に比表面積の小さい繊維状活性炭の方が、吸着容量が大きい。様々な原因が考えられるが、前述の活性炭の細孔構造が大きく影響しているものと考えられる。繊維状活性炭は、粒状活性炭と比較した場合、一般的に吸着速度が非常に大きいこと、低濃度における吸着量が高いこと、フェルト状など多様な形状に加工可能であることなどの利点を有する。しかし、上記のように、合成高分子や石油系ピッチを紡糸した繊維を出発原料とする炭素繊維を賦活処理して製造される高価なものであるから、灯油や軽油の脱硫などに大量に使用するには経済的でない。本発明の吸着剤に用いる活性炭は、籾殻、杉などの植物系バイオマスを炭化、賦活処理する比較的安価な方法で得ることができ、しかも、籾殻などの植物系バイオマスは繊維質であることから、籾殻などを原料とした活性炭は、繊維状活性炭と同様の効果が得られる。   The fibrous activated carbon having a relatively small specific surface area has a larger adsorption capacity than the powdered activated carbon having a large specific surface area. Although various causes are considered, it is thought that the pore structure of the above-mentioned activated carbon has a great influence. Compared with granular activated carbon, fibrous activated carbon generally has advantages such as a very high adsorption rate, a high adsorption amount at a low concentration, and processing into various shapes such as felt. However, as mentioned above, it is an expensive product produced by activating carbon fibers starting from fibers that are spun from synthetic polymers or petroleum pitches, so it is used in large quantities for desulfurization of kerosene and light oil. It is not economical to do. The activated carbon used in the adsorbent of the present invention can be obtained by a relatively inexpensive method of carbonizing and activating plant biomass such as rice husk and cedar, and the plant biomass such as rice husk is fibrous. In addition, activated carbon made from rice husk and the like has the same effect as fibrous activated carbon.

本発明の吸着剤は、灯油や軽油に含まれる硫黄化合物及び/又は多環芳香族化合物を吸着除去するとき、粉末状、粒子状、又は球状、ディスク状、円柱状等の成形品などのいずれの形ででも使用することが可能である。粉末状や粒子状で用いる場合には、活性炭を公知の適当な粉砕機で粉砕後、公知の適当な分級機で分級し、平均粒径0.5μm〜0.1mm程度の粉末状、平均粒径0.1〜5mm程度の粒子状の活性炭に篩い分けて、それぞれの活性炭を使用条件に応じて、適宜使用することができる。吸着剤を連続的に使用して、繰り返し再生する場合には、活性炭を成形品として使用することが好ましい。成形品の形状としては、硫黄化合物など、除去する微量成分の濃度勾配を大きくするため、流通式の場合には吸着剤を充填した容器前後の差圧が大きくならない範囲で小さい形状、特には球状が好ましい。球状の場合、大きさは、直径が0.1〜5mm、特には0.3〜3mmが好ましい。円柱状の場合には、直径が0.1〜4mm、特には0.12〜2mmで、長さは直径の0.5〜5倍、特には1〜2倍が好ましい。成形品は、吸着剤として使用中に割れを生じないように、0.5kg/ペレット以上、特には1.0kg/ペレット以上の破壊強度を有することが好ましい。なお、破壊強度は、木屋式錠剤破壊強度測定器(富山産業株式会社製、TH-203MP)等の圧縮強度測定器により測定される。   The adsorbent of the present invention can be used for adsorbing and removing sulfur compounds and / or polycyclic aromatic compounds contained in kerosene or light oil, such as powdered, particulate, or molded products such as spherical, disk-shaped, cylindrical, etc. It can be used in the form of When used in powder or particulate form, the activated carbon is pulverized with a known appropriate pulverizer and then classified with a known appropriate classifier to obtain a powder or average particle having an average particle diameter of about 0.5 μm to 0.1 mm. The activated carbon can be appropriately used according to use conditions by sieving it into particulate activated carbon having a diameter of about 0.1 to 5 mm. In the case where the adsorbent is continuously used and regenerated repeatedly, it is preferable to use activated carbon as a molded product. As the shape of the molded product, in order to increase the concentration gradient of trace components to be removed, such as sulfur compounds, in the case of flow-through type, the shape is small, especially spherical, so long as the differential pressure before and after the container filled with the adsorbent does not increase. Is preferred. In the case of a spherical shape, the size is preferably 0.1 to 5 mm, particularly 0.3 to 3 mm. In the case of a columnar shape, the diameter is preferably 0.1 to 4 mm, particularly 0.12 to 2 mm, and the length is preferably 0.5 to 5 times, particularly 1 to 2 times the diameter. The molded article preferably has a breaking strength of 0.5 kg / pellet or more, particularly 1.0 kg / pellet or more so as not to crack during use as an adsorbent. The breaking strength is measured by a compressive strength measuring device such as a Kiya-type tablet breaking strength measuring device (manufactured by Toyama Sangyo Co., Ltd., TH-203MP).

成形品として使用する場合には、(1)原料を成形した後、炭化処理し、次いで賦活処理しても良いし、(2)原料を炭化処理した後に成形し、賦活処理しても良いし、(3)原料を炭化処理及び賦活処理後に成形し、乾燥及び焼成しても良い。原料の大部分が揮発成分であることから炭化処理前に成形すると得られた活性炭の強度が高くならないこと、原料よりも炭化処理後の方がバインダー成分との混合が均一にできること、バインダー成分の炭化処理と賦活処理とを同時に行えることから工程が短縮できることなどから、前記(2)の原料を炭化処理した後に成形し、賦活処理することが特に好ましい。
原料及び/又は炭化処理物は、バインダー成分と混合する前に、粉砕処理を行うと、バインダー成分と均一に混合できることから特に好ましい。
When used as a molded product, (1) the raw material may be molded and then carbonized and then activated, or (2) the raw material may be carbonized and then molded and activated. (3) The raw material may be formed after carbonization treatment and activation treatment, dried and fired. Since most of the raw material is a volatile component, the strength of the activated carbon obtained by molding before carbonization treatment does not increase, the mixing with the binder component can be made more uniform after carbonization than the raw material, Since the carbonization treatment and the activation treatment can be performed at the same time, the process can be shortened. Therefore, it is particularly preferable that the raw material (2) is molded after the carbonization treatment and then activated.
The raw material and / or carbonized product is particularly preferable when it is pulverized before mixing with the binder component because it can be uniformly mixed with the binder component.

成形する際には必要に応じてバインダー(粘結剤)を使用することができる。バインダーとしては、例えば、タールピッチ、タール相溶性樹脂、膨張黒鉛、リグニン、アルギン酸ソーダ、カルボキシメチルセルロース(CMC)、フェノール樹脂やポリビニルアルコールなどの合成高分子化合物、糖蜜、デンプン、甜菜絞り汁、黒糖、さとうきび絞り汁、オリゴ糖などの糖類からなる天然有機質系粘結剤、アルミナ、スメクタイト、水ガラス等の無機質系粘結剤などが例示される。原料である植物系バイオマスからの活性炭は糖類との混合性が最も良好であり、得られる活性炭の強度も高くなる。また、炭素源として、比表面積を向上させる効果もある。なかでも、デンプンや甜菜がより好ましい。   When molding, a binder (binding agent) can be used as necessary. Examples of the binder include tar pitch, tar-compatible resin, expanded graphite, lignin, sodium alginate, carboxymethyl cellulose (CMC), synthetic polymer compounds such as phenol resin and polyvinyl alcohol, molasses, starch, sugar beet juice, brown sugar, Examples include natural organic binders composed of sugars such as sugar cane juice and oligosaccharides, and inorganic binders such as alumina, smectite, and water glass. Activated carbon from plant-based biomass, which is a raw material, has the best mixability with sugars, and the strength of the obtained activated carbon is also increased. Further, as a carbon source, there is an effect of improving the specific surface area. Of these, starch and sugar beet are more preferable.

デンプンは、多糖類の一種であり、ブドウ糖(D-グルコース)の重合体である。約20質量%は直鎖状重合体のアミロースで、約80質量%は多くの分枝部をもつアミロペクチンで構成される。甜菜は、サトウダイコンやビートの別名である。バインダーとして使用するには、甜菜の絞り汁をそのまま用いることもできるが、粘性を高めるために煮詰めて濃縮することが好ましい。
これらの粘結剤は、成形できる程度に使用すればよく、特に限定されるものではないが、原料に対して通常0.05〜200質量%程度、特に好ましくは20〜100質量%が使用される。0.05質量%よりも少ないと、得られる活性炭の強度が低くなる。また、200質量%よりも多いと、籾殻などの特長である細孔構造などが十分に得られなくなる。なお、前記の粘結剤の使用量は、不特定量の水分を含有する天然有機質系粘結剤などの場合、水分を除いた残量を基準(乾燥基準)とする。
乾燥状態では粘結性を持たないので、十分乾燥させた粉末状の糖類に同じ重さの水を加え、それを約100℃で熱する。時間の経過とともに、水分は蒸発し、流動性のある液体(シロップ状糖類)となる。この状態で粘結剤として使用する。
比表面積を向上させるための炭素源として糖類を添加する場合には、粉末状の糖類を1〜20倍の重さの水に、約60℃で溶解し、糖類水溶液として炭化物に含浸しても良い。
Starch is a kind of polysaccharide and is a polymer of glucose (D-glucose). About 20% by mass is composed of linear polymer amylose, and about 80% by mass is composed of amylopectin having many branches. Side dish is another name for sugar beet and beat. For use as a binder, sugar beet juice can be used as it is, but it is preferably boiled and concentrated to increase viscosity.
These binders may be used to such an extent that they can be molded, and are not particularly limited, but are usually about 0.05 to 200% by mass, particularly preferably 20 to 100% by mass based on the raw material. The When it is less than 0.05% by mass, the strength of the obtained activated carbon is lowered. On the other hand, when the amount is more than 200% by mass, the pore structure, which is a feature of rice husks, etc. cannot be obtained sufficiently. In the case of a natural organic binder containing an unspecified amount of moisture, the amount of the binder used is based on the remaining amount excluding moisture (dry basis).
Since there is no caking property in the dry state, water of the same weight is added to the sufficiently dried powdery saccharide, and it is heated at about 100 ° C. As time elapses, the water evaporates and becomes a fluid liquid (syrupy saccharide). In this state, it is used as a binder.
When adding saccharides as a carbon source for improving the specific surface area, powdered saccharides can be dissolved in 1 to 20 times the weight of water at about 60 ° C. and impregnated with carbide as an aqueous saccharide solution. good.

本発明の活性炭は、活性炭が吸着しにくい硫黄化合物などの吸着性能を向上するため、及び/あるいは、メソ孔及びマクロ孔の存在量を増やして硫黄化合物などの拡散速度を向上するために、炭化処理、成形、賦活処理の途中又は後で、シリカ、アルミナ、ゼオライトなどの無機物を混合しても良い。また、銀、水銀、銅、カドミウム、鉛、モリブデン、亜鉛、コバルト、マンガン、ニッケル、白金、パラジウム、鉄などの金属及び/又は金属酸化物との複合化、すなわちこれらの金属を担持することにより吸着性能を向上させることもできる。安全性や経済性などから、好ましいのは銅、銀、マンガン、亜鉛、ニッケルの酸化物である。中でも銅は、安価な上に、常温付近から300℃程度の広い温度範囲で、また還元処理を行わない酸化銅の状態のまま、且つ、水素非存在下でも硫黄化合物の吸着に優れた性能を示すので特に好ましい。金属の好ましい担持量は、特に限定するものでなく、金属の種類によっても異なるが、仕上がりの吸着剤に対する金属単体基準で、貴金属の場合0.1〜20質量%、特には0.5〜5質量%担持することが好ましい。0.1質量%よりも少ないと担持効果が少なく、20質量%よりも多いと経済的でない。銅及びその他の金属の場合0.1〜60質量%、特には3〜20質量%担持することが好ましい。0.1質量%よりも少ないと担持効果が少なく、60質量%より多いと担体である活性炭との結合が弱い金属が多くなることから、金属成分が脱離する可能性がある。金属担持量が多いと活性炭が吸着しにくいチオフェン類やベンゾチオフェン類などの硫黄化合物の吸着性能をより向上することができる。   The activated carbon of the present invention is carbonized in order to improve the adsorption performance of sulfur compounds, etc., on which activated carbon is difficult to adsorb, and / or to increase the diffusion rate of sulfur compounds, etc. by increasing the abundance of mesopores and macropores. You may mix inorganic substances, such as a silica, an alumina, and a zeolite, in the middle of processing, shaping | molding, and an activation process. Also, by combining with metals and / or metal oxides such as silver, mercury, copper, cadmium, lead, molybdenum, zinc, cobalt, manganese, nickel, platinum, palladium, iron, etc., that is, by supporting these metals The adsorption performance can also be improved. From the viewpoint of safety and economy, the oxides of copper, silver, manganese, zinc, and nickel are preferable. Among these, copper is inexpensive and has excellent performance for adsorption of sulfur compounds in a wide temperature range from near room temperature to about 300 ° C., in the state of copper oxide without reduction treatment, and in the absence of hydrogen. This is particularly preferable. The preferred amount of metal supported is not particularly limited, and varies depending on the type of metal, but is 0.1 to 20% by mass, particularly 0.5 to 5% in the case of a noble metal, based on the metal simple substance relative to the finished adsorbent. It is preferable to carry by mass%. If it is less than 0.1% by mass, the supporting effect is small, and if it is more than 20% by mass, it is not economical. In the case of copper and other metals, it is preferable to carry 0.1 to 60 mass%, particularly 3 to 20 mass%. If the amount is less than 0.1% by mass, the supporting effect is small. If the amount is more than 60% by mass, the amount of the metal having a weak bond with the activated carbon that is the carrier increases, so that the metal component may be detached. When the amount of metal supported is large, the adsorption performance of sulfur compounds such as thiophenes and benzothiophenes that are difficult to adsorb activated carbon can be further improved.

吸着剤は、前処理として吸着剤に吸着した微量の水分を除去するために、空気などの酸化雰囲気下ならば100〜200℃程度で乾燥することが好ましい。200℃を超えると酸素と反応して吸着剤の重量が減少するので好ましくない。一方、窒素などの非酸化雰囲気下では吸着剤を100〜800℃程度で乾燥することが好ましい。特に非酸化雰囲気下で吸着剤を400〜800℃で熱処理を行うと、有機物や含有酸素が除去され、吸着性能が向上するので一層好ましい。   The adsorbent is preferably dried at about 100 to 200 ° C. in an oxidizing atmosphere such as air in order to remove a small amount of water adsorbed on the adsorbent as a pretreatment. If it exceeds 200 ° C., it reacts with oxygen and the weight of the adsorbent decreases, which is not preferable. On the other hand, the adsorbent is preferably dried at about 100 to 800 ° C. in a non-oxidizing atmosphere such as nitrogen. In particular, heat treatment of the adsorbent at 400 to 800 ° C. in a non-oxidizing atmosphere is more preferable because organic substances and contained oxygen are removed and the adsorption performance is improved.

硫黄化合物などが吸着する箇所を多くする意味から比表面積は大きい方が好ましいが、比表面積はミクロ孔の量と相関関係があり、比表面積が大きいほどミクロ孔が多い。しかしミクロ孔までの経路であるメソ孔やマクロ孔が十分に多くなければ、硫黄化合物などの吸着質がスムーズにミクロ孔まで拡散できない。ミクロ孔及びマクロ孔の全てを多くすると、吸着剤が非常に強度の低いものとなり、活性炭の形状を維持できなくなってしまうので、ミクロ孔とメソ孔及びマクロ孔のバランスが重要である。したがって、むやみに比表面積を大きくしても、すなわちミクロ孔を多くしても、メソ孔やマクロ孔が十分に多くなければ、大きな比表面積を十分に活用できないこととなる。   A larger specific surface area is preferable in terms of increasing the number of sites where sulfur compounds and the like are adsorbed, but the specific surface area is correlated with the amount of micropores, and the larger the specific surface area, the more micropores. However, if there are not enough mesopores and macropores that are paths to the micropores, adsorbates such as sulfur compounds cannot be smoothly diffused into the micropores. If all of the micropores and macropores are increased, the adsorbent becomes extremely low in strength and the shape of the activated carbon cannot be maintained. Therefore, the balance between the micropores, mesopores and macropores is important. Therefore, even if the specific surface area is increased unnecessarily, that is, the number of micropores is increased, the large specific surface area cannot be fully utilized unless the number of mesopores and macropores is sufficiently large.

本発明の吸着剤の比表面積は、脱硫性能などの吸着に大きく影響するので、200〜4,000m/gが好ましく、さらには300〜3,000m/g、特には450〜2,000m/gが好ましい。また、平均細孔径は細孔容量に比例し、比表面積に反比例する。平均細孔径が大きすぎると、細孔容量が大きすぎて十分な密度が得られなくなり、単位体積当たりの吸着容量が低くなる。また、平均細孔径が大きすぎると、比表面積が小さすぎて十分な吸着サイトが得られなくなり、やはり吸着容量が低くなる。本発明の吸着剤の平均細孔径は、20〜40Åが好ましく、さらには20〜35Å、特には20〜30Åが好ましい。 Since the specific surface area of the adsorbent of the present invention greatly affects adsorption such as desulfurization performance, it is preferably 200 to 4,000 m 2 / g, more preferably 300 to 3,000 m 2 / g, particularly 450 to 2,000 m. 2 / g is preferred. The average pore diameter is proportional to the pore volume and inversely proportional to the specific surface area. If the average pore diameter is too large, the pore volume is too large to obtain a sufficient density, and the adsorption capacity per unit volume becomes low. On the other hand, if the average pore diameter is too large, the specific surface area is too small to obtain sufficient adsorption sites, and the adsorption capacity is also lowered. The average pore diameter of the adsorbent of the present invention is preferably 20 to 40 mm, more preferably 20 to 35 mm, and particularly preferably 20 to 30 mm.

細孔容積は、比表面積とも関係があるが、0.10ml/g以上が好ましく、さらには0.20ml/g以上、特には0.25ml/g以上が好ましい。細孔直径10Å未満の細孔容積は、硫黄化合物などの吸着容量を大きくするために、0.05ml/g以上、特には0.10ml/g以上とすることが好ましい。また、細孔直径10Å以上0.1μm未満の細孔容積は、硫黄化合物の細孔内拡散速度を大きくするために、0.01ml/g以上、さらには0.02ml/g以上、特には0.03ml/g以上とすることが好ましい。細孔直径0.1μm以上の細孔容積は、成形体の機械的強度を高くするために、0.3ml/g以下、特には、0.25ml/g以下とすることが好ましい。なお、通常、比表面積、全細孔容積は、窒素吸着法により、マクロ孔容積は水銀圧入法により測定される。窒素吸着法は簡便で、一般的に用いられており、様々な文献に解説されている。例えば、鷲尾一裕:島津評論 48 (1) 35-49 (1991)、ASTM (American Society for Testing and Materials) Standard Test Method D 4365-95などである。   The pore volume is related to the specific surface area, but is preferably 0.10 ml / g or more, more preferably 0.20 ml / g or more, and particularly preferably 0.25 ml / g or more. The pore volume having a pore diameter of less than 10 mm is preferably 0.05 ml / g or more, particularly preferably 0.10 ml / g or more in order to increase the adsorption capacity of sulfur compounds and the like. In addition, the pore volume having a pore diameter of 10 mm or more and less than 0.1 μm is 0.01 ml / g or more, further 0.02 ml / g or more, particularly 0 in order to increase the diffusion rate of sulfur compounds in the pores. It is preferable to set it as 0.03 ml / g or more. The pore volume having a pore diameter of 0.1 μm or more is preferably 0.3 ml / g or less, particularly preferably 0.25 ml / g or less, in order to increase the mechanical strength of the molded article. In general, the specific surface area and the total pore volume are measured by a nitrogen adsorption method, and the macropore volume is measured by a mercury intrusion method. The nitrogen adsorption method is simple and commonly used, and is described in various documents. For example, Kazuhiro Hagio: Shimazu review 48 (1) 35-49 (1991), ASTM (American Society for Testing and Materials) Standard Test Method D 4365-95.

また、本発明の吸着剤では、吸着剤に用いられる炭素材料のマイクロポア比表面積Smicro[m/g]、マイクロポア外部細孔容積Vext[cm/g]及びマイクロポア外部比表面積Sext[m/g]が、下記式(1)を満足することが好ましい。
micro×2×Vext/Sext>0.7 ・・・(1)
In the adsorbent of the present invention, the micropore specific surface area S micro [m 2 / g], the micropore external pore volume V ext [cm 3 / g], and the micropore external specific surface area of the carbon material used for the adsorbent are used. It is preferable that S ext [m 2 / g] satisfies the following formula (1).
S micro × 2 × V ext / S ext > 0.7 (1)

本発明の吸着剤に用いられる炭素材料は、比表面積が大きく、且つ、細孔径20〜500Å程度のメソポアを有することが好ましい。炭素材料の解析で用いられる比表面積、細孔径及び細孔容積などのパラメータ測定は、一般に、ガス分子と固体表面との間に働く分子間力に基づく物理吸着を利用したガス吸着法、特に窒素吸着法が用いられる。炭素材料は、平均細孔径が20Å以下のものが多いのでその解析には注意を要する。一般によく使用されるBET(Brunouer-Emmett-Teller)法は、下記式(2)に基づいて炭素材料の比表面積を求める方法である。
x/V/(1−x)=1/V/C+(C−1)x/V/C ・・・(2)
ここで、xは相対圧、Vは相対圧がxである時の吸着量、Vは単分子層吸着量、そして、Cは定数(>0)である。すなわち、BET法では定数Cは正の値である必要があり、負となる場合は適当でない。定数C<0の場合は、計算に用いる相対圧を、例えば0.05〜0.1と低くするか、或いは、Langmuir法で比表面積、細孔径、細孔容積などのパラメータを求める場合が多い。Langmuir法では、下記式(3)に基づいて炭素材料の比表面積が求められる。
x/V=x/V+1/V/C ・・・(3)
ここで、xは相対圧、Vは相対圧がxである時の吸着量、Vは単分子層吸着量、そして、Cは定数(>0)である。それゆえ、Langmuir法でも定数Cが負となる場合は適当でない。定数C<0であり、定数C<0の場合には、再測定等が必要である。
The carbon material used for the adsorbent of the present invention preferably has a mesopore having a large specific surface area and a pore diameter of about 20 to 500 mm. Parameters such as specific surface area, pore diameter, and pore volume used in the analysis of carbon materials are generally measured by gas adsorption methods using physical adsorption based on intermolecular forces acting between gas molecules and solid surfaces, especially nitrogen. An adsorption method is used. Since many carbon materials have an average pore diameter of 20 mm or less, care must be taken in their analysis. A commonly used BET (Brunouer-Emmett-Teller) method is a method for obtaining the specific surface area of a carbon material based on the following formula (2).
x / V / (1-x) = 1 / V m / C B + (C B −1) x / V m / C B (2)
Here, x is the relative pressure, V is the adsorption amount when the relative pressure is x, V m is the monomolecular layer adsorption amount, and CB is a constant (> 0). That is, the constant C B is the BET method needs a positive value, not suitable if negative. When the constant C B <0, the relative pressure used for the calculation may be lowered to 0.05 to 0.1, for example, or parameters such as specific surface area, pore diameter, pore volume may be obtained by the Langmuir method. Many. In the Langmuir method, the specific surface area of the carbon material is obtained based on the following formula (3).
x / V = x / V m + 1 / V m / C L ··· (3)
Here, x is the relative pressure, V is the adsorption amount when the relative pressure is x, V m is the monomolecular layer adsorption amount, and CL is a constant (> 0). Therefore, it not appropriate if the constant C L is negative in Langmuir method. When the constant C B <0 and the constant C L <0, remeasurement or the like is necessary.

また、tプロット法によりマイクロポアの定量化が可能である。tプロット法では、横軸に吸着層の厚さt(相対圧の関数)、縦軸に吸着量をとり、吸着層の厚さtに対する炭素材料の吸着量の変化をプロットする。プロットされた特性において、tプロットの傾きが連続的に小さくなる吸着層の厚さ領域tが存在する。この領域tでは、多分子層吸着の進行に伴い、微細孔(マイクロポア)が吸着ガス(窒素)に満たされ、表面として寄与しなくなる。この現象は、吸着層の厚さ領域tでマイクロポアの充填が起こっていることに起因するので、吸着層の厚さtが領域tよりも小さい領域及び大きい領域では、ガス分子のマイクロポアへの充填や毛管凝縮は起こっていないので、tプロットの傾きは一定となる。それゆえ、吸着層の厚さtが領域tよりも大きい領域、すなわちガス分子のマイクロポアへの充填が終了した領域で直線を引くと、その傾きから炭素材料のマイクロポア以外の表面として寄与する部分の比表面積(外部比表面積)が求まる。また、吸着層の厚さtが領域tBよりも大きい領域で引かれた直線の縦軸の切片の値を液体に換算すれば、マイクロポア容積が求まる。以上のことをまとめると、炭素材料の吸着量V、マイクロポア外部比表面積Sext[m/g]、マイクロポア比表面積Smicro[m/g]、マイクロポア容積Vmicro[cm/g]及びマイクロポア外部細孔容積Vext[cm/g]は下記式(4)〜(8)で求められる。
V=αt+β (t>t) ・・・(4)
ext=α×10×D ・・・(5)
micro=β×D ・・・(6)
micro=S−Sext ・・・(7)
ext=V−Vmicro ・・・(8)
ここで、α[cm(STP:1atm、0℃)/g/nm]は吸着層の厚さtが領域tよりも大きい領域におけるtプロットの直線の傾き、β[cm(STP)/g]は吸着層の厚さtが領域tよりも大きい領域におけるtプロットの直線と縦軸との切片、Dは密度変換係数(ガスとして窒素使用時は0.001547)[cmliq/cm(STP)]、Sは全比表面積[m/g]、そして、Vは全細孔容積[cm/g]である。ただし、Sは上述のBET法やLangmuir法などで求めた全比表面積である。Vは、飽和蒸気圧に近い圧力における吸着ガス量を液体に換算した値と定義することが可能であり、例えば、相対圧0.95の時の吸着量[cm(STP)/g]にDを掛けた値である。
In addition, micropores can be quantified by the t plot method. In the t plot method, the horizontal axis represents the adsorption layer thickness t (function of relative pressure), and the vertical axis represents the adsorption amount, and the change in the adsorption amount of the carbon material with respect to the adsorption layer thickness t is plotted. In the plotted characteristics, there exists an adsorption layer thickness region t B in which the slope of the t plot continuously decreases. In the area t B, with the progress of the multi-molecule layer adsorption, the fine pore (micropore) is met adsorbed gas (nitrogen), it does not contribute as a surface. Since this phenomenon is caused by the filling of the micropores in the adsorption layer thickness region t B , in the region where the adsorption layer thickness t is smaller and larger than the region t B , the gas molecule micro- Since no pore filling or capillary condensation has occurred, the slope of the t plot is constant. Therefore, the thickness t is larger than the area t B region of the adsorption layer, i.e. draw a straight line in the region where the filling of the micropores of the gas molecules is completed, the contribution from the slope as the surface other than the micropores of the carbon material The specific surface area (external specific surface area) is determined. Further, if the value of the intercept on the vertical axis of the straight line drawn in the region where the thickness t of the adsorption layer is larger than the region tB is converted into liquid, the micropore volume can be obtained. In summary, the adsorption amount V of the carbon material, the micropore external specific surface area S ext [m 2 / g], the micropore specific surface area S micro [m 2 / g], the micropore volume V micro [cm 3 / g] and micropore external pore volume V ext [cm 3 / g] are obtained by the following formulas (4) to (8).
V = αt + β (t> t B ) (4)
S ext = α × 10 3 × D (5)
V micro = β × D (6)
S micro = S a -S ext ··· (7)
V ext = V a −V micro (8)
Here, α [cm 3 (STP: 1 atm, 0 ° C.) / G / nm] is the slope of the straight line of the t plot in the region where the thickness t of the adsorption layer is larger than the region t B , and β [cm 3 (STP) / g] (0.001547 when the nitrogen used as a gas) intercept of the straight line and the longitudinal axis of the t plot in the region greater than the thickness t of the region t B of the adsorption layer, D is the density conversion coefficients are [cm 3 liq / Cm 3 (STP)], S a is the total specific surface area [m 2 / g], and V a is the total pore volume [cm 3 / g]. However, S a is the total specific surface area determined by such aforementioned BET method or Langmuir method. V a can be defined as a value obtained by converting the amount of adsorbed gas at a pressure close to the saturated vapor pressure into a liquid. For example, the adsorbed amount [cm 3 (STP) / g] when the relative pressure is 0.95. Is the value of D multiplied by D.

炭素材料の多くは、マイクロポアが大部分であり、マイクロポア外部のメソポアはほとんど存在しない。しかしながら、本発明者の検証実験によりマイクロポア外部に存在する微量のメソポアが硫黄化合物の吸着に大きく影響することを見出した。本発明者は、メソポアの影響を表す指標として、2×Vext/Sextの値が好適であることを見出した。2×V/Sという値は細孔が円筒形であると仮定した場合の平均細孔半径(D/2)或いは平板状細孔の壁間距離を表すので、2×Vext/Sextはメソポアの平均細孔半径(Dext/2)或いは壁間距離に近い値を表す指標である。さらに、本発明者は、先に軽油や灯油に含まれるジベンゾチオフェン類に対して高い除去性能を有する特定の細孔構造を有する活性炭、特に繊維状活性炭を提案した。硫黄化合物の吸着に関して、炭素材料のマイクロポア比表面積及びメソポア平均細孔半径(或いは壁間距離)が大きいほど好ましく、特に、両者の積(Smicro×2×Vext/Sext)の値が大きいほど炭素材料の吸着性能が向上することを見出した。具体的には、Smicro×2×Vext/Sextの値としては0.7cm/g以上、より好ましくは3.0cm/g以上、さらに好ましくは5.0cm/g以上で炭素材料の吸着性能が向上することが分かった。この原因は明らかではないが、炭素材料の吸着性能は単純にメソポアの量に依存するのではなく、炭素材料の吸着性能向上のためには、硫黄化合物の吸着により閉塞することのない十分な径のメソポアが必要であることを表しているものと考えられる。 Many of the carbon materials are mainly micropores, and there are almost no mesopores outside the micropores. However, it has been found through a verification experiment by the present inventors that a very small amount of mesopores existing outside the micropores greatly affects the adsorption of sulfur compounds. The present inventor has found that a value of 2 × Vext / Sex is suitable as an index representing the influence of mesopores. Since the value 2 × V a / S a represents the average pore radius (D a / 2) or the distance between the walls of the plate-like pores assuming that the pores are cylindrical, 2 × V ext / S ext is an index representing a value close to the average pore radius (D ext / 2) of the mesopores or the distance between the walls. Furthermore, the present inventor has previously proposed an activated carbon having a specific pore structure, particularly a fibrous activated carbon, having high removal performance with respect to dibenzothiophenes contained in light oil and kerosene. Regarding the adsorption of sulfur compounds, it is preferable that the micropore specific surface area and the mesopore average pore radius (or the wall-to-wall distance) of the carbon material are large, and in particular, the product of both (S micro × 2 × V ext / S ext ) has a value. It has been found that the larger the value, the better the adsorption performance of the carbon material. Specifically, the value of S micro × 2 × V ext / S ext 0.7cm 3 / g or more, more preferably 3.0 cm 3 / g or more, the carbon and even more preferably at 5.0 cm 3 / g or more It was found that the material adsorption performance is improved. The cause of this is not clear, but the adsorption performance of the carbon material does not simply depend on the amount of mesopores, and in order to improve the adsorption performance of the carbon material, a sufficient diameter that does not clog due to adsorption of sulfur compounds. It is thought that this represents the need for other mesopores.

本発明の吸着剤を脱硫に用いて、軽油中に含まれる硫黄分を低濃度まで除去するためには、例えば15ppm以下にするためには、吸着剤に用いられる炭素材料の充填密度を十分高くすることが望ましい。具体的には、炭素材料の充填密度C[g−adsorbent/ml-adsorbent]と、液相状態にある軽油の硫黄濃度が15ppmである場合の炭素材料単位重量当たりの吸着容量A[g−S/g−adsorbent]と、軽油の密度B[g/ml]との間には少なくとも下記式(9)が満足されていなければならない。
C>B×k÷A ・・・(9)
ここで、k=0.000015[g−S/g]である。なお、液相状態にある軽油の硫黄濃度が15ppmの場合、炭素材料単位重量当たりの吸着容量Aは吸着脱硫工程の温度での吸着等温線から求められる。
In order to remove sulfur contained in light oil to a low concentration by using the adsorbent of the present invention for desulfurization, for example, to make it 15 ppm or less, the packing density of the carbon material used for the adsorbent is sufficiently high. It is desirable to do. Specifically, the packing density C [g-adsorbent / ml-adsorbent] of the carbon material and the adsorption capacity A [g-S per unit weight of the carbon material when the sulfur concentration of the gas oil in the liquid phase is 15 ppm. / G-adsorbent] and the density B [g / ml] of the light oil must satisfy at least the following formula (9).
C> B × k ÷ A (9)
Here, k = 0.000015 [g-S / g]. When the sulfur concentration of the light oil in the liquid phase is 15 ppm, the adsorption capacity A per unit weight of the carbon material can be obtained from the adsorption isotherm at the temperature of the adsorption desulfurization process.

上述した炭素材料は、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類の吸着性能が優れており、ゼオライト主成分の吸着剤と比べてベンゾチオフェン類、ジベンゾチオフェン類、特にジベンゾチオフェン類の吸着性能が優れており、また、多環芳香族化合物は吸着するが、一環芳香族分の影響は少ない。
一方、ゼオライト成分は、炭素材料と比べてメルカプタン類、鎖状スルフィド類、環状スルフィド類の吸着性能が優れている。従って、石油留分に含まれる硫黄化合物の種類及び量に応じて、吸着剤として炭素材料にゼオライト成分を組み合わせて用いることにより、石油留分に含まれる硫黄化合物を効率的に除去することが可能となる。ゼオライトの種類としては、X型ゼオライト、Y型ゼオライト、L型ゼオライト、モルデナイト、フェリエライト、βゼオライトなどが挙げられる。
The above-mentioned carbon materials have excellent adsorption performance for thiophenes, benzothiophenes, and dibenzothiophenes, and are superior in adsorption performance for benzothiophenes and dibenzothiophenes, especially dibenzothiophenes, compared to zeolite-based adsorbents. In addition, although polycyclic aromatic compounds are adsorbed, there is little influence on aromatic content.
On the other hand, the zeolite component is superior in adsorption performance for mercaptans, chain sulfides, and cyclic sulfides as compared with carbon materials. Therefore, depending on the type and amount of sulfur compounds contained in petroleum fractions, it is possible to efficiently remove sulfur compounds contained in petroleum fractions by using a combination of zeolite components and carbon materials as adsorbents. It becomes. Examples of the type of zeolite include X-type zeolite, Y-type zeolite, L-type zeolite, mordenite, ferrierite, and β-zeolite.

本発明の吸着剤と炭化水素油とを接触させる方法は、回分式(バッチ式)でも流通式でも良いが、成形品の吸着剤を充填した容器に炭化水素油を流通する流通式がより好ましい。
流通式の場合、接触させる条件としては、圧力は、常圧〜50kg/cmG、が好ましく、常圧〜10kg/cmGがより好ましく、特には0.1〜3kg/cmGが好ましい。流量は、LHSVで0.01〜100hr−1、特には0.05〜20hr−1が好ましい。脱硫処理を行う温度は、10〜150℃、特には30〜100℃が好ましい。
The method of bringing the adsorbent of the present invention into contact with hydrocarbon oil may be a batch type (batch type) or a flow type, but a flow type in which hydrocarbon oil is circulated in a container filled with the adsorbent of a molded product is more preferable. .
For flow-through, as a condition for contacting the pressure is atmospheric pressure to 50 kg / cm 2 G, is more preferably from atmospheric pressure to 10 kg / cm 2 G, particularly 0.1~3kg / cm 2 G preferable. The flow rate is preferably 0.01 to 100 hr −1 , particularly 0.05 to 20 hr −1 in LHSV. The temperature for performing the desulfurization treatment is preferably 10 to 150 ° C, particularly 30 to 100 ° C.

燃料電池システムにおいて、本発明の吸着剤を使用する場合には、本発明の吸着剤と他の吸着剤とを組み合わせて使用しても良い。本発明の吸着剤は、ジベンゾチオフェン類の除去性能に特に優れているので、ベンゾチオフェン類、メルカプタン類、或いは、スルフィド類など、他の種類の硫黄化合物の除去性能に優れた他の吸着剤、例えば、ベンゾチオフェン類の除去については本発明者が先に提案した固体酸触媒及び/又は遷移金属酸化物が担持された活性炭などの脱硫剤、メルカプタン類の除去については本発明が先に提案した酸化銅担持アルミナ、スルフィド類の除去についてはゼオライトなどとの組み合わせが好ましい。   When the adsorbent of the present invention is used in a fuel cell system, the adsorbent of the present invention may be used in combination with another adsorbent. Since the adsorbent of the present invention is particularly excellent in removal performance of dibenzothiophenes, other adsorbents excellent in removal performance of other types of sulfur compounds such as benzothiophenes, mercaptans, or sulfides, For example, for the removal of benzothiophenes, the present invention has previously proposed the removal of desulfurization agents such as activated carbon on which a solid acid catalyst and / or transition metal oxide is supported, and mercaptans, which the present inventor previously proposed. A combination with zeolite or the like is preferable for removing copper oxide-supported alumina and sulfides.

製油所等において本吸着剤を使用する場合には、吸着剤を充填した吸着槽(または吸着塔)を2槽以上設置することが好ましい。まず1槽の吸着槽に硫黄化合物や多環芳香族化合物を吸着除去する炭化水素油を流通し、吸着剤の除去性能が低下して十分な除去硫性能が得られなくなった段階で別の吸着槽に切り替える。切り離された吸着槽は、新品の吸着剤に交換するか、又は劣化した吸着剤を脱着再生し、吸着工程中の吸着槽との切り替えに備える。さらに、吸着槽を2槽以上直列に接続し、最も上流側の吸着槽の除去性能がまったく無くなるか、或いは、著しく低下した段階で、当該吸着槽の使用を中止し、最も下流に新品の吸着剤を充填した、又は脱着再生した吸着槽が常に接続される方法が特に好ましい。   When the present adsorbent is used in a refinery or the like, it is preferable to install two or more adsorption tanks (or adsorption towers) filled with the adsorbent. First, the hydrocarbon oil that adsorbs and removes sulfur compounds and polycyclic aromatic compounds is circulated in one adsorption tank. When the removal performance of the adsorbent is reduced and sufficient removal performance cannot be obtained, another adsorption is performed. Switch to the tank. The separated adsorption tank is replaced with a new adsorbent, or the deteriorated adsorbent is desorbed and regenerated to prepare for switching to the adsorption tank during the adsorption process. Furthermore, two or more adsorption tanks are connected in series, and when the removal performance of the adsorption tank on the most upstream side is completely lost or significantly reduced, the use of the adsorption tank is stopped and a new adsorption is most downstream. A method in which an adsorption tank filled with an agent or desorbed and regenerated is always connected is particularly preferable.

以下本発明を実施例によりさらに具体的に説明するが,本発明はそれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

秋田県大潟村産あきたこまち(2002年収穫)、秋田県西木村産あきたこまち(2003年収穫)、秋田県雄勝郡産あきたこまち(2003年収穫)、秋田県由利本荘市産ひとめぼれ(2003年収穫)、秋田県横手市産あきたこまち(2003年収穫)及び静岡県豊岡村産(2004年収穫)の稲の籾殻、秋田県で生産された杉を、表1に示す条件で炭化処理及び賦活処理を行った。炭化処理は、真空下(5hPa)、200hPaの減圧下、又は常圧、窒素雰囲気下で、400〜900℃、1〜3時間の範囲で実施した。さらに、一部の試料については、賦活処理を、二酸化炭素雰囲気で、800〜900℃、0.25〜5時間の範囲で実施した。   Akitakomachi from Ogata Village, Akita Prefecture (2002 harvest), Akitakomachi from Nishikimura, Akita Prefecture (2003 harvest), Akitakomachi from Ogatsu-gun, Akita Prefecture (2003 harvest), Hitomebori from Yurihonjo, Akita Prefecture (2003 harvest), Akita Prefecture Rice husks from Yokote City Akitakomachi (harvested in 2003) and Toyooka village in Shizuoka Prefecture (harvested in 2004) and cedar produced in Akita Prefecture were carbonized and activated under the conditions shown in Table 1. The carbonization treatment was performed in a range of 400 to 900 ° C. for 1 to 3 hours under vacuum (5 hPa), reduced pressure of 200 hPa, or normal pressure and under a nitrogen atmosphere. Furthermore, about a part of sample, the activation process was implemented in the range of 800-900 degreeC and 0.25-5 hours in the carbon dioxide atmosphere.

Figure 0004963616
Figure 0004963616

表1に記載の炭化処理及び賦活処理を行って得られた各活性炭の比表面積、細孔容積及び平均細孔径、マイクロポア外部比表面積Sext、マイクロポア容積、マイクロポア比表面積Smicro、マイクロポア平均細孔径Dmicro、マイクロポア外部細孔容積Vext、外部平均細孔径Dext、マイクロポア比表面積×外部平均細孔径/2(Smicro×Dext/2)を表2及び表3に示す。なお、平均細孔径[Å]は、次式(10)により求めた。
平均細孔径[Å]
=4×細孔容積[ml/g]/比表面積[m/g]×10 (10)
Specific surface area, pore volume and average pore diameter, micropore external specific surface area S ext , micropore volume, micropore specific surface area S micro , micro of each activated carbon obtained by performing carbonization treatment and activation treatment described in Table 1 Tables 2 and 3 show the pore average pore diameter D micro , micropore external pore volume V ext , external average pore diameter D ext , micropore specific surface area × external average pore diameter / 2 (S micro × D ext / 2). Show. The average pore diameter [Å] was determined by the following formula (10).
Average pore size [Å]
= 4 × pore volume [ml / g] / specific surface area [m 2 / g] × 10 4 (10)

窒素雰囲気下400〜600℃で1〜3時間炭化処理した後に、二酸化炭素雰囲気下800〜900℃で1〜3時間賦活処理を行うか、あるいは、減圧下900℃で1時間炭化処理を行うと、比表面積が大きく、且つ、細孔容積の大きい活性炭が得られることが分かる。また同様の炭化処理及び賦活処理でも、籾殻の産地により物性が異なることが分かる。さらに、籾殻と杉を比較すると、杉の方が比表面積は大きいが、平均細孔径は小さいことが分かる。尚、原料により最適賦活処理温度は異なり、籾殻を原料とした場合、賦活化処理温度は、炭酸ガス雰囲気下、850℃であったが、杉を原料とした場合、賦活処理温度は、炭酸ガス雰囲気下、850℃以上とすると収率が著しく低下することから、800℃で行った。   When carbonization treatment is performed at 400 to 600 ° C. for 1 to 3 hours in a nitrogen atmosphere and then activation treatment is performed at 800 to 900 ° C. for 1 to 3 hours in a carbon dioxide atmosphere, or carbonization treatment is performed at 900 ° C. for 1 hour under reduced pressure. It can be seen that activated carbon having a large specific surface area and a large pore volume can be obtained. It can also be seen that the physical properties differ depending on the rice husk producing area even in the same carbonization treatment and activation treatment. Furthermore, comparing rice husk and cedar, it can be seen that cedar has a larger specific surface area but a smaller average pore diameter. The optimum activation treatment temperature differs depending on the raw material. When rice husk was used as the raw material, the activation treatment temperature was 850 ° C. in a carbon dioxide atmosphere. However, when cedar was used as the raw material, the activation treatment temperature was carbon dioxide. When the temperature was 850 ° C. or higher in the atmosphere, the yield was remarkably lowered.

Figure 0004963616
Figure 0004963616

Figure 0004963616
Figure 0004963616

上記のようにして調製した実施例1〜20、及び比較例1〜10の活性炭を吸着剤として用い、灯油への浸せき式吸着実験を実施した。調製した活性炭は、予め、150℃で3時間乾燥した。尚、賦活処理後にも籾殻は籾殻の形状を保持するなど原料形状を保持しているが、粉砕などは行わなかった。吸着剤に対する灯油の比率(重量)を8又は30として、灯油に吸着剤を浸せきし、10℃にて4日間静置後、灯油の硫黄分を分析した。浸せき前後の硫黄分の値から、次の式(11)により吸着除去した硫黄分の割合を脱硫率[%]として算出した。結果を表4に示す。
脱硫率[%]=100×(S−S)/S (11)
式中、S及びSは、それぞれ浸せき前及び浸せき後の硫黄分を示す。
The activated carbons of Examples 1 to 20 and Comparative Examples 1 to 10 prepared as described above were used as adsorbents, and immersion adsorption experiments with kerosene were performed. The prepared activated carbon was previously dried at 150 ° C. for 3 hours. Even after the activation treatment, the rice husk maintained the raw material shape such as the shape of the rice husk, but was not pulverized. The ratio (weight) of kerosene to the adsorbent was set to 8 or 30, and the adsorbent was immersed in kerosene and allowed to stand at 10 ° C. for 4 days, and then the sulfur content of kerosene was analyzed. From the value of the sulfur content before and after the immersion, the ratio of the sulfur content adsorbed and removed by the following formula (11) was calculated as the desulfurization rate [%]. The results are shown in Table 4.
Desulfurization rate [%] = 100 × (S 1 −S 2 ) / S 1 (11)
In the formula, S 1 and S 2 represent the sulfur content before and after immersion, respectively.

Figure 0004963616
Figure 0004963616

なお、上記の浸せき式吸着実験には、ジャパンエナジー社製の灯油を用いた。その性状は、沸点範囲158.5〜270.0℃、5%留出点170.5℃、10%留出点175.0℃、20%留出点181.5℃、30%留出点188.0℃、40%留出点194.5℃、50%留出点202.5℃、60%留出点211.0℃、70%留出点221.0℃、80%留出点232.0℃、90%留出点245.5℃、95%留出点256.5℃、97%留出点263.5℃、密度(15℃)0.7982g/ml、芳香族分17.5容量%、飽和分82.5容量%、硫黄分13.6質量ppm、軽質硫黄化合物(ベンゾチオフェンよりも軽質の硫黄化合物)に由来する硫黄分16質量ppb、ベンゾチオフェン類(ベンゾチオフェン、及びベンゾチオフェンよりも重質でありジベンゾチオフェンよりも軽質の硫黄化合物)に由来する硫黄分9.6質量ppm、ジベンゾチオフェン類(ジベンゾチオフェン、及びジベンゾチオフェンよりも重質の硫黄化合物)に由来する硫黄分4.0質量ppm(硫黄分全体に占める割合29質量%)、窒素分1質量ppm以下、多環芳香族分(2環、2.5環及び3環芳香族含有量の合計)0.29質量%であった。硫黄分は燃料酸化-紫外蛍光法硫黄分析装置を用いて、硫黄化合物のタイプはガスクロマトグラフ−誘導結合プラズマ質量分析装置(GC−ICP-MS)、多環芳香族定量分析は英国石油協会(The Institute of Petroleum)規格IP標準法391/95(屈折率検出器を用いた高速液体クロマトグラフによる中間留出物の芳香族炭化水素の分析)を用いて分析した。   In the above immersion type adsorption experiment, kerosene manufactured by Japan Energy Co., Ltd. was used. Its properties are the boiling range 158.5 to 270.0 ° C, 5% distillation point 170.5 ° C, 10% distillation point 175.0 ° C, 20% distillation point 181.5 ° C, 30% distillation point. 188.0 ° C, 40% distillation point 194.5 ° C, 50% distillation point 202.5 ° C, 60% distillation point 211.0 ° C, 70% distillation point 221.0 ° C, 80% distillation point 232.0 ° C, 90% distillation point 245.5 ° C, 95% distillation point 256.5 ° C, 97% distillation point 263.5 ° C, density (15 ° C) 0.7982 g / ml, aromatic content 17 0.5% by volume, 82.5% by volume of saturation, 13.6 mass ppm of sulfur, 16 mass ppb of sulfur derived from light sulfur compound (lighter sulfur compound than benzothiophene), benzothiophenes (benzothiophene, And heavier than benzothiophene and lighter than dibenzothiophene) Coming sulfur content 9.6 mass ppm, sulfur content 4.0 mass ppm derived from dibenzothiophenes (dibenzothiophene and sulfur compounds heavier than dibenzothiophene) (ratio 29 mass% in the total sulfur content), The nitrogen content was 1 mass ppm or less and the polycyclic aromatic content (the total of the contents of the 2-ring, 2.5-ring and 3-ring aromatic) was 0.29 mass%. The sulfur content was measured using a fuel oxidation-ultraviolet fluorescence sulfur analyzer, the sulfur compound type was gas chromatograph-inductively coupled plasma mass spectrometer (GC-ICP-MS), and the polycyclic aromatic quantitative analysis was performed by the British Petroleum Institute (The Institute of Petroleum) standard IP standard method 391/95 (analysis of aromatic hydrocarbons in middle distillate by high performance liquid chromatograph using refractive index detector).

窒素雰囲気下400〜600℃で1時間炭化処理した後に、二酸化炭素雰囲気下800〜900℃で1〜3時間賦活処理を行うか、あるいは、減圧下900℃で1時間炭化処理を行い作製した活性炭は脱硫率が高いことが分かる。また、籾殻と杉を比較すると、杉の方が比表面積は大きいにも拘らず、籾殻の方が高い脱硫率を得られることが分かる。
尚、活性炭は主にジベンゾチオフェン類を選択的に除去することから、又、灯油に含まれるジベンゾチオフェン類の含有量は、硫黄分全体に対して約30%であるので、脱硫率30%程度より高い脱硫率を得ることは困難である。
実施例2の活性炭で灯油/吸着剤比:8/1の条件で吸着試験を行った脱硫後の灯油の多環芳香族分は0.23質量%であった。本発明の吸着剤が、硫黄化合物と同様に多環芳香族化合を吸着除去できることがわかる。
Activated carbon produced by carbonization treatment at 400 to 600 ° C. for 1 hour under a nitrogen atmosphere and then activation treatment at 800 to 900 ° C. for 1 to 3 hours under a carbon dioxide atmosphere or carbonization treatment at 900 ° C. for 1 hour under reduced pressure. Shows that the desulfurization rate is high. In addition, comparing rice husk and cedar, it can be seen that cedar can obtain a higher desulfurization rate even though cedar has a larger specific surface area.
In addition, since activated carbon mainly removes dibenzothiophenes selectively, the content of dibenzothiophenes contained in kerosene is about 30% with respect to the entire sulfur content, so the desulfurization rate is about 30%. It is difficult to obtain a higher desulfurization rate.
The polycyclic aromatic content of kerosene after desulfurization, which was subjected to an adsorption test under the condition of kerosene / adsorbent ratio: 8/1 with the activated carbon of Example 2, was 0.23% by mass. It can be seen that the adsorbent of the present invention can adsorb and remove polycyclic aromatic compounds in the same manner as sulfur compounds.

(参考)
実施例2の活性炭で灯油/吸着剤比:8/1の条件で吸着試験を行った脱硫後の灯油をさらにタングステン酸・アルミナ(比表面積102m/g、細孔容積0.316ml/g、中央細孔径101Å、タングステン酸20質量%、ジルコニア53質量%、アルミナ25質量%)で同様の浸せき式吸着実験を実施した。タングステン酸・アルミナに対する灯油の比率(重量)は4とした。実験後の灯油の硫黄分は20質量ppb以下であった。
(reference)
Kerosene after desulfurization, which was subjected to an adsorption test with the activated carbon of Example 2 under the condition of kerosene / adsorbent ratio: 8/1, was further treated with tungstic acid / alumina (specific surface area 102 m 2 / g, pore volume 0.316 ml / g, The same immersion type adsorption experiment was performed with a median pore diameter of 101 mm, tungstic acid 20 mass%, zirconia 53 mass%, and alumina 25 mass%. The ratio (weight) of kerosene to tungstic acid / alumina was 4. The sulfur content of the kerosene after the experiment was 20 mass ppb or less.

(実施例22)
成形吸着剤の製造
大潟村産あきたこまちの籾殻を窒素雰囲気下400℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の糖類(甜菜、黒糖及びさとうきび)に同じ重さの水を加えた後に、約100℃で熱して徐々に水分を蒸発させ、流動性のある液体(シロップ状糖類)を得た。炭化籾殻1.0gに対してシロップ状糖類を0.7g(乾燥基準)混合してペーストを調製した。該ペーストを1ton/cmの圧力で1分間プレスして直径15mm、厚さ5.0〜7.3mmのディスク状に成形した。その後に、該ディスク状成形物を二酸化炭素雰囲気下850℃で1〜2時間賦活処理を行った。その結果得られた賦活処理物の性状等を表5に示す。賦活処理後にもディスク形状を維持し、成形しない場合と同様に比表面積も高く、糖類をバインダーとすることにより成形が可能であることが分かる。
(Example 22)
Manufacture of molded adsorbent Akitakomachi rice husk from Ogatamura was carbonized at 400 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husk. Also, after adding water of the same weight to fully dried powdered saccharides (sugar beet, brown sugar and sugarcane), heat at about 100 ° C. to gradually evaporate the water, and a fluid liquid (syrupy saccharides) ) A paste was prepared by mixing 0.7 g (dry basis) of syrup sugars with 1.0 g of carbonized rice husk. The paste was pressed at a pressure of 1 ton / cm 2 for 1 minute to form a disk having a diameter of 15 mm and a thickness of 5.0 to 7.3 mm. Thereafter, the disk-shaped molded product was subjected to activation treatment at 850 ° C. for 1 to 2 hours in a carbon dioxide atmosphere. Table 5 shows the properties and the like of the activated product obtained as a result. It can be seen that the disk shape is maintained even after the activation treatment, and the specific surface area is high as in the case where the molding is not performed, and the molding can be performed by using a saccharide as a binder.

Figure 0004963616
Figure 0004963616

(実施例23)
静岡県豊岡村産こしひかり(2004年収穫)の籾殻を窒素雰囲気下250℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の甜菜に同じ重さの水を加えた後に、約100℃で熱して徐々に水分を蒸発させ、流動性のある液体(シロップ状甜菜)を得た。炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.7g(乾燥基準)混合してペーストを調製した。該ペーストを3ton/cmの圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に成形した。窒素雰囲気下400℃で1時間炭化し、2回炭化籾殻を得た。2回炭化籾殻を粉砕した後に、2回炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.3g(乾燥基準)混合してペーストを調製した。該ペーストを3ton/cmの圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に成形した。その後に、該ディスク状成形物を二酸化炭素雰囲気下875℃で1時間賦活処理を行った。
(Example 23)
The rice husks from Koshihikari (harvested in 2004) from Toyooka Village, Shizuoka Prefecture were carbonized at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husks. Moreover, after adding water of the same weight to the sufficiently dried powdery side dish, the liquid was gradually evaporated by heating at about 100 ° C. to obtain a fluid liquid (syrupy side dish). A paste was prepared by mixing 0.7 g (dry basis) of syrupy sugar beet with 1.0 g of carbonized rice husk. The paste was pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk having a diameter of 30 mm and a thickness of 2 mm. Carbonization was performed at 400 ° C. for 1 hour under a nitrogen atmosphere to obtain carbonized rice husk twice. After pulverizing the carbonized rice husk twice, a paste was prepared by mixing 0.3 g (dry basis) of syrupy sugar beet with 1.0 g of carbonized rice husk twice. The paste was pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk having a diameter of 30 mm and a thickness of 2 mm. Thereafter, the disk-shaped product was subjected to activation treatment at 875 ° C. for 1 hour in a carbon dioxide atmosphere.

(実施例24)
静岡県豊岡村産こしひかり(2004年収穫)の籾殻を窒素雰囲気下250℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の甜菜に11倍の重さの水を加えた後に、ホットスタラーで200rpmで攪拌しつつ約60℃まで昇温し、10分間保持して、甜菜溶液を得た。炭化籾殻2.0gに対して甜菜溶液を甜菜として2.0g(乾燥基準)噴霧して甜菜含浸炭化籾殻を調製した。18時間放置後、該甜菜含浸炭化籾殻を105℃のオーブンで2時間乾燥させた後に、窒素雰囲気下400℃で1時間炭化し、2回炭化籾殻を得た。2回炭化籾殻を粉砕した後に、2回炭化籾殻1.4gに対して甜菜溶液を甜菜として0.6g(乾燥基準)噴霧して2回甜菜含浸2回炭化籾殻を調製した。18時間放置後、該2回甜菜含浸2回炭化籾殻を3ton/cmの圧力で1分間プレスして直径30mm、厚さ3mmのディスク状に成形した。105℃のオーブンで1時間乾燥させた後に、該ディスク状成形物を二酸化炭素雰囲気下875℃で1時間賦活処理を行った。
(Example 24)
The rice husks from Koshihikari (harvested in 2004) from Toyooka Village, Shizuoka Prefecture were carbonized at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husks. In addition, after adding 11 times the weight of water to a well-dried powdered side dish, the temperature was raised to about 60 ° C. while stirring at 200 rpm with a hot stirrer and held for 10 minutes to obtain a side dish solution It was. A sugar beet-impregnated carbonized rice husk was prepared by spraying 2.0 g (dry basis) of the sugar beet solution with 2.0 g (dry basis) of the carbonized rice husk. After standing for 18 hours, the sugar beet-impregnated rice husk was dried in an oven at 105 ° C. for 2 hours, and then carbonized at 400 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husk twice. After pulverizing the carbonized rice husk twice, 0.6 g (dry basis) of the sugar beet solution was sprayed onto 1.4 g of the carbonized rice husk twice to prepare a carbonized rice husk twice impregnated with the sugar beet twice. After standing for 18 hours, the carbonized rice husks impregnated twice with the sugar beet twice were pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk with a diameter of 30 mm and a thickness of 3 mm. After drying in an oven at 105 ° C. for 1 hour, the disk-shaped molded product was subjected to activation treatment at 875 ° C. for 1 hour in a carbon dioxide atmosphere.

(実施例25)
静岡県豊岡村産こしひかり(2004年収穫)の籾殻を窒素雰囲気下250℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の甜菜に2.5倍の重さの水を加えた後に、ホットスタラーで200rpmで攪拌しつつ約60℃まで昇温し、10分間保持して、甜菜溶液を得た。炭化籾殻2.0gに対して甜菜溶液を甜菜として2.0g(乾燥基準)噴霧して甜菜含浸炭化籾殻を調製した。18時間放置後、該甜菜含浸炭化籾殻を105℃のオーブンで2時間乾燥させた後に、窒素雰囲気下400℃で1時間炭化し、2回炭化籾殻を得た。2回炭化籾殻を粉砕した後に、2回炭化籾殻1.5gに対して甜菜溶液を甜菜として0.6g(乾燥基準)噴霧して2回甜菜含浸2回炭化籾殻を調製した。18時間放置後、該2回甜菜含浸2回炭化籾殻を3ton/cmの圧力で1分間プレスして直径30mm、厚さ3mmのディスク状に成形した。105℃のオーブンで1時間乾燥させた後に、該ディスク状成形物を二酸化炭素雰囲気下875℃で1時間賦活処理を行った。
(Example 25)
The rice husks from Koshihikari (harvested in 2004) from Toyooka Village, Shizuoka Prefecture were carbonized at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husks. Also, after adding 2.5 times the weight of water to the well-dried powdered side dish, the temperature was raised to about 60 ° C. while stirring at 200 rpm with a hot stirrer and held for 10 minutes to prepare a side dish solution Got. A sugar beet-impregnated carbonized rice husk was prepared by spraying 2.0 g (dry basis) of the sugar beet solution with 2.0 g (dry basis) of the carbonized rice husk. After standing for 18 hours, the sugar beet-impregnated rice husk was dried in an oven at 105 ° C. for 2 hours, and then carbonized at 400 ° C. for 1 hour in a nitrogen atmosphere to obtain carbonized rice husk twice. After pulverizing the carbonized rice husk twice, 0.6 g (dry basis) of the sugar beet solution was sprayed on 1.5 g of the carbonized rice husk twice to prepare a carbonized rice husk twice impregnated with the sugar beet twice. After standing for 18 hours, the carbonized rice husks impregnated twice with the sugar beet twice were pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk with a diameter of 30 mm and a thickness of 3 mm. After drying in an oven at 105 ° C. for 1 hour, the disk-shaped molded product was subjected to activation treatment at 875 ° C. for 1 hour in a carbon dioxide atmosphere.

(実施例26)
秋田県西木村産あきたこまち(2005年収穫)の籾殻を窒素雰囲気下250℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の甜菜に同じ重さの水を加えた後に、約100℃で熱して徐々に水分を蒸発させ、流動性のある液体(シロップ状甜菜)を得た。炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.7g(乾燥基準)混合してペーストを調製した。該ペーストを3ton/cmの圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に成形した。窒素雰囲気下400℃で1時間炭化し、2回炭化籾殻を得た。2回炭化籾殻を粉砕した後に、2回炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.2g(乾燥基準)混合してペーストを調製した。該ペーストを3ton/cmの圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に成形した。その後に、該ディスク状成形物を二酸化炭素雰囲気下875℃で1時間賦活処理を行った。
(Example 26)
Rice husks from Akitamachi (Nikki-mura, 2005) from Nishiki Village, Akita Prefecture were carbonized for 1 hour at 250 ° C. in a nitrogen atmosphere to obtain carbonized husks. Moreover, after adding water of the same weight to the sufficiently dried powdery side dish, the liquid was gradually evaporated by heating at about 100 ° C. to obtain a fluid liquid (syrupy side dish). A paste was prepared by mixing 0.7 g (dry basis) of syrupy sugar beet with 1.0 g of carbonized rice husk. The paste was pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk having a diameter of 30 mm and a thickness of 2 mm. Carbonization was performed at 400 ° C. for 1 hour under a nitrogen atmosphere to obtain carbonized rice husk twice. After pulverizing the carbonized rice husk twice, 0.2 g (dry basis) of syrup-like sugar beet was mixed with 1.0 g of carbonized rice husk twice to prepare a paste. The paste was pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk having a diameter of 30 mm and a thickness of 2 mm. Thereafter, the disk-shaped product was subjected to activation treatment at 875 ° C. for 1 hour in a carbon dioxide atmosphere.

(実施例27)
秋田県西木村産あきたこまち(2005年収穫)の籾殻を窒素雰囲気下250℃で1時間炭化し、炭化籾殻を得た。また、十分乾燥させた粉末状の甜菜に同じ重さの水を加えた後に、約100℃で熱して徐々に水分を蒸発させ、流動性のある液体(シロップ状甜菜)を得た。炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.7g(乾燥基準)付着させて、甜菜付着炭化籾殻を調製した。該甜菜付着炭化籾殻を窒素雰囲気下400℃で1時間炭化し、2回炭化籾殻を得た。2回炭化籾殻を粉砕した後に、2回炭化籾殻1.0gに対してシロップ状甜菜を甜菜として0.2g(乾燥基準)混合してペーストを調製した。該ペーストを3ton/cmの圧力で1分間プレスして直径30mm、厚さ2mmのディスク状に成形した。その後に、該ディスク状成形物を二酸化炭素雰囲気下875℃で1時間賦活処理を行った。
(Example 27)
Rice husks from Akitamachi (Nikki-mura, 2005) from Nishiki Village, Akita Prefecture were carbonized for 1 hour at 250 ° C. in a nitrogen atmosphere to obtain carbonized husks. Moreover, after adding water of the same weight to the sufficiently dried powdery side dish, the liquid was gradually evaporated by heating at about 100 ° C. to obtain a fluid liquid (syrupy side dish). A sugar beet-attached carbonized rice husk was prepared by attaching 0.7 g (dry basis) of syrup-like sugar beet to 1.0 g of carbonized rice husk. The carbonized rice husk with attached sugar beet was carbonized at 400 ° C. for 1 hour under a nitrogen atmosphere to obtain carbonized rice husk twice. After pulverizing the carbonized rice husk twice, 0.2 g (dry basis) of syrup-like sugar beet was mixed with 1.0 g of carbonized rice husk twice to prepare a paste. The paste was pressed at a pressure of 3 ton / cm 2 for 1 minute to form a disk having a diameter of 30 mm and a thickness of 2 mm. Thereafter, the disk-shaped product was subjected to activation treatment at 875 ° C. for 1 hour in a carbon dioxide atmosphere.

上記のように比較的低い温度で炭化処理して調製した実施例23〜27の各活性炭の比表面積、細孔容積、平均細孔径を表2に示す。また、上記と同様に灯油への浸せき式吸着実験を実施した。調製した活性炭(ディスク状成形物)は、予め、150℃で3時間乾燥した後、粉砕した粉末吸着剤を、これに対する灯油の比率(重量)を30として、灯油に添加、攪拌して浸せきした。10℃にて7日間静置後、灯油の硫黄分を分析した。それぞれの結果から得られた脱硫率[%](灯油/吸着剤比:30/1)を表4に示す。表2及び4の実施例23〜27の値から、炭化温度を低下させたことにより、平均細孔径が低下することなく、比表面積が大きくなり、脱硫率が向上することが分かる。   Table 2 shows the specific surface area, pore volume, and average pore diameter of each of the activated carbons of Examples 23 to 27 prepared by carbonization at a relatively low temperature as described above. Moreover, the immersion type | mold adsorption experiment to kerosene was implemented similarly to the above. The prepared activated carbon (disc-shaped molded product) was dried in advance at 150 ° C. for 3 hours, and then the powder adsorbent was added to kerosene at a ratio (weight) of kerosene to 30 and stirred and immersed. . After standing at 10 ° C. for 7 days, the sulfur content of kerosene was analyzed. Table 4 shows the desulfurization rate [%] (kerosene / adsorbent ratio: 30/1) obtained from each result. From the values of Examples 23 to 27 in Tables 2 and 4, it can be seen that, by reducing the carbonization temperature, the specific surface area is increased and the desulfurization rate is improved without decreasing the average pore diameter.

(実施例28)
実施例23、25及び27のディスク状成形物を粉砕し、それぞれ同じ重量割合で混合して等重量混合物を調製した。該混合物2.0gに、イオン交換水6.8gに硝酸銅(II)三水和物を0.35g溶解して調製した硝酸銅水溶液を含浸した。一晩放置した後に、窒素雰囲気下400℃で1時間焼成して、酸化銅を仕上がりの吸着剤に対する金属銅として4質量%担持した籾殻活性炭を調製した。上記と同様に灯油への浸せき式吸着実験を実施した。その結果得られた脱硫率[%](灯油/吸着剤比:30/1)を表4に示す。酸化銅を担持させたことにより、脱硫率が大幅に向上することが分かる。なお、表4の「実施例23、25及び27混合物」は、酸化銅を担持させる前の等重量混合物の灯油への浸せき式吸着実験結果を示す。
(Example 28)
The disk-shaped molded products of Examples 23, 25 and 27 were pulverized and mixed in the same weight ratio to prepare an equal weight mixture. 2.0 g of the mixture was impregnated with an aqueous copper nitrate solution prepared by dissolving 0.35 g of copper (II) nitrate trihydrate in 6.8 g of ion-exchanged water. After standing overnight, it was calcined at 400 ° C. for 1 hour in a nitrogen atmosphere to prepare rice husk activated carbon carrying 4% by mass of copper oxide as metallic copper with respect to the finished adsorbent. The immersion adsorption experiment to kerosene was conducted in the same manner as above. Table 4 shows the desulfurization rate [%] (kerosene / adsorbent ratio: 30/1) obtained as a result. It can be seen that the desulfurization rate is greatly improved by supporting copper oxide. The “mixtures of Examples 23, 25 and 27” in Table 4 show the results of immersion adsorption experiments on kerosene of an equal weight mixture before supporting copper oxide.

Claims (6)

植物系バイオマスを(A)減圧下にて300〜900℃で炭化処理することにより、又は(B)減圧下及び/又は不活性雰囲気下に200〜900℃で炭化処理した後にさらに賦活処理することにより、比表面積が200m2/g以上、及び平均細孔径が20Å以上である炭化処理物又は賦活処理物を得た後、該炭化処理物又は賦活処理物から吸着剤を製造することを特徴とする炭化水素油中の微量成分を除去する吸着剤の製造方法。 Further activation treatment after carbonizing plant biomass at (A) 300-900 ° C under reduced pressure or (B) 200-900 ° C under reduced pressure and / or inert atmosphere. The carbonized product or activation treatment product having a specific surface area of 200 m 2 / g or more and an average pore diameter of 20 mm or more is obtained, and then an adsorbent is produced from the carbonization treatment product or the activation treatment product. A method for producing an adsorbent that removes trace components in hydrocarbon oil. (A)の炭化処理が、300〜500℃で実施され、及び(B)の炭化処理が、200〜500℃で実施される請求項1に記載の吸着剤の製造方法。   The method for producing an adsorbent according to claim 1, wherein the carbonization treatment (A) is performed at 300 to 500 ° C, and the carbonization treatment (B) is performed at 200 to 500 ° C. 賦活処理が、二酸化炭素雰囲気下にて800〜900℃で0.1〜4時間実施される請求項1又は2に記載の吸着剤の製造方法。   The method for producing an adsorbent according to claim 1 or 2, wherein the activation treatment is performed at 800 to 900 ° C for 0.1 to 4 hours in a carbon dioxide atmosphere. 炭化処理物に、糖類からなるバインダーを加えて成形し、次いで得られた成形物を賦活処理する請求項1〜3のいずれかに記載の吸着剤の製造方法。   The method for producing an adsorbent according to any one of claims 1 to 3, wherein the carbonized product is molded by adding a binder composed of a saccharide, and then the obtained molded product is activated. 植物系バイオマスが、籾殻又は杉である請求項1〜4のいずれかに記載の吸着剤の製造方法。   The method for producing an adsorbent according to any one of claims 1 to 4, wherein the plant biomass is rice husk or cedar. さらに、金属及び/又は金属酸化物を混合し、担持する工程を含む、請求項1〜5の何れかに記載の吸着剤の製造方法。
Furthermore, the manufacturing method of the adsorption agent in any one of Claims 1-5 including the process which mixes and carries | supports a metal and / or a metal oxide.
JP2007066492A 2006-03-23 2007-03-15 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same Expired - Fee Related JP4963616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066492A JP4963616B2 (en) 2006-03-23 2007-03-15 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006080212 2006-03-23
JP2006080212 2006-03-23
JP2007066492A JP4963616B2 (en) 2006-03-23 2007-03-15 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007284337A JP2007284337A (en) 2007-11-01
JP4963616B2 true JP4963616B2 (en) 2012-06-27

Family

ID=38756458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066492A Expired - Fee Related JP4963616B2 (en) 2006-03-23 2007-03-15 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4963616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974903A (en) * 2012-05-02 2014-08-06 上原春男 Active carbon production system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533912B2 (en) * 2007-04-04 2014-06-25 ソニー株式会社 Secondary battery electrode material and manufacturing method thereof, and electric double layer capacitor material and manufacturing method thereof
JP4618308B2 (en) 2007-04-04 2011-01-26 ソニー株式会社 Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier
JP5152276B2 (en) * 2007-04-04 2013-02-27 ソニー株式会社 Porous carbon material, adsorbent, filler, mask, adsorbent sheet and carrier
JP5152275B2 (en) * 2007-04-04 2013-02-27 ソニー株式会社 Porous carbon material, adsorbent, filler, mask, adsorbent sheet and carrier
JP4817075B2 (en) * 2007-09-21 2011-11-16 Jx日鉱日石エネルギー株式会社 Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil
JP5120942B2 (en) * 2008-04-03 2013-01-16 独立行政法人産業技術総合研究所 Method for oxidative desulfurization of fuel oil using reaction rate difference and apparatus therefor
US20110135561A1 (en) * 2008-07-31 2011-06-09 Sony Corporation Adsorbent, cleansing agent, renal disease drug, and functional food
JP5471142B2 (en) * 2008-09-29 2014-04-16 ソニー株式会社 POROUS CARBON MATERIAL COMPOSITE AND PROCESS FOR PRODUCING THE SAME, AND ADSORBENT, COSMETIC, PURIFIER, AND PHOTOCATALYST COMPOSITE MATERIAL
JP5487483B2 (en) * 2009-03-06 2014-05-07 国立大学法人横浜国立大学 Adsorbent
CN102803281B (en) 2009-05-28 2015-08-19 丽格诺创新有限公司 From the derivative of the native lignin of cork raw material
WO2011097719A1 (en) 2010-02-15 2011-08-18 Lignol Innovations Ltd. Binder compositions comprising lignin derivatives
CN102844357B (en) 2010-02-15 2016-09-07 丽格诺新创有限公司 Carbon fibers thing containing modified lignin
WO2012037668A1 (en) * 2010-09-24 2012-03-29 Lignol Innovations Ltd. Remediation of naphthenic acid contamination
JP5809413B2 (en) * 2010-12-28 2015-11-10 Jx日鉱日石エネルギー株式会社 Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
JP2012167030A (en) * 2011-02-10 2012-09-06 Sony Corp Cholesterol level-lowering agent, triglyceride level-lowering agent, blood sugar level-lowering agent, cholesterol adsorbent, adsorbent, triglyceride adsorbent, health food, health supplement, food with nutrient function, food for specified health use, quasi-drug, and pharmaceutical drug
WO2012126099A1 (en) 2011-03-24 2012-09-27 Lignol Innovations Ltd. Compositions comprising lignocellulosic biomass and organic solvent
KR101358753B1 (en) * 2011-12-27 2014-02-11 재단법인 포항산업과학연구원 Method for producing active carbon for eliminating hydrogen sulfide gas by using chaff and pitch
JP5863532B2 (en) * 2012-03-29 2016-02-16 大阪ガスケミカル株式会社 Activated carbon and manufacturing method thereof
BR112015013859B1 (en) * 2012-12-13 2021-11-30 Basf Corporation FERROMAGNETIC CARBON BODY, PROCESSES FOR THE PRODUCTION OF A FERROMAGNETIC CARBON BODY AND A CARBON BODY, USE OF A FERROMAGNETIC CARBON BODY, AND CATALYST
JP5658782B2 (en) * 2013-03-26 2015-01-28 株式会社カネカ Method for producing carbonaceous film
JP2017523024A (en) 2014-04-29 2017-08-17 レノビア インコーポレイテッド Carbon black molded porous products
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products
JP6598239B2 (en) * 2015-07-21 2019-10-30 独立行政法人国立高等専門学校機構 Fluorine adsorbent and method for producing the same
JP6601716B2 (en) * 2015-07-21 2019-11-06 独立行政法人国立高等専門学校機構 Carbonaceous composite and method for producing the same
JP2017031025A (en) * 2015-08-04 2017-02-09 公立大学法人首都大学東京 Process for producing magnetically activated carbon
US10722867B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped carbon products
US10464048B2 (en) 2015-10-28 2019-11-05 Archer-Daniels-Midland Company Porous shaped metal-carbon products
CN113135568B (en) * 2021-05-27 2022-12-27 吉林大学 Nitrogen-doped porous carbon material and preparation method and application thereof
CN113772657A (en) * 2021-09-27 2021-12-10 东北林业大学 Biomass-derived grade high-mesoporous carbon material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397771A (en) * 1989-08-17 1991-04-23 Hewlett Packard Co <Hp> Ink composition
JP2002219358A (en) * 2001-01-30 2002-08-06 Nkk Design & Engineering Corp Adsorbent for treating exhaust gas and method for treating exhaust gas
JP5252674B2 (en) * 2004-02-02 2013-07-31 Jx日鉱日石エネルギー株式会社 Hydrocarbon oil desulfurization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974903A (en) * 2012-05-02 2014-08-06 上原春男 Active carbon production system
CN103974903B (en) * 2012-05-02 2016-05-25 上原春男 active carbon manufacturing system

Also Published As

Publication number Publication date
JP2007284337A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4963616B2 (en) Adsorbent for removing trace components in hydrocarbon oil and method for producing the same
JP5049998B2 (en) Light oil
Bagreev et al. On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents
Hervy et al. H2S removal from syngas using wastes pyrolysis chars
JP4424586B2 (en) Method for desulfurization of liquid hydrocarbons containing organic sulfur compounds
JP5048495B2 (en) Hydrocarbon oil desulfurization method
JP4817075B2 (en) Adsorbent production method and adsorbent for removing trace components in hydrocarbon oil
CN102031141B (en) Method for preparing gasoline desulfurization adsorbent
Zhou et al. Selective deoxygenation of biomass volatiles into light oxygenates catalysed by S-doped, nanosized zinc-rich scrap tyre char with in-situ formed multiple acidic sites
AU2014369487B2 (en) Method for preparing a sorbent
Dai et al. Desulfurization of transportation fuels targeting at removal of thiophene/benzothiophene
JPWO2009031613A1 (en) Solid acid, method for producing the same, and method for desulfurizing hydrocarbon oil using solid acid as desulfurizing agent
Mueangta et al. Catalytic steam reforming of biomass-derived tar over the coal/biomass blended char: effect of devolatilization temperature and biomass type
Sosa et al. Activated carbon: a review of residual precursors, synthesis processes, characterization techniques, and applications in the improvement of biogas
Azeez et al. Review of biomass derived-activated carbon for production of clean fuels by adsorptive desulfurization: Insights into processes, modifications, properties, and performances
Wang et al. Competition adsorption, equilibrium, kinetic, and thermodynamic studied over La (III)-loaded active carbons for dibenzothiophene removal
Aslam et al. Adsorption of carbon dioxide onto activated carbon prepared from lawn grass
Poggi et al. Thermal degradation capabilities of modified bio-chars and fluid cracking catalyst (FCC) for acetic acid
CN101362969A (en) Method for preparing desulfurizer containing nitrogen and carbon aerogel
Mhemed et al. A novel low-cost material for thiophene and toluene removal: Study of the tire pyrolysis volatiles
JP5294927B2 (en) Hydrocarbon oil desulfurization method and fuel cell system
Fanani et al. Comparison of Cr/C and Cr2O3/Z Catalysts on Hydrocracking of Bio Oil from Pyrolysis of Palm Empty Fruit Bunches
Khalid et al. Adsorptive removal of dibenzothiophene from model fuel over activated carbon developed by KOH activation of pinecone: Equilibrium and kinetic studies
Uzunova et al. Efficient adsorption of thiophene from model fuel by pyrolysed rice husks: factors of influence
JP5476180B2 (en) Method for reducing peroxide value of hydrocarbon oil, method for desulfurizing hydrocarbon oil, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees