JP5487483B2 - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
JP5487483B2
JP5487483B2 JP2009054205A JP2009054205A JP5487483B2 JP 5487483 B2 JP5487483 B2 JP 5487483B2 JP 2009054205 A JP2009054205 A JP 2009054205A JP 2009054205 A JP2009054205 A JP 2009054205A JP 5487483 B2 JP5487483 B2 JP 5487483B2
Authority
JP
Japan
Prior art keywords
adsorbent
carbon dioxide
water
gas
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054205A
Other languages
Japanese (ja)
Other versions
JP2010208872A (en
Inventor
猛 奥谷
賢吾 水戸
悟 立原
充 大西
直樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Yokohama National University NUC
Original Assignee
Japan Aerospace Exploration Agency JAXA
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Yokohama National University NUC filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009054205A priority Critical patent/JP5487483B2/en
Publication of JP2010208872A publication Critical patent/JP2010208872A/en
Application granted granted Critical
Publication of JP5487483B2 publication Critical patent/JP5487483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭酸ガスと水蒸気を同時に吸着する吸着材として利用可能な多孔性アルミノケイ酸塩-炭素複合体及びその製造方法に関する。   The present invention relates to a porous aluminosilicate-carbon composite that can be used as an adsorbent that simultaneously adsorbs carbon dioxide and water vapor, and a method for producing the same.

宇宙の閉鎖空間などで人間が活動する際、呼吸を行うと、人体から炭酸ガス、水が排出され、さらに一酸化炭素、アルデヒド類などの微量有害物質が排出され、それを除去する必要がある。従来、人体から排出される炭酸ガスや水などを吸着除去するための技術として、例えば、非特許文献1〜6に開示された技術が提案されている。   When humans act in a closed space in the universe, if they breathe, carbon dioxide gas and water are discharged from the human body, and trace harmful substances such as carbon monoxide and aldehydes are discharged, which needs to be removed. . Conventionally, for example, techniques disclosed in Non-Patent Documents 1 to 6 have been proposed as techniques for adsorbing and removing carbon dioxide gas or water discharged from a human body.

非特許文献1には、ゼオライトを吸着材として用いる吸着装置が開示されている。人間が活動する際、多量に排出されるのは炭酸ガスと水である。これを除去するために、非特許文献1ではゼオライトを2段に配置している。この装置では、1段目のゼオライトでは水分を除去し、2段目のゼオライトでは乾燥気体中の炭酸ガスを吸着除去するようになっている。従って、水と炭酸ガスが共存すると、炭酸ガスは吸着されない。   Non-Patent Document 1 discloses an adsorption device using zeolite as an adsorbent. Carbon dioxide and water are discharged in large quantities when humans are active. In order to remove this, in Non-Patent Document 1, zeolite is arranged in two stages. In this apparatus, moisture is removed from the first-stage zeolite, and carbon dioxide gas in the dry gas is adsorbed and removed from the second-stage zeolite. Accordingly, when water and carbon dioxide coexist, carbon dioxide is not adsorbed.

非特許文献2には、吸着材として水酸化リチウムを用い、吸着材の再生を行わないタイプの吸着装置が開示されている。また、他の方法として、4つのモレキュラーシーブ室を使用する方法も開示されている。この方法では、2つのモレキュラーシーブ室は並列に配置され、一方の列の上流側のモレキュラーシーブ室で空気中の水分を吸着除去し、その後下流側のモレキュラーシーブ室で炭酸ガスを吸着除去する。吸着した炭酸ガスは、温度を上げたり、室内を真空にすることにより回収され、サバティエ反応で炭酸ガスを水素化し、メタンと水に変換する方法が採用されている。   Non-Patent Document 2 discloses a type of adsorption device that uses lithium hydroxide as an adsorbent and does not regenerate the adsorbent. As another method, a method using four molecular sieve chambers is also disclosed. In this method, two molecular sieve chambers are arranged in parallel, and moisture in the air is adsorbed and removed in the upstream molecular sieve chamber of one row, and then carbon dioxide gas is adsorbed and removed in the downstream molecular sieve chamber. The adsorbed carbon dioxide gas is recovered by raising the temperature or evacuating the room, and hydrogenating the carbon dioxide gas by a Sabatier reaction to convert it into methane and water is adopted.

非特許文献3には、ガス導入口からガス導出口にかけて、シリカゲル層、モレキュラーシーブ13X層、ゼオライト5A層の3つの層からなる吸着ベットを2つ並列に配置し、一方で炭酸ガスと水を吸着除去し、その吸着能が低下すると、流路を他方のベットに切り替え、炭酸ガス、水の吸着除去を継続する装置が開示されている。この装置では、流路を他方のベットに切り替えると同時に、吸着能が低下した一方のベットを真空にし、吸着した炭酸ガスと水を吸着材から除去して再生する。再生された吸着材は次の吸着サイクルに供される。この吸着ベットでは、最初のシリカゲル層で水を吸着除去し、モレキュラーシーブ13X層で十分取りきれなかった水を除去するか、あるいは、水がシリカゲル層で完全に除去された場合は、炭酸ガスを吸着する。   In Non-Patent Document 3, two adsorption beds composed of a silica gel layer, a molecular sieve 13X layer, and a zeolite 5A layer are arranged in parallel from the gas inlet to the gas outlet, while carbon dioxide gas and water are supplied. An apparatus is disclosed that, when adsorbed and removed, when its adsorbing capacity is reduced, switches the flow path to the other bed and continues adsorbing and removing carbon dioxide and water. In this apparatus, the flow path is switched to the other bed, and at the same time, the one bed whose adsorption capacity is reduced is evacuated, and the adsorbed carbon dioxide gas and water are removed from the adsorbent and regenerated. The regenerated adsorbent is subjected to the next adsorption cycle. In this adsorption bed, the first silica gel layer adsorbs and removes water, and the molecular sieve 13X layer removes water that is not fully removed, or if the water is completely removed by the silica gel layer, carbon dioxide gas is removed. Adsorb.

非特許文献4には、固体アミンをアルミニウムフォーム中に担持した吸着材を用いた装置が開示されている。この装置において、吸着材の再生は宇宙空間で得られる真空が利用される。   Non-Patent Document 4 discloses an apparatus using an adsorbent in which a solid amine is supported in an aluminum foam. In this device, the adsorbent is regenerated using a vacuum obtained in outer space.

非特許文献5には、多孔炭素からなるハニカム触媒上に液体アミンなどの吸着材を担持した構造の装置が開示されている。この装置は、ハニカム構造のために気流の吸着材層を通過する際の圧損が少ない。多孔炭素ハニカムは塩化ポリビニリデンを熱分解することにより調製される。   Non-Patent Document 5 discloses an apparatus having a structure in which an adsorbent such as liquid amine is supported on a honeycomb catalyst made of porous carbon. This device has less pressure loss when passing through the adsorbent layer of the airflow because of the honeycomb structure. The porous carbon honeycomb is prepared by pyrolyzing polyvinylidene chloride.

非特許文献6には、脱水をモレキュラーシーブ13Xで行い、その後の脱水されたガスをモレキュラーシーブ5A、その後に活性炭吸着材に通して微量有害ガスを吸着し、その後ガス中に含まれる一酸化炭素を活性炭上に担持した白金触媒で酸化して無害の二酸化炭素にする装置が開示されている。   In Non-Patent Document 6, dehydration is performed with a molecular sieve 13X, and then the dehydrated gas is passed through a molecular sieve 5A and then passed through an activated carbon adsorbent to adsorb a trace amount of harmful gas, and then carbon monoxide contained in the gas. Has been disclosed that oxidizes the catalyst with a platinum catalyst supported on activated carbon to produce harmless carbon dioxide.

一般に、ガス中の炭酸ガスの吸着にはCa2+-A型ゼオライトが用いられる。しかし、非特許文献7に開示されているように、この種のゼオライトは水の吸着親和力が大きく、炭酸ガスよりも優先的にゼオライトに吸着する。 Generally, Ca 2+ -A type zeolite is used for adsorption of carbon dioxide gas in the gas. However, as disclosed in Non-Patent Document 7, this type of zeolite has a high water adsorption affinity and adsorbs preferentially to zeolite over carbon dioxide gas.

非特許文献8と非特許文献9には、籾殻からZSM−5ゼオライトを製造する技術が開示されている。このZSM−5ゼオライトは、石油精製における脱硫触媒などの触媒として用いられ、非特許文献1等において吸着材として用いられるゼオライトとは異なるものである。   Non-Patent Document 8 and Non-Patent Document 9 disclose techniques for producing ZSM-5 zeolite from rice husk. This ZSM-5 zeolite is used as a catalyst such as a desulfurization catalyst in petroleum refining, and is different from the zeolite used as an adsorbent in Non-Patent Document 1 and the like.

“International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concept and Advantages”, Dina EI Sherif and James C. Knox, ICES 2005-01-2892“International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concept and Advantages”, Dina EI Sherif and James C. Knox, ICES 2005-01-2892 “Evolution of Life Support from Apollo, Shuttle, and ISS to the Vision for the Moon and Mars” Harry Jones, ICES 2006-01-2013“Evolution of Life Support from Apollo, Shuttle, and ISS to the Vision for the Moon and Mars” Harry Jones, ICES 2006-01-2013 “Mathematical Simulation of the Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle”, Steven P. Reynols, Armin D. Ebner and James A. Ritter, James C. Knox and M. Douglas LeVan, ICES 2006-01-2220“Mathematical Simulation of the Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle”, Steven P. Reynols, Armin D. Ebner and James A. Ritter, James C. Knox and M. Douglas LeVan, ICES 2006-01-2220 “Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV” Tim Nalette, William Papale, Fred Smith and Jay Perry, ICES 2006-01-2192“Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV” Tim Nalette, William Papale, Fred Smith and Jay Perry, ICES 2006-01-2192 Marek A. Wojtowicz, Elizabeth Florczak, Erik Kroo, Eric P. Rubenstein, Michael A. Serio and Tom Filburn, ICES 2006-01-2193Marek A. Wojtowicz, Elizabeth Florczak, Erik Kroo, Eric P. Rubenstein, Michael A. Serio and Tom Filburn, ICES 2006-01-2193 Robert J. Kay and Allen K. MacKnight, ICES 2006-01-2196Robert J. Kay and Allen K. MacKnight, ICES 2006-01-2196 富永博夫編「ゼオライトの科学と応用」,講談社サイエンティフィック,1996,p.166Edited by Hiroo Tominaga, “Science and Application of Zeolite”, Kodansha Scientific, 1996, p. 166 R.K. Vempati et al., Micrororous and Mesoporous Materials, 93(2006), 134-140R.K.Vempati et al., Micrororous and Mesoporous Materials, 93 (2006), 134-140 H. Katsuki et al., Micrororous and Mesoporous Materials, 86(2005), 145-151H. Katsuki et al., Micrororous and Mesoporous Materials, 86 (2005), 145-151 N.K. Sharma, Wendell S. Williams and A. Zangvil, “Formation and Structure of Silicon Carbide Wiskers from Rice Hulls”, J. Am. Ceram. Soc., 67, No11, 715-720(1984)N.K.Sharma, Wendell S. Williams and A. Zangvil, “Formation and Structure of Silicon Carbide Wiskers from Rice Hulls”, J. Am. Ceram. Soc., 67, No11, 715-720 (1984)

しかしながら、前述した従来技術には、次のような問題がある。
モレキュラーシーブ、ゼオライトを用いる場合は、被処理ガス中に水と炭酸ガスが共存すると、水が優先的に吸着点を占め、炭酸ガスは吸着されない。従って、まず水を除去し、その後炭酸ガスを水がない乾燥した状態で吸着する必要がある。吸着システムとしては2段の吸着層が必要となり、装置が複雑になり、容積、質量が大きくなってしまう。従って、宇宙空間でこの方式を採用すると、宇宙空間への装置の運搬、運転をする上で不利である。
また、アミンを用いる炭酸ガスの吸着除去では、吸着材の腐食やアミンからの有害物質の発生が懸念される。
However, the above-described prior art has the following problems.
When molecular sieve or zeolite is used, if water and carbon dioxide coexist in the gas to be treated, water preferentially occupies the adsorption point and carbon dioxide is not adsorbed. Therefore, it is necessary to first remove water and then adsorb carbon dioxide in a dry state without water. The adsorption system requires a two-stage adsorption layer, which complicates the apparatus and increases the volume and mass. Therefore, adopting this method in outer space is disadvantageous for transporting and operating the device into outer space.
Further, in the adsorption removal of carbon dioxide gas using amine, there is a concern about the corrosion of the adsorbent and generation of harmful substances from the amine.

本発明は前記事情に鑑みてなされ、炭酸ガスと水及び微量有害気体を同時に吸着除去することが可能な吸着材の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an adsorbent capable of simultaneously adsorbing and removing carbon dioxide gas, water and a trace amount of harmful gas.

前記目的を達成するため、本発明は、ケイ酸植物を不活性雰囲気中、400℃以上に加熱し、焼成して炭化物を作製する工程、次いで、得られた炭化物中のケイ素含量を調べ、Si:Al:Na=1:0.8〜1.2:2.5〜4.0(モル比)の範囲にあるアルミノケイ酸塩が生成するように、Al化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加えて混合物を作製する工程、及び、次いで、得られた混合物に水熱反応を施して、多孔性アルミノケイ酸塩−炭素複合体を得る工程を有し、前記多孔性アルミノケイ酸塩がA型ゼオライトである製造方法により得られた多孔性アルミノケイ酸塩−炭素複合体を含み、被処理ガス中の少なくとも炭酸ガスと水分とを同時に吸着除去することを特徴とする吸着材を提供する。 In order to achieve the above object, the present invention comprises a step of heating a silicate plant to 400 ° C. or higher in an inert atmosphere and baking to produce a carbide, and then examining the silicon content in the obtained carbide. : Al: Na = 1: 0.8 to 1.2: 2.5 to 4.0 (molar ratio) so that an aluminosilicate is generated, an Al compound and an alkali metal compound or an alkaline earth metal A step of preparing a mixture by adding a compound and water, and then a step of hydrothermal reaction of the resulting mixture to obtain a porous aluminosilicate-carbon composite, the porous aluminosilicate Provided is an adsorbent comprising a porous aluminosilicate-carbon composite obtained by a production method in which the salt is an A-type zeolite, wherein at least carbon dioxide gas and moisture in the gas to be treated are simultaneously adsorbed and removed. To do.

本発明の吸着材において、前記製造方法が、得られた多孔性アルミノケイ酸塩−炭素複合体に、水蒸気賦活処理又は炭酸ガス賦活処理を施して表面積を大きくした複合体を得る工程をさらに有していてもよい。 In the adsorbent of the present invention, the production method further comprises a step of obtaining a composite having a large surface area by subjecting the obtained porous aluminosilicate-carbon composite to water vapor activation treatment or carbon dioxide activation treatment. It may be.

本発明の吸着材において、ケイ酸植物が、イネの籾殻又は藁であることが好ましい。 In the adsorbent of the present invention, the silicate plant is preferably rice husk or straw.

本発明の吸着材において、前記Al化合物が水酸化アルミニウムであり、アルカリ金属化合物又はアルカリ土類金属化合物が水酸化ナトリウム、水酸化カリウム、水酸化カルシウムのいずれか1種又は2種以上であることが好ましい。 In the adsorbent of the present invention, the Al compound is aluminum hydroxide, and the alkali metal compound or alkaline earth metal compound is one or more of sodium hydroxide, potassium hydroxide, and calcium hydroxide. Is preferred.

本発明の吸着材は、ペレット状又はハニカム構造に成形してもよい。 The adsorbent of the present invention may be formed into a pellet shape or a honeycomb structure.

本発明の多孔性アルミノケイ酸塩−炭素複合体は、被処理ガス中の炭酸ガス、水、微量有害ガスを一つの吸着材で吸着除去することができる。
これにより本発明の吸着材を使用して宇宙ステーション、スペースシャトル等の閉鎖空間内の呼気ガス処理に用いることによって、このような特殊環境下で人間の活動を安全に保つための吸着材として極めて有用である。
本発明の吸着材は、一つの吸着材で被処理ガス中の炭酸ガス、水、微量有害ガスを吸着除去できるので、複数の吸着材を組み合わせて構成された従来の除去装置より小型化が可能になり、宇宙空間への打ち上げコストの軽減化が図れる。
本発明の吸着材では、水や炭酸ガスが吸着により除去されるので、吸着材の再生が真空や温度制御により可能となり、また再生水の再利用が可能である。
本発明の吸着材は、宇宙空間のみならず、閉鎖空間である潜水艦内等の人間の活動の安全を維持するためにも有用である。
The porous aluminosilicate-carbon composite of the present invention can adsorb and remove carbon dioxide, water, and a trace amount of harmful gas in the gas to be treated with a single adsorbent.
This makes it possible to use the adsorbent of the present invention for the treatment of exhaled gas in a closed space such as a space station or a space shuttle, and as an adsorbent to keep human activities safely in such special environments. Useful.
Since the adsorbent of the present invention can adsorb and remove carbon dioxide, water, and trace amounts of harmful gases in the gas to be treated with a single adsorbent, the adsorbent can be made smaller than a conventional removal device configured by combining multiple adsorbents. Therefore, the launch cost to outer space can be reduced.
In the adsorbent of the present invention, since water and carbon dioxide gas are removed by adsorption, the adsorbent can be regenerated by vacuum or temperature control, and the reclaimed water can be reused.
The adsorbent of the present invention is useful not only in outer space but also for maintaining safety of human activities such as in a closed space such as a submarine.

籾殻炭化物の比表面積と焼成温度、及び、各焼成温度で得られた籾殻炭化物を原料とする実施例1で作製した各吸着材の比表面積と原料の籾殻炭化物の焼成温度との関係を示すグラフである。The graph which shows the relationship between the specific surface area of rice husk carbide | carbonized_material, baking temperature, and the specific surface area of each adsorbent produced in Example 1 which uses the rice husk carbide obtained at each baking temperature as a raw material, and the baking temperature of the rice husk carbide | carbonized_material of a raw material It is.

本発明の多孔性アルミノケイ酸塩−炭素複合体(以下、吸着材と記す。)の製造方法は、ケイ酸植物を不活性雰囲気中、400℃以上に加熱し、焼成して炭化物を作製する工程、次いで、得られた炭化物中のケイ素含量を調べ、Si:Al=1:0.1〜1.2(モル比)の範囲にあるアルミノケイ酸塩が生成するように、Al化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加えて混合物を作製する工程、及び、次いで、得られた混合物に水熱反応を施して、多孔性アルミノケイ酸塩−炭素複合体を得る工程を有する。   The method for producing a porous aluminosilicate-carbon composite (hereinafter referred to as an adsorbent) of the present invention is a process in which a silicate plant is heated to 400 ° C. or higher in an inert atmosphere and baked to produce a carbide. Then, the silicon content in the obtained carbide is examined, and an Al compound and an alkali metal compound are formed so that an aluminosilicate in the range of Si: Al = 1: 0.1 to 1.2 (molar ratio) is formed. Alternatively, the method includes a step of preparing a mixture by adding an alkaline earth metal compound and water, and then a step of hydrothermal reaction of the obtained mixture to obtain a porous aluminosilicate-carbon composite.

本発明の製造方法に原料として用いるケイ酸植物としては、イネ、コムギ、オオムギ、ライムギ、ハトムギ、キビ、アワ、ヒエ、トウモロコシ、ススキなどのイネ科植物が挙げられ、その中でも、ケイ酸含有量が高いイネの籾殻や藁などが好ましく、さらに籾殻が特に好ましい。以下、本発明の製造方法の実施形態として、籾殻を原材料として吸着材を製造する場合について説明する。   Examples of the silicic acid plant used as a raw material in the production method of the present invention include gramineous plants such as rice, wheat, barley, rye, pearl barley, millet, millet, millet, corn, and Susuki, among which silicic acid content. Rice husks, rice husks, and the like of rice having a high value are preferred, and rice husks are particularly preferred. Hereinafter, as an embodiment of the production method of the present invention, a case where an adsorbent is produced using rice husk as a raw material will be described.

籾殻は、約20質量%の無機質と約80質量%のセルロースなどの有機質とからなる。約20質量%を示す無機質成分のうち、85〜95質量%は活性なシリカ(SiO)である。シリカは、灌漑水中の水溶性ケイ酸イオンがイネの根を通り、茎の導管を通り、籾殻の表皮から蒸散によって水分が蒸発する際に、クチクラ部に沈積したものである。籾殻のシリカは、その細胞壁間に沈積するので、籾殻を窒素やアルゴンガスなどの不活性ガス中で加熱し、セルロースなどの有機質を炭化すると、シリカと炭素が非常に近接した状態の複合体である籾殻炭化物(籾殻燻炭などと呼ばれる)が得られる。 The rice husk is composed of about 20% by mass of inorganic substance and about 80% by mass of organic substance such as cellulose. Of the inorganic component showing about 20% by mass, 85-95% by mass is active silica (SiO 2 ). Silica is deposited in the cuticle part when water-soluble silicate ions in irrigation water pass through the roots of rice, pass through stem conduits, and evaporate water from the husk epidermis. Since rice husk silica is deposited between the cell walls, when the rice husk is heated in an inert gas such as nitrogen or argon gas and carbonized organic matter such as cellulose, it is a complex in which silica and carbon are in close proximity. Some rice husk carbide (called rice husk husk charcoal etc.) is obtained.

この籾殻炭化物のシリカと炭素分は、非常に微細であり、単なるシリカ−炭素混合物に比べると、分子レベルで均質であり、互いの距離も小さい。また、籾殻をESCAで分析した結果、天然には存在しないと考えられていたSi−有機物中の炭素の結合が、Si−Cの結合エネルギーの測定値より、天然に存在する可能性も報告されている(非特許文献10参照)。   The silica and carbon content of the rice husk carbide is very fine, is homogeneous at the molecular level, and has a small distance from each other as compared to a simple silica-carbon mixture. In addition, as a result of analyzing rice husks by ESCA, it was reported that carbon bonds in Si-organic substances, which were thought not to exist in nature, may exist in nature from the measured value of Si-C binding energy. (See Non-Patent Document 10).

籾殻は、必要に応じて風選や篩分けなどによって石や土などの異物を除去したものをそのまま用いても良いし、希塩酸でリーチングし、無機物中に微量含まれている、鉄、アルカリ金属化合物やアルカリ土類金属化合物を溶出除去したものを用いても良い。   The rice husks may be used after removing foreign substances such as stones and earth by wind selection or sieving as necessary, or leaching with dilute hydrochloric acid, which is contained in trace amounts in inorganic materials, iron, alkali metals A compound or alkaline earth metal compound eluted and removed may be used.

(籾殻の焼成)
籾殻は、アルゴンや窒素ガスなどの不活性ガス気流中、400℃以上の温度で数分〜数十時間、好ましくは数十分〜数時間程度焼成し、籾殻中の有機物を炭化し、籾殻炭化物とする。この焼成温度は400℃以上であり、好ましくは500〜1000℃の範囲である。焼成温度が400℃未満であると、籾殻の炭化が不十分となったり、炭化完了までに長時間を要するために好ましくない。
(Baked rice husk)
The rice husk is baked in an inert gas stream such as argon or nitrogen gas at a temperature of 400 ° C. or higher for several minutes to several tens of hours, preferably tens of minutes to several hours to carbonize organic matter in the rice husk, And This firing temperature is 400 ° C. or higher, preferably in the range of 500 to 1000 ° C. If the firing temperature is less than 400 ° C., carbonization of rice husks becomes insufficient, and it takes a long time to complete carbonization, which is not preferable.

(水熱反応)
前記焼成によって得られた籾殻炭化物は、原子吸光分析法などを用いて炭化物中のケイ素含量を調べる。前述した通り、籾殻中の無機物は殆どがシリカであることから、通常はケイ素含量のみを測定すれば済むが、厳重な成分調整が必要であれば、ケイ素含量の他、Al,Na,K,Caなどの含量を測定し、次の調製に役立ててもよい。
(Hydrothermal reaction)
The rice husk carbide obtained by the firing is examined for silicon content in the carbide using atomic absorption spectrometry or the like. As described above, since most of the inorganic substance in the rice husk is silica, usually only the silicon content needs to be measured. The content of Ca or the like may be measured and used for the next preparation.

そして、籾殻炭化物中に含まれるシリカ含量を基に、Si:Al=1:0.1〜1.2(モル比)の範囲にあるアルミノケイ酸塩が生成するように、Al化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加えて混合物を作製する。ここで用いるAl化合物としては、水酸化アルミニウムが好ましい。また、アルカリ金属化合物又はアルカリ土類金属化合物が水酸化ナトリウム、水酸化カリウム、水酸化カルシウムのいずれか1種又は2種以上であることが好ましい。   Then, based on the silica content contained in the rice husk carbide, an Al compound and an alkali metal compound so that an aluminosilicate in the range of Si: Al = 1: 0.1 to 1.2 (molar ratio) is formed. Alternatively, an alkaline earth metal compound and water are added to prepare a mixture. As the Al compound used here, aluminum hydroxide is preferable. The alkali metal compound or alkaline earth metal compound is preferably one or more of sodium hydroxide, potassium hydroxide, and calcium hydroxide.

本発明の製造方法において、吸着材中に生成させる多孔性アルミノケイ酸塩は、ゼオライトであることが好ましく、その中でもA型ゼオライト、X型ゼオライト、Y型ゼオライトであることが好ましく、さらに、得られる吸着材の水及び炭酸ガスの吸着能が高いことから、A型ゼオライトであることが特に好ましい。
A型ゼオライトを得るには、Si:Al:Na=1:0.8〜1.2:2.5〜4.0(モル比)の範囲で成分調整することが望ましい。
X型ゼオライトを得るには、Si:Al:Na=1:0.2〜0.3:3.5〜5.0(モル比)の範囲で成分調整することが望ましい。
Y型ゼオライトを得るには、Si:Al:Na=1:0.1〜0.3:0.8〜1.0(モル比)の範囲で成分調整することが望ましい。
In the production method of the present invention, the porous aluminosilicate formed in the adsorbent is preferably a zeolite, and among them, an A-type zeolite, an X-type zeolite, and a Y-type zeolite are preferable, and further obtained. Since the adsorbent has high adsorbability for water and carbon dioxide, it is particularly preferably A-type zeolite.
In order to obtain A-type zeolite, it is desirable to adjust the components in the range of Si: Al: Na = 1: 0.8 to 1.2: 2.5 to 4.0 (molar ratio).
In order to obtain X-type zeolite, it is desirable to adjust the components in the range of Si: Al: Na = 1: 0.2 to 0.3: 3.5 to 5.0 (molar ratio).
In order to obtain Y-type zeolite, it is desirable to adjust the components in the range of Si: Al: Na = 1: 0.1 to 0.3: 0.8 to 1.0 (molar ratio).

前述したように、籾殻炭化物とAl化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加え均一に混合して得られた混合物は、次に、オートクレーブ中に入れ、温度50〜200℃、好ましくは80〜120℃で数分〜数十時間、好ましくは数十分〜数時間加熱して水熱反応を行う。この水熱反応によって、籾殻炭化物中のシリカと添加したAl,Naが反応してゼオライトのようなアルミノケイ酸塩が生成され、反応せずに残存する炭素とともに多孔性アルミノケイ酸塩−活性炭素複合体が得られる。   As described above, a mixture obtained by adding rice husk carbide, Al compound, alkali metal compound or alkaline earth metal compound, and water and mixing them uniformly is then placed in an autoclave at a temperature of 50 to 200 ° C., The hydrothermal reaction is preferably carried out by heating at 80 to 120 ° C. for several minutes to several tens of hours, preferably several tens of minutes to several hours. By this hydrothermal reaction, silica in rice husk carbide reacts with the added Al and Na to produce an aluminosilicate such as zeolite, and a porous aluminosilicate-activated carbon composite together with carbon remaining without reacting. Is obtained.

(吸着材)
この水熱反応後、オートクレーブから処理物を取り出し、水などにより洗浄し、十分に乾燥させて吸着材を得る。
この吸着材は、被処理ガス中の炭酸ガス、水、微量有害ガスを一つの吸着材で吸着除去することができる。
これにより本発明の吸着材を使用して宇宙ステーション、スペースシャトル等の閉鎖空間内の呼気ガス処理に用いることによって、このような特殊環境下で人間の活動を安全に保つための吸着材として極めて有用である。
本発明の吸着材は、一つの吸着材で被処理ガス中の炭酸ガス、水、微量有害ガスを吸着除去できるので、複数の吸着材を組み合わせて構成された従来の除去装置より小型化が可能になり、宇宙空間への打ち上げコストの軽減化が図れる。
本発明の吸着材では、水や炭酸ガスが吸着により除去されるので、吸着材の再生が真空や温度制御により可能となり、また再生水の再利用が可能である。
本発明の吸着材は、宇宙空間のみならず、閉鎖空間である潜水艦内等の人間の活動の安全を維持するためにも有用である。
(Adsorbent)
After this hydrothermal reaction, the treated product is taken out from the autoclave, washed with water, and sufficiently dried to obtain an adsorbent.
This adsorbent can adsorb and remove carbon dioxide, water, and a trace amount of harmful gas in the gas to be treated with a single adsorbent.
This makes it possible to use the adsorbent of the present invention for the treatment of exhaled gas in a closed space such as a space station or a space shuttle, and as an adsorbent to keep human activities safely in such special environments. Useful.
Since the adsorbent of the present invention can adsorb and remove carbon dioxide, water, and trace amounts of harmful gases in the gas to be treated with a single adsorbent, the adsorbent can be made smaller than a conventional removal device configured by combining multiple adsorbents. Therefore, the launch cost to outer space can be reduced.
In the adsorbent of the present invention, since water and carbon dioxide gas are removed by adsorption, the adsorbent can be regenerated by vacuum or temperature control, and the reclaimed water can be reused.
The adsorbent of the present invention is useful not only in outer space but also for maintaining safety of human activities such as in a closed space such as a submarine.

このように製造された吸着材は、原料の籾殻の形状に基づいた粒状や片状であり、そのままの状態で通気性容器などに充填して使用可能である。また、この粒状や片状吸着材、或いはこれを適当な粒径に砕いた顆粒や粉末に、有機系接着剤、無機系接着剤などの適当なバインダーを添加して型に入れ、バインダーを硬化させることによって、ポーラスな円柱状、ブロック状、筒状、或いはハニカム状、板状などの種々な所望形状に成形された吸着材を製造することもできる。   The adsorbent produced in this way is granular or piece-like based on the shape of the rice husk of the raw material, and can be used as it is filled in a breathable container or the like. Add appropriate binders such as organic adhesives and inorganic adhesives to the granular or flake adsorbents, or granules or powders crushed to an appropriate particle size, and place them in a mold to cure the binders. By doing so, it is also possible to manufacture adsorbents molded into various desired shapes such as a porous columnar shape, a block shape, a cylindrical shape, a honeycomb shape, and a plate shape.

この吸着材において、アルミノケイ酸塩と炭素の表面積への寄与は、炭素の方が大きい。この吸着材を水蒸気あるいは炭酸ガス賦活を行うことにより、表面積を大きくすることが可能である。この賦活によって、多孔性アルミノケイ酸塩−活性炭素複合体の性能を向上させることが可能である。   In this adsorbent, carbon contributes more to the surface area of aluminosilicate and carbon. The surface area can be increased by activating the adsorbent with water vapor or carbon dioxide. By this activation, it is possible to improve the performance of the porous aluminosilicate-activated carbon composite.

(a)焼成
籾殻約20gを窒素気流(100mL/min)中、昇温速度5K/min、一定温度(500〜1000℃)で1時間加熱し、その後自然放冷することによって焼成を行った。保持温度は100℃刻みでとり、6種類の籾殻炭化物(以下、籾殻炭化物はPRHと記す。)を作製した。
(A) Calcination About 20 g of rice husk was heated in a nitrogen stream (100 mL / min) at a heating rate of 5 K / min and a constant temperature (500 to 1000 ° C.) for 1 hour, and then spontaneously cooled to perform calcination. Holding temperature was taken in increments of 100 ° C., and six types of rice husk carbide (hereinafter, rice husk carbide was referred to as PRH) were produced.

(b)水熱合成
次に、PRH中のSiOとHO含量を測定し、水熱合成後にA型ゼオライト、X型ゼオライト、Y型ゼオライトが生成するように、NaOH,Al(OH)、HOを秤量し、PRHと混合した。以下、A型ゼオライト生成を意図したものをAtype,X型ゼオライト生成を意図したものをFAU(X),Y型ゼオライト生成を意図したものをFAU(Y)と称する。
Atype、FAU(X)及びFAU(Y)の各調製物は、オートクレーブ中に入れ、水熱処理を行った。生成物をオートクレーブから取り出し、固形物を濾過し、濾液がpH9以下になるまで蒸留水で洗浄し、乾燥させ、Atype、FAU(X)及びFAU(Y)の各吸着材を得た。
表1に、本実施例においてAtype、FAU(X)及びFAU(Y)の調製に用いた各成分のモル比と、水熱反応条件とを示す。
(B) Hydrothermal synthesis Next, the content of SiO 2 and H 2 O in PRH is measured, and NaOH, Al (OH) is produced so that A-type zeolite, X-type zeolite, and Y-type zeolite are produced after hydrothermal synthesis. 3. H 2 O was weighed and mixed with PRH. Hereinafter, what is intended to produce A-type zeolite is referred to as Atype, what is intended to produce X-type zeolite is referred to as FAU (X), and what is intended to produce Y-type zeolite is referred to as FAU (Y).
Each preparation of Atype, FAU (X) and FAU (Y) was placed in an autoclave and subjected to hydrothermal treatment. The product was taken out from the autoclave, the solid matter was filtered, washed with distilled water until the filtrate became pH 9 or less, and dried to obtain adsorbents of Type, FAU (X) and FAU (Y).
Table 1 shows the molar ratio of each component used for the preparation of Atype, FAU (X) and FAU (Y) in this example, and hydrothermal reaction conditions.

Figure 0005487483
Figure 0005487483

(c)分析装置及び評価装置
示差熱重量分析装置として、TG−DTA(リガク社製、TG8120)を使用した。PRH中の微量成分分析は、ICP−AES(日立製作所社製、P−4010)を使用した。PRH及び各吸着材の結晶構造及び微構造解析には、走査型電子顕微鏡(日本電子社製、JSM−5400)を使用した。比表面積および細孔分布の測定には高速比表面積・細孔分布測定装置(Quantachrome社製、NOVA1200)を使用した。吸着質には窒素を用い、比表面積はBET多点法、細孔分布はDFT法を用いた。水分及び二酸化炭素の吸着量は、人間の呼気を想定したガス雰囲気下で、TGAを用いて重量変化を測定した。
(C) Analyzer and evaluation device TG-DTA (manufactured by Rigaku Corporation, TG8120) was used as a differential thermogravimetric analyzer. ICP-AES (manufactured by Hitachi, Ltd., P-4010) was used for analysis of trace components in PRH. A scanning electron microscope (manufactured by JEOL Ltd., JSM-5400) was used for crystal structure and microstructure analysis of PRH and each adsorbent. A high-speed specific surface area / pore distribution measuring device (manufactured by Quantachrome, NOVA1200) was used for measurement of the specific surface area and pore distribution. Nitrogen was used as the adsorbate, the BET multipoint method was used for the specific surface area, and the DFT method was used for the pore distribution. The amount of moisture and carbon dioxide adsorbed was measured by weight change using TGA in a gas atmosphere assuming human breath.

<結果及び考察>
(i)示差熱重量分析
本発明では、籾殻中のシリカだけでなく、有機物の利用も目的であるため、吸着材を作成する原材料として窒素気流中で焼成したPRHを用いた。TG−DTAの結果より、窒素中での有機物の分解は、500℃で十分完了しているとみられるため、PRHは500℃以降100℃刻みで焼成し、6種類作製した。
<Results and discussion>
(I) Differential Thermogravimetric Analysis In the present invention, since not only silica in rice husk but also organic substances are used, PRH baked in a nitrogen stream is used as a raw material for preparing an adsorbent. From the results of TG-DTA, it can be seen that the decomposition of organic substances in nitrogen is sufficiently completed at 500 ° C., so PRH was baked in increments of 100 ° C. after 500 ° C. to prepare six types.

(ii)PRHの成分分析
PRHの成分分析の結果を表2に示す。なお、表2において、試料の「PRH」に続く数字は焼成温度を示す(すなわち「PRH500」は500℃焼成PRHを意味する)。
表2に示すように、PRHのおおむね半分が残留炭素、残りの半分が無機物であった。また、PRHの無機物のうち約95質量%はSiOであった。
(Ii) PRH component analysis Table 2 shows the results of PRH component analysis. In Table 2, the number following “PRH” of the sample indicates the firing temperature (that is, “PRH500” means 500 ° C. fired PRH).
As shown in Table 2, approximately half of the PRH was residual carbon and the other half was inorganic. Further, about 95% by mass of the inorganic substance of PRH was SiO 2 .

Figure 0005487483
Figure 0005487483

(iii)比表面積測定
前記PRH、Atype、FAU(X)及びFAU(Y)の各試料の比表面積を測定した結果を図1に示す。
500℃で焼成したPRHの比表面積が小さくなっていた理由として、焼成温度が低いため、油状のタールが細孔をコーティングしていることが考えられる。900℃で焼成したPRH及び1000℃で焼成したPRHの比表面積が小さくなっていた理由として、籾殻中のカリウム分とシリカが反応し、融点の低いポリケイ酸カリウムが生成し、ミクロ細孔を塞いでしまったことが考えられる。
(Iii) Specific surface area measurement The result of measuring the specific surface area of each sample of PRH, Atype, FAU (X) and FAU (Y) is shown in FIG.
The reason why the specific surface area of PRH calcined at 500 ° C. is small is considered to be that oily tar coats pores because the calcining temperature is low. The reason why the specific surface area of PRH calcined at 900 ° C. and PRH calcined at 1000 ° C. is small is that potassium content in rice husk reacts with silica to form potassium polysilicate having a low melting point, thereby closing the micropores. It is thought that it was.

(iv)結晶構造及び微構造解析
各焼成温度のPRH、Atype、FAU(X)及びFAU(Y)の各試料のX線回折結果を表3に示す。なお、表3中、Amorphous、LTA及びFAUは試料中のゼオライトの結晶構造を示し、Amorphousはゼオライト結晶構造が観測されなかった(非晶質の)場合、LTAはA型ゼオライトの結晶構造が観測された場合、FAUはX型ゼオライト又はY型ゼオライトの結晶構造が観測された場合である。
(Iv) Crystal structure and microstructure analysis Table 3 shows the X-ray diffraction results of each sample of PRH, Type, FAU (X) and FAU (Y) at each firing temperature. In Table 3, Amorphous, LTA, and FAU indicate the crystal structure of the zeolite in the sample. If Amorphous is not observed (non-crystalline), the LTA indicates the crystal structure of the A-type zeolite. In this case, FAU is when the crystal structure of X-type zeolite or Y-type zeolite is observed.

Figure 0005487483
Figure 0005487483

PRHでは、全ての焼成温度でゼオライト結晶構造が観測されなかった。
Atypeでは、全ての試料でA型ゼオライトの結晶構造が観測された。
1000℃で焼成したFAU(X)で結晶のピークが観測されなかった理由は、焼成温度が高いPRHではシリカの活性が低くなって、水熱合成によってゼオライトが生成しにくくなっているものと考えられる。
FAU(Y)では、ゼオライトを作製する際の溶液が少なく、試料に溶液が完全に浸されず、残留炭素分が多い500℃焼成及び600℃焼成FAU(Y)ではシリカが溶解せず、ゼオライトが十分に生成しなかったものと考えられる。また、900℃焼成FAU(Y)では、ポリケイ酸カリウムが生成し始め、ゼオライトの生成を阻害しているものと考えられる。一方、1000℃焼成FAU(Y)では、カリウム分の揮散により、この阻害は起きにくかったものと考えられる。
In PRH, no zeolite crystal structure was observed at all calcination temperatures.
In Atype, the crystal structure of A-type zeolite was observed in all samples.
The reason why no crystal peak was observed in FAU (X) calcined at 1000 ° C. is that the activity of silica is low at PRH with a high calcining temperature and it is difficult to produce zeolite by hydrothermal synthesis. It is done.
In FAU (Y), there is little solution when producing zeolite, the solution is not completely immersed in the sample, and 500 ° C. calcining and 600 ° C. calcining with high residual carbon content are not dissolved in silica. Is considered not to be generated sufficiently. Moreover, in 900 degreeC baking FAU (Y), it is thought that the production | generation of a potassium polysilicate has started and the production | generation of a zeolite is inhibited. On the other hand, in 1000 degreeC baking FAU (Y), it is thought that this inhibition was hard to occur by volatilization of a potassium content.

SEM像では、外表皮にゼオライトが多く、内表皮にはゼオライトが少ないという特徴ある構造が観察できた。これは外表皮と内表皮におけるシリカ量(重量比2.4:1)の相違によるものと考えられる。   In the SEM image, a characteristic structure in which the outer skin was rich in zeolite and the inner skin was low in zeolite could be observed. This is considered to be due to the difference in the amount of silica (weight ratio 2.4: 1) between the outer skin and the inner skin.

籾殻約20gを窒素気流(100mL/min)中、昇温速度5K/minで700℃まで昇温し、700℃の一定温度で1時間保持し、その後自然放冷することによって焼成を行い、PRHを作製した。   About 20 g of rice husk is heated in a nitrogen stream (100 mL / min) at a heating rate of 5 K / min up to 700 ° C., held at a constant temperature of 700 ° C. for 1 hour, and then spontaneously cooled to perform firing. Was made.

次に、このPRH中のSiOとHO含量を測定し、NaO:Al:SiO:HO=3.17:1:1.93:128(モル比)となるように、NaOH,Al(OH)、HOを秤量し、PRHと混合した。 Next, the SiO 2 and H 2 O contents in this PRH were measured, and Na 2 O: Al 2 O 3 : SiO 2 : H 2 O = 3.17: 1: 1.93: 128 (molar ratio) As such, NaOH, Al (OH) 3 and H 2 O were weighed and mixed with PRH.

次に、この混合物をオートクレーブ中に入れ、100℃で4時間水熱処理を行った。
水熱処理後、生成物をオートクレーブから取り出し、固形物を濾過し、濾液がpH9以下になるまで蒸留水で洗浄し、乾燥させた。
Next, this mixture was put in an autoclave and hydrothermally treated at 100 ° C. for 4 hours.
After hydrothermal treatment, the product was removed from the autoclave, the solid was filtered, washed with distilled water until the filtrate was pH 9 or less, and dried.

得られた固形物のX線回折結果から、A型ゼオライトであることが判明した。ゼオライトと同重量存在する炭素のX線回折ピークは観察されなかった。   From the X-ray diffraction result of the obtained solid, it was found to be A-type zeolite. An X-ray diffraction peak of carbon present in the same weight as the zeolite was not observed.

得られた籾殻ゼオライト-活性炭複合体試料(以下、NaA700と記す)を約20mg秤量し、試料パン中に設置し、乾燥窒素気流(70mL/min)中で昇温速度30℃/minで500℃まで昇温し、30分保持した。その後、−30℃/minで30℃まで降温した。
次に、窒素70mL/minを50℃に保温した水中に供給してバブリングし、24℃での湿度82%の水蒸気−窒素混合ガスを作り、これをNaA700中に通した。質量が一定になるまで30℃で保持し、NaA700に吸着する水の量を測定した。
次に、乾燥窒素気流に切り替え、30℃/minで500℃まで昇温し、質量変化が無くなるまで30分保持した。
その後、−30℃/minで30℃まで降温した。
次に、流通ガスを0.7体積%のCOを含むN+COガスに切り替え、水の吸着実験と同様に水を含んだ混合ガス試料を接触させ、HOとCOの吸着量を測定した。
吸着量が一定になった後、500℃まで30℃/minで昇温し、HO+CO脱着を行った。
比較のために、モレキュラーシーブ4A(以下、MS−4Aと記す)についても、前記NaA700と同様に、HO+CO吸着・脱着試験を行った。その結果を表4にまとめて記す。
About 20 mg of the obtained rice husk zeolite-activated carbon composite sample (hereinafter referred to as NaA700) was weighed, placed in a sample pan, and heated at a heating rate of 30 ° C./min at 500 ° C. in a dry nitrogen stream (70 mL / min). The temperature was raised to 30 minutes and held for 30 minutes. Thereafter, the temperature was lowered to 30 ° C. at −30 ° C./min.
Next, 70 mL / min of nitrogen was supplied into water kept at 50 ° C. and bubbled to make a steam-nitrogen mixed gas having a humidity of 82% at 24 ° C., and this was passed through NaA700. It was kept at 30 ° C. until the mass became constant, and the amount of water adsorbed on NaA700 was measured.
Next, it switched to the dry nitrogen stream, heated up to 500 degreeC at 30 degree-C / min, and hold | maintained for 30 minutes until there was no mass change.
Thereafter, the temperature was lowered to 30 ° C. at −30 ° C./min.
Next, the circulating gas is switched to N 2 + CO 2 gas containing 0.7% by volume of CO 2 , and a mixed gas sample containing water is brought into contact in the same manner as in the water adsorption experiment to adsorb H 2 O and CO 2 . The amount was measured.
After the adsorption amount became constant, the temperature was raised to 500 ° C. at 30 ° C./min, and H 2 O + CO 2 desorption was performed.
For comparison, molecular sieve 4A (hereinafter referred to as MS-4A) was also subjected to an H 2 O + CO 2 adsorption / desorption test in the same manner as NaA700. The results are summarized in Table 4.

Figure 0005487483
Figure 0005487483

表4の結果から、MS−4Aと比較して、NaA700の方が、水を含んだ炭酸ガスの吸着において、水の吸着量は少ないものの、炭酸ガス吸着量が多かった。   From the results in Table 4, compared with MS-4A, NaA700 adsorbed carbon dioxide gas containing water, although the amount of water adsorbed was small, but the amount of carbon dioxide adsorbed was larger.

[実施例3]
500℃で焼成したPRHを用いて、実施例2と同様にA型ゼオライトを調製した。
得られた籾殻ゼオライト-活性炭複合体試料(以下、NaA500と記す)について、実施例2と同様に水蒸気、水蒸気+炭酸ガスの吸着実験を行った。また、乾燥炭酸ガス-窒素混合ガスの吸着実験も行った。
比較のため、PRHからKOH賦活で調製した比表面積3000m/gの籾殻活性炭を用意し、前記NaA500と同じゼオライト含量を持ち、表面積が同じになるように市販のMS−4Aとこの籾殻活性炭、及び表面積が小さく吸着能がほとんど無いα−Alを混合し、重量がNaA500と同じになるように調製した試料(以下、Mixtureと記す)を用意した。吸着実験結果を以下の表5に示す。
[Example 3]
A-type zeolite was prepared in the same manner as in Example 2 using PRH calcined at 500 ° C.
The obtained rice husk zeolite-activated carbon composite sample (hereinafter referred to as NaA500) was subjected to an adsorption experiment of water vapor, water vapor + carbon dioxide gas in the same manner as in Example 2. In addition, adsorption experiment of dry carbon dioxide-nitrogen mixed gas was also conducted.
For comparison, a rice husk activated carbon having a specific surface area of 3000 m 2 / g prepared from PRH by KOH activation was prepared, and commercially available MS-4A and this rice husk activated carbon had the same zeolite content as NaA500 and had the same surface area. A sample (hereinafter referred to as “Mixture”) prepared by mixing α-Al 2 O 3 having a small surface area and almost no adsorption ability and having the same weight as NaA500 was prepared. The adsorption experiment results are shown in Table 5 below.

Figure 0005487483
Figure 0005487483

NaA500は500℃で調製した籾殻ゼオライト-活性炭複合体である。Mixtureは市販MS−4A-籾殻活性炭-α−アルミナ混合物の結果である。Mixtureでは乾燥炭酸ガスの吸着量は7.1mg/gであるが、水蒸気−炭酸ガス混合気体では水蒸気単独の場合よりも吸着量は少なくなっており、水蒸気が共存するために炭酸ガス吸着が阻害されていることがわかる。NaA500では、水蒸気の吸着量も多く、水蒸気が共存しても炭酸ガスの吸着も示している。乾燥炭酸ガスでは吸着量は非常に大きくなっている。このように、NaA500はゼオライトと活性炭との単なる混合物ではなく、ゼオライトと活性炭が原子レベルで近接しており、何らかの相互作用があることが明らかである。   NaA500 is a rice husk zeolite-activated carbon composite prepared at 500 ° C. Mixture is the result of a commercial MS-4A-chaff activated carbon-α-alumina mixture. In Mixture, the amount of dry carbon dioxide adsorbed is 7.1 mg / g, but in the case of water vapor-carbon dioxide mixed gas, the amount of adsorption is less than in the case of water vapor alone, and the coexistence of water vapor prevents carbon dioxide adsorption. You can see that NaA500 has a large amount of water vapor adsorbed, and even when water vapor coexists, carbon dioxide is also adsorbed. With dry carbon dioxide, the amount of adsorption is very large. Thus, it is clear that NaA500 is not a simple mixture of zeolite and activated carbon, but zeolite and activated carbon are close to each other at the atomic level and have some interaction.

本発明の多孔性アルミノケイ酸塩−炭素複合体は、炭酸ガスと水及び微量有害気体の同時吸着が可能であり、軽量化及び省スペース化が特に要求される宇宙の閉鎖空間、或いは潜水艦内などの特殊環境下における炭酸ガス、水蒸気、微量有害成分の除去装置用の吸着材として利用できる。   The porous aluminosilicate-carbon composite of the present invention is capable of simultaneously adsorbing carbon dioxide gas, water, and a trace amount of harmful gas, and is a closed space in space where space saving is particularly required, or in a submarine, etc. It can be used as an adsorbent for carbon dioxide, water vapor, and trace harmful component removal equipment in special environments.

Claims (5)

ケイ酸植物を不活性雰囲気中、400℃以上に加熱し、焼成して炭化物を作製する工程、
次いで、得られた炭化物中のケイ素含量を調べ、Si:Al:Na=1:0.8〜1.2:2.5〜4.0(モル比)の範囲にあるアルミノケイ酸塩が生成するように、Al化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加えて混合物を作製する工程、及び
次いで、得られた混合物に水熱反応を施して、多孔性アルミノケイ酸塩−炭素複合体を得る工程を有し、
前記多孔性アルミノケイ酸塩がA型ゼオライトである製造方法により得られた多孔性アルミノケイ酸塩−炭素複合体を含み、
被処理ガス中の少なくとも炭酸ガスと水分とを同時に吸着除去することを特徴とする吸着材。
Heating the silicic acid plant to 400 ° C. or higher in an inert atmosphere and baking to produce a carbide;
Next, the silicon content in the obtained carbide is examined, and an aluminosilicate in the range of Si: Al: Na = 1: 0.8 to 1.2: 2.5 to 4.0 (molar ratio) is formed. A step of preparing a mixture by adding an Al compound and an alkali metal compound or an alkaline earth metal compound and water, and then subjecting the resulting mixture to a hydrothermal reaction to produce a porous aluminosilicate-carbon composite Obtaining a body,
A porous aluminosilicate-carbon composite obtained by a production method in which the porous aluminosilicate is A-type zeolite ;
An adsorbent characterized by simultaneously adsorbing and removing at least carbon dioxide gas and moisture in a gas to be treated.
前記製造方法が、得られた多孔性アルミノケイ酸塩−炭素複合体に、水蒸気賦活処理又は炭酸ガス賦活処理を施して表面積を大きくした複合体を得る工程をさらに有することを特徴とする請求項1に記載の吸着材 2. The method according to claim 1, further comprising the step of obtaining a composite having a large surface area by subjecting the obtained porous aluminosilicate-carbon composite to a steam activation treatment or a carbon dioxide activation treatment. Adsorbent as described in 4. ケイ酸植物が、イネの籾殻又は藁であることを特徴とする請求項1又は2に記載の吸着材The adsorbent according to claim 1 or 2, wherein the silicic acid plant is rice husk or straw. 前記Al化合物が水酸化アルミニウムであり、アルカリ金属化合物又はアルカリ土類金属化合物が水酸化ナトリウム、水酸化カリウム、水酸化カルシウムのいずれか1種又は2種以上であることを特徴とする請求項1〜3のいずれか1項に記載の吸着材2. The Al compound is aluminum hydroxide, and the alkali metal compound or alkaline earth metal compound is any one or more of sodium hydroxide, potassium hydroxide, and calcium hydroxide. The adsorbent of any one of -3. ペレット状又はハニカム構造に成形された請求項1〜4のいずれか1項に記載の吸着材。 The adsorbent according to any one of claims 1 to 4, wherein the adsorbent is formed into a pellet shape or a honeycomb structure.
JP2009054205A 2009-03-06 2009-03-06 Adsorbent Active JP5487483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054205A JP5487483B2 (en) 2009-03-06 2009-03-06 Adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054205A JP5487483B2 (en) 2009-03-06 2009-03-06 Adsorbent

Publications (2)

Publication Number Publication Date
JP2010208872A JP2010208872A (en) 2010-09-24
JP5487483B2 true JP5487483B2 (en) 2014-05-07

Family

ID=42969470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054205A Active JP5487483B2 (en) 2009-03-06 2009-03-06 Adsorbent

Country Status (1)

Country Link
JP (1) JP5487483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030122A (en) * 2016-08-26 2018-03-01 進和テック株式会社 Method for producing desiccant

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778952B2 (en) * 2011-03-11 2015-09-16 株式会社ガイア環境技術研究所 Conditioning material and method for producing the same
JPWO2014167981A1 (en) * 2013-04-11 2017-02-16 ソニー株式会社 Electrode, manufacturing method thereof, and secondary battery
TWI638775B (en) * 2013-06-12 2018-10-21 日商日立化成股份有限公司 Aluminum silicate composite, conductive material, conductive material for lithium ion secondary battery, composition for forming negative electrode for lithium ion secondary battery, composition for forming positive electrode for lithium ion secondary ba
JP6277877B2 (en) * 2013-06-12 2018-02-14 日立化成株式会社 Aluminum silicate composite
JP2016113324A (en) * 2014-12-16 2016-06-23 日立化成株式会社 Aluminum silicate composite
JP7133121B2 (en) * 2015-11-10 2022-09-08 三重県 Negative electrode active material for non-aqueous electrolyte secondary battery using rice husk or rice straw carbide
JP6760583B2 (en) * 2016-06-16 2020-09-23 進和テック株式会社 How to make activated carbon
JP6895988B2 (en) * 2016-11-15 2021-06-30 昭和電工マテリアルズ株式会社 Materials for lithium-ion secondary batteries, positive electrode mixture, positive electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
CN110562975B (en) * 2019-10-08 2022-04-05 宁夏大学 Activated carbon-molecular sieve prepared from cow dung and coal fly ash, preparation method and application thereof
CN110817865A (en) * 2019-11-29 2020-02-21 西南大学 Shaddock valve-based porous activated carbon and preparation method and application thereof
US20230070640A1 (en) * 2020-01-23 2023-03-09 Sony Group Corporation PRODUCTION METHOD OF POROUS MATERIAL, POROUS MATERIAL OBTAINED THEREBY AND Si SOURCE COMPOSITION FOR PRODUCING POROUS MATERIAL
JP2021130091A (en) * 2020-02-20 2021-09-09 進和テック株式会社 Desiccant filter, desiccant filter unit and method for regenerating desiccant filter
JP7532096B2 (en) 2020-06-02 2024-08-13 イビデン株式会社 Honeycomb structure and gas recovery device
CN115845930B (en) * 2022-11-03 2024-03-29 华侨大学 Application of rice husk as molecular sieve catalyst forming template

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316109A (en) * 2000-04-28 2001-11-13 Akio Henmi Artificial zeolite manufacturing method from rice family plant
JP2003199811A (en) * 2002-11-18 2003-07-15 Kikuya Tamura Method for manufacturing deodorizing material clean zeolite advantageously putting waste, by-product or matter sluggish in utilization to practical use
JP2004202393A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Carbon dioxide desorption method
JP4590551B2 (en) * 2004-10-29 2010-12-01 独立行政法人産業技術総合研究所 Zeolite-carbon composite material, method for producing the same, and electromagnetic wave shielding / absorbing member
US7399341B2 (en) * 2005-04-26 2008-07-15 Uop Llc Gas purification process
JP4963616B2 (en) * 2006-03-23 2012-06-27 Jx日鉱日石エネルギー株式会社 Adsorbent for removing trace components in hydrocarbon oil and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030122A (en) * 2016-08-26 2018-03-01 進和テック株式会社 Method for producing desiccant

Also Published As

Publication number Publication date
JP2010208872A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5487483B2 (en) Adsorbent
Wang et al. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash
US9486732B2 (en) Adsorbent compositions
ES2746198T3 (en) Adsorbent granule of composite material, process for its production and gas separation process
JP5209408B2 (en) Agglomerated zeolite adsorbent, its production method and use in non-cryogenic separation of industrial gases
KR102194141B1 (en) Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
RU2436625C1 (en) Method to produce carbon adsorbent
KR20140111549A (en) Carbon dioxide gas adsorbent comprising zeolite and methods for preparing the same
JP6707743B2 (en) Method for manufacturing desiccant
JP2012512018A (en) Method for removing contaminants from a water-containing gas stream
JP4025228B2 (en) Preparation method of molecular sieve adsorbent for selective separation of air size / morphology
Rzepka et al. Upgrading of raw biogas into biomethane with structured nano-sized zeolite| NaK|-A adsorbents in a PVSA unit
RU2414961C1 (en) Carbon-mineral sorbent and method of making said sorbent
EP2864040A1 (en) Novel adsorbent compositions
JP7397076B2 (en) High siliceous form of zeolite RHO
KR100803771B1 (en) Process for the preparation of molecular sieve adsorbent for selective adsorption of oxygen from air
JP2004506509A (en) Gas separation method
JP2024018448A (en) Gas separation method, production method of purified gas, and gas separator
JP2024018456A (en) Gas separation method, and production method of purified gas
Onyestyák et al. Novel biomorphous zeolite/carbon composite having honeycomb structure
RU2518579C1 (en) Method of obtaining carbon adsorbent
OKUTANI et al. Synthesis of conjunctive zeolite-activated carbon composite adsorbent from rice hulls for simultaneous adsorption of CO2 and H2O
JP2017077541A (en) Carbon dioxide adsorbent
JP2001347123A (en) Adsorptive separation method for carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5487483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250