JP6174556B2 - Modified activated carbon, method for producing the same, and filtration cartridge - Google Patents

Modified activated carbon, method for producing the same, and filtration cartridge Download PDF

Info

Publication number
JP6174556B2
JP6174556B2 JP2014259714A JP2014259714A JP6174556B2 JP 6174556 B2 JP6174556 B2 JP 6174556B2 JP 2014259714 A JP2014259714 A JP 2014259714A JP 2014259714 A JP2014259714 A JP 2014259714A JP 6174556 B2 JP6174556 B2 JP 6174556B2
Authority
JP
Japan
Prior art keywords
activated carbon
macropores
modified
powdered
modified activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259714A
Other languages
Japanese (ja)
Other versions
JP2016117629A (en
Inventor
秀哉 上川
秀哉 上川
佑樹 河合
佑樹 河合
Original Assignee
トクラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56242421&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6174556(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by トクラス株式会社 filed Critical トクラス株式会社
Priority to JP2014259714A priority Critical patent/JP6174556B2/en
Publication of JP2016117629A publication Critical patent/JP2016117629A/en
Application granted granted Critical
Publication of JP6174556B2 publication Critical patent/JP6174556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、活性炭を用いる技術に関する。   The present invention relates to a technique using activated carbon.

水道水に含まれる微量の有機ハロゲン化合物(トリハロメタン等)を除去するため、活性炭を有する浄水器が用いられている。ヤシ殻系活性炭といった植物由来の活性炭は、ミクロ孔からマクロ孔まで種々の直径(Dとする。)の細孔を有している。ここで、IUPAC(International Union of Pure and Applied Chemistry、国際純正・応用化学連合)では、径2nm(D=2)よりも小さい細孔をミクロ孔と定義し、径2nm以上50nm以下である細孔をメソ孔と定義し、径50nm(D=50)よりも大きい細孔をマクロ孔と定義している。例えば、水道水中ごく僅かに存在するトリハロメタンの代表例であるクロロホルム(トリクロロメタン)は、マクロ孔やメソ孔ではなく、約0.7nmに細孔径分布のピークを持つミクロ孔に吸着され易い。このように、トリハロメタン等の有機ハロゲン化合物は、径2nm未満のミクロ孔に吸着され易い一方、メソ孔やマクロ孔に吸着され難い。   In order to remove a trace amount of organic halogen compounds (such as trihalomethane) contained in tap water, a water purifier having activated carbon is used. Plant-derived activated carbon such as coconut shell activated carbon has pores with various diameters (D) from micropores to macropores. Here, in the IUPAC (International Union of Pure and Applied Chemistry), pores smaller than 2 nm in diameter (D = 2) are defined as micropores, and pores having a diameter of 2 nm to 50 nm. Are defined as mesopores, and pores larger than 50 nm in diameter (D = 50) are defined as macropores. For example, chloroform (trichloromethane), which is a representative example of trihalomethane existing in a very small amount in tap water, is not adsorbed by micropores having a peak of pore size distribution at about 0.7 nm, not macropores or mesopores. Thus, an organic halogen compound such as trihalomethane is easily adsorbed to micropores having a diameter of less than 2 nm, but is difficult to adsorb to mesopores and macropores.

細孔のうちミクロ孔を多くするためには、活性炭の賦活度を低くすることが考えられる。しかし、賦活度を低くした活性炭は、細孔容積が小さいため、活性炭の単位体積で見たときにトリハロメタン類の吸着量が少ない。特許文献1には、トリハロメタン類の吸着量を増やすため活性炭を窒素ガス雰囲気中で1200〜1700℃の範囲内において加熱処理することが開示されている。   In order to increase the number of micropores among the pores, it is conceivable to reduce the activation degree of the activated carbon. However, activated carbon with a low degree of activation has a small pore volume, so that the adsorption amount of trihalomethanes is small when viewed in unit volume of activated carbon. Patent Document 1 discloses that activated carbon is heat-treated in a nitrogen gas atmosphere within a range of 1200 to 1700 ° C. in order to increase the adsorption amount of trihalomethanes.

特開平8−26711号公報JP-A-8-26711

上述した技術は、トリハロメタン類の吸着量を増やすため窒素ガス雰囲気を用意したうえ1200〜1700℃と非常に高い温度で活性炭を加熱処理する必要がある The techniques described above, it is necessary to heat treating the activated carbon at a very high temperature and 1200 to 1700 ° C. after having prepared a nitrogen gas atmosphere to increase the adsorption amount of trihalomethanes.

本発明は、単位体積当たりのミクロ孔を増やした新規の改質活性炭及び濾過カートリッジを提供する目的を有している。 The present invention has an object to provide a novel modified activated carbon and a filtration cartridge having an increased number of micropores per unit volume .

本発明の改質活性炭は、除去対象の物質を除去するための粉末状活性炭が活性炭のマクロ孔に入った、態様を有する。
また、本発明の改質活性炭の製造方法は、マクロ孔を有する平均粒径D1の活性炭と、除去対象の物質を除去するための平均粒径D2(D2<D1)の粉末状活性炭と、液状分散媒と、を含む材料を混合して前記平均粒径D1の活性炭のマクロ孔に前記平均粒径D2の粉末状活性炭を入れ、前記活性炭のマクロ孔に粉末状活性炭が入った改質活性炭を製造する、態様を有する。
さらに、本発明は、除去対象の物質を除去するための粉末状活性炭が活性炭のマクロ孔に入った改質活性炭を用いた濾過カートリッジの態様を有する。
The modified activated carbon of the present invention has a mode in which powdered activated carbon for removing the substance to be removed enters the macropores of the activated carbon.
Moreover, the method for producing the modified activated carbon of the present invention includes activated carbon having an average particle diameter D1 having macropores, powdered activated carbon having an average particle diameter D2 (D2 <D1) for removing a substance to be removed, and a dispersion medium, a mixture of materials including putting powdered activated carbon of the average particle diameter D2 to the macropores of the activated carbon of the average particle diameter D1, a modified activated carbon containing the powdery activated carbon into the macropores of the activated carbon Having an aspect to manufacture.
Furthermore, this invention has the aspect of the filtration cartridge using the modified activated carbon in which the powdery activated carbon for removing the substance of removal object entered into the macropore of activated carbon.

すなわち、活性炭にある細孔のうち径50nmよりも大きいマクロ孔に粉末状活性炭が入っているので、粉末状活性炭の存在による改質活性炭の体積の増加が抑制される。本態様は、単位体積当たりのミクロ孔を増やした新規の改質活性炭を提供することができる。尚、活性炭と粉末状活性炭と液状分散媒とを含む材料には、前記3種類の原料のみからなる材料、及び、前記3種類の原料とは異なる原料も含まれる材料の両方が含まれる。 That is, since the powdered activated carbon is contained in the macropores larger than 50 nm in diameter among the pores in the activated carbon, an increase in the volume of the modified activated carbon due to the presence of the powdered activated carbon is suppressed. This aspect can provide a novel modified activated carbon having an increased number of micropores per unit volume . In addition, the material containing activated carbon, powdered activated carbon, and a liquid dispersion medium includes both a material including only the three kinds of raw materials and a material including a raw material different from the three kinds of raw materials.

さらに、本発明の改質活性炭の製造方法は、マクロ孔を有し所定サイズよりも大きい活性炭と、液状分散媒と、を含む材料を混合して前記活性炭の一部から生成される前記所定サイズ以下の粉末状活性炭を前記マクロ孔に入れ、該マクロ孔に入らなかった前記所定サイズ以下の粉末状活性炭を除去する工程を行って、前記活性炭のマクロ孔に粉末状活性炭が入った改質活性炭を製造する、態様を有する。   Furthermore, in the method for producing the modified activated carbon of the present invention, the predetermined size generated from a part of the activated carbon by mixing a material containing activated carbon having macropores larger than the predetermined size and a liquid dispersion medium. A modified activated carbon in which the powdered activated carbon is placed in the macropores of the activated carbon by performing the step of removing the powdered activated carbon having the predetermined size or less that has not entered the macropores by putting the following powdered activated carbon in the macropores Having an embodiment.

すなわち、活性炭にある細孔のうち径50nmよりも大きいマクロ孔に粉末状活性炭が入っているので、粉末状活性炭の存在による改質活性炭の体積の増加が抑制される。また、所定サイズ以下の粉末状活性炭を除去する工程が行われるので、改質活性炭の集合体が目詰まりし難くなる。尚、所定サイズよりも大きい活性炭と液状分散媒とを含む材料には、前記2種類の原料のみからなる材料、及び、前記2種類の原料とは異なる原料も含まれる材料の両方が含まれる。   That is, since the powdered activated carbon is contained in the macropores larger than 50 nm in diameter among the pores in the activated carbon, an increase in the volume of the modified activated carbon due to the presence of the powdered activated carbon is suppressed. Moreover, since the process of removing the powdery activated carbon below a predetermined size is performed, the aggregate of the modified activated carbon is less likely to be clogged. In addition, the material containing activated carbon larger than a predetermined size and the liquid dispersion medium includes both a material including only the two kinds of raw materials and a material including a raw material different from the two kinds of raw materials.

請求項1〜請求項4に係る発明では、単位体積当たりのミクロ孔を増やした新規の改質活性炭を提供することができる。
請求項5に係る発明では、単位体積当たりのミクロ孔を増やした新規の改質活性炭を用いた濾過カートリッジを提供することができる。
In the inventions according to claims 1 to 4 , it is possible to provide a novel modified activated carbon having an increased number of micropores per unit volume.
In the invention which concerns on Claim 5 , the filtration cartridge using the novel modified activated carbon which increased the micropore per unit volume can be provided.

改質活性炭の構造を模式的に例示する図。The figure which illustrates typically the structure of modified activated carbon. 改質活性炭の表面を模式的に例示する図。The figure which illustrates typically the surface of modified activated carbon. (a),(b)は改質活性炭の製造方法の例を模式的に示す流れ図。(A), (b) is a flowchart which shows the example of the manufacturing method of modified activated carbon typically. 改質活性炭の製造方法の例を模式的に示す流れ図。The flowchart which shows the example of the manufacturing method of modified activated carbon typically. 浄水カートリッジの例を模式的に示す図。The figure which shows the example of a water purification cartridge typically. 実施例1の改質活性炭の表面を示す写真。3 is a photograph showing the surface of the modified activated carbon of Example 1. 実施例2の改質活性炭の表面を示す写真。3 is a photograph showing the surface of the modified activated carbon of Example 2. 参考例1の改質活性炭の表面を示す写真。 The photograph which shows the surface of the modified activated carbon of Reference Example 1 .

以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。   Embodiments of the present invention will be described below. Of course, the following embodiments are merely examples of the present invention, and all the features shown in the embodiments are not necessarily essential to the means for solving the invention.

(1)改質活性炭の概要:
図1〜5は、本技術の改質活性炭、並びに、その製造方法及び利用方法の例を示している。尚、図1〜5は模式的に示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。
(1) Overview of modified activated carbon:
1-5 has shown the example of the modified activated carbon of this technique, its manufacturing method, and its utilization method. 1 to 5 are schematic diagrams, and the enlargement ratio in each direction shown in these diagrams may be different, and the diagrams may not be consistent.

図1に示す本技術の改質活性炭1は、除去対象の物質を除去するための粉末状の機能物質20が活性炭10のマクロ孔14に入った構造を有している。図1に示す活性炭10は、細孔11として、直径Dが2nmよりも小さいミクロ孔12、直径Dが2nm以上50nm以下であるメソ孔13、及び、直径Dが50nmよりも大きいマクロ孔14を有している。尚、個々に実測する際の細孔の直径は、撮影画像といった平面状の観察視野に現れた細孔の開口部で実測するものとし、開口部が非円形であれば長径と短径の相加平均とする。マクロ孔14の直径Dmacroは、個々の活性炭10の直径よりも小さく、概略、マクロ孔14に入った個々の機能物質20の直径よりも大きい。尚、個々に実測する際の被測定物(活性炭と機能物質)の直径は、平面状の観察視野で実測するものとし、観察視野上の被測定物が非円形であれば長径と短径の相加平均とする。図1には、個々の活性炭10の直径を平均化した平均粒径D1、及び、個々の機能物質20の直径を平均化した平均粒径D2を示している。マクロ孔14の奥行長Lは、通常、マクロ孔14の径Dmacroよりも長い。 The modified activated carbon 1 of the present technology shown in FIG. 1 has a structure in which a powdery functional substance 20 for removing a substance to be removed enters a macropore 14 of the activated carbon 10. Activated carbon 10 shown in FIG. 1 has, as pores 11, micropores 12 having a diameter D smaller than 2 nm, mesopores 13 having a diameter D of 2 nm to 50 nm, and macropores 14 having a diameter D larger than 50 nm. Have. In addition, the diameter of the pore when actually measured is to be measured at the opening of the pore appearing in a planar observation field such as a photographed image, and if the opening is non-circular, the major axis and minor axis phases are measured. The arithmetic mean. The diameter Dmacro of the macropore 14 is smaller than the diameter of the individual activated carbon 10 and is generally larger than the diameter of the individual functional material 20 that has entered the macropore 14. In addition, the diameter of the object to be measured (activated carbon and functional substance) when actually measured is to be measured in a flat observation field. If the object to be measured on the observation field is non-circular, the major axis and the minor axis are measured. Arithmetic average. FIG. 1 shows an average particle diameter D1 obtained by averaging the diameters of the individual activated carbons 10 and an average particle diameter D2 obtained by averaging the diameters of the individual functional substances 20. Depth length L of the macropores 14 typically have length than the diameter Dmacro macropores 14.

水道水中には、塩素投入等により生じるトリハロメタン(メタン分子に含まれる4個の水素原子のうち3個の水素原子がハロゲン原子に置換されたもの)といった微量の有機ハロゲン化合物が存在する。トリハロメタンにはクロロホルム、ブロモジクロロメタン、ジブロモクロロメタン、ブロモホルム、等が含まれるが、水道水に存在するのは主としてクロロホルムとブロモジクロロメタンである。ここで、クロロホルムは、約0.7nmに細孔径分布のピークを持つミクロ孔12に吸着され易い。また、1,1,1−トリクロロエタン(エタン分子に含まれる6個の水素原子のうち3個の水素原子が塩素原子に置換されたもの)は、約1nmに細孔径分布のピークを持つミクロ孔12に吸着され易い。
以上より、水道水中に存在する有機ハロゲン化合物は、マクロ孔14やメソ孔13ではなく、径2nm未満のミクロ孔12に吸着され易い。
In tap water, there are trace amounts of organic halogen compounds such as trihalomethanes (those in which 3 hydrogen atoms in 4 hydrogen atoms contained in methane molecules are substituted with halogen atoms) generated by adding chlorine. Trihalomethane includes chloroform, bromodichloromethane, dibromochloromethane, bromoform, and the like, but it is mainly chloroform and bromodichloromethane that are present in tap water. Here, chloroform is easily adsorbed by the micropores 12 having a pore size distribution peak at about 0.7 nm. In addition, 1,1,1-trichloroethane (one in which three hydrogen atoms in six ethane atoms are replaced by chlorine atoms) is a micropore having a peak of pore size distribution at about 1 nm. 12 is easily adsorbed.
As described above, the organic halogen compound existing in tap water is not easily adsorbed to the micropores 12 having a diameter of less than 2 nm, not the macropores 14 and the mesopores 13.

粉末状の機能物質20は、除去対象の物質を除去する機能があればよく、図3(b)に示すように粉末状活性炭でもよいし、ゼオライト(沸石)やイオン交換樹脂といったイオン交換体、チタンやチタン酸化物といった触媒、等でもよい。機能物質20がマクロ孔14に多く入ると、機能物質20による機能が改質活性炭1に多く付与される。尚、機能物質20が粉末状活性炭21である場合、活性炭10を主活性炭とも呼び、粉末状活性炭21を従活性炭とも呼ぶことにする。
尚、改質活性炭1の活性炭10のマクロ孔14には、100重量部の活性炭10に対して粉末状機能物質20が1重量部以上入っていてもよく、2重量部以上、3重量部以上、5重量部以上、7重量部以上、さらには、10重量部以上入っていてもよい。尚、マクロ孔14に入る粉末状機能物質20の量の上限は、活性炭10に混合する粉末状機能物質20の配合比となることがある。
The powdery functional substance 20 only needs to have a function of removing the substance to be removed, and may be powdered activated carbon as shown in FIG. 3B, or an ion exchanger such as zeolite (zeolite) or ion exchange resin, A catalyst such as titanium or titanium oxide may be used. When a large amount of the functional substance 20 enters the macropores 14, a large number of functions by the functional substance 20 are imparted to the modified activated carbon 1. In addition, when the functional substance 20 is the powdered activated carbon 21, the activated carbon 10 is also called a main activated carbon and the powdered activated carbon 21 is also called a secondary activated carbon.
The macropores 14 of the activated carbon 10 of the modified activated carbon 1 may contain 1 part by weight or more of the powdered functional substance 20 with respect to 100 parts by weight of the activated carbon 10, and may be 2 parts by weight or more, 3 parts by weight or more. 5 parts by weight or more, 7 parts by weight or more, and further 10 parts by weight or more may be contained. In addition, the upper limit of the amount of the powdery functional substance 20 entering the macropores 14 may be a blending ratio of the powdery functional substance 20 mixed with the activated carbon 10.

図2は、マクロ孔14に入った機能物質20を定量する例を示している。活性炭10の表面には、マクロ孔14の開口部が現れる。ここで、改質活性炭1の表面を観察したときに観察視野の単位面積(例えば50μm四方)において観察されるマクロ孔14の総数をNmとし、観察される機能物質20が入ったマクロ孔の数(マクロ孔14のうち機能物質20が入っていないマクロ孔14aを除いた数)をNiとする。50μm四方とは、1辺が50μmの正方形を意味する。機能物質20の定量値は、例えば、機能物質20が入ったマクロ孔14の比率Ni/Nmで表すことができる。本技術の改質活性炭1は、Ni/Nm≧0.5(50%以上)とすることができ、さらに、Ni/Nm≧0.6(60%以上)、Ni/Nm≧0.7(70%以上)、Ni/Nm≧0.8(80%以上)、Ni/Nm≧0.9(90%以上)、とすることもできる。   FIG. 2 shows an example in which the functional substance 20 entering the macropores 14 is quantified. On the surface of the activated carbon 10, an opening of the macro hole 14 appears. Here, when the surface of the modified activated carbon 1 is observed, the total number of macropores 14 observed in the unit area of the observation field (for example, 50 μm square) is Nm, and the number of macropores containing the functional substance 20 observed. (The number excluding the macro holes 14a in which the functional substance 20 is not included in the macro holes 14) is defined as Ni. The 50 μm square means a square having a side of 50 μm. The quantitative value of the functional substance 20 can be expressed by, for example, the ratio Ni / Nm of the macropores 14 containing the functional substance 20. The modified activated carbon 1 of the present technology can satisfy Ni / Nm ≧ 0.5 (50% or more), and Ni / Nm ≧ 0.6 (60% or more), Ni / Nm ≧ 0.7 ( 70% or more), Ni / Nm ≧ 0.8 (80% or more), Ni / Nm ≧ 0.9 (90% or more).

マクロ孔14には、機能物質20が1個入る場合もあれば、2個以上入る場合もある。ここで、改質活性炭1の表面を観察したときに観察視野の単位面積(例えば50μm四方)において観察されるマクロ孔14に入った機能物質20の数をNfとする。機能物質20の定量値は、単位面積当たりの機能物質数Nfでも表すことができる。本技術の改質活性炭1は、Nf≧10とすることができ、さらに、Nf≧20、Nf≧30、Nf≧50、Nf≧100、とすることもできる。数Nfとして数える機能物質20の大きさには下限を設けてもよい。この下限は、機能物質20の種類等に応じて、0.1μm、0.2μm、0.3μm、0.5μm、1μm、2μm、等と様々に設定することができる。   The macro hole 14 may contain one functional substance 20 or may contain two or more functional substances 20. Here, the number of functional substances 20 entering the macropores 14 observed in the unit area (for example, 50 μm square) of the observation field when the surface of the modified activated carbon 1 is observed is defined as Nf. The quantitative value of the functional substance 20 can also be expressed by the number of functional substances Nf per unit area. The modified activated carbon 1 of the present technology can satisfy Nf ≧ 10, and can also satisfy Nf ≧ 20, Nf ≧ 30, Nf ≧ 50, and Nf ≧ 100. You may provide a minimum in the magnitude | size of the functional substance 20 counted as the number Nf. This lower limit can be variously set to 0.1 μm, 0.2 μm, 0.3 μm, 0.5 μm, 1 μm, 2 μm, and the like depending on the type of the functional substance 20.

(2)改質活性炭、及び、その製造方法の具体例:
次に、図1〜4を参照して、改質活性炭1、及び、その製造方法の具体例を説明する。
図3(a)は、改質活性炭1の製造方法の例を模式的に示している。本例は、少なくとも、活性炭10、機能物質20、及び、水(液状分散媒)30を用いて改質活性炭2〜4を製造する方法の例である。前記液状分散媒は、液体の分散媒を意味する。尚、改質活性炭2〜4を改質活性炭1と総称する。
(2) Specific examples of modified activated carbon and its production method:
Next, with reference to FIGS. 1-4, the specific example of the modified activated carbon 1 and its manufacturing method is demonstrated.
FIG. 3A schematically shows an example of a method for producing the modified activated carbon 1. This example is an example of a method for producing modified activated carbons 2 to 4 using at least activated carbon 10, functional material 20, and water (liquid dispersion medium) 30. The liquid dispersion medium means a liquid dispersion medium. The modified activated carbons 2 to 4 are collectively referred to as modified activated carbon 1.

活性炭10の原料となる炭素質材料は、賦活することによってマクロ孔を有する活性炭を形成することができればよく、植物系の炭素質材料等を用いることができる。植物系の炭素質材料には、ヤシ殻やアーモンド殻といった果実殻、木材、おが屑、竹、草、等を用いることができる。賦活とは、炭素質材料の微細孔を発達させる反応である。賦活には、水蒸気、二酸化炭素、空気、等の存在下で高温処理するガス賦活、塩化亜鉛、硫酸塩、リン酸、等で薬品処理する薬品賦活、薬品と水蒸気を併用する賦活、等がある。炭素質材料の賦活には、炭化処理後に賦活処理することが含まれる。炭化処理は、例えば、窒素、アルゴン、等の不活性雰囲気下、600〜800℃で炭素質材料を炭化する処理とすることができる。炭化処理後の賦活処理は、例えば、水蒸気、二酸化炭素、等の酸化性ガスの雰囲気下、700〜1100℃、より好ましくは800〜1000℃で炭素質材料を活性化する処理とすることができる。   The carbonaceous material used as the raw material of the activated carbon 10 should just be able to form the activated carbon which has a macropore by activating, and a plant-type carbonaceous material etc. can be used. As the plant-based carbonaceous material, fruit shells such as coconut shells and almond shells, wood, sawdust, bamboo, grass and the like can be used. Activation is a reaction that develops micropores in the carbonaceous material. Examples of the activation include gas activation for high-temperature treatment in the presence of water vapor, carbon dioxide, air, etc., chemical activation for chemical treatment with zinc chloride, sulfate, phosphoric acid, etc., activation using a combination of chemical and water vapor, etc. . Activation of the carbonaceous material includes activation treatment after carbonization treatment. The carbonization treatment can be, for example, a treatment for carbonizing a carbonaceous material at 600 to 800 ° C. in an inert atmosphere such as nitrogen or argon. The activation treatment after the carbonization treatment can be, for example, a treatment for activating the carbonaceous material at 700 to 1100 ° C., more preferably 800 to 1000 ° C. in an atmosphere of an oxidizing gas such as water vapor or carbon dioxide. .

マクロ孔14を有する活性炭10には、粒状、粉砕状、粉末状、繊維状、等の種々の形状の活性炭を用いることができる。平均粒径を求めることができる場合の活性炭10の平均粒径D1は、機能物質20の平均粒径D2よりも大きくされ、例えば、10μm以上、20μm以上、30μm以上、50μm以上、100μm以上、等と様々に設定することができる。活性炭10の平均粒径D1の上限側については、例えば、1000μm以下、500μm以下、300μm以下、等と様々に設定することができる。尚、本願における平均粒径は、JIS K5600-9-3:2006(塗料一般試験方法−第9部:粉体塗料−第3節:レーザ回折による粒度分布の測定方法)に準拠した粒子径分布からJIS Z8819-2(粒子径測定結果の表現―第2部:粒子径分布からの平均粒子径又は平均粒子直径及びモーメントの計算)に従って求められる重み付き体積平均粒子径とする。   For the activated carbon 10 having the macropores 14, activated carbon having various shapes such as granular, pulverized, powdered, and fibrous can be used. When the average particle diameter can be obtained, the average particle diameter D1 of the activated carbon 10 is larger than the average particle diameter D2 of the functional substance 20, for example, 10 μm or more, 20 μm or more, 30 μm or more, 50 μm or more, 100 μm or more, etc. And can be set variously. The upper limit side of the average particle diameter D1 of the activated carbon 10 can be variously set, for example, 1000 μm or less, 500 μm or less, 300 μm or less, and the like. In addition, the average particle diameter in this application is a particle diameter distribution based on JIS K5600-9-3: 2006 (Paint general test method-Part 9: Powder paint-Section 3: Measuring method of particle size distribution by laser diffraction). To JIS Z8819-2 (Expression of particle diameter measurement result-Part 2: Average particle diameter from particle diameter distribution or calculation of average particle diameter and moment).

図3(b)に示す粉末状活性炭21、イオン交換体、触媒、といった粉末状の機能物質20の平均粒径D2は、活性炭10の平均粒径D1よりも小さくされる。マクロ孔14には個々の機能物質20が入ればよく、また、混合工程S1で一部粉砕されてもよいので、機能物質20の平均粒径D2自体はマクロ孔14の径Dmacro以上でもよい。機能物質20の平均粒径D2は、例えば、50μm以下、30μm以下、20μm以下、10μm以下、5μm以下、等と様々に設定することができる。機能物質20の平均粒径D2の下限側については、例えば、50nm以上、0.1μm以上、0.2μm以上、0.3μm以上、0.5μm以上、1μm以上、2μm以上、等と様々に設定することができる。尚、改質活性炭1を用いた濾過カートリッジにおいて改質活性炭1の後に中空糸膜を配置する場合、機能物質20の粒径を中空糸膜の孔径以上にすると、マクロ孔14に入っていない機能物質20が改質活性炭1から流出しても中空糸膜で捕捉される。機能物質20の平均粒径D2としては、中空糸膜の孔径よりも大きい方が好ましい。例えば、中空糸膜の孔径が0.1μmである場合、機能物質20の平均粒径D2は0.2μm以上が好ましい。   The average particle diameter D2 of the powdered functional material 20 such as the powdered activated carbon 21, the ion exchanger, and the catalyst shown in FIG. 3B is made smaller than the average particle diameter D1 of the activated carbon 10. Since the individual functional materials 20 need only enter the macropores 14 and may be partially pulverized in the mixing step S1, the average particle diameter D2 of the functional materials 20 may be larger than the diameter Dmacro of the macropores 14. The average particle diameter D2 of the functional substance 20 can be variously set to, for example, 50 μm or less, 30 μm or less, 20 μm or less, 10 μm or less, 5 μm or less, and the like. The lower limit of the average particle diameter D2 of the functional substance 20 is variously set, for example, 50 nm or more, 0.1 μm or more, 0.2 μm or more, 0.3 μm or more, 0.5 μm or more, 1 μm or more, 2 μm or more, etc. can do. When a hollow fiber membrane is disposed after the modified activated carbon 1 in a filtration cartridge using the modified activated carbon 1, if the particle size of the functional substance 20 is larger than the pore diameter of the hollow fiber membrane, the function not entering the macropores 14 is achieved. Even if the substance 20 flows out of the modified activated carbon 1, it is captured by the hollow fiber membrane. The average particle diameter D2 of the functional substance 20 is preferably larger than the pore diameter of the hollow fiber membrane. For example, when the pore diameter of the hollow fiber membrane is 0.1 μm, the average particle diameter D2 of the functional substance 20 is preferably 0.2 μm or more.

機能物質20としての従活性炭(粉末状活性炭21)には、マクロ孔が有ってもよいし無くてもよい。従活性炭の原料となる炭素質材料は、賦活することによって活性炭を形成することができればよく、植物系、石炭系、石油系、合成樹脂系、天然素材系、各種有機灰、等を用いることができる。植物系の炭素質材料には、主活性炭10と同様、ヤシ殻やアーモンド殻といった果実殻、木材、おが屑、竹、草、等を用いることができる。石炭系の炭素質材料には、泥炭、亜炭、かつ炭、瀝青炭、無煙炭、等を用いることができる。石油系の炭素質材料には、石油ピッチ等を用いることができる。合成樹脂系の炭素質材料には、フェノール系樹脂、エポキシ系樹脂、ユリア系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリアクリロニトリル系樹脂、ポリオレフィン系樹脂、等を用いることができる。天然素材系の炭素質材料には、木綿といった天然繊維、レーヨンといった再生繊維、アセテートといった半合成繊維、等を用いることができる。従活性炭を生成するための賦活の条件は、主活性炭を生成するための賦活の条件と同様である。   The secondary activated carbon (powdered activated carbon 21) as the functional substance 20 may or may not have macropores. The carbonaceous material that is the raw material of the secondary activated carbon is only required to be able to form activated carbon by activation, and plant-based, coal-based, petroleum-based, synthetic resin-based, natural material-based, various organic ash, etc. may be used. it can. Similar to the main activated carbon 10, fruit shells such as coconut shells and almond shells, wood, sawdust, bamboo, grass, and the like can be used as the plant carbonaceous material. As the coal-based carbonaceous material, peat, lignite, and charcoal, bituminous coal, anthracite, or the like can be used. Petroleum pitch or the like can be used as the petroleum-based carbonaceous material. As the synthetic resin-based carbonaceous material, phenol resin, epoxy resin, urea resin, polyamide resin, polyvinyl alcohol resin, polyacrylonitrile resin, polyolefin resin, and the like can be used. As the natural carbonaceous material, natural fibers such as cotton, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, and the like can be used. The activation conditions for generating the secondary activated carbon are the same as the activation conditions for generating the main activated carbon.

混合する従活性炭の配合量は、従活性炭による物質除去機能を十分に得る点から、主活性炭100重量部に対して0.5重量部以上が好ましく、1重量部以上がより好ましく、2重量部以上がさらに好ましい。また、マクロ孔14に入らない従活性炭を少なくする点から、従活性炭の配合量は、主活性炭100重量部に対して30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下がさらに好ましい。尚、主活性炭に対して混合する従活性炭の重量比は、マクロ孔に入る従活性炭の主活性炭に対する重量比の上限となることがある。   The amount of the sub activated carbon to be mixed is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, more preferably 2 parts by weight with respect to 100 parts by weight of the main active carbon from the viewpoint of sufficiently obtaining a substance removing function by the sub active carbon. The above is more preferable. Further, from the viewpoint of reducing the amount of secondary activated carbon that does not enter the macropores 14, the amount of secondary activated carbon is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, and more preferably 10 parts by weight or less with respect to 100 parts by weight of the primary activated carbon. Is more preferable. In addition, the weight ratio of the secondary activated carbon mixed with respect to the primary activated carbon may be the upper limit of the weight ratio of the secondary activated carbon entering the macropore to the primary activated carbon.

機能物質20としてのイオン交換体には、ゼオライトといった無機系のイオン交換体、陽イオン交換樹脂や陰イオン交換樹脂といったイオン交換樹脂、キレート樹脂といったキレート化合物、等を用いることができる。ゼオライトや陽イオン交換樹脂は、陽イオン交換機能により金属イオンを吸着する。キレート化合物は、キレート結合で特定の金属イオンを選択的に吸着する。すなわち、ゼオライトや陽イオン交換樹脂やキレート化合物は、金属処理剤として機能する。機能物質20としての触媒には、チタンや銅といった遷移金属、遷移金属の化合物、等を用いることができる。
また、機能物質20には、粉末状活性炭21、イオン交換体、触媒の中から選ばれる2種類以上の物質を組み合わせて用いてもよい。
As the ion exchanger as the functional substance 20, an inorganic ion exchanger such as zeolite, an ion exchange resin such as a cation exchange resin or an anion exchange resin, a chelate compound such as a chelate resin, or the like can be used. Zeolite and cation exchange resin adsorb metal ions by a cation exchange function. The chelate compound selectively adsorbs a specific metal ion through a chelate bond. That is, Ze zeolite and cation exchange resin and chelate compounds function as metal treatment agents. As the catalyst as the functional substance 20, a transition metal such as titanium or copper, a transition metal compound, or the like can be used.
In addition, the functional substance 20 may be used in combination of two or more kinds of substances selected from powdered activated carbon 21, ion exchangers, and catalysts.

機能物質20の配合量(2種類以上の物質を組み合わせる場合は組み合わせた物質を合わせた配合量)は、機能物質20による物質除去機能を十分に得る点から、100重量部の活性炭10に対して0.5重量部以上が好ましく、1重量部以上がより好ましく、2重量部以上がさらに好ましい。また、マクロ孔14に入らない機能物質20を少なくする点から、機能物質20の配合量は、100重量部の活性炭10に対して30重量部以下が好ましく、20重量部以下がより好ましく、10重量部以下がさらに好ましい。尚、活性炭10に対して混合する機能物質20の重量比は、マクロ孔に入る機能物質20の活性炭10に対する重量比の上限となることがある。   The compounding amount of the functional substance 20 (the compounding amount of the combined substances when two or more substances are combined) is based on 100 parts by weight of the activated carbon 10 from the viewpoint of sufficiently obtaining a substance removing function by the functional substance 20. 0.5 parts by weight or more is preferable, 1 part by weight or more is more preferable, and 2 parts by weight or more is more preferable. Further, from the viewpoint of reducing the functional substance 20 that does not enter the macropores 14, the blending amount of the functional substance 20 is preferably 30 parts by weight or less, more preferably 20 parts by weight or less with respect to 100 parts by weight of the activated carbon 10. More preferred are parts by weight or less. The weight ratio of the functional substance 20 to be mixed with the activated carbon 10 may be the upper limit of the weight ratio of the functional substance 20 entering the macropores with respect to the activated carbon 10.

水30やアルコール(例えばメタノールやエタノール)といった液状分散媒は、活性炭10のマクロ孔14に粉末状機能物質20が保持され易くする。一般に、粒径1mm以下の粒子では、重力よりも静電付着力やファンデルワールス力の方が強く、静電付着力やファンデルワールス力よりも液架橋付着力(liquid bridge adhesion force)の方が強い。液状分散媒が無ければ活性炭10と機能物質20との間にファンデルワールス力や静電付着力が働くと推測されるが、活性炭10と機能物質20との間に液状分散媒が保持されることにより、活性炭10と機能物質20との間に液架橋付着力という強い引力が働くと推測される。   A liquid dispersion medium such as water 30 or alcohol (for example, methanol or ethanol) facilitates the retention of the powdery functional substance 20 in the macropores 14 of the activated carbon 10. In general, for particles with a particle size of 1 mm or less, electrostatic adhesion and van der Waals force are stronger than gravity, and liquid bridge adhesion force is more than electrostatic adhesion and van der Waals force. Is strong. If there is no liquid dispersion medium, it is estimated that van der Waals force and electrostatic adhesion force work between the activated carbon 10 and the functional material 20, but the liquid dispersion medium is held between the activated carbon 10 and the functional material 20. Thus, it is presumed that a strong attractive force called liquid cross-linking adhesion acts between the activated carbon 10 and the functional substance 20.

水30の配合量は、活性炭10と機能物質20との間に強い引力を働かせる点から、活性炭10と機能物質20を合わせた100重量部に対して50重量部以上が好ましく、80重量部以上がより好ましく、100重量部以上がさらに好ましい。水30の配合量の上限側については、活性炭10と機能物質20を合わせた100重量部に対して200重量部以下が好ましく、150重量部以下がより好ましく、120重量部以上がさらに好ましい。   The blending amount of the water 30 is preferably 50 parts by weight or more, more than 80 parts by weight with respect to 100 parts by weight of the activated carbon 10 and the functional substance 20 in order to exert a strong attractive force between the activated carbon 10 and the functional substance 20. Is more preferable, and 100 parts by weight or more is more preferable. The upper limit of the amount of water 30 is preferably 200 parts by weight or less, more preferably 150 parts by weight or less, and still more preferably 120 parts by weight or more with respect to 100 parts by weight of the activated carbon 10 and the functional substance 20 combined.

混合する材料は活性炭10と粉末状機能物質20と水30の組合せのみでも良いが、100重量部の活性炭10に対して例えば0.1〜60重量部程度の添加剤40を添加しても良い。この添加剤40は、粉末状機能物質20の平均粒径D2よりも大きい平均粒径の機能物質(活性炭を除く。)でもよい。添加剤40としての機能物質は、活性炭10のマクロ孔14に入らないものの、添加剤40による物質除去機能を改質活性炭1に付与することができる。尚、添加剤40を添加する場合の水30の配合量は、活性炭10と機能物質20と添加剤40との間に強い引力を働かせる点から、活性炭10と機能物質20と添加剤40を合わせた100重量部に対して50重量部以上が好ましく、80重量部以上がより好ましく、100重量部以上がさらに好ましい。水30の配合量の上限側については、活性炭10と機能物質20と添加剤40を合わせた100重量部に対して200重量部以下が好ましく、150重量部以下がより好ましく、120重量部以上がさらに好ましい。   The material to be mixed may be only a combination of the activated carbon 10, the powdery functional substance 20, and the water 30. However, for example, about 0.1 to 60 parts by weight of the additive 40 may be added to 100 parts by weight of the activated carbon 10. . The additive 40 may be a functional substance (excluding activated carbon) having an average particle diameter larger than the average particle diameter D2 of the powdered functional substance 20. Although the functional substance as the additive 40 does not enter the macropores 14 of the activated carbon 10, the substance removal function by the additive 40 can be imparted to the modified activated carbon 1. The amount of water 30 in the case of adding the additive 40 is that the activated carbon 10, the functional substance 20, and the additive 40 are combined from the point that a strong attractive force acts between the activated carbon 10, the functional substance 20 and the additive 40. The amount is preferably 50 parts by weight or more, more preferably 80 parts by weight or more, and still more preferably 100 parts by weight or more with respect to 100 parts by weight. The upper limit of the amount of water 30 is preferably 200 parts by weight or less, more preferably 150 parts by weight or less, and 120 parts by weight or more with respect to 100 parts by weight of the activated carbon 10, the functional substance 20, and the additive 40 combined. Further preferred.

混合工程S1では、活性炭10と粉末状機能物質20と水30と必要に応じて添加剤40とを含む材料を混合して活性炭10のマクロ孔14に粉末状機能物質20を入れる。各原料の混合順は、特に限定されず、混合装置に同時に投入されてもよいし、粉末状機能物質20と水30とを混ぜたスラリーを活性炭10及び必要に応じて添加剤40と混合してもよい。これらの原料を混合することにより、マクロ孔14に入っていない機能物質20が残存した湿潤状態の改質活性炭2が得られる。活性炭10と粉末状機能物質20とに引力が働くことにより、バインダーが無くても活性炭10のマクロ孔14に機能物質20が保持される。   In the mixing step S <b> 1, a material containing the activated carbon 10, the powdery functional substance 20, water 30 and, if necessary, the additive 40 is mixed and the powdery functional substance 20 is put into the macropores 14 of the activated carbon 10. The order of mixing the raw materials is not particularly limited, and may be charged simultaneously into the mixing device, or a slurry obtained by mixing the powdered functional material 20 and water 30 is mixed with the activated carbon 10 and, if necessary, the additive 40. May be. By mixing these raw materials, the modified activated carbon 2 in a wet state in which the functional substance 20 that does not enter the macropores 14 is obtained can be obtained. By the attractive force acting on the activated carbon 10 and the powdered functional material 20, the functional material 20 is retained in the macropores 14 of the activated carbon 10 even without a binder.

活性炭10のマクロ孔14に機能物質20が入ることにより、機能物質20の存在による改質活性炭の体積の増加が抑制されるうえ、機能物質20による機能が改質活性炭2に付与される。すなわち、改質活性炭2は、粉末状機能物質20が活性炭10のマクロ孔14に入った改質活性炭1に含まれ、体積の増加を抑制して機能物質による機能を付加した新規の材料である。   When the functional substance 20 enters the macropores 14 of the activated carbon 10, an increase in the volume of the modified activated carbon due to the presence of the functional substance 20 is suppressed, and the function of the functional substance 20 is imparted to the modified activated carbon 2. That is, the modified activated carbon 2 is a new material in which the powdered functional substance 20 is contained in the modified activated carbon 1 that has entered the macropores 14 of the activated carbon 10 and the function of the functional substance is added while suppressing an increase in volume. .

混合工程S1で行う混合には、人手による混合の他、ミキサー、ブレンダー、水平円筒型、V型、二重円錐型、正方立体型、S型、連続V型、ボールミル型、ロッキング型、クロスロータリー型、リボン型、スクリュー型、ロター型、パグミル型、遊星型、タービン型、高速流動型、回転円板型、遠心型(遠心力を用いて撹拌する装置)、造粒機、等の混合装置を使用することができる。混合の温度は、特に限定されず、20℃程度の室温等、加熱機や冷却機を使用しない温度でもよいし、例えば10〜90℃程度の目標温度に制御される温度でもよい。   For mixing performed in the mixing step S1, manual mixing, mixer, blender, horizontal cylindrical type, V type, double cone type, square solid type, S type, continuous V type, ball mill type, rocking type, cross rotary Mixing devices such as molds, ribbon types, screw types, rotor types, pug mill types, planetary types, turbine types, high-speed flow types, rotating disk types, centrifugal types (devices that stir using centrifugal force), granulators, etc. Can be used. The mixing temperature is not particularly limited, and may be a temperature that does not use a heater or a cooler, such as a room temperature of about 20 ° C., or may be a temperature controlled to a target temperature of about 10 to 90 ° C., for example.

必要に応じて、マクロ孔14に入っていない機能物質20を除去する遊離機能物質除去工程S2を混合工程S1の後に行ってもよい。例えば、所定サイズ(例えば50μm)のメッシュを有するふるいの上に改質活性炭2を載せて水といった液状分散媒で所定サイズ以下の機能物質20を洗い流すと、マクロ孔14に入っていない機能物質20の少なくとも一部が除去された湿潤状態の改質活性炭3が得られる。マクロ孔14に入った機能物質20は、活性炭10との引力により残存する。改質活性炭3の粒度分布を測定すると、粉末状機能物質20の平均粒径D2のピークはほぼ見られず、活性炭10の平均粒径D1のピークが見られる。   As needed, you may perform the free functional substance removal process S2 which removes the functional substance 20 which is not contained in the macropore 14 after mixing process S1. For example, when the modified activated carbon 2 is placed on a sieve having a mesh of a predetermined size (for example, 50 μm) and the functional material 20 having a predetermined size or less is washed away with a liquid dispersion medium such as water, the functional material 20 that is not contained in the macropores 14. Thus, the modified activated carbon 3 in a wet state from which at least a part thereof is removed is obtained. The functional substance 20 that has entered the macropores 14 remains due to the attractive force with the activated carbon 10. When the particle size distribution of the modified activated carbon 3 is measured, the peak of the average particle diameter D2 of the powdered functional material 20 is hardly seen, and the peak of the average particle diameter D1 of the activated carbon 10 is seen.

活性炭10のマクロ孔14に機能物質20が入っていることにより、機能物質20の存在による改質活性炭の体積の増加が抑制されているうえ、機能物質20による機能が改質活性炭3に付与されている。すなわち、改質活性炭3は、粉末状機能物質20が活性炭10のマクロ孔14に入った改質活性炭1に含まれ、体積の増加を抑制して機能物質による機能を付加した新規の材料である。また、マクロ孔14に入っていない微細な機能物質20の少なくとも一部が除去されることにより、浄水カートリッジといった濾過カートリッジに用いられる改質活性炭の集合体が目詰まりし難くなる。   Since the functional substance 20 is contained in the macropores 14 of the activated carbon 10, an increase in the volume of the modified activated carbon due to the presence of the functional substance 20 is suppressed, and the function of the functional substance 20 is imparted to the modified activated carbon 3. ing. That is, the modified activated carbon 3 is a new material in which the powdered functional material 20 is included in the modified activated carbon 1 that has entered the macropores 14 of the activated carbon 10 and the function of the functional material is added while suppressing an increase in volume. . Further, by removing at least a part of the fine functional substance 20 that does not enter the macropores 14, the aggregate of the modified activated carbon used in the filtration cartridge such as the water purification cartridge is less likely to be clogged.

ふるいのメッシュのサイズは、粉末状機能物質20を除去する点から、例えば、10μm以上、20μm以上、30μm以上、40μm以上、等と様々に設定することができる。メッシュのサイズの上限側については、改質活性炭3を残す点から、例えば、90μm以下、80μm以下、70μm以下、60μm以下、等と様々に設定することができる。   The size of the sieve mesh can be variously set, for example, from 10 μm or more, 20 μm or more, 30 μm or more, 40 μm or more, etc. from the point of removing the powdery functional substance 20. The upper limit side of the mesh size can be variously set, for example, from 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, etc. from the point of leaving the modified activated carbon 3.

さらに必要に応じて、水といった液状分散媒を除去する工程(例えば乾燥工程S3)を遊離機能物質除去工程S2又は混合工程S1の後に行ってもよい。例えば、水を含んだ改質活性炭3を乾燥させると、マクロ孔14に入っていない機能物質20の少なくとも一部が除去された乾燥状態の改質活性炭4が得られる。改質活性炭4の粒度分布を測定すると、粉末状機能物質20の平均粒径D2のピークはほぼ見られず、活性炭10の平均粒径D1のピークが見られる。改質活性炭4のかさ比重は、活性炭10のかさ比重よりも大きくなっている。   Further, if necessary, a step of removing a liquid dispersion medium such as water (for example, a drying step S3) may be performed after the free functional substance removing step S2 or the mixing step S1. For example, when the modified activated carbon 3 containing water is dried, the modified activated carbon 4 in a dry state in which at least a part of the functional substance 20 not entering the macropores 14 is removed is obtained. When the particle size distribution of the modified activated carbon 4 is measured, the peak of the average particle diameter D2 of the powdered functional material 20 is hardly seen, and the peak of the average particle diameter D1 of the activated carbon 10 is seen. The bulk specific gravity of the modified activated carbon 4 is larger than the bulk specific gravity of the activated carbon 10.

改質活性炭4は、粉末状機能物質20が活性炭10のマクロ孔14に入った改質活性炭1に含まれ、体積の増加を抑制して機能物質による機能を付加した新規の材料である。また、濾過カートリッジに用いられる改質活性炭の集合体が目詰まりし難い。   The modified activated carbon 4 is a new material in which the powdered functional substance 20 is contained in the modified activated carbon 1 that has entered the macropores 14 of the activated carbon 10 and the function of the functional substance is added while suppressing an increase in volume. Moreover, the aggregate of the modified activated carbon used for the filtration cartridge is not easily clogged.

図3(b)は、機能物質20として従活性炭(粉末状活性炭21)を用いる例を示している。すなわち、混合工程S1では、主活性炭10と粉末状活性炭21と水30と必要に応じて添加剤40とを含む材料を混合して主活性炭10のマクロ孔14に粉末状活性炭21を入れる。これにより、マクロ孔14に入っていない粉末状活性炭21が残存した湿潤状態の改質活性炭2が得られる。主活性炭10のマクロ孔14に粉末状活性炭21が入ることにより、粉末状活性炭21の存在による改質活性炭の体積の増加が抑制され、単位体積当たりのミクロ孔が増える。すなわち、改質活性炭2は、粉末状活性炭21が主活性炭10のマクロ孔14に入った改質活性炭1に含まれ、単位体積当たりのミクロ孔を増やした新規の材料である。   FIG. 3B shows an example in which secondary activated carbon (powdered activated carbon 21) is used as the functional substance 20. That is, in the mixing step S <b> 1, a material including the main activated carbon 10, the powdered activated carbon 21, water 30 and, if necessary, the additive 40 is mixed and the powdered activated carbon 21 is put into the macropores 14 of the main activated carbon 10. Thereby, the modified activated carbon 2 in a wet state in which the powdered activated carbon 21 not entering the macropores 14 remains is obtained. By entering the powdered activated carbon 21 into the macropores 14 of the main activated carbon 10, an increase in the volume of the modified activated carbon due to the presence of the powdered activated carbon 21 is suppressed, and the number of micropores per unit volume is increased. That is, the modified activated carbon 2 is a new material in which the powdered activated carbon 21 is included in the modified activated carbon 1 in which the macropores 14 of the main activated carbon 10 are contained, and the number of micropores per unit volume is increased.

図3(b)に示す製造方法でも、必要に応じて遊離機能物質除去工程S2や乾燥工程S3を行ってもよい。得られる改質活性炭3,4の粒度分布を測定すると、粉末状機能物質20の平均粒径D2のピークはほぼ見られず、活性炭10の平均粒径D1のピークが見られる。改質活性炭4のかさ比重は、活性炭10のかさ比重よりも大きくなっている。改質活性炭4の比表面積(容積基準)は、活性炭10の比表面積(容積基準)よりも大きくなっている。改質活性炭4の全細孔容積(容積基準)は、活性炭10の全細孔容積(容積基準)よりも大きくなっている。改質活性炭4の有機ハロゲン化合物除去性能は、活性炭10の有機ハロゲン化合物除去性能よりも高くなっている。すなわち、改質活性炭3,4は、粉末状活性炭21が主活性炭10のマクロ孔14に入った改質活性炭1に含まれ、単位体積当たりのミクロ孔を増やした新規の材料である。また、濾過カートリッジに用いられる改質活性炭の集合体が目詰まりし難い。   In the manufacturing method shown in FIG. 3B, the free function substance removing step S2 and the drying step S3 may be performed as necessary. When the particle size distribution of the obtained modified activated carbons 3 and 4 is measured, the peak of the average particle diameter D2 of the powdered functional material 20 is hardly seen, and the peak of the average particle diameter D1 of the activated carbon 10 is seen. The bulk specific gravity of the modified activated carbon 4 is larger than the bulk specific gravity of the activated carbon 10. The specific surface area (volume basis) of the modified activated carbon 4 is larger than the specific surface area (volume basis) of the activated carbon 10. The total pore volume (volume basis) of the modified activated carbon 4 is larger than the total pore volume (volume basis) of the activated carbon 10. The modified activated carbon 4 has an organic halogen compound removing performance higher than that of the activated carbon 10. That is, the modified activated carbons 3 and 4 are new materials in which the powdered activated carbon 21 is included in the modified activated carbon 1 in the macro pores 14 of the main activated carbon 10 and the number of micropores per unit volume is increased. Moreover, the aggregate of the modified activated carbon used for the filtration cartridge is not easily clogged.

さらに、図4に示す製造方法のように、主活性炭10の一部から従活性炭(粉末状活性炭21)を生成してマクロ孔14に入れてもよい。図4に示す混合工程S11では、所定サイズ(例えば50μm)よりも大きい主活性炭10と水(液状分散媒)30と必要に応じて添加剤40とを含む材料を混合して主活性炭10の一部から生成される所定サイズ(例えば50μm)以下の粉末状活性炭21をマクロ孔14に入れる。前記所定サイズは、遊離機能物質除去工程S2で粉末状活性炭21を除去する点から、例えば、10μm以上、20μm以上、30μm以上、40μm以上、等と様々に設定することができる。上記所定サイズの上限側については、遊離機能物質除去工程S2で改質活性炭3を残す点から、例えば、90μm以下、80μm以下、70μm以下、60μm以下、等と様々に設定することができる。   Furthermore, a secondary activated carbon (powdered activated carbon 21) may be generated from a part of the main activated carbon 10 and put into the macropores 14 as in the manufacturing method shown in FIG. In the mixing step S11 shown in FIG. 4, the main activated carbon 10 larger than a predetermined size (for example, 50 μm), water (liquid dispersion medium) 30 and a material containing the additive 40 as necessary are mixed to mix the main activated carbon 10. Powdered activated carbon 21 having a predetermined size (for example, 50 μm) or less generated from the part is put into the macropores 14. The predetermined size can be variously set, for example, from 10 μm or more, 20 μm or more, 30 μm or more, 40 μm or more, etc. from the point of removing the powdered activated carbon 21 in the free functional substance removing step S2. The upper limit side of the predetermined size can be variously set, for example, 90 μm or less, 80 μm or less, 70 μm or less, 60 μm or less, etc. from the point that the modified activated carbon 3 is left in the free functional substance removing step S2.

以上により、マクロ孔14に入っていない粉末状活性炭21が残存した湿潤状態の改質活性炭2が得られる。所定サイズよりも大きい主活性炭10の一部から生成される粉末状活性炭21が主活性炭10のマクロ孔14に入ることにより、粉末状活性炭21の存在による改質活性炭の体積の増加が抑制され、単位体積当たりのミクロ孔が増える。すなわち、図4に示す改質活性炭2も、粉末状活性炭21が主活性炭10のマクロ孔14に入った改質活性炭1に含まれ、単位体積当たりのミクロ孔を増やした新規の材料である。   As described above, the modified activated carbon 2 in a wet state in which the powdered activated carbon 21 that does not enter the macropores 14 remains is obtained. When the powdered activated carbon 21 generated from a part of the main activated carbon 10 larger than the predetermined size enters the macropores 14 of the main activated carbon 10, an increase in the volume of the modified activated carbon due to the presence of the powdered activated carbon 21 is suppressed, The number of micropores per unit volume increases. That is, the modified activated carbon 2 shown in FIG. 4 is also a new material in which the powdered activated carbon 21 is included in the modified activated carbon 1 in the macropores 14 of the main activated carbon 10 and the number of micropores per unit volume is increased.

混合工程S11で行う混合には、図3(a)で示した混合工程S1で使用可能な混合装置を用いることができる。ここで、混合工程S11では、主活性炭10の一部を粉砕するため、混合工程S1の場合と比べて混合装置の回転速度を上げたり混合時間を長くしたりといった強い混合を行えばよい。混合の温度も、混合工程S1と同様である。   For the mixing performed in the mixing step S11, a mixing device that can be used in the mixing step S1 shown in FIG. 3A can be used. Here, in the mixing step S11, since a part of the main activated carbon 10 is pulverized, strong mixing such as increasing the rotation speed of the mixing device or extending the mixing time may be performed as compared with the case of the mixing step S1. The mixing temperature is the same as in the mixing step S1.

図4に示す製造方法でも、必要に応じて遊離機能物質除去工程S2や乾燥工程S3を行ってもよい。例えば、上記所定サイズ(例えば50μm)のメッシュを有するふるいの上に改質活性炭2を載せて水で所定サイズ以下の粉末状活性炭21を洗い流すと、マクロ孔14に入っていない粉末状活性炭21の少なくとも一部が除去された湿潤状態の改質活性炭3が得られる(遊離機能物質除去工程S2)。この改質活性炭3を乾燥させると、マクロ孔14に入っていない粉末状活性炭21の少なくとも一部が除去された乾燥状態の改質活性炭4が得られる(乾燥工程S3)。すなわち、図4に示す改質活性炭3,4も、粉末状活性炭21が主活性炭10のマクロ孔14に入った改質活性炭1に含まれ、単位体積当たりのミクロ孔を増やした新規の材料である。また、濾過カートリッジに用いられる改質活性炭の集合体が目詰まりし難い。   Also in the manufacturing method shown in FIG. 4, the free functional substance removing step S <b> 2 and the drying step S <b> 3 may be performed as necessary. For example, when the modified activated carbon 2 is placed on a sieve having a mesh having a predetermined size (for example, 50 μm) and the powdered activated carbon 21 having a predetermined size or less is washed away with water, the powdered activated carbon 21 not entering the macropores 14 is washed away. The modified activated carbon 3 in a wet state from which at least a part has been removed is obtained (free functional substance removing step S2). When the modified activated carbon 3 is dried, the modified activated carbon 4 in a dry state from which at least a part of the powdered activated carbon 21 not entering the macropores 14 is removed is obtained (drying step S3). That is, the modified activated carbons 3 and 4 shown in FIG. 4 are also new materials in which the powdered activated carbon 21 is included in the modified activated carbon 1 in the macro pores 14 of the main activated carbon 10 and the number of micropores per unit volume is increased. is there. Moreover, the aggregate of the modified activated carbon used for the filtration cartridge is not easily clogged.

(3)改質活性炭の利用方法:
改質活性炭1は、例えば、図5に示すような浄水カートリッジ(濾過カートリッジ)C1に使用することができる。
図5に示す浄水カートリッジC1は、入口側の不織布C3と出口側のイオン交換繊維C4とで仕切られた円筒状の改質活性炭充填室C2や、改質活性炭充填室C2で囲まれた中央位置に設けられた円柱状の中空糸膜収容室C5を有し、入口C11から流入する水道水を濾過して濾過水を出口C12から出す。すなわち、不織布C3、改質活性炭1、イオン交換繊維C4、及び、中空糸膜C6が濾材として使用されている。
(3) How to use the modified activated carbon:
The modified activated carbon 1 can be used, for example, in a water purification cartridge (filtration cartridge) C1 as shown in FIG.
The water purification cartridge C1 shown in FIG. 5 is a central position surrounded by a cylindrical modified activated carbon filling chamber C2 and a modified activated carbon filling chamber C2 partitioned by a nonwoven fabric C3 on the inlet side and an ion exchange fiber C4 on the outlet side. The cylindrical hollow fiber membrane storage chamber C5 provided in the pipe is filtered, tap water flowing from the inlet C11 is filtered, and filtered water is discharged from the outlet C12. That is, the nonwoven fabric C3, the modified activated carbon 1, the ion exchange fiber C4, and the hollow fiber membrane C6 are used as the filter medium.

不織布C3は、入口C11に流入した水道水から大きなゴミを除去する。改質活性炭充填室C2に充填された改質活性炭1は、遊離残留塩素や有機物等を吸着して除去する。改質活性炭1に金属処理剤が含まれる場合、金属イオンが除去される。イオン交換繊維C4は、金属イオン等を除去する。イオン交換繊維C4は、活性炭繊維等と組み合わされて使用されてもよい。中空糸膜収容室C5に収容された中空糸膜C6は、0.1μm程度以上の細かい濁りや鉄サビや一般細菌を取り除く。
以上の他、改質活性炭1は、空気清浄機等に用いることができる。
Nonwoven fabric C3 removes large debris from tap water flowing into inlet C11. The modified activated carbon 1 filled in the modified activated carbon filling chamber C2 adsorbs and removes free residual chlorine, organic substances, and the like. When the modified activated carbon 1 contains a metal treating agent, metal ions are removed. The ion exchange fiber C4 removes metal ions and the like. The ion exchange fiber C4 may be used in combination with activated carbon fiber or the like. The hollow fiber membrane C6 accommodated in the hollow fiber membrane accommodation chamber C5 removes fine turbidity of about 0.1 μm or more, iron rust and general bacteria.
In addition to the above, the modified activated carbon 1 can be used in an air cleaner or the like.

(4)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
(4) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by the following examples.

[実施例1]
主活性炭として、平均粒径220μmのヤシ殻活性炭を用いた。この主活性炭を粉砕機で10分間粉砕し、平均粒径3.2μmの従活性炭を得た。前記粉砕機にはWARING社のブレンダーPM‐2005を用い、高速モードの回転数で粉砕を行った。混合装置にはケンウッド社の卓上型ミキサーKM-800(株式会社愛工舎製作所販売)に押出機構としてスーパーミンサーA-950を取り付けたものを用い、スクリューシャフトの回転速度を40rpmに設定した。マクロ孔に入っていない従活性炭を除去するための器具には、50μmのメッシュを有するふるいを用いた。
従活性炭5gと水205gとを混ぜてスラリーにし、このスラリーを主活性炭200gに振り掛けて初期の混合物とした。この混合物を上記混合装置の押出機構に5回通した。尚、混合物を押出機構にN回(Nは3以上の整数)通すとは、1回目では押出機構に通していない混合物を押出機構に投入して押し出し、2〜N回目では前回押し出した混合物を押出機構に投入して押し出すことを意味する。次に、処理後の混合物を上記ふるいに載せ、マクロ孔に入っていない従活性炭を1L(リットル)の水で洗い流した。その後、ふるい上に残った湿潤状態の改質活性炭を115℃で4時間乾燥させ、実施例1の改質活性炭サンプルを得た。
[Example 1]
As the main activated carbon, coconut shell activated carbon having an average particle size of 220 μm was used. The main activated carbon was pulverized with a pulverizer for 10 minutes to obtain a secondary activated carbon having an average particle diameter of 3.2 μm. The pulverizer was a blender PM-2005 manufactured by WARING, and pulverized at a high speed mode. The mixer used was a Kenwood tabletop mixer KM-800 (sold by Aikosha Seisakusho Co., Ltd.) with a Supermincer A-950 as an extrusion mechanism, and the screw shaft rotation speed was set to 40 rpm. A sieve having a mesh of 50 μm was used as an instrument for removing the sub-active carbon that did not enter the macropores.
5 g of secondary activated carbon and 205 g of water were mixed to form a slurry, and this slurry was sprinkled on 200 g of main activated carbon to obtain an initial mixture. This mixture was passed 5 times through the extrusion mechanism of the mixing device. When the mixture is passed through the extrusion mechanism N times (N is an integer of 3 or more), the mixture that has not been passed through the extrusion mechanism in the first time is put into the extrusion mechanism and extruded, and in the second to Nth time, the mixture extruded last time. It means to put into the extrusion mechanism and to extrude. Next, the treated mixture was placed on the sieve, and the secondary activated carbon not contained in the macropores was washed away with 1 L (liter) of water. Thereafter, the wet modified activated carbon remaining on the sieve was dried at 115 ° C. for 4 hours to obtain a modified activated carbon sample of Example 1.

[実施例2]
主活性炭、従活性炭、混合装置、及び、ふるいには、実施例1と同じものを用いた。
従活性炭10gと水215gとを混ぜてスラリーにし、このスラリーを主活性炭200gに振り掛けて初期の混合物とした。この混合物を上記混合装置の押出機構に40回通した。次に、処理後の混合物を上記ふるいに載せ、マクロ孔に入っていない従活性炭を1Lの水で洗い流した。その後、ふるい上に残った湿潤状態の改質活性炭を115℃で4時間乾燥させ、実施例2の改質活性炭サンプルを得た。
[Example 2]
The same main activated carbon, secondary activated carbon, mixing device, and sieve were used as in Example 1.
10 g of secondary activated carbon and 215 g of water were mixed to form a slurry, and this slurry was sprinkled on 200 g of main activated carbon to obtain an initial mixture. This mixture was passed 40 times through the extrusion mechanism of the mixing device. Next, the treated mixture was placed on the above-mentioned sieve, and the sub activated carbon not contained in the macropores was washed away with 1 L of water. Thereafter, the wet modified activated carbon remaining on the sieve was dried at 115 ° C. for 4 hours to obtain a modified activated carbon sample of Example 2.

[比較例1]
実施例1で用いた主活性炭を比較例1の改質活性炭サンプルとした。
[Comparative Example 1]
The main activated carbon used in Example 1 was used as the modified activated carbon sample of Comparative Example 1.

[かさ比重の測定]
実施例1,2及び比較例1の改質活性炭サンプルについて、単位体積当たりの重量をかさ比重(単位:g/cm3)として測定した。
[Measurement of bulk specific gravity]
For the modified activated carbon samples of Examples 1 and 2 and Comparative Example 1, the weight per unit volume was measured as the bulk specific gravity (unit: g / cm 3 ).

[容積基準の比表面積測定]
実施例1,2及び比較例1の改質活性炭サンプルについて、日本ベル株式会社製BELSORP−maxを用いて比表面積(単位:m2/g)を測定し、サンプル1cm3当たりの比表面積(単位:m2/cm3)に換算した。
[Measurement of specific surface area based on volume]
For the modified activated carbon samples of Examples 1 and 2 and Comparative Example 1, the specific surface area (unit: m 2 / g) was measured using BELSORP-max manufactured by Bell Japan Co., Ltd., and the specific surface area (unit: 1 cm 3 ) : M 2 / cm 3 )

[容積基準の全細孔容積測定]
実施例1,2及び比較例1の改質活性炭サンプルについて、日本ベル株式会社製BELSORP−maxを用いて全細孔容積(単位:cm3/g)を求め、サンプル1cm3当たりの全細孔容積(単位:cm3/cm3)に換算した。
[Volume-based total pore volume measurement]
For modified activated carbon samples of Examples 1 and 2 and Comparative Example 1, Bel Japan using Ltd. BELSORP-max total pore volume (unit: cm 3 / g) and determined the total pore per sample 1 cm 3 The volume (unit: cm 3 / cm 3 ) was converted.

[クロロホルム除去性能測定]
実施例1,2及び比較例1の改質活性炭サンプル50cm3を浄水カートリッジに入れ、JIS S3201:2010(家庭用浄水器試験方法)に準じて、クロロホルム0.060mg/Lに調整した原水を前記浄水カートリッジに通水し、クロロホルムの除去率が80%以上になるまでの総ろ過水量(単位:L)を測定した。なお、クロロホルムの測定は、株式会社島津製作所製GCMS−QP2010を用いた。
[Chloroform removal performance measurement]
50 cm 3 of the modified activated carbon samples of Examples 1 and 2 and Comparative Example 1 were put in a water purification cartridge, and the raw water adjusted to 0.060 mg / L chloroform according to JIS S3201: 2010 (house water purifier test method) Water was passed through a water purification cartridge, and the total amount of filtered water (unit: L) until the chloroform removal rate reached 80% or more was measured. In addition, the measurement of chloroform used Shimadzu Corporation GCMS-QP2010.

[マクロ孔に入った従活性炭の個数測定]
実施例1,2の改質活性炭サンプルについて、表面を顕微鏡で拡大して写真撮影し、観察視野の50μm四方に観察されるマクロ孔に入った従活性炭の概数を計測した。
[Measurement of the number of secondary activated carbons in the macro holes]
The modified activated carbon samples of Examples 1 and 2 were photographed with the surface magnified with a microscope, and the approximate number of sub-activated carbons that entered the macropores observed in the 50 μm square of the observation field were measured.

[試験結果]
図6は実施例1の改質活性炭サンプルの表面を示し、図7は実施例2の改質活性炭サンプルの表面を示している。図6,7に示すように、主活性炭のマクロ孔に従活性炭が入っていることが分かる。また、実施例1,2では、観察視野の50μm四方に観察されるマクロ孔に入った従活性炭が50個以上あった。
[Test results]
FIG. 6 shows the surface of the modified activated carbon sample of Example 1, and FIG. 7 shows the surface of the modified activated carbon sample of Example 2. As shown in FIGS. 6 and 7, it can be seen that activated carbon is contained in accordance with the macropores of the main activated carbon. In Examples 1 and 2, there were 50 or more sub activated carbons that entered the macro holes observed in the 50 μm square of the observation field.

表1は、実施例1,2及び比較例1について、かさ比重、容積基準の比表面積、容積基準の全細孔容積、及び、クロロホルム除去性能試験における総ろ過水量を示している。
表1に示すように、かさ比重については、比較例1が0.52であったのに対し、実施例1が0.54、実施例2が0.58と、比較例1よりも大きくなった。これは、主活性炭のマクロ孔に従活性炭が入ったためと考えられる。尚、実施例1では主活性炭100重量部に対してマクロ孔に従活性炭が{(0.54−0.52)/0.52}=3.8重量部入ったことになり、実施例2では主活性炭100重量部に対してマクロ孔に従活性炭が{(0.58−0.52)/0.52}=11.5重量部入ったことになる。
Table 1 shows the bulk specific gravity, the volume-based specific surface area, the volume-based total pore volume, and the total filtered water amount in the chloroform removal performance test for Examples 1 and 2 and Comparative Example 1.
As shown in Table 1, the bulk specific gravity was 0.52 in Comparative Example 1 but 0.54 in Example 1 and 0.58 in Example 2, which was larger than Comparative Example 1. It was. This is probably because activated carbon entered the macro pores of the main activated carbon. In Example 1, the activated carbon contained {(0.54-0.52) /0.52} = 3.8 parts by weight according to the macropores with respect to 100 parts by weight of the main activated carbon. In this case, the activated carbon contained {(0.58−0.52) /0.52} = 11.5 parts by weight with respect to 100 parts by weight of the main activated carbon.

比表面積(容積基準)については、比較例1が509m2/cm3であったのに対し、実施例1が529m2/cm3、実施例2が567m2/cm3と、比較例1よりも大きくなった。これは、主活性炭の細孔の表面積に従活性炭の細孔の表面積が加わったためと考えられる。 As for the specific surface area (volume basis), Comparative Example 1 was 509 m 2 / cm 3 , while Example 1 was 529 m 2 / cm 3 and Example 2 was 567 m 2 / cm 3 , compared with Comparative Example 1. Also became larger. This is considered to be because the surface area of the pores of the activated carbon was added according to the surface area of the pores of the main activated carbon.

全細孔容積(容積基準)については、比較例1が0.218cm3/cm3であったのに対し、実施例1が0.227cm3/cm3、実施例2が0.244cm3/cm3と、比較例1よりも大きくなった。これは、主活性炭の細孔の容積に従活性炭の細孔の容積が加わったためと考えられる。 The total pore volume (volume basis), whereas Comparative Example 1 was 0.218cm 3 / cm 3, Example 1 is 0.227cm 3 / cm 3, Example 2 is 0.244cm 3 / cm 3 , which was larger than Comparative Example 1. This is presumably because the pore volume of the activated carbon was added according to the pore volume of the main activated carbon.

クロロホルム除去性能試験における総ろ過水量については、比較例1が300Lであったのに対し、実施例1が360L、実施例2が490Lと、比較例1よりも大きくなった。このことから、実施例1,2は、比較例1と比べて従活性炭による有機ハロゲン化合物の除去性能が向上していることが分かる。   Regarding the total amount of filtered water in the chloroform removal performance test, Comparative Example 1 was 300 L, while Example 1 was 360 L and Example 2 was 490 L, which was larger than Comparative Example 1. From this, it can be seen that Examples 1 and 2 have improved organohalogen compound removal performance with sub activated carbon as compared with Comparative Example 1.

以上より、主活性炭のマクロ孔に従活性炭が入った改質活性炭は、単位体積当たりのミクロ孔を増やした新規の材料であり、体積の増加を抑制して機能物質による機能を付加した新規の材料であることが確認された。   From the above, the modified activated carbon containing activated carbon according to the macropores of the main activated carbon is a new material with increased micropores per unit volume, and it is a new material that suppresses the increase in volume and adds functions by functional substances. The material was confirmed.

参考例1
活性炭として、平均粒径220μmのヤシ殻活性炭を用いた。粉末状触媒(機能物質)として、粒径0.2〜0.5μm程度の粉末状酸化チタンを用いた。混合装置、及び、ふるいには、実施例1と同じものを用いた。
粉末状酸化チタン5gと水205gとを混ぜてスラリーにし、このスラリーを活性炭200gに振り掛けて初期の混合物とした。この混合物を上記混合装置の押出機構に5回通した。次に、処理後の混合物を上記ふるいに載せ、マクロ孔に入っていない酸化チタンを1Lの水で洗い流した。その後、ふるい上に残った湿潤状態の改質活性炭を115℃で4時間乾燥させ、参考例1の改質活性炭サンプルを得た。
[ Reference Example 1 ]
As the activated carbon, coconut shell activated carbon having an average particle size of 220 μm was used. As the powdered catalyst (functional substance), powdered titanium oxide having a particle size of about 0.2 to 0.5 μm was used. The same mixing apparatus and sieve as in Example 1 were used.
5 g of powdered titanium oxide and 205 g of water were mixed to form a slurry, and this slurry was sprinkled on 200 g of activated carbon to obtain an initial mixture. This mixture was passed 5 times through the extrusion mechanism of the mixing device. Next, the treated mixture was placed on the sieve, and the titanium oxide not contained in the macropores was washed away with 1 L of water. Thereafter, the wet modified activated carbon remaining on the sieve was dried at 115 ° C. for 4 hours to obtain a modified activated carbon sample of Reference Example 1 .

[試験結果]
参考例1の改質活性炭サンプルについて、表面を顕微鏡で拡大して写真撮影し、観察視野の50μm四方に観察されるマクロ孔に入った従活性炭の概数を計測した。図8は、参考例1の改質活性炭サンプルの表面を示している。図8中、白く光っている粒子が酸化チタンである。図8に示すように、活性炭のマクロ孔に粉末状酸化チタンが入っていることが分かる。また、観察視野の50μm四方に観察されるマクロ孔に入った酸化チタンが100個以上あった。このことから、参考例1のかさ比重は比較例1のかさ比重よりも大きくなり、参考例1の改質活性炭は酸化チタンによる触媒機能が付与されていると推測される。
[Test results]
About the modified activated carbon sample of Reference Example 1 , the surface was magnified with a microscope and photographed, and the approximate number of sub activated carbons that entered the macropores observed in the 50 μm square of the observation field was measured. FIG. 8 shows the surface of the modified activated carbon sample of Reference Example 1 . In FIG. 8, the white shining particles are titanium oxide. As shown in FIG. 8, it can be seen that powdered titanium oxide is contained in the macropores of the activated carbon. In addition, there were 100 or more titanium oxides entering the macropores observed in the 50 μm square of the observation field. Therefore, the bulk specific gravity of Reference Example 1 is larger than the bulk density of Comparative Example 1, modified activated carbon of Example 1 is presumed to catalyst function is imparted by titanium oxide.

以上より、活性炭のマクロ孔に粉末状酸化チタンが入った改質活性炭は、体積の増加を抑制して機能物質による機能を付加した新規の材料である。   As described above, the modified activated carbon in which powdered titanium oxide is contained in the macropores of the activated carbon is a new material in which the function of the functional substance is added while suppressing the increase in volume.

(5)結び:
以上説明したように、本発明によると、種々の態様により、体積の増加を抑制して機能物質による機能を付加した改質活性炭等の技術を提供することができる。むろん、従属請求項に係る構成要件を有しておらず独立請求項に係る構成要件のみからなる技術等でも、上述した基本的な作用、効果が得られる。
また、上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術並びに上述した実施形態及び変形例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(5) Conclusion:
As described above, according to the present invention, according to various aspects, it is possible to provide a technology such as modified activated carbon to which an increase in volume is suppressed and a function of a functional substance is added. Needless to say, the above-described basic actions and effects can be obtained even with a technique that does not have the constituent requirements according to the dependent claims but includes only the constituent requirements according to the independent claims.
In addition, the configurations disclosed in the embodiments and modifications described above are mutually replaced, the combinations are changed, the known technology, and the configurations disclosed in the embodiments and modifications described above are mutually connected. It is possible to implement a configuration in which replacement or combination is changed. The present invention includes these configurations and the like.

1,2,3,4…改質活性炭、
10…活性炭、11…細孔、12…ミクロ孔、13…メソ孔、14…マクロ孔、
20…機能物質、21…粉末状活性炭、
30…水(液状分散媒)、
40…添加剤、
C1…浄水カートリッジ(濾過カートリッジ)、
S1,S11…混合工程、S2…遊離機能物質除去工程、S3…乾燥工程。
1, 2, 3, 4 ... modified activated carbon,
10 ... activated carbon, 11 ... pore, 12 ... micropore, 13 ... mesopore, 14 ... macropore,
20 ... functional substances, 21 ... powdered activated carbon,
30 ... Water (liquid dispersion medium),
40 ... additives,
C1 ... Water purification cartridge (filtration cartridge),
S1, S11 ... mixing step, S2 ... free functional substance removing step, S3 ... drying step.

Claims (5)

除去対象の物質を除去するための粉末状活性炭が活性炭のマクロ孔に入った改質活性炭。 Modified activated carbon in which powdered activated carbon for removing substances to be removed enters the macropores of the activated carbon. 本改質活性炭の表面を観察したときに観察視野の50μm四方に観察されるマクロ孔に入った前記粉末状活性炭が10個以上である、請求項1に記載の改質活性炭。 The modified activated carbon according to claim 1 , wherein there are 10 or more powdered activated carbons entering the macropores observed in the 50 μm square of the observation field when the surface of the modified activated carbon is observed. マクロ孔を有する平均粒径D1の活性炭と、除去対象の物質を除去するための平均粒径D2(D2<D1)の粉末状活性炭と、液状分散媒と、を含む材料を混合して前記平均粒径D1の活性炭のマクロ孔に前記平均粒径D2の粉末状活性炭を入れ、前記活性炭のマクロ孔に粉末状活性炭が入った改質活性炭を製造する、改質活性炭の製造方法。 Activated carbon having an average particle size D1 having macropores, and powdered activated carbon removes the average particle size for the removal of substances of interest D2 (D2 <D1), the average mixing a material containing a liquid dispersion medium, the A method for producing a modified activated carbon, wherein a powdered activated carbon having the average particle diameter D2 is placed in a macropore of activated carbon having a particle size D1, and a modified activated carbon in which powdered activated carbon is contained in a macropore of the activated carbon is produced. マクロ孔を有し所定サイズよりも大きい活性炭と、液状分散媒と、を含む材料を混合して前記活性炭の一部から生成される前記所定サイズ以下の粉末状活性炭を前記マクロ孔に入れ、該マクロ孔に入らなかった前記所定サイズ以下の粉末状活性炭を除去する工程を行って、前記活性炭のマクロ孔に粉末状活性炭が入った改質活性炭を製造する、改質活性炭の製造方法。   Mixing a material containing activated carbon larger than a predetermined size with macropores and a liquid dispersion medium, and putting the powdered activated carbon having a predetermined size or less generated from a part of the activated carbon into the macropores, A method for producing modified activated carbon, wherein a step of removing powdered activated carbon having a predetermined size or less that has not entered the macropores is performed to produce modified activated carbon having powdered activated carbon in the macropores of the activated carbon. 除去対象の物質を除去するための粉末状活性炭が活性炭のマクロ孔に入った改質活性炭を用いた濾過カートリッジ。 A filtration cartridge using modified activated carbon in which powdered activated carbon for removing the substance to be removed enters the macropores of the activated carbon.
JP2014259714A 2014-12-24 2014-12-24 Modified activated carbon, method for producing the same, and filtration cartridge Active JP6174556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259714A JP6174556B2 (en) 2014-12-24 2014-12-24 Modified activated carbon, method for producing the same, and filtration cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259714A JP6174556B2 (en) 2014-12-24 2014-12-24 Modified activated carbon, method for producing the same, and filtration cartridge

Publications (2)

Publication Number Publication Date
JP2016117629A JP2016117629A (en) 2016-06-30
JP6174556B2 true JP6174556B2 (en) 2017-08-02

Family

ID=56242421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259714A Active JP6174556B2 (en) 2014-12-24 2014-12-24 Modified activated carbon, method for producing the same, and filtration cartridge

Country Status (1)

Country Link
JP (1) JP6174556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836901B (en) * 2022-05-30 2023-01-31 江阴市宏勇医疗科技发展有限公司 Production method of activated carbon melt-blown non-woven fabric used as medical and health material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609158B2 (en) * 1995-06-20 2005-01-12 石原産業株式会社 Method for supporting inorganic particles
JPH10263394A (en) * 1997-03-28 1998-10-06 Kubota Corp Improved adsorbent, its production and adsorption refrigerating machine
JP3528685B2 (en) * 1999-06-11 2004-05-17 松下電器産業株式会社 Activated carbon and water purifier equipped with it
JP2001162269A (en) * 1999-12-10 2001-06-19 Matsushita Electric Ind Co Ltd Activated carbon filler and water cleaning cartridge using the filler
JP2003190783A (en) * 2001-12-27 2003-07-08 Takeda Chem Ind Ltd Adsorbent for solvent vapor and method for preparing the same
JP3915597B2 (en) * 2002-05-27 2007-05-16 松下電器産業株式会社 Water purification cartridge
JP2007076952A (en) * 2005-09-14 2007-03-29 Shuji Hattori Activated carbon
JP5138570B2 (en) * 2008-02-18 2013-02-06 学校法人 名古屋電気学園 Adsorbent comprising composite activated carbon and method for producing the same

Also Published As

Publication number Publication date
JP2016117629A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6275368B2 (en) Activated carbon molded body and water purifier using the same
WO2017170754A1 (en) Granulated activated charcoal
TWI802625B (en) Adsorption filter
WO2017199717A1 (en) Activated carbon, and adsorption filter and water purifier both including same
Rahman et al. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration
JP6683968B1 (en) Activated carbon
CN115676957A (en) Adsorption filter
JP6726520B2 (en) Activated carbon molding and water purification cartridge
JP6957297B2 (en) Granulated activated carbon and its manufacturing method
JP4064309B2 (en) Water purifier
TW202039073A (en) Water purifying filter and water purifier using same
JP6174556B2 (en) Modified activated carbon, method for producing the same, and filtration cartridge
JP7453462B1 (en) Carbonaceous materials and their manufacturing methods, adsorption filters, water purifier cartridges, water purifiers, and water purification equipment
WO2019235044A1 (en) Fibrous granulation binder
JP6719709B2 (en) Activated carbon
JP5775038B2 (en) Method for producing activated carbon or cylindrical carbonaceous material containing activated carbon raw material
WO2019235043A1 (en) Active carbon molded body
JP2010269225A (en) Anion adsorbent molding and water purifier using the same
JP2021176609A (en) Water purification cartridge and water purifier
WO2019235045A1 (en) Active carbon molded body
JP2018039712A (en) Activated charcoal for water purifiers and cartridge for water purifiers prepared therewith
TW202346215A (en) adsorption filter
JP2022188136A (en) adsorption filter
JP2024080892A (en) Activated carbon and water purification filter, and water purifier
JP2020105070A (en) Granulated active carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250