JP2003190783A - Adsorbent for solvent vapor and method for preparing the same - Google Patents

Adsorbent for solvent vapor and method for preparing the same

Info

Publication number
JP2003190783A
JP2003190783A JP2001396442A JP2001396442A JP2003190783A JP 2003190783 A JP2003190783 A JP 2003190783A JP 2001396442 A JP2001396442 A JP 2001396442A JP 2001396442 A JP2001396442 A JP 2001396442A JP 2003190783 A JP2003190783 A JP 2003190783A
Authority
JP
Japan
Prior art keywords
activated carbon
silica
alumina
solvent vapor
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001396442A
Other languages
Japanese (ja)
Inventor
Motoya Mori
元哉 毛利
Takeshi Yoshitome
剛 吉留
Juichi Yanagi
寿一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP2001396442A priority Critical patent/JP2003190783A/en
Publication of JP2003190783A publication Critical patent/JP2003190783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for solvent vapor large in an amount of adsorbed solvent vapor and excellent in abrasion resistance and mechanical strength. <P>SOLUTION: The purpose is achieved by attaching silica and/or alumina of 1-40% by weight to an activated active carbon of 0.1-20 mm in an average particle diameter. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリン、アルコ
ールなどの溶剤蒸気の吸着剤およびその製造法に関す
る。
TECHNICAL FIELD The present invention relates to an adsorbent for solvent vapor such as gasoline and alcohol, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、揮散した溶剤蒸気を含有する
ガス体から該有機溶剤を回収する方法として、成形活性
炭を充填した活性炭層に上記ガス体を通じて溶剤を吸着
させた後、この活性炭層を加熱して吸着した溶剤を再び
脱離させる方法が行われている。また、車のガソリンエ
ンジンでは、駆動しているエンジンが停止するとそれま
で高温であったエンジンの回りの熱が周囲に伝わり、い
わゆるホットソーク(hotsoak)状態になり、ガソリン蒸
気が発生する。このガソリン蒸気を吸着させ、エンジン
作動時に再び放出させて利用するための吸着剤が種々提
案されている。
2. Description of the Related Art Conventionally, as a method of recovering the organic solvent from a gas body containing volatilized solvent vapor, after adsorbing the solvent through the above-mentioned gas body to an activated carbon layer filled with molded activated carbon, this activated carbon layer is A method of heating and adsorbing the adsorbed solvent again is performed. Further, in a gasoline engine of a car, when the driving engine is stopped, the heat around the engine, which was high in temperature until then, is transferred to the surroundings, and becomes a so-called hot soak state, and gasoline vapor is generated. Various adsorbents have been proposed for adsorbing this gasoline vapor and releasing it again during engine operation for use.

【0003】たとえば、特開平2−167809号公報
には、充填密度、細孔容積、表面積、平均細孔径等を特
定したブタン有効吸着量の大なる活性炭が示されてい
る。特開平6−9208号公報には、特定の見かけ密度
を有するブタン処理量の大なる活性炭が示されている。
特開2001−152025号公報には、ポリマーでコ
ーティングした耐摩耗性のブタン吸着用活性炭が示され
ている。さらに特開平6−129312号公報には、粉
末活性炭に粉末アルミナ又は粉末シリカを混合し、成
型、焼成して得られるアルコール系燃料蒸気吸着剤が提
案されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 2-167809 discloses an activated carbon having a large butane effective adsorption amount by specifying packing density, pore volume, surface area, average pore diameter and the like. Japanese Unexamined Patent Publication (Kokai) No. 6-9208 discloses activated carbon having a specific apparent density and a large butane treatment amount.
Japanese Unexamined Patent Publication No. 2001-152025 discloses a polymer-coated wear-resistant activated carbon for butane adsorption. Further, Japanese Patent Application Laid-Open No. 6-129312 proposes an alcohol-based fuel vapor adsorbent obtained by mixing powdered alumina or powdered silica with powdered activated carbon, molding and firing.

【0004】[0004]

【発明が解決しようとする課題】前記特開平2−167
809号公報、特開平6−9208号公報および特開平
6−129312号公報で提案されている吸着剤は、特
定の溶剤蒸気に対する吸着能はそれなりに改善されてい
るが、耐摩耗性や機械的強度が必ずしも充分ではなく、
したがってこれらの吸着剤を常に一定の振動にさらされ
る自動車などに搭載した場合、吸着剤の摩耗、粉化が起
こる場合がある。また特開2001−152025号公
報で提案されているポリマーでコーティングを施した吸
着剤は、コーティングでブタン吸着能が低下する。この
ような状況の下、本発明は、高い溶剤蒸気吸着能を有
し、しかも耐摩耗性および機械的強度にも優れる溶剤蒸
気吸着剤およびその製造法を提供することを目的として
いる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The adsorbents proposed in Japanese Patent Publication No. 809, Japanese Unexamined Patent Publication No. 6-9208, and Japanese Unexamined Patent Publication No. 6-129312 have some improvement in adsorption ability for a specific solvent vapor, but wear resistance and mechanical resistance. The strength is not always sufficient,
Therefore, when these adsorbents are mounted on an automobile or the like which is constantly exposed to constant vibration, the adsorbents may be worn or pulverized. Further, the adsorbent coated with the polymer proposed in Japanese Patent Laid-Open No. 2001-152025 has a lower butane adsorption capacity in the coating. Under such circumstances, an object of the present invention is to provide a solvent vapor adsorbent having a high solvent vapor adsorbing ability and excellent in abrasion resistance and mechanical strength, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決する吸着剤を得るため鋭意研究を重ねた結果、既
に充分に賦活化された活性炭に、シリカおよび/または
アルミナの特定量を添着することによって得られる吸着
剤が、溶剤蒸気吸着量が大で、しかも高い耐摩耗性と機
械的強度を備えていることを知見した。この知見を基に
さらに検討を加えて本発明を完成した。すなわち本発明
は、(1)平均粒子径0.1〜20mmの賦活化活性炭
に、シリカおよび/またはアルミナを1〜40重量%添
着 してなる溶剤蒸気吸着剤、(2)賦活化活性炭が、
比表面積800〜2500m/g、細孔容積0.3〜
2.0ml/g、充填密度0.2〜0.7g/mlのも
のである(1)記載の溶剤蒸気吸着剤、(3)賦活化活
性炭が、平均粒子径0.5〜15mmの粒状活性炭であ
る(1)または(2)記載の溶剤蒸気吸着剤、(4)シ
リカおよび/またはアルミナを2〜30重量%添着して
なる(1)または(2)記載の溶剤蒸気吸着剤、(5)
自動車のキャニスタ用である(1)〜(4)のいずれか
に記載の溶剤蒸気吸着剤、(6)平均粒子径0.1〜2
0mmの賦活化活性炭にシリカおよび/またはアルミナ
を含む液を、シリカおよび/またはアルミナとして1〜
40重量%となる量を均一に混合し、これを加温下に乾
燥してシリカおよび/またはアルミナを添着する溶剤蒸
気吸着剤の製造法、(7)賦活化活性炭が、比表面積8
00〜2500m/g、細孔容積0.3〜2.0ml
/g、充填密度0.2〜0.7g/mlのものである
(6)記載の製造法、(8)賦活化活性炭が、平均粒子
径0.5〜15mmの粒状活性炭である(6)または
(7)記載の製造法、(9)シリカおよび/またはアル
ミナを含む液を、シリカおよび/またはアルミナとして
2〜30重量%となる量を均一に混合する(6)または
(7)記載の製造法、および(10)シリカを含む液が
水ガラスの水溶液である(6)または(7)記載の製造
法、である。
As a result of intensive studies to obtain an adsorbent that solves the above-mentioned problems, the present inventors have found that a specific amount of silica and / or alumina is added to activated carbon that has already been sufficiently activated. It has been found that the adsorbent obtained by impregnating with is capable of adsorbing a large amount of solvent vapor, and has high wear resistance and mechanical strength. The present invention has been completed by further studies based on this finding. That is, the present invention provides (1) a solvent vapor adsorbent obtained by impregnating 1 to 40% by weight of silica and / or alumina with activated activated carbon having an average particle size of 0.1 to 20 mm, and (2) activated activated carbon,
Specific surface area 800-2500 m 2 / g, pore volume 0.3-
The solvent vapor adsorbent according to (1), which has a packing density of 2.0 ml / g and a packing density of 0.2 to 0.7 g / ml, and (3) activated activated carbon is granular activated carbon having an average particle diameter of 0.5 to 15 mm. The solvent vapor adsorbent according to (1) or (2), (4) the solvent vapor adsorbent according to (1) or (2), wherein 2 to 30% by weight of silica and / or alumina is impregnated. )
The solvent vapor adsorbent according to any one of (1) to (4) for a vehicle canister, (6) average particle size 0.1 to 2
A liquid containing silica and / or alumina in 0 mm activated carbon is used as silica and / or alumina in an amount of 1 to
A method for producing a solvent vapor adsorbent in which 40% by weight is uniformly mixed and dried under heating to impregnate silica and / or alumina. (7) Activated activated carbon has a specific surface area of 8
00-2500 m 2 / g, pore volume 0.3-2.0 ml
/ G, the packing density is 0.2 to 0.7 g / ml, (6) The production method according to (6), wherein the activated carbon is a granular activated carbon having an average particle diameter of 0.5 to 15 mm (6). Alternatively, the production method according to (7), (9) the liquid containing silica and / or alumina is uniformly mixed in an amount of 2 to 30% by weight as silica and / or alumina, (6) or (7). The production method, and (10) the production method according to (6) or (7), wherein the liquid containing silica is an aqueous solution of water glass.

【0006】[0006]

【発明の実施の形態】本発明に使用される賦活化活性炭
は、特に限定されたものではなく、原料炭を水蒸気、酸
素、空気、炭酸ガスなどの賦活ガスを用いて賦活するガ
ス賦活法や、水酸化カリウム、水酸化ナトリウムなどの
アルカリ金属水酸化物や、塩化亜鉛、リン酸、硫酸、塩
化カルシウムなど原料に対して脱水作用、浸食作用を持
つ薬品の存在下に原料炭を賦活する薬品賦活法などによ
って得ることができる。本発明においては、薬品賦活さ
れたものがより好ましく、特にリン酸と塩化亜鉛により
賦活されたものが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The activated activated carbon used in the present invention is not particularly limited, and a gas activation method in which a raw material carbon is activated using an activated gas such as steam, oxygen, air, carbon dioxide, or the like. Chemicals that activate coking coal in the presence of chemicals that have dehydrating and eroding effects on alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and sodium hydroxide, and raw materials such as zinc chloride, phosphoric acid, sulfuric acid and calcium chloride. It can be obtained by an activation method or the like. In the present invention, those activated by chemicals are more preferable, and those activated by phosphoric acid and zinc chloride are particularly preferable.

【0007】原料炭は、通常の活性炭原料として用いら
れる炭素源であればどのようなものでもよく、たとえ
ば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バカ
ス、廃糖蜜、泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油
蒸留残渣成分、石油ピッチ、コークス、コールタールな
どの植物系原料や化石系原料、フェノール樹脂、塩化ビ
ニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、メラ
ミン樹脂、尿素樹脂、レゾルシノール樹脂、ポリアミド
樹脂などの各種合成樹脂、ポリブチレン、ポリブタジエ
ン、ポリクロロプレンなどの合成ゴム、その他合成木
材、合成パルプなどを炭化したものがあげられる。これ
らの活性炭原料の中では、木材,木粉、ヤシ殻等の植物
原料や、褐炭、瀝青炭、無煙炭などの石炭系原料が好適
に使用される。
[0007] The raw coal may be any carbon source used as a usual activated carbon raw material, for example, wood, wood flour, coconut shell, by-products during pulp production, bacas, molasses, peat, lignite. , Lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar and other plant-based raw materials and fossil-based raw materials, phenol resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, melamine resin, urea resin, Examples include various synthetic resins such as resorcinol resin and polyamide resin, synthetic rubbers such as polybutylene, polybutadiene and polychloroprene, and carbonized synthetic wood and synthetic pulp. Among these activated carbon raw materials, plant raw materials such as wood, wood powder and coconut shell, and coal-based raw materials such as brown coal, bituminous coal and anthracite are preferably used.

【0008】活性炭原料を炭化する方法としては、たと
えば固定床方式、移動床方式、流動床方式、ロータリー
キルン方式などのこれまで知られている製造方式が挙げ
られる。炭化方法としては炭素ガス、二酸化炭素、ヘリ
ウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼
排ガスなどの不活性ガスの雰囲気下に焼成する方法等が
挙げられる。
Examples of the method for carbonizing the activated carbon raw material include known production methods such as a fixed bed method, a moving bed method, a fluidized bed method and a rotary kiln method. Examples of the carbonization method include a method of firing in an atmosphere of an inert gas such as carbon gas, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, and combustion exhaust gas.

【0009】本発明に使用される賦活化活性炭は平均粒
子径が、0.1〜20mm、好ましくは0.5〜15m
m、比表面積(BET)が800〜2500m/g、好ま
しくは1000〜2300m/g、細孔容積(N
着法で相対圧0.931の時のN吸着量として表
示。)が0.3〜2.0ml/g、好ましくは0.35
〜1.8ml/g、さらに好ましくは0.4〜1.6m
l/g,充填密度が0.2〜0.7g/ml、好ましく
は0.25〜0.5g/mlのものである。この賦活化
活性炭に、シリカおよび/またはアルミナを含む液を、
活性炭を混合しながらのその表面に噴霧したり、活性炭
を液に浸漬して引き上げるなどして均一に混合し、つい
で乾燥することによりシリカおよび/またはアルミナが
活性炭表面や細孔内壁に添着された賦活化活性炭が得ら
れる。その中でも噴霧法が好ましい。シリカを含む液と
しては、たとえばシリカの微粉末を懸濁させた液や、シ
リカゾル、シリカゲル、けい酸ナトリウム(水ガラ
ス)、けい酸カリウムの溶液でもよい。これらの中でも
特に水ガラスが好ましい。水ガラスは活性炭に添着、乾
燥することによりシリカに変わる。これらの溶液は、適
当な濃度に水や溶剤で希釈して用いればよい。アルミナ
を含む液としては、たとえば活性アルミナ、アルミナゾ
ル、アルミナゲル微粉末を水に懸濁したものや、水酸化
アルミニウムのコロイド液などを適当な濃度に希釈した
ものなどが挙げられる。水酸化アルミニウムも乾燥工程
でアルミナとなる。
The activated carbon used in the present invention has an average particle size of 0.1 to 20 mm, preferably 0.5 to 15 m.
m, specific surface area (BET) is 800 to 2500 m 2 / g, preferably 1000 to 2300 m 2 / g, and pore volume (displayed as N 2 adsorption amount when relative pressure is 0.931 by N 2 adsorption method). 0.3-2.0 ml / g, preferably 0.35
~ 1.8 ml / g, more preferably 0.4-1.6 m
1 / g, packing density is 0.2 to 0.7 g / ml, preferably 0.25 to 0.5 g / ml. A liquid containing silica and / or alumina is added to the activated carbon.
Silica and / or alumina were adhered to the surface of activated carbon and inner walls of pores by spraying on the surface of activated carbon while mixing, or by immersing activated carbon in a liquid and pulling it up to uniformly mix, and then drying. Activated activated carbon is obtained. Among them, the spraying method is preferable. The liquid containing silica may be, for example, a liquid in which fine silica powder is suspended, or a solution of silica sol, silica gel, sodium silicate (water glass), or potassium silicate. Among these, water glass is particularly preferable. Water glass is converted to silica by impregnating activated carbon and drying. These solutions may be diluted with water or a solvent to an appropriate concentration before use. As the liquid containing alumina, for example, activated alumina, alumina sol, alumina gel fine powder suspended in water, aluminum hydroxide colloid liquid diluted to an appropriate concentration, and the like can be mentioned. Aluminum hydroxide also becomes alumina in the drying process.

【0010】これらシリカおよび/またはアルミナの賦
活化活性炭への添着量は、シリカおよび/またはアルミ
ナとして1〜40重量%、好ましくは2〜30重量%、
さらにこのましくは2〜19重量%である。乾燥は通常
加温下、好ましくは90〜200℃、さらに好ましくは
100〜150℃で行う。このシリカおよび/またはア
ルミニウムの賦活化活性炭への添着により、活性炭の細
孔内壁面が自体溶剤蒸気吸着能を有するシリカやアルミ
ナにより被覆されることにより、細孔径がより適切な範
囲に調節され、その結果溶媒蒸気の吸着性能が向上し、
且つ耐摩耗度や機械的強度が高められると考えられる。
The amount of silica and / or alumina impregnated on the activated carbon is 1 to 40% by weight, preferably 2 to 30% by weight, as silica and / or alumina.
Further preferably, it is 2 to 19% by weight. Drying is usually performed under heating, preferably at 90 to 200 ° C, more preferably 100 to 150 ° C. By impregnating the activated carbon with silica and / or aluminum, the inner wall surface of the fine pores of the activated carbon is coated with silica or alumina having solvent vapor adsorption ability, whereby the pore diameter is adjusted to a more appropriate range, As a result, the adsorption performance of solvent vapor is improved,
Moreover, it is considered that the abrasion resistance and the mechanical strength are enhanced.

【0011】本発明の溶剤蒸気吸着剤は、親水性および
疎水性のいずれの溶剤蒸気に対しても優れた吸脱着能を
示す。親水性溶剤としては、たとえばメタノール、エタ
ノール、プロパノール、ブタノールなどの炭素数1〜8
(以下C1〜8のように示す。)のアルコール類、メチ
ルケトン、エチルケトンなどのC3〜5のケトン類、な
どが挙げられる。疎水性溶剤としては、たとえばC
の鎖状脂肪族飽和又は不飽和炭化水素、C〜C
の環状脂肪族炭化水素、C〜Cの芳香族炭化水素、
〜C のハロゲン化炭化水素、C〜Cのエーテ
ル、C〜Cのケトン、C〜Cのエステル等が挙
げられる。上記C4〜8の鎖状脂肪族飽和又は不飽和炭
化水素としては、例えばn−ブタン、n−ペンタン、n
−ヘキサン、イソヘキサン、n−ヘプタン、n−オクタ
ン、、イソオクタン(2,2,4−トリメチルペンタ
ン)、2,2−ジメチルブタン、2−ペンテン等が挙げ
られる。
The solvent vapor adsorbents of the present invention are hydrophilic and
Excellent adsorption and desorption ability for any hydrophobic solvent vapor
Show. Examples of hydrophilic solvents include methanol and ethanol.
1 to 8 carbon atoms such as knoll, propanol and butanol
(Hereinafter C1-8As shown. ) Alcohol, meth
C such as ruketone and ethyl ketone3-5The ketones
Which can be mentioned. As the hydrophobic solvent, for example, CFour~
C8Chain aliphatic saturated or unsaturated hydrocarbons of C,5~ C9
Cycloaliphatic hydrocarbons, C6~ C9Aromatic hydrocarbons,
C1~ C 6Halogenated hydrocarbon, CFour~ C8Ete
Le, C5~ C7Ketone, CThree~ C8Esters, etc.
You can C above4-8Chain aliphatic saturated or unsaturated charcoal of
Examples of hydrogen fluoride include n-butane, n-pentane, and n.
-Hexane, isohexane, n-heptane, n-octa
,, isooctane (2,2,4-trimethylpenta
), 2,2-dimethylbutane, 2-pentene, etc.
To be

【0012】上記C〜Cの環状脂肪族炭化水素とし
ては、例えばシクロヘキサン、メチルシクロヘキサン等
が挙げられる。上記C〜Cの芳香族炭化水素として
は、例えばベンゼン、トルエン、O−キシレン、m−キ
シレン、p−キシレン、エチルベンゼン、イソプロピル
ベンゼン等が挙げられる。上記C〜Cのハロゲン化
炭化水素としては、例えば塩化メチレン、クロロホル
ム、四塩化炭素、塩化エチル、塩化エチレン、塩化エチ
リデン、1,1,1−トリクロルエタン、1,1,2−
トリクロルエタン、1,1,1,2−テトラクロルエタ
ン、1,1,2,2,−テトラクロルエタン、ペンタク
ロルエタン、塩化ビニリデン、1,2−ジクロルエチレ
ン、トリクロルエチレン、テトラクロルエチレン、1,
2,3−トリクロルプロパン、塩化イソプロピル、塩化
アリル、1,2−ジクロルプロパン、塩化ブチル、塩化
アミル、o−クロルトルエン、p−クロルトルエン等が
挙げられる。
Examples of the C 5 to C 9 cycloaliphatic hydrocarbons include cyclohexane and methylcyclohexane. Examples of the C 6 to C 9 aromatic hydrocarbons include benzene, toluene, O-xylene, m-xylene, p-xylene, ethylbenzene and isopropylbenzene. Examples of the C 1 -C 6 halogenated hydrocarbon include methylene chloride, chloroform, carbon tetrachloride, ethyl chloride, ethylene chloride, ethylidene chloride, 1,1,1-trichloroethane, 1,1,2-
Trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2, -tetrachloroethane, pentachloroethane, vinylidene chloride, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,
2,3-trichloropropane, isopropyl chloride, allyl chloride, 1,2-dichloropropane, butyl chloride, amyl chloride, o-chlorotoluene, p-chlorotoluene and the like can be mentioned.

【0013】上記C〜Cのエーテルとしては、例え
ばエチルエーテル、n−ブチルエーテル、エピクロルヒ
ドリン、ジグリシジルエーテル、フラン等が挙げられ
る。上記C〜Cのケトンとしては、例えばメチルn
−プロピルケトン、メチルn−ブチルケトン、メチルイ
ソプチルケトン、メチルn−アミルケトン、ジエチルケ
トン、エチルn−ブチルケトン、シクロヘキサノン、o
−メチルシクロヘキサノン等が挙げられる。上記C
のエステルとしては、例えば酸エチル、ギ酸プロピ
ル、ギ酸n−ブチル、ギ酸イソブチル、ギ酸アミル、酢
酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸
n−ブチル、酢酸イソブチル、酢酸第二ブチル、酢酸n
−アミル、酢酸イソアミル、酢酸エチルが挙げられる。
Examples of the C 4 to C 8 ether include ethyl ether, n-butyl ether, epichlorohydrin, diglycidyl ether, furan and the like. Examples of the C 5 to C 7 ketone include methyl n
-Propyl ketone, methyl n-butyl ketone, methyl isoptyl ketone, methyl n-amyl ketone, diethyl ketone, ethyl n-butyl ketone, cyclohexanone, o
-Methylcyclohexanone and the like. C 3 above
Examples of the C 8 ester include acid ethyl, propyl formate, n-butyl formate, isobutyl formate, amyl formate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, butyl acetate and acetic acid. n
-Amyl, isoamyl acetate, ethyl acetate.

【0014】本発明の吸着剤は、親水性のシリカやアル
ミナが賦活化活性炭の細孔内壁の少なくとも一部を被覆
する結果、ガソリン等の疎水性溶剤のガスのみならずア
ルコールのような親水性溶剤蒸気の吸脱着性能も高めら
れる。また、吸着に寄与しない活性炭のマクロ孔をシリ
カ/アルミナで充填することにより、吸着時の温度上昇
を抑制することができ、吸着量を高める効果もある。し
かも、本発明の吸着剤は機械的強度、耐摩耗性も改善さ
れているので、ガソリンやアルコールを燃料とする自動
車のキャニスタにおけるガス吸脱着剤として特に有用で
ある。
In the adsorbent of the present invention, hydrophilic silica or alumina covers at least a part of the inner wall of the pores of the activated activated carbon, and as a result, not only the gas of the hydrophobic solvent such as gasoline but also the hydrophilicity such as alcohol. Adsorption / desorption performance of solvent vapor is also enhanced. In addition, by filling the macropores of activated carbon that do not contribute to adsorption with silica / alumina, it is possible to suppress the temperature rise during adsorption and also to increase the adsorption amount. Moreover, since the adsorbent of the present invention has improved mechanical strength and abrasion resistance, it is particularly useful as a gas adsorbent / desorbent in automobile canisters using gasoline or alcohol as fuel.

【0015】[0015]

【実施例】以下実施例、試験例をあげて本発明をさらに
具体的に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples and test examples.

【0016】実施例1 (1)賦活化活性炭の調製 やし殻粉末(乾燥品)1300gと塩化亜鉛水溶液(亜
鉛として1040g)を混合しながら120〜130℃
に加熱して反応させた。この各混合物の重量が90〜1
15重量%となった時点で反応を中止し、得られた各反
応物を130℃で直径30cm、厚さ約4mmの形状に
プレス成形した後、ルツボに入れ、600℃で3時間焼
成賦活した。得られた焼成品を常法に従って塩酸洗浄、
水洗して未反応の塩化亜鉛を取り除いた後乾燥した。こ
の乾燥物を0.6〜1.7mmに粉砕し、平均粒子径
1.05mm、比表面積1310m/g、細孔容積
0.879ml/g、充填密度0.369g/mlの賦
活化活性炭を得た。なお、平均粒子径は、JIS K
1474「粒度分布」より得た重量比(粒度分布%)と
篩区間の算術平均径(目開きmm)を掛け合わせ、次式
に示すように積算して求めた。 平均粒子径(mm)=Σ[(粒度分布%)X(算術平均目
開きmm)X1/100)]
Example 1 (1) Preparation of Activated Activated Carbon 120-130 ° C. while mixing 1300 g of coconut shell powder (dry product) and an aqueous zinc chloride solution (1040 g as zinc).
The mixture was heated to react. The weight of each mixture is 90-1
The reaction was stopped when the content reached 15% by weight, and each of the obtained reaction products was press-molded at 130 ° C. into a shape having a diameter of 30 cm and a thickness of about 4 mm, put into a crucible, and activated by firing at 600 ° C. for 3 hours. . The obtained baked product is washed with hydrochloric acid according to a conventional method,
It was washed with water to remove unreacted zinc chloride and then dried. The dried material was pulverized to 0.6 to 1.7 mm to obtain activated activated carbon having an average particle diameter of 1.05 mm, a specific surface area of 1310 m 2 / g, a pore volume of 0.879 ml / g and a packing density of 0.369 g / ml. Obtained. The average particle size is JIS K
The weight ratio (particle size distribution%) obtained from 1474 "particle size distribution" was multiplied by the arithmetic mean diameter (opening mm) of the sieve section, and the product was integrated as shown in the following formula. Average particle size (mm) = Σ [(particle size distribution%) X (arithmetic mean opening mm) X 1/100)]

【0017】(2)シリカの添着 (1)で得られた賦活化活性炭180gを転動造粒装置
に入れて回転させながら水ガラス(和光純薬工業(株)
製 けい酸ナトリウム水溶液)を蒸留水で希釈して調製
した水ガラス水溶液180g(シリカとして8g含有)
を均一に噴霧し、これを115℃で12時間乾燥した。
この乾燥により表1における物性を有するシリカ4重量
%添着賦活化活性炭が得られた。
(2) 180 g of activated carbon obtained by impregnating silica (1) was put in a rolling granulator and rotated while water glass (Wako Pure Chemical Industries, Ltd.).
180 g of water glass aqueous solution (containing 8 g as silica) prepared by diluting sodium silicate aqueous solution) with distilled water
Was uniformly sprayed and dried at 115 ° C. for 12 hours.
By this drying, silica-activated 4% by weight activated carbon having the physical properties shown in Table 1 was obtained.

【0018】実施例2 賦活化活性炭を160g、水ガラス水溶液を170g
(シリカとして14g含有)を用いた外は実施例1の
(2)と同様にして表1に掲げる物性を有するシリカ8
重量%添着賦活化活性炭を得た。
Example 2 160 g of activated carbon and 170 g of aqueous solution of water glass
Silica 8 having the physical properties listed in Table 1 in the same manner as (2) of Example 1 except that (containing 14 g of silica) was used.
A weight% impregnated activated carbon was obtained.

【0019】実施例3 (1)石炭原料の賦活化活性炭の調製 市販の活性炭(武田薬品工業(株)製、W5c10/4
2)(石炭系水蒸気賦活炭)を、900℃で1時間、水
蒸気雰囲気下で追賦活し、原料活性炭(平均粒子径1.
03mm、比表面積1123m/g、細孔容積0.9
21ml/g、充填密度0.368g/ml)を得た。
この活性炭に実施例1と同様の方法によりシリカを4重
量%添着した賦活化活性炭を得た。
Example 3 (1) Preparation of Activated Activated Carbon for Coal Raw Material Commercially available activated carbon (W5c10 / 4, manufactured by Takeda Pharmaceutical Co., Ltd.)
2) (coal-based steam activated carbon) is additionally activated at 900 ° C. for 1 hour in a steam atmosphere, and raw material activated carbon (average particle size 1.
03 mm, specific surface area 1123 m 2 / g, pore volume 0.9
21 ml / g, packing density 0.368 g / ml) was obtained.
By the same method as in Example 1, 4% by weight of silica was impregnated on this activated carbon to obtain activated activated carbon.

【0020】実施例4 実施例2と同様の方法で、シリカ8重量%添着した賦活
化活性炭を得た。
Example 4 In the same manner as in Example 2, activated carbon activated with 8% by weight of silica was obtained.

【0021】試験例1 エタノール有効吸着量の測定 図1に示す装置を用いて、以下の手順に従って、実施例
1〜4で得られた原料賦活化活性炭およびシリカ添着賦
活化活性炭のそれぞれについてのエタノール有効吸着量
を測定した。その結果を表1に示した。 1.試料吸着剤を150℃、3時間乾燥し、デシケータ
中で室温に戻した。 2.試料を内径15.4mmのガラスカラム(6)に2
0ml充填し、25℃のインキュベータ(5)にセット
した。 3.恒温槽(4)を24℃にセットし、エタノール(9
9.9%以上)を収容したエタノール発生瓶(3)入
れ、窒素ボンベ(1)から350ml/分の窒素ガスを
導入してエタノールの蒸気を発生させた。 4.発生したエタノール蒸気は、試料を充填したガラス
カラム(6)に上向流で通し、可燃性ガス検知器(XP
−311A 新コスモス電機(株)製)(8)のガス検
知濃度が55%(15050ppm)となるまで吸着さ
せ、ガラスカラム(6)を取り外して秤量(Ag)し
た。 5.吸着後のガラスカラムを再度装置にセットし、下向
流でドライエアー発生器(9)から発生させた乾燥空気
(25℃)を、670ml/分(33.5BEDvol
/分)で17分54秒間流通してガラスカラムを外し、
秤量(Bg)した。 6.上記2.〜5.の操作を4回繰り返して行ない、最
後の脱離量を5倍したものをエタノール有効吸着量(g
/dL)とした。 エタノール有効吸着量(g/dL)=(Ag−Bg)X
Test Example 1 Measurement of Effective Adsorption of Ethanol Using the apparatus shown in FIG. 1, ethanol for each of the raw material activated carbon and the silica impregnated activated carbon obtained in Examples 1 to 4 according to the following procedure. The effective adsorption amount was measured. The results are shown in Table 1. 1. The sample adsorbent was dried at 150 ° C. for 3 hours and returned to room temperature in a desiccator. 2. Place the sample on a glass column (6) with an inner diameter of 15.4 mm (2).
It was filled with 0 ml and set in an incubator (5) at 25 ° C. 3. The constant temperature bath (4) was set to 24 ° C and ethanol (9
An ethanol generation bottle (3) containing 9.9% or more) was put thereinto, and 350 ml / min of nitrogen gas was introduced from the nitrogen cylinder (1) to generate ethanol vapor. 4. The generated ethanol vapor is passed through the glass column (6) filled with the sample in an upward flow, and the flammable gas detector (XP
-311A Adsorbed until the gas detection concentration of New Cosmos Electric Co., Ltd. (8) became 55% (15050 ppm), and the glass column (6) was removed and weighed (Ag). 5. After the adsorption, the glass column was set in the apparatus again, and the dry air (25 ° C.) generated from the dry air generator (9) in the downward flow was fed with 670 ml / min (33.5 BEDvol).
/ Minute) for 17 minutes 54 seconds to remove the glass column,
Weighed (Bg). 6. The above 2. ~ 5. The above operation was repeated 4 times, and the final desorption amount was multiplied by 5 to obtain the effective ethanol adsorption amount (g
/ DL). Ethanol effective adsorption amount (g / dL) = (Ag-Bg) X
5

【0022】試験例2 n−ブタン有効吸着量の測定 図2に示す装置を用い、以下の手順に従って実施例1〜
4で得られた原料賦活化活性炭、シリカ添着賦活化活性
炭を試料とし、そのそれぞれについてのn−ブタン有効
吸着量を測定した。その結果を表1に示した。 1.試料を150℃、3時間乾燥し、デシケータ中で室
温に戻した。 2.試料を内径15.4mmφのガラスカラム(14)
に20ml充填し、25℃のインキュベータ(13)に
セットした。 3.ブタンボンベ(11)からn−ブタン(純度99.
9%以上)を上向流でガラスカラム(14)に250m
l/分の流速で15分間流通させた後、ガラスカラム
(14)を取り外し秤量(Cg)した。 4.吸着後のカラムを再度装置にセットし、下向流でド
ライエアー発生器(16)から発生させた乾燥空気20
0ml/分(25℃)(10BEDvol/分)を20
分間流通して、ガラスカラム(14)を取り外し秤量
(Dg)した。 5.上記操作を行い、脱離量を5倍したものをブタン有
効吸着量(g/dL)とした。 n−ブタン有効吸着量(g/dL)=(Cg−Dg)X
Test Example 2 Measurement of Effective Adsorption of n-Butane Using the apparatus shown in FIG.
The raw material activated carbon and the silica impregnated activated carbon obtained in Example 4 were used as samples, and the effective adsorption amount of n-butane was measured for each of them. The results are shown in Table 1. 1. The sample was dried at 150 ° C. for 3 hours and returned to room temperature in a desiccator. 2. Glass column with inner diameter of 15.4 mm (14)
20 ml was filled in and set in an incubator (13) at 25 ° C. 3. Butane cylinder (11) to n-butane (purity 99.
(9% or more) to the glass column (14) with an upward flow of 250 m
After circulating for 15 minutes at a flow rate of 1 / min, the glass column (14) was removed and weighed (Cg). 4. The column after adsorption was set in the device again, and the dry air generated from the dry air generator (16) in the downward flow was used.
20 ml / min (25 ° C) (10 BEDvol / min)
After circulating for minutes, the glass column (14) was removed and weighed (Dg). 5. The above operation was performed and the desorption amount was multiplied by 5 to obtain the butane effective adsorption amount (g / dL). n-butane effective adsorption amount (g / dL) = (Cg-Dg) X
5

【0023】試験例3 微粉量の測定 試験例1で用いたと同じ試料について次の方法により、
試料から生じる微粉末の量を測定した。 1.メンブランフィルター孔径0.45μm、直径25
mm(アドバンテック東洋((株)製)を115℃で1
時間乾燥させて秤量(Eg)した。 2.試料150mlを秤量(Fg)し、水で洗浄して活
性炭表面に付着している微粉を除去した。 3.洗浄した試料を充分水切りした後、300mlのビ
ーカーに入れ、水250mlを加え、ジャーテスター
((株)浄水工業所製)により回転速度100rpmで
3時間攪拌した。 4.攪拌後、ビーカー内の上澄み液を秤量したメンブラ
ンフィルターで濾過した。 5.濾取した活性炭とメンブランフィルターは、115
℃で2時間乾燥させて秤量(Hg)した。 微粉量(重量%)=(Hg−Eg)/FgX100
Test Example 3 Measurement of amount of fine powder For the same sample used in Test Example 1, the following method was used.
The amount of fine powder generated from the sample was measured. 1. Membrane filter pore size 0.45μm, diameter 25
mm (Advantech Toyo Co., Ltd.) 1 at 115 ° C
It was dried for an hour and weighed (Eg). 2. A 150 ml sample was weighed (Fg) and washed with water to remove fine powder adhering to the activated carbon surface. 3. The washed sample was thoroughly drained, put in a 300 ml beaker, 250 ml of water was added, and the mixture was stirred for 3 hours at a rotation speed of 100 rpm by a jar tester (manufactured by Pure Water Industry Co., Ltd.). 4. After stirring, the supernatant in the beaker was filtered with a weighed membrane filter. 5. The activated carbon and membrane filter collected by filtration are 115
It was dried at ℃ for 2 hours and weighed (Hg). Amount of fine powder (% by weight) = (Hg-Eg) / FgX100

【0024】試験例4 硬さの試験 JIS K 1474に準じ、試験例1で用いたと同じ
試料について硬さの測定を行った。その結果を、表1に
示した。
Test Example 4 Hardness Test According to JIS K 1474, the hardness of the same sample as used in Test Example 1 was measured. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示された結果から明らかなように、
実施例1〜4のシリカ添着賦活化活性炭は、それぞれの
原料賦活化活性炭に比べてより多いエタノール蒸気およ
びn−ブタン有効吸着量を示し、しかもより高い耐摩耗
性および機械的強度を示した。
As is clear from the results shown in Table 1,
The silica-impregnated activated carbons of Examples 1 to 4 showed a larger amount of ethanol vapor and n-butane effective adsorption amount than the respective raw material activated activated carbons, and further showed higher abrasion resistance and mechanical strength.

【0027】[0027]

【発明の効果】本発明の溶剤蒸気吸着剤は、親水性溶剤
および疎水性溶剤のいずれの溶剤の蒸気に対しても優れ
た吸着性を示すが、特にエタノールなどの親水性溶剤の
蒸気に対し高い吸着能を示す。さらに本発明の吸着剤
は、耐摩耗性や機械的強度に優れているので、たとえば
自動車のキャニスタのような常に振動する場所に設置さ
れた場合も、吸着剤粒子が摩耗、粉末化して気体の流通
が妨げられるといったことがない。また本発明の吸着剤
はシリカおよび/またはアルミナ添着後乾燥するだけで
よく、製造上も有利なものである。
The solvent vapor adsorbent of the present invention exhibits excellent adsorptivity to vapors of both hydrophilic and hydrophobic solvents, but particularly to vapors of hydrophilic solvents such as ethanol. Shows high adsorption capacity. Further, since the adsorbent of the present invention is excellent in wear resistance and mechanical strength, even when it is installed in a place that constantly vibrates, such as an automobile canister, the adsorbent particles are abraded and powdered to form a gas. Distribution is not hindered. Further, the adsorbent of the present invention may be simply added to silica and / or alumina and then dried, which is advantageous in production.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】吸着剤のエタノール有効吸着測定試験回路を示
す模式図
FIG. 1 is a schematic diagram showing an ethanol effective adsorption measurement test circuit for an adsorbent.

【図2】吸着剤のn−ブタン有効吸着測定試験回路を示
す模式図
FIG. 2 is a schematic diagram showing an n-butane effective adsorption measurement test circuit for an adsorbent.

【符号の説明】[Explanation of symbols]

1:窒素ボンベ 2:窒素用流量計 3:エタノール発生瓶 4:恒温槽 5:インキュベーター 6:カラム 7:活性炭 8:可燃性ガス検知機 9:ドライエア発生機 10:流量計 11:ブタンボンベ 12:ブタン用流量計 13:インキュベーター 14:カラム 15:活性炭 16:ドライエア発生機 17:流量計 1: Nitrogen cylinder 2: Nitrogen flow meter 3: Ethanol generation bottle 4: constant temperature bath 5: Incubator 6: Column 7: Activated carbon 8: Combustible gas detector 9: Dry air generator 10: Flow meter 11: Butane cylinder 12: Flowmeter for butane 13: Incubator 14: Column 15: Activated carbon 16: Dry air generator 17: Flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉留 剛 大阪府大阪市淀川区十三本町2丁目17番85 号 武田薬品工業株式会社生活環境カンパ ニー内 (72)発明者 柳 寿一 大阪府大阪市淀川区十三本町2丁目17番85 号 武田薬品工業株式会社生活環境カンパ ニー内 Fターム(参考) 4G066 AA05B AA05C AA20B AA20D AA22A AA22B AA22D AA37D BA20 BA25 BA26 CA04 CA51 DA04 FA03 FA12 FA18 FA21 FA37    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsuyoshi Yoshidome             2-17-85 Jusohonmachi, Yodogawa-ku, Osaka-shi, Osaka Prefecture             No. Takeda Pharmaceutical Co., Ltd.             In the knee (72) Inventor Juichi Yanagi             2-17-85 Jusohonmachi, Yodogawa-ku, Osaka-shi, Osaka Prefecture             No. Takeda Pharmaceutical Co., Ltd.             In the knee F-term (reference) 4G066 AA05B AA05C AA20B AA20D                       AA22A AA22B AA22D AA37D                       BA20 BA25 BA26 CA04 CA51                       DA04 FA03 FA12 FA18 FA21                       FA37

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径0.1〜20mmの賦活化活性
炭に、シリカおよび/またはアルミナを1〜40重量%
添着してなる溶剤蒸気吸着剤。
1. Activated activated carbon having an average particle diameter of 0.1 to 20 mm and 1 to 40% by weight of silica and / or alumina.
Solvent vapor adsorbent formed by attachment.
【請求項2】賦活化活性炭が、比表面積800〜250
0m/g、細孔容積0.3〜2.0ml/g、充填密
度0.2〜0.7g/mlのものである請求項1記載の
溶剤蒸気吸着剤。
2. The activated carbon has a specific surface area of 800 to 250.
0 m 2 / g, pore volume 0.3~2.0ml / g, solvent vapor adsorbent according to claim 1, wherein those having a bulk density 0.2 to 0.7 g / ml.
【請求項3】賦活化活性炭が、平均粒子径0.5〜15
mmの粒状活性炭である請求項1または2記載の溶剤蒸
気吸着剤。
3. The activated carbon having an average particle diameter of 0.5 to 15 is used.
The solvent vapor adsorbent according to claim 1 or 2, which is a granular activated carbon of mm.
【請求項4】シリカおよび/またはアルミナを2〜30
重量%添着してなる請求項1または2記載の溶剤蒸気吸
着剤。
4. Silica and / or alumina in an amount of 2 to 30
The solvent vapor adsorbent according to claim 1 or 2, wherein the solvent vapor adsorbent is impregnated in a weight percentage.
【請求項5】自動車のキャニスタ用である請求項1〜4
のいずれかに記載の溶剤蒸気吸着剤。
5. A vehicle canister for a vehicle, wherein:
The solvent vapor adsorbent according to any one of 1.
【請求項6】平均粒子径0.1〜20mmの賦活化活性
炭にシリカおよび/またはアルミナを含む液を、シリカ
および/またはアルミナとして1〜40重量%となる量
を均一に混合し、これを加温下に乾燥してシリカおよび
/またはアルミナを添着する溶剤蒸気吸着剤の製造法。
6. A liquid containing silica and / or alumina is uniformly mixed with activated activated carbon having an average particle diameter of 0.1 to 20 mm in an amount of 1 to 40% by weight as silica and / or alumina. A method for producing a solvent vapor adsorbent, which comprises drying under heating and impregnating silica and / or alumina.
【請求項7】賦活化活性炭が、比表面積800〜250
0m/g、細孔容積0.3〜2.0ml/g、充填密
度0.2〜0.7g/mlのものである請求項6記載の
製造法。
7. The activated activated carbon has a specific surface area of 800 to 250.
The production method according to claim 6, which has a pore volume of 0 m 2 / g, a pore volume of 0.3 to 2.0 ml / g, and a packing density of 0.2 to 0.7 g / ml.
【請求項8】賦活化活性炭が、平均粒子径0.5〜15
mmの粒状活性炭である請求項6または7記載の製造
法。
8. The activated carbon having an average particle diameter of 0.5 to 15 is used.
The method according to claim 6 or 7, which is a granular activated carbon of mm.
【請求項9】シリカおよび/またはアルミナを含む液
を、シリカおよび/またはアルミナとして2〜30重量
%となる量を均一に混合する請求項6または7記載の製
造法。
9. The method according to claim 6, wherein the liquid containing silica and / or alumina is uniformly mixed in an amount of 2 to 30% by weight as silica and / or alumina.
【請求項10】シリカを含む液が水ガラスの水溶液であ
る請求項6または7記載の製造法。
10. The method according to claim 6, wherein the liquid containing silica is an aqueous solution of water glass.
JP2001396442A 2001-12-27 2001-12-27 Adsorbent for solvent vapor and method for preparing the same Pending JP2003190783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396442A JP2003190783A (en) 2001-12-27 2001-12-27 Adsorbent for solvent vapor and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396442A JP2003190783A (en) 2001-12-27 2001-12-27 Adsorbent for solvent vapor and method for preparing the same

Publications (1)

Publication Number Publication Date
JP2003190783A true JP2003190783A (en) 2003-07-08

Family

ID=27602537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396442A Pending JP2003190783A (en) 2001-12-27 2001-12-27 Adsorbent for solvent vapor and method for preparing the same

Country Status (1)

Country Link
JP (1) JP2003190783A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167621A (en) * 2004-12-16 2006-06-29 Kuraray Chem Corp Organic gas absorbing agent, its manufacturing method, and mask for absorbing organic gas
JP2008043846A (en) * 2006-08-11 2008-02-28 Cosmo Engineering Co Ltd Silica gel-activated carbon complex, its manufacturing method, method for removing volatile organic compound, method for removing organic compound having boiling point of -164 to 400°c, pressure swing adsorption method and pressure swing adsorption apparatus
CN100391591C (en) * 2005-08-17 2008-06-04 黎伯忠 Novel adsorptive material for treating air pollution and its preparing method
JP2009220098A (en) * 2008-02-18 2009-10-01 Nagoya Electrical Educational Foundation Adsorbent made of composite active carbon and its production method
JP2010138047A (en) * 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
JPWO2009011287A1 (en) * 2007-07-13 2010-09-24 株式会社キャタラー Adsorbent and canister
JP2010207693A (en) * 2009-03-09 2010-09-24 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for volatile organic compound and manufacturing method thereof
JP2016117629A (en) * 2014-12-24 2016-06-30 トクラス株式会社 Modified active carbon, and production method of it, and filtration cartridge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167621A (en) * 2004-12-16 2006-06-29 Kuraray Chem Corp Organic gas absorbing agent, its manufacturing method, and mask for absorbing organic gas
CN100391591C (en) * 2005-08-17 2008-06-04 黎伯忠 Novel adsorptive material for treating air pollution and its preparing method
JP2008043846A (en) * 2006-08-11 2008-02-28 Cosmo Engineering Co Ltd Silica gel-activated carbon complex, its manufacturing method, method for removing volatile organic compound, method for removing organic compound having boiling point of -164 to 400°c, pressure swing adsorption method and pressure swing adsorption apparatus
JPWO2009011287A1 (en) * 2007-07-13 2010-09-24 株式会社キャタラー Adsorbent and canister
JP2009220098A (en) * 2008-02-18 2009-10-01 Nagoya Electrical Educational Foundation Adsorbent made of composite active carbon and its production method
JP2010138047A (en) * 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
JP2010207693A (en) * 2009-03-09 2010-09-24 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for volatile organic compound and manufacturing method thereof
JP2016117629A (en) * 2014-12-24 2016-06-30 トクラス株式会社 Modified active carbon, and production method of it, and filtration cartridge

Similar Documents

Publication Publication Date Title
Bazan-Wozniak et al. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes
Arshadi et al. Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: kinetic and thermodynamic
EP0643014B1 (en) Deodorant comprising metal oxide-carrying activated carbon
Nakanishi et al. Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste
US8563467B2 (en) Method for preparation of activated carbon
KR100236785B1 (en) Carbonaceous adsorbent, process for producing the same, and method and apparatus for gas separation
JPH09239265A (en) Mercury adsorbent
Cotoruelo et al. Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons
de Castro et al. Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: pollutant adsorption in aqueous solution
JPH0566886B2 (en)
Abadi et al. Air pollution control: The evaluation of TerphApm@ MWCNTs as a novel heterogeneous sorbent for benzene removal from air by solid phase gas extraction
EP0755994A2 (en) Method of eliminating mercury from liquid hydrocarbons
Liu et al. Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol
Ahammad et al. Desorption of chloramphenicol from ordered mesoporous carbon-alginate beads: Effects of operating parameters, and isotherm, kinetics, and regeneration studies
JP2003190783A (en) Adsorbent for solvent vapor and method for preparing the same
Correa-Navarro et al. Caffeine adsorption by fique bagasse biochar produced at various pyrolysis temperatures
RU2359904C1 (en) Method for preparation of porous carbon materials from brown coal
Saman et al. Enhanced elemental mercury removal by facile sulfurization of agrowaste chars
Afzali et al. Benzene extraction in environmental samples based on the mixture of nanoactivated carbon and ionic liquid coated on fused silica fiber before determination by headspace solid-phase microextraction-gas chromatography
JP2003012316A (en) Activated carbon and its manufacturing method
Marzec et al. Poly (ethylene terephthalate) as a source for activated carbon
JP6997299B2 (en) Metahalloysite powder and its manufacturing method
Matandabuzo et al. Activated carbons from waste tyre pyrolysis: application
JP4046914B2 (en) Method for producing spherical activated carbon
Rostamian et al. Preparation, characterization and sodium sorption capability of rice husk carbonaceous adsorbents

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060809

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Effective date: 20061106

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A02