JP4046914B2 - Method for producing spherical activated carbon - Google Patents

Method for producing spherical activated carbon Download PDF

Info

Publication number
JP4046914B2
JP4046914B2 JP32739299A JP32739299A JP4046914B2 JP 4046914 B2 JP4046914 B2 JP 4046914B2 JP 32739299 A JP32739299 A JP 32739299A JP 32739299 A JP32739299 A JP 32739299A JP 4046914 B2 JP4046914 B2 JP 4046914B2
Authority
JP
Japan
Prior art keywords
activated carbon
spherical
phenol resin
average particle
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32739299A
Other languages
Japanese (ja)
Other versions
JP2000233916A (en
Inventor
清一 藤井
直 稲田
務 高阪
浩文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Futamura Chemical Co Ltd
Original Assignee
JGC Corp
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Futamura Chemical Co Ltd filed Critical JGC Corp
Priority to JP32739299A priority Critical patent/JP4046914B2/en
Publication of JP2000233916A publication Critical patent/JP2000233916A/en
Application granted granted Critical
Publication of JP4046914B2 publication Critical patent/JP4046914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、球状活性炭、特には流動床に好適な球状活性炭の製造方法に関する。
【0002】
【従来の技術】
従来、活性炭は脱臭、脱色、不純物除去等のための吸着剤、触媒あるいはその担体として使用されている。また、その使用形態としては、固定床、流動床(流動層とも称される)、移動床式装置等がある。特に流動床式の脱臭装置あるいは吸着装置等において、排気ガスの除去や有機溶剤蒸気からの溶剤回収等に使用される活性炭は、流体との接触を良好にして活性炭の高い吸着性能または担持する触媒の高い触媒作用を得られるようにするため、粒状のものが使用される。このような粒状活性炭として、従来は、破砕炭からなるものや、粉末活性炭を粒状にしたものが主に用いられている。
【0003】
しかし、前記破砕炭からなるものは、破砕時に発生した微粉を破砕炭表面から完全に除去し難く、その製造効率が悪いのみならず、破砕炭の表面が角張っているため、流動床での使用中に破砕炭同士が擦れあって角が削れ、微粉を発生し易い。その結果、活性炭の性能低下を生じたり、装置配管内の汚染及び閉塞によるトラブル発生等で吸着装置等に悪影響を与える等の問題がある。また、流動床式装置等においては、活性炭の流動性が高い程、吸着性能あるいは担持する触媒の作用が高まる。前記流動性には粒子の形状及び粒度分布が影響し、角張った形状より球状の方が流動性は良くなる。ところが、破砕炭からなるものはその表面の角張った形状によって流動性が劣るため、優れた吸着性能や触媒作用を発揮し難い問題もある。
【0004】
また、流動床式装置等に用いられる活性炭の粒径は、活性炭を液相で使用する場合にはそれ程制約を受けず、2mm程度のものまで使用可能であるが、気相の場合には平均粒径100μm以下のものが要求されることがある。しかし、前記破砕炭は粒子径を小さくする程収率が低下するため、効率良く量産しようとすると、最小でも平均粒子径150μmが限度であり、それ以上粒子径を小さくすると破砕炭の収率が極端に低下する。従って、前記気相で要求されるような平均粒子径の小さな破砕炭を得るのは現実的ではなかった。
【0005】
他方、前記粉末活性炭の成型品からなるものは、粉末活性炭をバインダーで粒状に結合させているため、得られる粒状活性炭は表面がバインダーで被覆されたものとなっていて、活性炭本来の吸着性能が阻害される問題がある。
【0006】
さらに、従来、破砕炭や粉末活性炭の成型品には、オガ粉、ヤシ殻、石炭等の天然物質が使用されているため、炭素の純度が低く、高純度が要求される分野での使用は好ましいものではなかった。
【0007】
【発明が解決しようとする課題】
この発明は、上記問題に鑑みて提案されたものであって、微粉を生じ難く、流動性に優れ、しかも気相にも適する小さな平均粒径のものを容易に得られる高純度球状活性炭の製造方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
請求項1の発明は、平均粒径50〜300μmの球状フェノール樹脂に油を付着させてブロッキング防止しながら炭化させた後、賦活して平均粒径20〜200μmの球状活性炭を得る球状活性炭の製造方法であって、前記油の分解温度は前記球状フェノール樹脂の完全硬化時の温度よりも高く、前記賦活時の温度以下であることを特徴とする球状活性炭の製造方法に係る。
【0009】
また、請求項2の発明は、平均粒径50〜300μmの球状フェノール樹脂に油を付着させるとともに、該油付着後の球状フェノール樹脂を流動あるいは振動させてブロッキング防止しながら炭化させた後、賦活して平均粒径20〜200μmの球状活性炭を得る球状活性炭の製造方法であって、前記油の分解温度は前記球状フェノール樹脂の完全硬化時の温度よりも高く、前記賦活時の温度以下であることを特徴とする球状活性炭の製造方法に係る。
【0010】
【発明の実施の形態】
以下この発明を詳細に説明する。この発明によって得られる球状活性炭は、フェノール樹脂を炭化、賦活して球状としたもの、特に後記するように球状フェノール樹脂をブロッキング防止しながら炭化させた後、賦活したもので、触媒の担体や吸着剤等として用いられ、特に流動床式の装置に好適なものである。この球状活性炭の平均粒径は、流動床式装置において気相に対し好適なように20〜200μmである。なお、この明細書における平均粒径は体積累積分布平均粒径のことをいい、粒度分布測定機等で測定される。
【0011】
使用するフェノール樹脂としては、球状フェノール樹脂である。球状フェノール樹脂は、フェノール樹脂の表面が球状に成形されたものであって、芳香族の構造をしているため、炭化率を高くすることができ、さらに賦活により表面積の大きな活性炭が得られるので、この球状フェノール樹脂から製造される本発明の球状活性炭の吸着性能は優れたものになる。
【0012】
さらに、前記球状フェノール樹脂は、破砕炭とは異なり、球状に成形されたものであるため、その炭化、賦活により得られた本発明の球状活性炭は、表面に角張った部分がないので、輸送等の際のみならず、流動床式装置に使用された際に、活性炭粒子表面の角部が擦られて微粉を生じるおそれがなく、その微粉による装置への悪影響が無く、しかも活性炭粒子表面の微細孔が壊れず、吸着性能等が低下することがない。
【0013】
前記球状フェノール樹脂としては、公知のものを使用できるが、平均粒径50〜300μmのもの用いられる。この範囲の平均粒径のものを用いることによって、気相にも適する20〜200μmの平均粒径からなる本発明の球状活性炭を得ることができる。勿論、前記球状フェノール樹脂は、目的とする球状活性炭の平均粒径に応じて、前記フェノール樹脂の平均粒径50〜300μmの範囲内から適宜選択される。前記範囲の平均粒径を有する公知の球状フェノール樹脂の例として、商品名PR−FSD(住友デユレズ(株)製)、AH−3a(群栄化学工業(株)製)等を挙げることができる。
【0014】
次に前記球状活性炭の製造方法について説明する。前記球状活性体の製造は、前記球状フェノール樹脂をブロッキング防止しながら炭化させた後、賦活することによって行われる。その際、球状フェノール樹脂として、前記のように平均粒径50〜300μmのものを用い、得られる球状活性炭が流動床式装置に適する、平均粒径20〜200μmのものになるようにする。
【0015】
球状フェノール樹脂の炭化は、球状フェノール樹脂を加熱炉等に収容し、フェノール樹脂が炭化する温度で所要時間加熱することによって行われる。その際の温度は加熱時間等によって異なるが、通常、加熱時間が1〜3時間程度とされる場合、500〜700℃に設定される。なお、この炭化を効率よく行うため、炭化作業に先立ち、前記炭化温度よりも低い温度で球状フェノール樹脂を乾燥させるのが好ましい。また、通常、球状フェノール樹脂には未硬化部分が残存しているのが一般的であり、その未硬化部分については、前記炭化工程時の加熱で完全に硬化した後に炭化が行われる。
【0016】
また、炭化する際に球状フェノール樹脂同士が結合し賦活後もそのまま残って整粒されていない塊状の活性炭になる(このことをブロッキングと称する。)と、使用時に流動性が阻害されるようになる。そのため、本発明では、次の2つのブロッキング防止方法を単独または好ましくは併用することによってブロッキングを防止している。
【0017】
第一のブロッキング防止方法では、炭化工程における加熱炉内で球状フェノール樹脂が静置されているとブロッキングを生じ易いため、加熱炉内に気体を下方より吹き込んだり加熱炉装置自体を回転あるいは振動させる等により球状フェノール樹脂を流動あるいは振動させながら加熱し、炭化させることによりブロッキングを生じないようにする。さらに好ましくは、炭化後の賦活工程においても球状フェノール樹脂を流動あるいは振動させながら加熱を行う。
【0018】
第二のブロッキング防止方法では、球状フェノール樹脂の表面に未硬化部分が残存していると、その球状フェノール樹脂同士が炭化工程で互いに接触して加熱されることにより完全硬化する際にブロッキングを生じるため、球状フェノール樹脂に油を付着させて、その油で球状フェノール樹脂の表面を被覆し、球状フェノール樹脂同士の表面が互いに直接接触しないようにする。
【0019】
前記第二の方法で使用される油は、炭化工程時に球状フェノール樹脂の未硬化部分が完全に硬化するまで球状フェノール樹脂表面を被覆しており、しかも賦活工程終了後の球状活性炭表面には残存していないものが好ましい。そのような油としては、油の分解温度が球状フェノール樹脂の完全硬化時の温度よりも高く、賦活工程時の温度以下のものが適する。この範囲の分解温度を有する油であれば、フェノール樹脂の前記未硬化部分が完全に硬化するまでの間、分解することなく球状フェノール樹脂の表面に存在して球状フェノール樹脂同士の表面が直接接触するのを阻止し、ブロッキングの発生を防止でき、かつ賦活工程では分解して燃焼消失するため、その後に油の除去処理を行う必要がない。なお、球状フェノール樹脂の完全硬化温度は炭化工程における最高温度よりも低いため、便宜的には、分解温度が前記炭化工程時の最高温度よりも高く、しかも賦活工程時の温度以下である油を用いてもよい。また、油の種類は適宜のものが用いられるが、例として鉱物油(特に高沸点の重質油)、動植物油、合成潤滑油を示すことができる。
【0020】
賦活は、球状フェノール樹脂の炭化後、その表面を微細孔(ポーラス)状態にして、表面積を高める処理方法であり、種々の方法が知られている。例えば、賦活対象物を、炭酸ガス、酸素を主体とするガス雰囲気中において、数分〜数時間加熱する方法、アルカリ金属の水酸化物により処理する方法等などがある。本発明では、空気中で高温加熱する賦活方法が簡単で好適である。
【0021】
【実施例】
次に本発明の実施例1〜7及び比較例1について示す。さらに、実施例6及び7では、製造条件によるブロッキング率の変化についても調べた。ブロッキング率は、使用する球状フェノール樹脂の粒度分布から、同球状フェノール樹脂粒子の90%が通過できる径(以下、90%通過径と称する。)を求め、その90%通過径以上であって、その90%通過径に最も近い目開きからなるJIS規格の篩を用いて測定対象物を篩別し、篩上に残った物質について該測定対象物に対する重量分率を計算し、その計算値をブロッキング率とした。また、実施例及び比較例に対し、平均粒径、ヨウ素吸着性能、耐摩耗性、微粉値、吸水率、強熱残分を測定した。その結果及び前記ブロッキング率を表1,2に示す。なお、それらの測定方法は次に示すとおりである。
【0022】
・平均粒径:レーザー式粒度分布測定機(セイシン企業製PRO−7000)を使用して測定した。
・ヨウ素吸着性能および強熱残分:JIS K 1474活性炭試験方法により測定した。ヨウ素吸着性能の値が大きい程吸着性能が高く、また強熱残分の値が大である程不純物が多い。
・耐摩耗性(微粉の発生し難さ):レーザー式粒度分布測定機(セイシン企業製PRO−7000)を使用して試料(活性炭)約0.2gをポンプで循環させ、60分後における10μm以下の粒子の増加量から耐摩耗性を測定した。表の数値が示す100%は、10μm以下の粒子の増加量が0であることを示し、数値が下がるほど10μm以下の粒子が増加したことを示す。
・微粉値:試料(活性炭)5.0gを5.0%エタノール水溶液100mlが入った200mlのビーカーに加え、30分間、振とう機を用いて激しく振った。その後5分以内に、分光光度計を用いて650nm、10mmセルにて吸光度を測定し、その吸光度の測定数値をそのまま微粉値とした。この微粉値が大である程微粉が多いことを示す。
・吸水率:試料(活性炭)5.0gに徐々にピペットで水を滴下して攪拌し、目視で活性炭がべたつき始める直前の時点までに滴下した水の量を測定し、その水の滴下量(g)より活性炭1g当たりの吸水率を求めた。なお、滴下の際、水が吸収熱で蒸発しないように活性炭を冷却しながら測定を行った。
・ブロッキング率:試料(球状フェノール樹脂単独、または球状フェノール樹脂に油を混合したもの)を500℃で3時間炭化した後、炭化物を前記ブロッキング率で定義した試験篩を用いて10分間篩別する。篩別後、篩上に残った炭化物の重量分率を求め、その値をブロッキング率(%)として表す。
【0023】
(実施例1)
平均粒径150μmの球状フェノール樹脂(商品名:PR−FSD−1、住友デュレズ(株)製)100gに油(商品名:SF/CC SAE 10W−30、カストロール(株)製)を10g混合した後、金属製レトルト容器(内容量13リットル)に収容して加熱炉内で120℃、1時間乾燥させた後、同じ加熱炉内で容器を15rpmで回転させながら、500℃で1時間加熱し、炭化させた。炭化後、同加熱炉内で容器を1rpmで回転させながら900℃、1時間加熱することによって賦活し、球状活性炭を得た。得られた球状活性炭は、平均粒径110μmの球状からなり、活性炭特性として測定したヨウ素吸着性能が1020mg/gであった。また、耐摩耗性の測定結果は10μm以下の微粒子の増加がなく、耐摩耗性に優れていることが判明した。
【0024】
(実施例2)
実施例1と同一の球状フェノール樹脂100gに対し、実施例1と同様に油10gを混合し、乾燥後に容器を15rpmで回転させながら炭化した後、容器を1rpmで回転させながら900℃、2時間加熱することによって賦活し、球状活性炭を得た。得られた球状活性炭は、平均粒径100μmの球状で、ヨウ素吸着性能1180mg/gであった。
また、耐摩耗性も実施例1と同一結果が得られ優れたものであった。
【0025】
(実施例3)
平均粒径130μmの球状フェノール樹脂(商品名:PR−FSD、住友デュレズ(株)製)100gに対し、実施例1と同様に油10gを混合してレトルト容器に収容し、加熱炉内で120℃、1時間乾燥した後、同加熱炉内で容器を15rpmで回転させながら500℃、1時間加熱し炭化させた。炭化後、同加熱炉内で容器を1rpmで回転させながら900℃、3時間加熱することによって賦活し、球状活性炭を得た。得られた球状活性炭は平均粒径80μmの球状で、ヨウ素吸着性能が1280mg/gであった。また、耐摩耗性は、実施例1及び2と同一の結果が得られ優れたものであった。
【0026】
(実施例4)
実施例3と同一の球状フェノール樹脂を、実施例3と同様にして炭化した後、加熱炉で容器を1rpmで回転させながら900℃、4時間加熱することによって賦活し、球状活性炭を得た。得られた球状活性炭は、平均粒径70μmの球状で、ヨウ素吸着性能が1350mg/gであった。また、耐摩耗性の測定値は99.9%であり、優れた耐摩耗性を示した。
【0027】
(実施例5)
平均粒径300μmの球状フェノール樹脂(商品名:PR−FSD、住友デュレズ(株)製)100gに実施例1と同様に油10gを混合してレトルト容器に入れ、加熱炉内で120℃、1時間乾燥した後、同加熱炉内で容器を15rpmで回転させながら500℃、1時間加熱し炭化させた。炭化後、同加熱炉内で容器を1rpmで回転させながら900℃、2時間加熱することによって賦活し、平均粒径200μmの球状活性炭を得た。その球状活性炭に対して同様の測定を行った。結果は、耐摩耗性については実施例1〜4と同等であったが、微粉値が大きい点で実施例1〜4よりも劣っていた。
【0028】
(実施例6)
平均粒径80μmの球状フェノール樹脂(商品名:PR−FSD、住友デュレズ(株)製)100gに油(商品名:SF/CC SAE 10W−30、カストロール(株)製)を表2の割合で混合し、実施例1と同様のレトルト容器に収容し、加熱炉内で120℃、1時間乾燥した後、同じ加熱炉内で静置のまま500℃で3時間加熱し、炭化させた。得られた炭化物は、平均粒径70μmの球状であった。ブロッキング率は、油添加量5重量%のとき3.0%であり、油添加率0%の時のブロッキング率20.0%と比較して明らかに低下している。なお、油添加量の限界である25重量%ではブロッキング率が1.1%であった。
【0029】
また、前記実施例6で得られた炭化物について、炭化時と同じ加熱炉内で容器を1rpmで回転させながら900℃、2時間加熱することにより賦活し、球状活性炭を得た。得られた球状活性炭は平均粒径70μmの球状で、ヨウ素吸着性能が1190mg/gであった。この得られた球状活性炭について、実施例1と同様に対摩耗性を測定したところ、10μm以下の微粒子の増加がなく、優れたものであった。
【0030】
(実施例7)
実施例6と同様にして油の混合、乾燥工程まで行った実施例6と同一の球状フェノール樹脂に対し、同じ加熱炉で容器を15rpmで回転させながら500℃で3時間加熱し、炭化させた。この炭化物に対し、ブロッキング率を測定した。この実施例7と実施例6の場合のブロッキング率を比較すると、実施例7の炭化物の方がブロッキング率の少ないのがわかる。これは、実施例7では、油の効果と球状フェノール樹脂の流動(回転)効果の両効果によってブロッキングの発生を効果的に防止できるからであり、これによりブロッキング率を1%以下に抑えることが可能となった。
【0031】
(比較例1)
ヤシ殻を原料とした破砕炭から平均粒径110μmの活性炭を篩い分けにより製造した。この活性炭に対し、実施例1と同様の測定を行い、各種性能を比較した。その結果、耐摩耗性及び微粉値が、本発明品の実施例1〜7に比べて悪く、しかも強熱残分も本発明品である実施例1〜7に比べて極めて大きな値を示した。
【0032】
【表1】
【0033】
【表2】
(ブロッキング率の測定には83メッシュの篩を使用)
【0034】
【発明の効果】
以上説明したように、この発明は、球状フェノール樹脂をブロッキング防止しながら炭化、賦活して球状活性炭としているため、その形状を球状にすることができる。従って、本発明の球状活性炭の製造方法より得られる球状活性炭を流動床式装置の吸着剤や触媒及びその担体として使用した際には、球状活性炭の優れた流動性によって悪臭や化学物質等に対する高い吸着性を発揮し、また、触媒反応や装置の運転安定性を十分に発揮させることができる。さらに、前記活性炭が球状からなるため、流動床における使用等の際に破砕炭のように表面の角が削れて微粉を生じる問題がなく、その微粉によって装置への悪影響(配管汚染及び閉塞)や活性炭の性能低下のおそれがない。しかも前記球状活性炭は、粉末活性体をバインダーで結合したものと異なり、表面がバインダーで覆われていないため、活性炭含有率が高くなり、吸着性能や触媒性能が阻害されることもない。
【0035】
また、本発明では、芳香族構造のフェノール樹脂から球状活性炭を製造しているため、ヤシ殻やオガ粉等の天然原料からなる活性炭と比べて活性炭の炭化率が高く、これによっても吸着性能や触媒性能の向上効果が得られる。さらに、本発明では、球状活性炭の平均粒径が20〜200μmであるため、液相のみならず気相に対しても好適に使用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a spherical activated carbon, particularly a spherical activated carbon suitable for a fluidized bed.
[0002]
[Prior art]
Conventionally, activated carbon has been used as an adsorbent, catalyst, or carrier for deodorization, decolorization, impurity removal, and the like. Moreover, the usage form includes a fixed bed, a fluidized bed (also referred to as a fluidized bed), a moving bed type apparatus, and the like. In particular, activated carbon used for removal of exhaust gas and solvent recovery from organic solvent vapors in fluidized bed type deodorizers or adsorbers, etc. is a catalyst that supports high adsorption performance or supports activated carbon with good contact with fluids. In order to obtain a high catalytic action, a granular material is used. Conventionally, as such granular activated carbon, those made of crushed charcoal or those obtained by granulating powdered activated carbon are mainly used.
[0003]
However, it is difficult to completely remove the fine powder generated during crushing from the surface of the crushed coal, and its production efficiency is not only bad, but the surface of the crushed coal is angular, so that it is used in a fluidized bed. The crushed charcoal is rubbed inside and the corners are shaved, and fine powder is easily generated. As a result, there is a problem that the performance of the activated carbon is deteriorated or the adsorption device is adversely affected due to the occurrence of troubles due to contamination and blockage in the apparatus piping. In a fluidized bed apparatus or the like, the higher the fluidity of the activated carbon, the higher the adsorption performance or the supported catalyst action. The fluidity is affected by the shape and particle size distribution of the particles, and the fluidity is better in a spherical shape than in an angular shape. However, the one made of crushed coal is inferior in fluidity due to the angular shape of the surface, and therefore has a problem that it is difficult to exhibit excellent adsorption performance and catalytic action.
[0004]
The particle size of the activated carbon used in the fluidized bed apparatus or the like is not so limited when activated carbon is used in the liquid phase, and can be used up to about 2 mm, but in the case of the gas phase, A particle size of 100 μm or less may be required. However, since the yield of the crushed coal decreases as the particle size is reduced, the average particle size is limited to 150 μm at the minimum if mass production is attempted efficiently. Extremely low. Therefore, it is not practical to obtain crushed coal having a small average particle size as required in the gas phase.
[0005]
On the other hand, since the powdered activated carbon is made by molding powdered activated carbon in a granular form with a binder, the obtained granular activated carbon has a surface coated with a binder, and the original adsorption performance of activated carbon is There is a problem that is hindered.
[0006]
Furthermore, since natural products such as sawdust, coconut shells, and coal have been used in crushed charcoal and powdered activated carbon moldings in the past, their use in fields where carbon purity is low and high purity is required. It was not preferable.
[0007]
[Problems to be solved by the invention]
The present invention has been proposed in view of the above problems, and is a method for producing a high-purity spherical activated carbon that can be easily obtained with a small average particle size that is less likely to produce fine powder, has excellent fluidity, and is suitable for a gas phase. Is to provide a method.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is the production of spherical activated carbon which is activated to obtain spherical activated carbon having an average particle size of 20 to 200 μm after carbonizing while preventing oil blocking by adhering to a spherical phenol resin having an average particle size of 50 to 300 μm. It is a method, Comprising: It relates to the manufacturing method of spherical activated carbon characterized by the decomposition temperature of the said oil being higher than the temperature at the time of complete hardening of the said spherical phenol resin, and below the temperature at the time of the said activation .
[0009]
Further, the invention of claim 2 activates after adhering oil to a spherical phenol resin having an average particle size of 50 to 300 μm and carbonizing the oil after adhering the oil while flowing or vibrating to prevent blocking. And a spherical activated carbon production method for obtaining a spherical activated carbon having an average particle size of 20 to 200 μm, wherein the decomposition temperature of the oil is higher than the temperature at the time of complete curing of the spherical phenol resin and not more than the temperature at the time of activation. The present invention relates to a method for producing spherical activated carbon.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. The spherical activated carbon obtained by the present invention is obtained by carbonizing and activating a phenol resin to make it spherical, in particular , by activating after carbonizing the spherical phenol resin while preventing blocking, as described later, the catalyst carrier and adsorption It is used as an agent and the like, and is particularly suitable for a fluidized bed type apparatus. The average particle diameter of the spherical activated carbon is 20 to 200 μm so as to be suitable for the gas phase in the fluidized bed apparatus . In addition, the average particle diameter in this specification means a volume cumulative distribution average particle diameter, and is measured by a particle size distribution measuring machine or the like.
[0011]
The phenol resin used is a spherical phenol resin. Spherical phenol resin has a phenol resin surface formed into a spherical shape and has an aromatic structure, so that the carbonization rate can be increased and activated carbon with a large surface area can be obtained by activation. The adsorption performance of the spherical activated carbon of the present invention produced from this spherical phenol resin is excellent.
[0012]
Furthermore, since the spherical phenol resin is formed into a spherical shape unlike crushed charcoal, the spherical activated carbon of the present invention obtained by carbonization and activation thereof has no angular portion on the surface, so that transportation, etc. When used in a fluidized bed apparatus, the corners on the surface of the activated carbon particles are not rubbed to produce fine powder, the fine powder has no adverse effect on the apparatus, and the surface of the activated carbon particles is fine. The pores are not broken and the adsorption performance does not deteriorate.
[0013]
As the spherical phenol resin, can be used known ones, Ru is used is an average particle diameter of 50 to 300 [mu] m. By using those having an average particle diameter in this range, the spherical activated carbon of the present invention having an average particle diameter of 20 to 200 μm suitable for the gas phase can be obtained. Of course, the spherical phenol resin is appropriately selected from the range of 50 to 300 μm of the average particle diameter of the phenol resin according to the average particle diameter of the target spherical activated carbon. Examples of known spherical phenol resins having an average particle size in the above range include trade name PR-FSD (manufactured by Sumitomo Deyurezu Co., Ltd.), AH-3a (manufactured by Gunei Chemical Industry Co., Ltd.), and the like. .
[0014]
Next, a method for producing the spherical activated carbon will be described. The spherical active substance is produced by carbonizing the spherical phenol resin while preventing blocking and then activating it. At that time, as the spherical phenol resin, one having an average particle diameter of 50 to 300 μm is used as described above so that the obtained spherical activated carbon has an average particle diameter of 20 to 200 μm suitable for a fluidized bed apparatus.
[0015]
The carbonization of the spherical phenol resin is performed by storing the spherical phenol resin in a heating furnace or the like and heating it for a required time at a temperature at which the phenol resin is carbonized. Although the temperature in that case changes with heating time etc., when heating time shall be about 1-3 hours normally, it is set to 500-700 degreeC. In order to efficiently perform the carbonization, it is preferable to dry the spherical phenol resin at a temperature lower than the carbonization temperature prior to the carbonization operation. In general, an uncured part remains in the spherical phenol resin, and the uncured part is carbonized after being completely cured by heating in the carbonization step.
[0016]
In addition, when carbonized, spherical phenolic resins are bonded to each other and become activated bulk carbon that remains as it is after activation and is not sized (this is called blocking), so that fluidity is inhibited during use. Become. Therefore, in the present invention, blocking is prevented by using the following two anti-blocking methods singly or preferably in combination.
[0017]
In the first blocking prevention method, blocking is likely to occur when the spherical phenol resin is left standing in the heating furnace in the carbonization step. Therefore, gas is blown into the heating furnace from below or the heating furnace device itself is rotated or vibrated. The spherical phenol resin is heated while flowing or vibrating by, for example, carbonization so as not to cause blocking. More preferably, also in the activation process after carbonization, the spherical phenol resin is heated while flowing or vibrating.
[0018]
In the second anti-blocking method, if an uncured part remains on the surface of the spherical phenol resin, blocking occurs when the spherical phenol resins are completely cured by being brought into contact with each other in the carbonization step and heated. Therefore, oil is adhered to the spherical phenol resin, and the surface of the spherical phenol resin is covered with the oil so that the surfaces of the spherical phenol resins do not directly contact each other.
[0019]
The oil used in the second method covers the surface of the spherical phenol resin until the uncured portion of the spherical phenol resin is completely cured during the carbonization step, and remains on the surface of the spherical activated carbon after the activation step. What is not done is preferable. As such oil, oil whose decomposition temperature is higher than the temperature at the time of complete curing of the spherical phenol resin and is not more than the temperature at the activation step is suitable. If the oil has a decomposition temperature in this range, the surface of the spherical phenol resin is in direct contact with the surface of the spherical phenol resin without being decomposed until the uncured portion of the phenol resin is completely cured. This prevents the occurrence of blocking, prevents the occurrence of blocking, and decomposes and disappears in the activation step, so that it is not necessary to perform an oil removal process thereafter. Since the complete curing temperature of the spherical phenol resin is lower than the maximum temperature in the carbonization step, for convenience, an oil whose decomposition temperature is higher than the maximum temperature in the carbonization step and not more than the temperature in the activation step is used. It may be used. Moreover, although the kind of oil is used appropriately, mineral oil (particularly, heavy oil with a high boiling point), animal and vegetable oils, and synthetic lubricating oils can be shown as examples.
[0020]
Activation is a treatment method for increasing the surface area of a spherical phenol resin after carbonization of the spherical phenol resin by making its surface into a fine pore (porous), and various methods are known. For example, there are a method of heating an activation target in a gas atmosphere mainly composed of carbon dioxide gas and oxygen for several minutes to several hours, a method of treating with an alkali metal hydroxide, and the like. In the present invention, an activation method of heating at high temperature in air is simple and suitable.
[0021]
【Example】
Next, Examples 1 to 7 and Comparative Example 1 of the present invention will be described. Furthermore, in Examples 6 and 7, the change in the blocking rate depending on the production conditions was also examined. The blocking rate was determined from the particle size distribution of the spherical phenol resin used to determine the diameter (hereinafter referred to as 90% passage diameter) through which 90% of the spherical phenol resin particles can pass, and is equal to or greater than the 90% passage diameter, The object to be measured is sieved using a JIS standard sieve having an opening closest to the 90% passage diameter, and the weight fraction of the substance remaining on the sieve is calculated with respect to the object to be measured. It was set as the blocking rate. Moreover, an average particle diameter, iodine adsorption | suction performance, abrasion resistance, a fine powder value, a water absorption, and an ignition residue were measured with respect to the Example and the comparative example. The results and the blocking rate are shown in Tables 1 and 2. In addition, those measuring methods are as follows.
[0022]
-Average particle diameter: It measured using the laser-type particle size distribution measuring machine (PRO-7000 by Seishin Enterprise).
Iodine adsorption performance and ignition residue: Measured by the JIS K 1474 activated carbon test method. The higher the iodine adsorption performance value, the higher the adsorption performance, and the greater the ignition residue value, the more impurities.
Abrasion resistance (difficult to generate fine powder): Using a laser particle size distribution analyzer (PRO-7000 manufactured by Seishin Enterprise), about 0.2 g of sample (activated carbon) was circulated with a pump, and 10 μm after 60 minutes. The wear resistance was measured from the following amount of increase in particles. 100% indicated in the table indicates that the increase amount of particles of 10 μm or less is 0, and indicates that the number of particles of 10 μm or less increases as the value decreases.
Fine powder value: 5.0 g of sample (activated carbon) was added to a 200 ml beaker containing 100 ml of 5.0% ethanol aqueous solution, and shaken vigorously for 30 minutes using a shaker. Within 5 minutes, the absorbance was measured with a spectrophotometer using a 650 nm, 10 mm cell, and the measured value of the absorbance was used as the fine powder value. It shows that there are many fine powders, so that this fine powder value is large.
-Water absorption rate: Pipette water slowly into a sample (activated carbon) 5.0 g with pipette and stir. Measure the amount of water dropped just before the activated carbon starts sticking visually. The water absorption per 1 g of activated carbon was determined from g). In addition, when dripping, it measured, cooling activated carbon so that water might not evaporate with absorption heat.
Blocking rate: After carbonizing a sample (spherical phenol resin alone or a mixture of spherical phenol resin and oil) at 500 ° C. for 3 hours, the carbide is sieved for 10 minutes using the test sieve defined by the blocking rate. . After sieving, the weight fraction of the carbide remaining on the sieve is determined, and the value is expressed as a blocking rate (%).
[0023]
Example 1
10 g of oil (trade name: SF / CC SAE 10W-30, manufactured by Castrol Co., Ltd.) was mixed with 100 g of spherical phenol resin (trade name: PR-FSD-1, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 150 μm. After that, after storing in a metal retort container (13 liters in capacity) and drying in a heating furnace at 120 ° C. for 1 hour, the container is heated at 500 ° C. for 1 hour while rotating at 15 rpm in the same heating furnace. , Carbonized. After carbonization, activation was performed by heating at 900 ° C. for 1 hour while rotating the container at 1 rpm in the same heating furnace to obtain spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle size of 110 μm, and the iodine adsorption performance measured as the activated carbon characteristics was 1020 mg / g. Further, the measurement result of the wear resistance was found to be excellent in wear resistance with no increase in fine particles of 10 μm or less.
[0024]
(Example 2)
100 g of the same spherical phenol resin as in Example 1 was mixed with 10 g of oil in the same manner as in Example 1, and after drying, carbonized while rotating the container at 15 rpm, and then at 900 ° C. for 2 hours while rotating the container at 1 rpm. It was activated by heating to obtain spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle size of 100 μm and had an iodine adsorption performance of 1180 mg / g.
Further, the abrasion resistance was excellent because the same result as in Example 1 was obtained.
[0025]
(Example 3)
10 g of oil was mixed with 100 g of spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 130 μm in the same manner as in Example 1, and the mixture was placed in a retort container. After drying at 1 ° C. for 1 hour, the vessel was carbonized by heating at 500 ° C. for 1 hour while rotating the container at 15 rpm in the same heating furnace. After carbonization, activation was carried out by heating at 900 ° C. for 3 hours while rotating the container at 1 rpm in the same heating furnace to obtain spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle size of 80 μm, and the iodine adsorption performance was 1280 mg / g. Further, the wear resistance was excellent because the same results as in Examples 1 and 2 were obtained.
[0026]
Example 4
The same spherical phenol resin as in Example 3 was carbonized in the same manner as in Example 3, and then activated by heating at 900 ° C. for 4 hours while rotating the container at 1 rpm in a heating furnace to obtain spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle size of 70 μm, and the iodine adsorption performance was 1350 mg / g. The measured value of wear resistance was 99.9%, indicating excellent wear resistance.
[0027]
(Example 5)
10 g of oil was mixed with 100 g of spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 300 μm in the same manner as in Example 1 and placed in a retort container. After drying for a period of time, the container was heated and carbonized at 500 ° C. for 1 hour while rotating the container at 15 rpm in the same heating furnace. After carbonization, activation was performed by heating the container at 900 ° C. for 2 hours while rotating the container at 1 rpm in the same heating furnace to obtain spherical activated carbon having an average particle diameter of 200 μm. The same measurement was performed on the spherical activated carbon. Although the result was equivalent to Examples 1-4 about abrasion resistance, it was inferior to Examples 1-4 by the point with a large fine powder value.
[0028]
(Example 6)
Oil (trade name: SF / CC SAE 10W-30, Castrol Co., Ltd.) is added to 100 g of spherical phenol resin (trade name: PR-FSD, manufactured by Sumitomo Durez Co., Ltd.) having an average particle size of 80 μm in the ratio shown in Table 2. The mixture was mixed, accommodated in the same retort container as in Example 1, dried in a heating furnace at 120 ° C. for 1 hour, and then left standing in the same heating furnace for 3 hours at 500 ° C. to be carbonized. The obtained carbide was spherical with an average particle size of 70 μm. The blocking rate is 3.0% when the oil addition amount is 5% by weight, and is clearly lower than the blocking rate of 20.0% when the oil addition rate is 0%. The blocking rate was 1.1% at 25% by weight which is the limit of the oil addition amount.
[0029]
Moreover, about the carbide | carbonized_material obtained in the said Example 6, it activated by heating at 900 degreeC for 2 hours, rotating a container at 1 rpm in the same heating furnace as the time of carbonization, and obtained the spherical activated carbon. The obtained spherical activated carbon was spherical with an average particle size of 70 μm, and the iodine adsorption performance was 1190 mg / g. When the obtained spherical activated carbon was measured for wear resistance in the same manner as in Example 1, it was excellent with no increase in fine particles of 10 μm or less.
[0030]
(Example 7)
The same spherical phenol resin as in Example 6, which was processed up to oil mixing and drying steps in the same manner as in Example 6, was heated at 500 ° C. for 3 hours while being rotated at 15 rpm in the same heating furnace, and carbonized. . The blocking rate was measured for this carbide. Comparing the blocking rates in Example 7 and Example 6, it can be seen that the carbide of Example 7 has a lower blocking rate. This is because, in Example 7, the occurrence of blocking can be effectively prevented by both the effect of oil and the flow (rotation) effect of the spherical phenol resin, thereby suppressing the blocking rate to 1% or less. It has become possible.
[0031]
(Comparative Example 1)
Activated carbon having an average particle size of 110 μm was produced by sieving from crushed coal using coconut shell as a raw material. The activated carbon was measured in the same manner as in Example 1, and various performances were compared. As a result, the abrasion resistance and fine powder value were worse than those of Examples 1 to 7 of the present invention, and the ignition residue was extremely large compared to Examples 1 to 7 of the present invention. .
[0032]
[Table 1]
[0033]
[Table 2]
(An 83 mesh sieve is used to measure the blocking rate)
[0034]
【The invention's effect】
As described above, according to the present invention, since the spherical phenol resin is carbonized and activated while preventing blocking, the spherical activated carbon is formed, so that the shape can be made spherical. Therefore, when the spherical activated carbon obtained from the method for producing the spherical activated carbon of the present invention is used as an adsorbent or catalyst for a fluidized bed type apparatus and its carrier, it is highly resistant to bad odors and chemical substances due to the excellent fluidity of the spherical activated carbon. Adsorbability is exhibited, and catalytic reaction and operational stability of the apparatus can be sufficiently exhibited. Furthermore, since the activated carbon is spherical, there is no problem that the corners of the surface are scraped like crushed charcoal when used in a fluidized bed, etc., and the fine powder has an adverse effect (piping contamination and blockage) on the device. There is no fear of performance degradation of activated carbon. Moreover the spherical activated carbon, unlike the powdered active material and those bound with a binder, the surface is not covered with the binder, the higher the activated carbon content, nor adsorption performance and the catalyst performance is inhibited.
[0035]
In addition, in the present invention, since spherical activated carbon is produced from a phenol resin having an aromatic structure, the activated carbon has a higher carbonization rate than activated carbon made of natural raw materials such as coconut shells and sawdust, which also contributes to adsorption performance and The effect of improving the catalyst performance can be obtained. Furthermore, in this invention, since the average particle diameter of spherical activated carbon is 20-200 micrometers, it can be used conveniently not only for a liquid phase but for a gaseous phase.

Claims (2)

平均粒径50〜300μmの球状フェノール樹脂に油を付着させてブロッキング防止しながら炭化させた後、賦活して平均粒径20〜200μmの球状活性炭を得る球状活性炭の製造方法であって、
前記油の分解温度は前記球状フェノール樹脂の完全硬化時の温度よりも高く、前記賦活時の温度以下であることを特徴とする球状活性炭の製造方法。
It is a method for producing spherical activated carbon to obtain spherical activated carbon having an average particle size of 20 to 200 μm after carbonizing while preventing oil blocking by attaching oil to spherical phenol resin having an average particle size of 50 to 300 μm ,
The method for producing spherical activated carbon, characterized in that the decomposition temperature of the oil is higher than the temperature at the time of complete curing of the spherical phenol resin and not more than the temperature at the time of activation.
平均粒径50〜300μmの球状フェノール樹脂に油を付着させるとともに、該油付着後の球状フェノール樹脂を流動あるいは振動させてブロッキング防止しながら炭化させた後、賦活して平均粒径20〜200μmの球状活性炭を得る球状活性炭の製造方法であって、Oil is adhered to a spherical phenol resin having an average particle size of 50 to 300 μm, and the spherical phenol resin after the oil adhesion is carbonized while flowing or vibrating to prevent blocking, and then activated to activate an average particle size of 20 to 200 μm. A method for producing spherical activated carbon to obtain spherical activated carbon,
前記油の分解温度は前記球状フェノール樹脂の完全硬化時の温度よりも高く、前記賦活時の温度以下であることを特徴とする球状活性炭の製造方法。The method for producing spherical activated carbon, wherein the decomposition temperature of the oil is higher than the temperature at the time of complete curing of the spherical phenol resin and not more than the temperature at the time of activation.
JP32739299A 1998-12-18 1999-11-17 Method for producing spherical activated carbon Expired - Fee Related JP4046914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32739299A JP4046914B2 (en) 1998-12-18 1999-11-17 Method for producing spherical activated carbon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36091298 1998-12-18
JP10-360912 1998-12-18
JP32739299A JP4046914B2 (en) 1998-12-18 1999-11-17 Method for producing spherical activated carbon

Publications (2)

Publication Number Publication Date
JP2000233916A JP2000233916A (en) 2000-08-29
JP4046914B2 true JP4046914B2 (en) 2008-02-13

Family

ID=26572493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32739299A Expired - Fee Related JP4046914B2 (en) 1998-12-18 1999-11-17 Method for producing spherical activated carbon

Country Status (1)

Country Link
JP (1) JP4046914B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083557A1 (en) * 2001-04-17 2002-10-24 Lg Chem, Ltd. Spherical carbons and method for preparing the same
US7651974B2 (en) 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
CN1615908B (en) 2003-10-22 2011-09-28 株式会社吴羽 Absorbent for oral administration, and agent for treating or preventing renal or liver disease
TWI370013B (en) 2004-04-02 2012-08-11 Kureha Corp Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
TWI370012B (en) 2004-04-02 2012-08-11 Kureha Corp Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
JP5776053B1 (en) * 2015-01-22 2015-09-09 株式会社エム・イ−・ティ− Scrub agents and methods of use
WO2022003928A1 (en) * 2020-07-03 2022-01-06 株式会社大木工藝 Multipurpose antibacterial sheet
CN111777066B (en) * 2020-08-04 2024-03-29 上海欧亚合成材料股份有限公司 Preparation process of phenolic resin-based spherical activated carbon

Also Published As

Publication number Publication date
JP2000233916A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP2960143B2 (en) Activated carbon production method
JP5773647B2 (en) Chemical activated carbon and method for its preparation
EP0794240B1 (en) Mercury adsorbent
EP0643014B1 (en) Deodorant comprising metal oxide-carrying activated carbon
US5733515A (en) Purification of air in enclosed spaces
US5304527A (en) Preparation for high activity, high density carbon
JP3071429B2 (en) Agglomerates based on activated carbon, methods for their preparation and their use as adsorbents
US4742040A (en) Process for manufacturing a carbon molecular sieve
JP2001152025A (en) Coated active carbon
JPH0999233A (en) Sorption agent composition
JP4046914B2 (en) Method for producing spherical activated carbon
EP0755994A2 (en) Method of eliminating mercury from liquid hydrocarbons
JP2001294414A (en) Manufacturing method of activated coke having high strength and high adsorpability
US20020028333A1 (en) Spherical high-performance adsorbents with microstructure
US3955944A (en) Controlled selectivity activated carbon
CN104355309A (en) Activated carbon and canister and intake air filter utilizing the same
JP3224117B2 (en) Activated carbon
JP2003190783A (en) Adsorbent for solvent vapor and method for preparing the same
JPH10501174A (en) Air purification in enclosed space
AU738621B2 (en) Shaped lignocellulosic-based activated carbon
JP2022155011A (en) Granulated charcoal and production method therefor, filter for air cleaner and air cleaner
JP7453463B1 (en) Carbonaceous material and its manufacturing method, and adsorption filter
JPH11128737A (en) Bromine-bearing activated carbon and production of bromine-bearing activated carbon
JP4199028B2 (en) Method for producing powdered carbide
CN114455585B (en) Method for adsorbing carbon dioxide in air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees