JP6726520B2 - Activated carbon molding and water purification cartridge - Google Patents
Activated carbon molding and water purification cartridge Download PDFInfo
- Publication number
- JP6726520B2 JP6726520B2 JP2016092260A JP2016092260A JP6726520B2 JP 6726520 B2 JP6726520 B2 JP 6726520B2 JP 2016092260 A JP2016092260 A JP 2016092260A JP 2016092260 A JP2016092260 A JP 2016092260A JP 6726520 B2 JP6726520 B2 JP 6726520B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- molded body
- diatomaceous earth
- carbon molded
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、活性炭成形体及び浄水カートリッジに関する。 The present invention relates to an activated carbon molded body and a water purification cartridge.
従来、浄水器で浄化された水道水が飲食用の水として利用されている。一般的な浄水器では、浄水カートリッジの内部にろ材として活性炭成形体が組み込まれている。浄水カートリッジに組み込まれた活性炭成形体は、水道水中の遊離残留塩素等の臭気物質やトリハロメタン等の有機化合物を吸着して除去する。 Conventionally, tap water purified by a water purifier has been used as drinking water. In a general water purifier, an activated carbon molded body is incorporated as a filter medium inside a water purification cartridge. The activated carbon molded body incorporated in the water purification cartridge adsorbs and removes odorous substances such as free residual chlorine in tap water and organic compounds such as trihalomethane.
ところで、浄水器のろ過性能を向上させるためには、内部に組み込まれる活性炭成形体のろ過性能を向上させる必要がある。活性炭成形体のろ過性能を向上させるためには、単位体積当たりの表面積を増大させて吸着速度を高めることが効果的であり、粒子径の小さい微粉炭を配合する等の手法が考えられる。ここで、微粉炭を単に配合した場合には、活性炭粒子間の隙間が狭小化し、浄水器内を水が流通し難くなる結果、却ってろ過性能が低下する。そこで、例えば、粒子径が10μm以下の粒子の含有率を2体積%以下とした粒子状活性炭を含有する活性炭成形体が提案されている(例えば、特許文献1参照)。 By the way, in order to improve the filtration performance of the water purifier, it is necessary to improve the filtration performance of the activated carbon molded body incorporated inside. In order to improve the filtration performance of the activated carbon molded body, it is effective to increase the surface area per unit volume to increase the adsorption rate, and a method such as blending pulverized coal having a small particle size can be considered. Here, when pulverized coal is simply blended, the gap between the activated carbon particles is narrowed, and it becomes difficult for water to flow in the water purifier, resulting in a decrease in filtration performance. Therefore, for example, an activated carbon molded body containing a particulate activated carbon in which the content of particles having a particle diameter of 10 μm or less is 2% by volume or less has been proposed (see, for example, Patent Document 1).
しかしながら、特許文献1の活性炭成形体では十分なろ過性能を有しているとは言えず、ろ過性能のさらなる向上が求められていた。 However, it cannot be said that the activated carbon molded body of Patent Document 1 has sufficient filtration performance, and further improvement in filtration performance has been demanded.
本発明は上記に鑑みてなされたものであり、その目的は、従来よりも高いろ過性能を有する活性炭成形体を提供することにある。 The present invention has been made in view of the above, and an object thereof is to provide an activated carbon molded body having a higher filtration performance than conventional ones.
上記目的を達成するため本発明は、粒子状活性炭(例えば、後述の粒子状活性炭10)と、隣接する細孔同士が連通した連続細孔を有する多孔質材(例えば、後述の珪藻土13)と、を含む活性炭成形体(例えば、後述の活性炭成形体1)であって、前記粒子状活性炭の粒子径の小さい側から粒子径10μmまでの微粉炭(例えば、後述の微粉炭12)の積算体積率が2〜20%であり、前記粒子状活性炭に対する前記多孔質材の含有率が1〜40質量%である活性炭成形体を提供する。 In order to achieve the above object, the present invention provides a particulate activated carbon (for example, the particulate activated carbon 10 described later) and a porous material (for example, diatomaceous earth 13 described later) having continuous pores in which adjacent pores communicate with each other. Which is an activated carbon molded body (for example, activated carbon molded body 1 to be described later), which has an integrated volume of pulverized coal (for example, pulverized coal 12 to be described later) having a particle diameter of 10 μm from a side having a smaller particle diameter of the particulate activated carbon. There is provided an activated carbon molded product having a ratio of 2 to 20% and a content of the porous material with respect to the particulate activated carbon of 1 to 40% by mass.
前記多孔質材は、珪藻土であることが好ましい。 The porous material is preferably diatomaceous earth.
前記珪藻土は、前記粒子状活性炭の中心粒子径D50よりも大きい中心粒子径D50を有することが好ましい。 The diatomaceous earth preferably has a large median particle diameter D 50 of the center particle diameter D 50 of the granular activated carbon.
また本発明は、前記活性炭成形体を含む浄水カートリッジを提供する。 The present invention also provides a water purification cartridge including the activated carbon molded body.
本発明によれば、従来よりも高いろ過性能を有する活性炭成形体及び浄水カートリッジを提供できる。 According to the present invention, it is possible to provide an activated carbon molded body and a water purification cartridge having higher filtration performance than ever before.
以下、本発明の一実施形態について図面を参照して説明する。なお、本発明は以下の実施形態に限定されない。 An embodiment of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments below.
本実施形態に係る活性炭成形体は、例えば、水道水等の被処理水を浄化する浄水器の浄水カートリッジに用いられる。本実施形態に係る活性炭成形体は、被処理水中に含有される除去対象物を吸着して除去する。除去対象物としては、例えば水道水中に含有される遊離残留塩素等の臭気物質やトリハロメタン等の有機化合物等が挙げられる。 The activated carbon molded body according to the present embodiment is used, for example, in a water purification cartridge of a water purifier for purifying water to be treated such as tap water. The activated carbon molded body according to the present embodiment adsorbs and removes the removal target contained in the water to be treated. Examples of the object to be removed include odor substances such as free residual chlorine contained in tap water and organic compounds such as trihalomethane.
図1は、本実施形態に係る活性炭成形体1の構造を模式的に示す図である。
図1に示すように、本実施形態に係る活性炭成形体1は、粒子状活性炭10と、珪藻土13と、を含んで構成される。本実施形態に係る活性炭成形体1は、例えば後述するように、少なくともこれら粒子状活性炭10と、珪藻土13と、を含むスラリーを用いた吸引ろ過成形により、例えば円筒状に成形される。
FIG. 1 is a diagram schematically showing the structure of an activated carbon molded body 1 according to this embodiment.
As shown in FIG. 1, the activated carbon molded body 1 according to the present embodiment is configured to include particulate activated carbon 10 and diatomaceous earth 13. The activated carbon molded body 1 according to the present embodiment is molded into a cylindrical shape, for example, by suction filtration molding using a slurry containing at least these particulate activated carbon 10 and diatomaceous earth 13, as described later.
粒子状活性炭10としては、任意の出発原料から得られる活性炭を使用できる。具体的には、ヤシ殻、石炭、フェノール樹脂等を高温で炭化させた後、賦活させて活性炭としたものを用いることができる。賦活とは、炭素質原料の微細孔を発達させて多孔質に変える反応であり、二酸化炭素、水蒸気等のガスや薬品等を用いて行われる。このような粒子状活性炭の殆どは炭素からなり、一部は炭素と酸素や水素との化合物となっている。 As the particulate activated carbon 10, activated carbon obtained from any starting material can be used. Specifically, after coconut shell, coal, phenol resin, etc. are carbonized at a high temperature and then activated, activated carbon can be used. Activation is a reaction for developing fine pores of a carbonaceous raw material to change it into a porous state, and is performed using a gas such as carbon dioxide or water vapor or a chemical. Most of such particulate activated carbon is composed of carbon, and a part thereof is a compound of carbon and oxygen or hydrogen.
本実施形態に係る粒子状活性炭10は、粒子径の小さい側から粒子径10μmまでの積算体積率が、2〜20%である。すなわち、粒子径分布曲線において、小粒子径側から粒子径10μmに達するまでの積算体積率が2〜20%である。
10μm粒子径の積算体積率が2%未満である場合には、微粉炭による遊離残留塩素等のろ過能力を向上できない。また、10μm粒子径の積算体積率が20%を超えた場合には、後述する珪藻土の配合によってもろ過流量の低下を抑制できない。より好ましい10μm粒子径の積算体積率は、10〜20%である。
The particulate activated carbon 10 according to the present embodiment has an integrated volume ratio of 2 to 20% from the smaller particle diameter side to the particle diameter 10 μm. That is, in the particle size distribution curve, the cumulative volume ratio from the small particle size side to the particle size of 10 μm is 2 to 20%.
If the cumulative volume ratio of 10 μm particle diameter is less than 2%, the ability of pulverized coal to filter free residual chlorine and the like cannot be improved. Further, when the cumulative volume ratio of the 10 μm particle diameter exceeds 20%, the reduction of the filtration flow rate cannot be suppressed even by the addition of diatomaceous earth described later. The more preferable integrated volume ratio of 10 μm particle diameter is 10 to 20%.
なお、本実施形態では、粒子状活性炭10を構成する活性炭粒子のうち、粒子径10μm以下の活性炭粒子を微粉炭12と呼び、粒子径10μmを超える活性炭を単に活性炭粒子11と呼ぶ。図1に示すように、粒子状活性炭10中において微粉炭12は分散して配置されており、活性炭粒子11の粒子間に微粉炭12が介在する構造となっている。 In the present embodiment, among the activated carbon particles forming the particulate activated carbon 10, the activated carbon particles having a particle diameter of 10 μm or less are called pulverized coal 12, and the activated carbon particles having a particle diameter of more than 10 μm are simply called activated carbon particles 11. As shown in FIG. 1, the pulverized coal 12 is dispersed in the particulate activated carbon 10, and the pulverized coal 12 is present between the activated carbon particles 11.
上述の粒子径は、レーザー回折法により測定された値であり、上述の粒子径分布曲線は、レーザー回折法による測定で得られた粒子径の分布曲線を意味する。具体的には、例えばマイクロトラック・ベル株式会社製のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3300EXII」を用いて測定可能である。 The above-mentioned particle diameter is a value measured by a laser diffraction method, and the above-mentioned particle diameter distribution curve means a particle diameter distribution curve obtained by measurement by a laser diffraction method. Specifically, it can be measured using, for example, a laser diffraction/scattering particle size distribution measuring device “Microtrac MT3300EXII” manufactured by Microtrac Bell Co., Ltd.
本実施形態に係る粒子状活性炭10は、中心粒子径D50が40〜100μmであることが好ましい。粒子状活性炭10の中心粒子径D50が上記範囲内であることにより、粒子状活性炭10の単位質量当たりの除去対象物吸着量が向上する。 The particulate activated carbon 10 according to the present embodiment preferably has a central particle diameter D 50 of 40 to 100 μm. When the central particle diameter D 50 of the particulate activated carbon 10 is within the above range, the removal target adsorption amount per unit mass of the particulate activated carbon 10 is improved.
粒子状活性炭10の中心粒子径D50は、上述のレーザー回折法による測定で得られた粒子径の分布曲線において、体積基準の積算分率における50%径の値を意味する。この中心粒子径D50は、上述の測定装置により測定可能である。 The central particle diameter D 50 of the particulate activated carbon 10 means the value of 50% diameter in the volume-based integrated fraction in the particle diameter distribution curve obtained by the measurement by the laser diffraction method described above. The central particle diameter D 50 can be measured by the above-described measuring device.
ここで、図2は、従来の活性炭成形体1Aの構造を模式的に示す図である。また、図3は、従来の活性炭成形体1Aに微粉炭12を配合した活性炭成形体1Bを模式的に示す図である。なお、図1〜図3中、Wは各活性炭成形体に流入する水を表している。 Here, FIG. 2 is a diagram schematically showing the structure of a conventional activated carbon molded body 1A. Further, FIG. 3 is a diagram schematically showing an activated carbon molded body 1B in which pulverized coal 12 is mixed with a conventional activated carbon molded body 1A. 1 to 3, W represents water flowing into each activated carbon molded body.
図2に示す従来の活性炭成形体1A、すなわち活性炭粒子11のみからなり微粉炭12を含まない活性炭成形体1Aでは、目詰まりすることなく水Wは流通する。そのため、ろ過流量に問題は無いものの、微粉炭12を含まないため遊離残留塩素等のろ過能力は低い。 In the conventional activated carbon molded body 1A shown in FIG. 2, that is, the activated carbon molded body 1A which is composed of only the activated carbon particles 11 and does not contain the pulverized coal 12, the water W flows without being clogged. Therefore, although there is no problem with the filtration flow rate, the ability to filter free residual chlorine and the like is low because it does not contain pulverized coal 12.
一方、図3に示す従来の活性炭成形体1B、すなわち活性炭粒子11と微粉炭12とを含む活性炭成形体1Bでは、微粉炭12の配合により活性炭粒子11の粒子間の隙間が狭小化している。その結果、目詰まりにより水Wは活性炭成形体1Bを通過できず、微粉炭12が本来具備する遊離残留塩素ろ過能力の向上効果が得られない。 On the other hand, in the conventional activated carbon molded body 1B shown in FIG. 3, that is, the activated carbon molded body 1B containing the activated carbon particles 11 and the pulverized coal 12, the particles between the activated carbon particles 11 are narrowed due to the blending of the pulverized coal 12. As a result, the water W cannot pass through the activated carbon molded body 1B due to clogging, and the effect of improving the free residual chlorine filtration capability that the pulverized coal 12 originally has cannot be obtained.
これに対して本実施形態に係る活性炭成形体1では、図1に示すように、微粉炭12に加えて珪藻土13が配合されている。珪藻土13は、上述の活性炭粒子11の細孔よりも孔径の大きな細孔14を有する多孔質材である。また、珪藻土13に形成されている細孔14は連続孔である。すなわち、珪藻土13は、隣接する細孔同士が連通した連続細孔を有する。そのため、図1に示すように、珪藻土13の配合によって、微粉炭12の配合による活性炭粒子11間の隙間の狭小化が抑制されている。また、目詰まりが抑制されて水Wの流通が妨げられることがなく、ろ過流量の低下が抑制される結果、ろ過性能が向上している。 On the other hand, in the activated carbon molded body 1 according to the present embodiment, as shown in FIG. 1, diatomaceous earth 13 is blended in addition to the pulverized coal 12. The diatomaceous earth 13 is a porous material having pores 14 having a larger pore diameter than the pores of the activated carbon particles 11 described above. The pores 14 formed in the diatomaceous earth 13 are continuous pores. That is, the diatomaceous earth 13 has continuous pores in which adjacent pores communicate with each other. Therefore, as shown in FIG. 1, the narrowing of the gap between the activated carbon particles 11 due to the blending of the pulverized coal 12 is suppressed by the blending of the diatomaceous earth 13. Further, the clogging is suppressed and the flow of the water W is not hindered, and the reduction of the filtration flow rate is suppressed, and as a result, the filtration performance is improved.
上述の粒子状活性炭に対する珪藻土13の含有率は、1〜40質量%である。珪藻土13の含有率が1質量%未満である場合には、微粉炭12を配合したことによるろ過流量の低下を抑制できない。一方、珪藻土13の含有率が40質量%を超えると、活性炭成形体1における微粉炭12の含有率が低下するため、遊離残留塩素ろ過能力等のろ過性能を向上できない。 The content rate of the diatomaceous earth 13 with respect to the above-mentioned particulate activated carbon is 1 to 40 mass %. When the content of the diatomaceous earth 13 is less than 1% by mass, it is not possible to suppress the decrease in the filtration flow rate due to the addition of the pulverized coal 12. On the other hand, when the content rate of the diatomaceous earth 13 exceeds 40 mass %, the content rate of the pulverized coal 12 in the activated carbon molded body 1 decreases, so that the filtration performance such as the free residual chlorine filtration capacity cannot be improved.
また、珪藻土13は、粒子状活性炭10の中心粒子径D50よりも大きい中心粒子径D50を有することが好ましい。これにより、微粉炭12を配合することによる活性炭粒子間の隙間の狭小化をより抑制でき、ろ過流量の低下をより抑制できる。加えて、上述したように珪藻土13は活性炭粒子の細孔よりも大きな連続した細孔14を有するため、珪藻土13内の細孔14を水が通過でき、ろ過流量を向上できるようになっている。 The diatomaceous earth 13 preferably has a central particle diameter D 50 larger than the central particle diameter D 50 of the particulate activated carbon 10. As a result, it is possible to further suppress the narrowing of the gap between the activated carbon particles due to the addition of the pulverized coal 12, and it is possible to further suppress the decrease in the filtration flow rate. In addition, since the diatomaceous earth 13 has the continuous pores 14 larger than the pores of the activated carbon particles as described above, water can pass through the pores 14 in the diatomaceous earth 13 and the filtration flow rate can be improved. ..
具体的には、珪藻土13の中心粒子径D50は、92〜203μmであることが好ましい。これにより、上述の効果が確実に得られる。より好ましい珪藻土13の中心粒子径D50は、117〜151μmである。
なお、珪藻土13の中心粒子径D50は、上述の粒子状活性炭10の中心粒子径D50と同義であり、同様の測定装置を用いて測定可能である。
Specifically, the central particle diameter D 50 of the diatomaceous earth 13 is preferably 92 to 203 μm. As a result, the above-mentioned effect is surely obtained. The more preferable central particle diameter D 50 of the diatomaceous earth 13 is 117 to 151 μm.
The center particle diameter D 50 of the diatomaceous earth 13 is synonymous with median particle diameter D 50 of the granular activated carbon 10 above, can be measured using the same measuring device.
また、本実施形態に係る活性炭成形体1は、繊維を含むことが好ましい。繊維としては、フィブリル繊維が好ましく用いられる。フィブリル繊維としては、粒子状活性炭10を絡めて保形できればよく、任意の繊維を用いることができる。具体的には、アクリル繊維、ポリエチレン繊維、セルロース繊維が挙げられる。 Further, the activated carbon molded body 1 according to the present embodiment preferably contains fibers. A fibril fiber is preferably used as the fiber. Any fiber can be used as the fibril fiber as long as the particulate activated carbon 10 can be entangled to maintain the shape. Specific examples include acrylic fibers, polyethylene fibers, and cellulose fibers.
また、本実施形態に係る活性炭成形体1は、本実施形態の効果を阻害しない範囲内において、他の粒子等を含んでいてもよい。例えば、活性炭成形体1は、粒子状活性炭10では除去しきれないイオン成分を除去する目的で、イオン交換性能を有する粒子をさらに含んでいてもよい。具体的には、ゼオライト、珪酸チタニウム、イオン交換樹脂等の粒子を含んでいてもよい。これにより、水中から溶解性鉛、ヒ素、硬度成分等を除去することが可能になる。 Further, the activated carbon molded body 1 according to this embodiment may include other particles and the like within a range that does not impair the effects of this embodiment. For example, the activated carbon molded body 1 may further include particles having ion exchange performance for the purpose of removing ionic components that cannot be completely removed by the particulate activated carbon 10. Specifically, it may contain particles of zeolite, titanium silicate, ion exchange resin, or the like. This makes it possible to remove soluble lead, arsenic, hardness components, etc. from water.
本実施形態に係る活性炭成形体1は、例えば従来公知の吸引ろ過成形により製造される。具体的には、先ず、活性炭成形体1の原料となる粒子状活性炭10(活性炭粒子11及び微粉炭12)、珪藻土13及び水の他、必要に応じて繊維等を含むスラリーを調製する。次いで、調製したスラリーを用いて従来公知の吸引ろ過成形により、本実施形態に係る活性炭成形体1が得られる。 The activated carbon molded body 1 according to the present embodiment is manufactured by, for example, conventionally known suction filtration molding. Specifically, first, a slurry containing particulate activated carbon 10 (activated carbon particles 11 and pulverized coal 12), which is a raw material of the activated carbon molded body 1, diatomaceous earth 13 and water, and optionally fibers and the like is prepared. Next, the activated carbon molded body 1 according to the present embodiment is obtained by conventionally known suction filtration molding using the prepared slurry.
本実施形態に係る浄水カートリッジは、水道水等の被処理水を浄化するための浄水器に用いられ、上述の活性炭成形体1をろ材として含むものであればよく、特に限定されない。上述の活性炭成形体1の支持部材としてのセラミックスフィルタ等や中空糸膜等のろ過フィルタの他、活性炭成形体1の表面を保護するための不織布等を含んでいてもよい。 The water purification cartridge according to this embodiment is used in a water purifier for purifying water to be treated such as tap water, and is not particularly limited as long as it includes the above-mentioned activated carbon molded body 1 as a filter medium. In addition to the above-mentioned ceramic filter as a supporting member of the activated carbon molded body 1 or a filtration filter such as a hollow fiber membrane, a nonwoven fabric for protecting the surface of the activated carbon molded body 1 may be included.
本実施形態によれば、以下の効果が奏される。
本実施形態では、粒子状活性炭10と、珪藻土13と、を含む活性炭成形体1において、粒子状活性炭10の粒子径の小さい側から粒子径10μmまでの微粉炭12の積算体積率を2〜20%とした。また、粒子状活性炭10に対する珪藻土13の含有率を1〜40質量%とした。
これにより、微粉炭12を配合することで遊離残留塩素ろ過能力等のろ過性能を向上できる。同時に、珪藻土13を配合することで、微粉炭12の配合による活性炭粒子11間の隙間の狭小化を抑制でき、ろ過流量の低下を抑制できる。従って本実施形態によれば、従来よりも高いろ過性能を有する活性炭成形体1が得られる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, in the activated carbon molded body 1 containing the particulate activated carbon 10 and the diatomaceous earth 13, the cumulative volume ratio of the pulverized coal 12 from the side having a smaller particle diameter of the particulate activated carbon 10 to the particle diameter 10 μm is 2 to 20. %. Moreover, the content rate of the diatomaceous earth 13 with respect to the particulate activated carbon 10 was set to 1 to 40 mass %.
Thereby, the pulverized coal 12 can be blended to improve the filtration performance such as free residual chlorine filtration capacity. At the same time, by mixing the diatomaceous earth 13, it is possible to suppress the narrowing of the gaps between the activated carbon particles 11 due to the mixing of the pulverized coal 12, and it is possible to suppress the reduction in the filtration flow rate. Therefore, according to this embodiment, it is possible to obtain the activated carbon molded body 1 having higher filtration performance than the conventional one.
また本実施形態では、珪藻土13として、粒子状活性炭10の中心粒子径D50よりも大きい中心粒子径D50を有するものを配合した。これにより、上述の効果がより高められる。 Further, in the present embodiment, as the diatomaceous earth 13, one having a central particle diameter D 50 larger than the central particle diameter D 50 of the particulate activated carbon 10 was blended. Thereby, the above-mentioned effect is further enhanced.
また本実施形態では、浄水カートリッジを、上述の活性炭成形体1を含んで構成した。これにより、従来よりも高いろ過性能を有する浄水カートリッジが得られる。 Further, in the present embodiment, the water purification cartridge is configured to include the above-mentioned activated carbon molded body 1. As a result, a water purification cartridge having a higher filtration performance than before can be obtained.
なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。
例えば上記実施形態では、珪藻土13を含んで活性炭成形体1を構成したが、これに限定されない。珪藻土13の代わりに、該珪藻土13のような隣接する細孔同士が連通した連続細孔を有する多孔質材を含んで活性炭成形体1を構成すればよい。
The present invention is not limited to the above-described embodiment, and modifications and improvements within a range in which the object of the present invention can be achieved are included in the present invention.
For example, in the above-described embodiment, the activated carbon molded body 1 is configured to include the diatomaceous earth 13, but the present invention is not limited to this. Instead of the diatomaceous earth 13, the activated carbon molded body 1 may be configured to include a porous material such as the diatomaceous earth 13 having continuous pores in which adjacent pores communicate with each other.
以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[実施例1〜22及び比較例1〜5]
上述の実施形態で説明した製造方法に従って、表1に示す配合の実施例1〜22及び比較例1〜5の活性炭成形体を作製した。粒子状活性炭の中心粒子径は、粒子径の異なる活性炭をブレンドして調整した。なお、粒子状活性炭の10μm積算体積%及び中心粒子径と、珪藻土の中心粒子径は、マイクロトラック・ベル株式会社製のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3300EXII」を用いて測定した。
[Examples 1 to 22 and Comparative Examples 1 to 5]
According to the manufacturing method described in the above embodiment, the activated carbon molded bodies of Examples 1 to 22 and Comparative Examples 1 to 5 having the formulations shown in Table 1 were prepared. The central particle size of the particulate activated carbon was adjusted by blending activated carbons having different particle sizes. In addition, the 10 μm cumulative volume% and the central particle diameter of the particulate activated carbon and the central particle diameter of the diatomaceous earth are measured using a laser diffraction/scattering particle diameter distribution measuring device “Microtrac MT3300EXII” manufactured by Microtrac Bell Co., Ltd. did.
[評価]
実施例1〜22及び比較例1〜5で作製した各活性炭成形体について、SEMを用いた表面拡大観察を実施した。代表として、実施例6及び比較例1のSEM画像を図4及び図5に示す。
[Evaluation]
For each activated carbon molded body produced in Examples 1 to 22 and Comparative Examples 1 to 5, surface enlargement observation using SEM was performed. As a representative, SEM images of Example 6 and Comparative Example 1 are shown in FIGS. 4 and 5.
実施例1〜22及び比較例1〜5で作製した各活性炭成形体について、遊離残留塩素ろ過能力の評価を実施した。遊離残留塩素ろ過能力については、JIS S3201に準拠した方法に従って評価した。結果を表1に示す。 The activated carbon moldings produced in Examples 1 to 22 and Comparative Examples 1 to 5 were evaluated for their ability to filter free residual chlorine. The free residual chlorine filtration capacity was evaluated according to the method based on JIS S3201. The results are shown in Table 1.
実施例1〜22及び比較例1〜5で作製した各活性炭成形体について、ろ過流量の評価を実施した。ろ過流量については、外径25mm、内径8mm、長さ90mmの円筒状の専用ケースに各活性炭成形体を入れた後、水圧0.05MPaの水を流通させて評価を実施した。結果を表1に示す。 For each activated carbon molded body produced in Examples 1 to 22 and Comparative Examples 1 to 5, the filtration flow rate was evaluated. Regarding the filtration flow rate, each activated carbon molded body was put in a cylindrical special case having an outer diameter of 25 mm, an inner diameter of 8 mm, and a length of 90 mm, and then water having a water pressure of 0.05 MPa was circulated for evaluation. The results are shown in Table 1.
図4に示すように、実施例6の活性炭成形体では、配合した微粉炭及び珪藻土が活性炭成形体中に存在していることが確認された。これは、微粉炭及び珪藻土いずれも配合していない図5に示す比較例1の活性炭成形体と比べれば明らかである。なお、他の実施例においても同様の結果であった。 As shown in FIG. 4, in the activated carbon molded body of Example 6, it was confirmed that the blended pulverized coal and diatomaceous earth were present in the activated carbon molded body. This is clear when compared with the activated carbon molded body of Comparative Example 1 shown in FIG. 5, which contains neither pulverized coal nor diatomaceous earth. Similar results were obtained in the other examples.
表1に示す通り、微粉炭の積算体積率が2〜20%であり、且つ、粒子状活性炭に対する珪藻土の含有率が1〜40質量%である本実施例の活性炭成形体によれば、微粉炭及び珪藻土いずれも含有しない比較例1の活性炭成形体よりも遊離残留塩素ろ過能力が高いことが確認された。また同時に、本実施例の活性炭成形体によれば、微粉炭のみを含み珪藻土を含有しない比較例2の活性炭成形体よりもろ過流量が向上していることが確認された。従って、本実施例によれば、従来よりも高いろ過性能が得られることが確認された。 As shown in Table 1, according to the activated carbon molded body of the present example in which the integrated volume ratio of pulverized coal is 2 to 20%, and the content ratio of diatomaceous earth to the particulate activated carbon is 1 to 40% by mass. It was confirmed that the free residual chlorine filtration capacity was higher than that of the activated carbon molding of Comparative Example 1 containing neither charcoal nor diatomaceous earth. At the same time, it was also confirmed that the activated carbon molded body of this example has a higher filtration flow rate than the activated carbon molded body of Comparative Example 2 containing only pulverized coal and not containing diatomaceous earth. Therefore, according to this example, it was confirmed that a higher filtration performance than the conventional one was obtained.
1 活性炭成形体
10 粒子状活性炭
11 活性炭粒子
12 微粉炭
13 珪藻土
1 Activated Carbon Molded Body 10 Particulate Activated Carbon 11 Activated Carbon Particles 12 Fine Coal 13 Diatomaceous Earth
Claims (3)
前記粒子状活性炭の粒子径の小さい側から粒子径10μmまでの微粉炭の積算体積率が2〜20%であり、
前記粒子状活性炭に対する前記多孔質材の含有率が1〜40質量%である活性炭成形体。 A particulate activated carbon, a porous material made of diatomaceous earth having continuous pores in which adjacent pores communicate with each other, an activated carbon molded body,
The cumulative volume ratio of the pulverized coal from the smaller particle size side of the particulate activated carbon to the particle size of 10 μm is 2 to 20%,
An activated carbon molded product, wherein the content of the porous material in the particulate activated carbon is 1 to 40% by mass.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016092260A JP6726520B2 (en) | 2016-05-02 | 2016-05-02 | Activated carbon molding and water purification cartridge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016092260A JP6726520B2 (en) | 2016-05-02 | 2016-05-02 | Activated carbon molding and water purification cartridge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017200670A JP2017200670A (en) | 2017-11-09 |
JP6726520B2 true JP6726520B2 (en) | 2020-07-22 |
Family
ID=60264374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016092260A Active JP6726520B2 (en) | 2016-05-02 | 2016-05-02 | Activated carbon molding and water purification cartridge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6726520B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7039395B2 (en) * | 2018-06-08 | 2022-03-22 | 株式会社Lixil | Fibrous binder for granulation |
WO2020203588A1 (en) * | 2019-03-29 | 2020-10-08 | 株式会社クラレ | Adsorbent, heavy metal removing agent, molded body using same, and water purifier |
JP7489198B2 (en) * | 2020-02-05 | 2024-05-23 | 株式会社Lixil | Molded adsorbent and water purification cartridge |
JP7421941B2 (en) * | 2020-02-05 | 2024-01-25 | 株式会社Lixil | Molded adsorbent and water purification cartridge |
CN113231011A (en) * | 2020-04-15 | 2021-08-10 | 漳州卫生职业学院 | Method for preparing adsorbing material from astragalus waste residue and application of adsorbing material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3777640B2 (en) * | 1995-06-20 | 2006-05-24 | 東洋紡績株式会社 | Adsorption molding |
JP5283351B2 (en) * | 2007-05-24 | 2013-09-04 | 学校法人 龍谷大学 | Water purifier |
CN102838182B (en) * | 2010-05-26 | 2016-04-13 | 上海巴安水务股份有限公司 | A kind of diatomite and gac mixing cover filter method |
JP6101195B2 (en) * | 2013-12-10 | 2017-03-22 | 株式会社タカギ | Molded adsorbent and water purifier using the same |
-
2016
- 2016-05-02 JP JP2016092260A patent/JP6726520B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017200670A (en) | 2017-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6283435B2 (en) | Activated carbon molded body and water purifier using the same | |
JP6726520B2 (en) | Activated carbon molding and water purification cartridge | |
JP6767146B2 (en) | Granulated activated carbon | |
JP6902588B2 (en) | Adsorption filter | |
CN111511466B (en) | Adsorption filter | |
JP2010005485A (en) | Filter cartridge for water purification | |
JP4064309B2 (en) | Water purifier | |
WO2019064936A1 (en) | Granular activated carbon and method for manufacturing same | |
JP6328382B2 (en) | Water purification filter | |
JP3693544B2 (en) | Activated carbon and water purifier provided with the same | |
WO2020195116A1 (en) | Activated carbon and water purification cartridge | |
JP7301591B2 (en) | Manufacturing method for residual chlorine removal filter body | |
JP2009262079A (en) | Water treatment device | |
WO2020027147A1 (en) | Water-purifying cartridge and water purifier | |
US10519046B2 (en) | High flow-through gravity purification system for water | |
JP2005000768A (en) | Water cleaning cartridge | |
JP7039395B2 (en) | Fibrous binder for granulation | |
JP6174556B2 (en) | Modified activated carbon, method for producing the same, and filtration cartridge | |
JP2003190941A (en) | Adsorbent for water cleaner, method for manufacturing the same and water cleaner using the adsorbent | |
JP2010269225A (en) | Anion adsorbent molding and water purifier using the same | |
KR101765236B1 (en) | Ion Purifier | |
JP2018111099A (en) | Water purification filter | |
JP2010125383A (en) | Water purifier and cartridge for water purifier | |
US20210245134A1 (en) | Active carbon molded body | |
JP2008207174A (en) | Filter for water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200629 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6726520 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |