JPH10263394A - Improved adsorbent, its production and adsorption refrigerating machine - Google Patents

Improved adsorbent, its production and adsorption refrigerating machine

Info

Publication number
JPH10263394A
JPH10263394A JP7703297A JP7703297A JPH10263394A JP H10263394 A JPH10263394 A JP H10263394A JP 7703297 A JP7703297 A JP 7703297A JP 7703297 A JP7703297 A JP 7703297A JP H10263394 A JPH10263394 A JP H10263394A
Authority
JP
Japan
Prior art keywords
adsorbent
refrigerant
relative pressure
improved
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7703297A
Other languages
Japanese (ja)
Inventor
Masanobu Katani
昌信 架谷
Hitoki Matsuda
仁樹 松田
Fujio Watanabe
藤雄 渡辺
Yasuo Uchikawa
靖夫 内川
Fumio Kimura
二三夫 木村
Yosuke Takemoto
洋介 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7703297A priority Critical patent/JPH10263394A/en
Publication of JPH10263394A publication Critical patent/JPH10263394A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an improved adsorbent having high adsorbing performance even in a low relative pressure range by sticking an additive adsorbent to the surfaces of the pores in a basic adsorbent. SOLUTION: An additive adsorbent (y) is stuck to the surfaces of the pares in a basic adsorbent (x) to obtain the objective improved adsorbent used as an adsorbent for a refrigerating cycle. The adsorbents (x), (y) are different adsorbents causing reversal in the extent of equilibrium adsorption to a refrigerant in accordance with levels of relative pressure (relative humidity %) which is the ratio of the vapor pressure of the refrigerant to the satd. vapor pressure of the refrigerant around each of the adsorbents. One of the adsorbents having a larger extent of equilibrium adsorption than the other on the high relative pressure side is used as the basic adsorbent (x) and the other having a larger extent of equilibrium adsorption than the adsorbent (x) on the low relative pressure side is used as the additive adsorbent (y). The improved adsorbent attains a large extent of adsorption attained by the adsorbent (x) on the high relative pressure side from the low relative pressure side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種物質の吸着に
用いる改良吸着剤、及び、その製造方法、及び、その改
良吸着剤を用いた吸着冷凍機に関する。
The present invention relates to an improved adsorbent used for adsorbing various substances, a method for producing the same, and an adsorption refrigerator using the improved adsorbent.

【0002】[0002]

【従来の技術】従来、吸着剤としては活性炭、シリカゲ
ル、球状化シリカゲル(Sovabead)、ゼオライ
ト、活性アルミナ、ケイ酸カルシウム(Florit
e)など種々のものが知られている。
2. Description of the Related Art Conventionally, activated carbon, silica gel, spheroidized silica gel (Sovabead), zeolite, activated alumina and calcium silicate (Fluorit) have been used as adsorbents.
Various types such as e) are known.

【0003】また、吸着冷凍機については、従来、冷媒
に水が用いられ、冷凍サイクル用吸着剤にはシリカゲル
又はゼオライトが用いられてる。
[0003] As for the adsorption refrigerator, conventionally, water is used as a refrigerant, and silica gel or zeolite is used as an adsorbent for a refrigeration cycle.

【0004】[0004]

【発明が解決しようとする課題】図4の例からも判るよ
うに、シリカゲルやゼオライト(分子ふるい:モレキュ
ラーシーブ5A)などの吸着剤は、相対圧(吸着剤周り
での吸着対象質の飽和蒸気圧p0 に対する吸着対象質の
蒸気圧pの比の値p/p0 )が0.4以下や0.2以下
といった低相対圧域でも、ある程度の吸着性(平衡吸着
量)を示す。しかし、例えば活性炭が高相対圧域で示す
ような高い吸着性(大きな平衡吸着量)を低相対圧域に
おいて示す吸着剤は無く、この点、吸着を利用する各種
分野において、それらの吸着目的の一層の効率化のた
め、低相対圧域での吸着性に一層優れた吸着剤の開発が
望まれている。
As can be seen from the example of FIG. 4, the adsorbent such as silica gel or zeolite (molecular sieve: molecular sieve 5A) has a relative pressure (saturated vapor of the substance to be adsorbed around the adsorbent). Even in a low relative pressure range in which the ratio of the vapor pressure p of the substance to be adsorbed to the pressure p 0 (p / p 0 ) is 0.4 or less or 0.2 or less, it exhibits a certain degree of adsorption (equilibrium adsorption amount). However, for example, there is no adsorbent that exhibits high adsorptivity (large equilibrium adsorption amount) in a low relative pressure range as activated carbon exhibits in a high relative pressure range. In this regard, in various fields using adsorption, In order to further improve the efficiency, it is desired to develop an adsorbent having more excellent adsorptivity in a low relative pressure range.

【0005】殊に、吸着冷凍機では、要求される発生冷
熱の温度、及び、吸着の際の吸着剤冷却に用いる冷却用
媒体の温度などの運転条件から、一般に吸着・蒸発工程
での相対圧が0.1〜0.4程度に規定されることが多
く、この為、この相対圧範囲でもある程度の吸着性(平
衡吸着量)を示すシリカゲルやゼオライトなどを冷凍サ
イクル用吸着剤に用いざるを得ない。しかし、この制約
から、冷凍能力が制限される、また、所要の冷凍能力を
得るのに冷凍サイクル用吸着剤の必要量が大量となって
装置が大型化するなどの問題があった。
[0005] In particular, in an adsorption refrigerator, the relative pressure in the adsorption / evaporation step is generally determined from the operating conditions such as the required temperature of the generated cold heat and the temperature of the cooling medium used for cooling the adsorbent during adsorption. In many cases, silica gel, zeolite, or the like, which exhibits a certain degree of adsorptivity (equilibrium adsorption amount) even in this relative pressure range, must be used as the adsorbent for the refrigeration cycle. I can't get it. However, due to this restriction, there are problems that the refrigerating capacity is limited, and that the required amount of the adsorbent for the refrigerating cycle becomes large in order to obtain the required refrigerating capacity, resulting in an increase in the size of the apparatus.

【0006】なお、図4の例は水蒸気の等温吸着(29
8°K)における各吸着剤の相対圧p/p0 (換言すれ
ば、関係湿度%)と平衡吸着量q(kgH2 O/kg吸
着剤)との関係を示す。
FIG. 4 shows an example of isothermal adsorption of water vapor (29
The relationship between the relative pressure p / p 0 (in other words, the relative humidity%) of each adsorbent at 8 ° K) and the equilibrium adsorption amount q (kgH 2 O / kg adsorbent) is shown.

【0007】以上の実情に対し、本発明の第1の課題
は、低相対圧域でも高い吸着性を発揮する改良吸着剤を
提供する点にある。また、本発明の第2の課題は、この
改良吸着剤の製造に好適な製造方法を提供する点にあ
る。また、本発明の第3の課題は、この改良吸着剤を用
いて、冷凍能力の向上、及び、装置の小型化を効果的に
実現できる吸着冷凍機を提供する点にある。
[0007] In view of the above circumstances, a first object of the present invention is to provide an improved adsorbent which exhibits high adsorptivity even in a low relative pressure range. A second object of the present invention is to provide a production method suitable for producing the improved adsorbent. A third object of the present invention is to provide an adsorption refrigerator capable of effectively improving the refrigerating capacity and effectively reducing the size of the apparatus using the improved adsorbent.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

〔1〕請求項1記載の発明では、相対圧(吸着剤周りで
の吸着対象質の飽和蒸気圧に対する吸着対象質の蒸気圧
の比の値)の高低によって、吸着対象質に対する平衡吸
着量に逆転が生じる異種の吸着剤を用いる。そして、こ
れら吸着剤のうち、高相対圧の側で他方の吸着剤よりも
大きい平衡吸着量を示す吸着剤を主体吸着剤とし、か
つ、低相対圧の側で主体吸着剤よりも大きい平衡吸着量
を示す吸着剤を添着吸着剤として、主体吸着剤の細孔内
表面に添着吸着剤を添着する。
[1] In the first aspect of the present invention, the equilibrium adsorption amount to the adsorption target substance is determined by the relative pressure (the value of the ratio of the vapor pressure of the adsorption target substance to the saturated vapor pressure of the adsorption target substance around the adsorbent). A different type of adsorbent that causes inversion is used. Of these adsorbents, the adsorbent exhibiting a larger equilibrium adsorption amount on the high relative pressure side than the other adsorbent is used as the main adsorbent, and the equilibrium adsorption on the low relative pressure side is larger than the main adsorbent. With the adsorbent indicating the amount as the impregnated adsorbent, the impregnated adsorbent is impregnated on the inner surface of the pores of the main adsorbent.

【0009】つまり、吸着特性の異なる吸着剤について
見た場合、図4からも判るように、相対圧の高低によっ
て吸着対象質に対する平衡吸着量(吸着性)に逆転が生
じるもの、すなわち、ある相対圧を境として、高相対圧
の側では、第1吸着剤の方が第2吸着剤よりも大きい平
衡吸着量を示すが、逆に低相対圧の側では第2吸着剤の
方が第1吸着剤よりも大きい平衡吸着量を示すものが種
々ある。
In other words, in the case of adsorbents having different adsorption characteristics, as can be seen from FIG. 4, the equilibrium adsorption amount (adsorptivity) for the substance to be adsorbed is reversed depending on the relative pressure, that is, a certain relative pressure. At the high relative pressure side, the first adsorbent shows a larger equilibrium adsorption amount than the second adsorbent, while the second adsorbent has the first adsorbent at the low relative pressure side. There are various types that show a larger equilibrium adsorption amount than the adsorbent.

【0010】この逆転は、これら吸着剤の細孔径の違い
などが原因で、第2吸着剤の方が第1吸着剤よりも吸着
対象質に対する親和性が高いため、低相対圧の側では第
2吸着剤の方が第1吸着剤よりも大きい平衡吸着量を示
すが、高相対圧の側では、第2吸着剤よりも第1吸着剤
の方が細孔数が多い(換言すれば、比表面積が大きい)
などの第1吸着剤の特質が発揮され、これが原因で、第
1吸着剤の方が第2吸着剤よりも大きい平衡吸着量を示
すに至るものと考えられる。
This reversal is caused by a difference in the pore size of the adsorbents, and the second adsorbent has a higher affinity for the substance to be adsorbed than the first adsorbent. The two adsorbents show a larger equilibrium adsorption amount than the first adsorbent, but on the high relative pressure side, the first adsorbent has a larger number of pores than the second adsorbent (in other words, Large specific surface area)
It is considered that the characteristics of the first adsorbent, such as the first adsorbent, are exhibited, and this causes the first adsorbent to exhibit a larger equilibrium adsorption amount than the second adsorbent.

【0011】この点に着目して、請求項1記載の発明で
は、上記例の第1,第2吸着剤の場合、第1吸着剤を主
体吸着剤とし、かつ、第2吸着剤を添着吸着剤として、
第1吸着剤の細孔内表面に第2吸着剤を添着することに
より、第2吸着剤(添着吸着剤)が有する吸着対象質へ
の高い親和性をもって、第1吸着剤(主体吸着剤)の吸
着特性を低相対圧の側へシフトさせる(例えば、図4に
破線で示す如く活性炭の吸着特性を低相対圧の側へシフ
トさせる)。そして、この特性シフトにより、第1吸着
剤(主体吸着剤)が高相対圧の側で示す高い吸着性(大
きい平衡吸着量)を低相対圧の側から発揮できる改良吸
着剤にする。
Focusing on this point, according to the first aspect of the invention, in the case of the first and second adsorbents of the above example, the first adsorbent is the main adsorbent and the second adsorbent is the adsorbent. As an agent,
By adhering the second adsorbent to the inner surface of the pores of the first adsorbent, the first adsorbent (main adsorbent) has a high affinity for the substance to be adsorbed of the second adsorbent (impregnated adsorbent). Is shifted to the lower relative pressure side (for example, the adsorption characteristic of activated carbon is shifted to the lower relative pressure side as shown by the broken line in FIG. 4). By this characteristic shift, the first adsorbent (main adsorbent) is an improved adsorbent that can exhibit the high adsorptivity (large equilibrium adsorption amount) exhibited on the high relative pressure side from the low relative pressure side.

【0012】すなわち、請求項1記載の発明によれば、
主体吸着剤として選択した吸着剤が高相対圧の側で示す
高い吸着性(大きい平衡吸着量)を低相対圧の側から発
揮して、低相対圧域で高い吸着性を示す優れた改良吸着
剤を提供でき、この改良吸着剤を用いることで、吸着を
利用する各種分野において、低相対圧域での吸着性を高
め、吸着目的の一層の効率化が可能となる。
That is, according to the first aspect of the present invention,
Excellent adsorbent that the adsorbent selected as the main adsorbent exhibits the high adsorptivity (large equilibrium adsorption amount) shown on the high relative pressure side from the low relative pressure side and shows high adsorptivity in the low relative pressure range By using this improved adsorbent, in various fields utilizing adsorption, the adsorptivity in a low relative pressure range can be increased, and the efficiency of adsorption can be further improved.

【0013】また、吸着冷凍機の冷凍サイクル用吸着剤
に、この改良吸着剤を用いれば、吸着・蒸発工程におい
て、前述の如く相対圧が低く規定される条件下でも、高
い吸着性をもって効率良く冷媒蒸気を冷凍サイクル用吸
着剤に吸着させることができ、このことから、従来の吸
着冷凍機に比べ、冷凍能力を高めることができ、また、
吸着剤の必要量を少なくして装置を小型化することがで
きる。
Further, if this improved adsorbent is used as the adsorbent for the refrigerating cycle of an adsorption refrigerator, in the adsorption / evaporation step, even under the condition where the relative pressure is low as described above, high adsorbability and high efficiency can be obtained. Refrigerant vapor can be adsorbed by the adsorbent for the refrigeration cycle, which can increase the refrigerating capacity as compared with conventional adsorption refrigerators.
The required amount of adsorbent can be reduced and the device can be miniaturized.

【0014】〔2〕請求項2記載の発明では、請求項1
記載の発明の実施において、前記主体吸着剤に活性炭を
用いる。
[2] According to the second aspect of the present invention, the first aspect
In the practice of the described invention, activated carbon is used as the main adsorbent.

【0015】つまり、図4からも判るように、活性炭は
低相対圧域では極めて小さい平衡吸着量しか示さない
が、相対圧を高くすると平衡吸着量が大きく増大して他
の吸着剤よりも大きい平衡吸着量を示す。
That is, as can be seen from FIG. 4, activated carbon shows only a very small amount of equilibrium adsorption in a low relative pressure range, but when the relative pressure is increased, the amount of equilibrium adsorption increases greatly and is larger than other adsorbents. Shows the equilibrium adsorption amount.

【0016】したがって、活性炭を前記の主体吸着剤と
し、一方、相対圧によって活性炭との間で平衡吸着量の
逆転が生じ、高相対圧の側では活性炭よりも小さい平衡
吸着量を示すが、低相対圧の側では活性炭よりも大きい
平衡吸着量を示す適当な別の吸着剤を前記の添着吸着剤
として、この別吸着剤を活性炭の細孔内表面に添着すれ
ば、活性炭が高相対圧の側で示す他の吸着剤よりも高い
吸着性(大きな平衡吸着量)を低相対圧の側から発揮で
きる優れた改良吸着剤にすることができる。
Therefore, activated carbon is used as the main adsorbent. On the other hand, the relative pressure causes a reversal of the equilibrium adsorption amount between the activated carbon and the activated carbon. On the relative pressure side, if another appropriate adsorbent exhibiting a larger equilibrium adsorption amount than activated carbon is used as the impregnated adsorbent, and this other adsorbent is impregnated on the inner surface of the pores of the activated carbon, the activated carbon has a high relative pressure. The improved adsorbent can exhibit higher adsorptivity (large equilibrium adsorption amount) than the other adsorbents shown on the side from the side of low relative pressure.

【0017】〔3〕請求項3記載の発明では、請求項1
又は2記載の発明の実施において、前記添着吸着剤にシ
リカゲル又はゼオライト又は活性アルミナ又はケイ酸カ
ルシウムを用いる。
[3] According to the third aspect of the invention, in the first aspect,
Alternatively, in the practice of the invention described in Item 2, silica gel, zeolite, activated alumina, or calcium silicate is used as the adsorbent.

【0018】つまり、図4からも判るように、シリカゲ
ル、ゼオライト、活性アルミナ、ケイ酸カルシウムとい
った吸着剤は、相対圧を高くしても、限られた変化率で
一次関数的に平衡吸着量が大きくなるにすぎないが、例
えば0.4以下や0.2以下といった低相対圧域におい
ても、ある程度の平衡吸着量は得ることができる。
That is, as can be seen from FIG. 4, the adsorbents such as silica gel, zeolite, activated alumina and calcium silicate have a linear function with a limited rate of change even when the relative pressure is increased. Although it only increases, a certain amount of equilibrium adsorption can be obtained even in a low relative pressure range of, for example, 0.4 or less or 0.2 or less.

【0019】したがって、シリカゲル又はゼオライト又
は活性アルミナ又はケイ酸カルシウムを前記の添着吸着
剤とし、一方、相対圧によって、その添着吸着剤との間
で平衡吸着量の逆転が生じ、高相対圧の側ではその添着
吸着剤よりも大きい平衡吸着量を示すが、低相対圧の側
ではその添着吸着剤よりも小さい平衡吸着量を示す適当
な別の吸着剤を前記の主体吸着剤として、この別吸着剤
の細孔内表面にその添着吸着剤を添着すれば、これらシ
リカゲル、ゼオライト、活性アルミナ、ケイ酸カルシウ
ムが示す吸着対象質への高い親和性をもって、上記別吸
着剤の吸着特性を低相対圧の側へ効果的にシフトさせる
ことができ、これにより、この別吸着剤が高相対圧の側
で示す高い吸着性(大きな平衡吸着量)を低相対圧の側
で効果的に発揮できる優れた改良吸着剤にすることがで
きる。
Accordingly, silica gel, zeolite, activated alumina, or calcium silicate is used as the adsorbent. On the other hand, the relative pressure causes a reversal of the equilibrium adsorption amount between the impregnated adsorbent and the high adsorbent. Shows an equilibrium adsorption amount larger than that of the impregnated adsorbent, but on the low relative pressure side, another appropriate adsorbent exhibiting an equilibrium adsorption amount smaller than that of the impregnated adsorbent is used as the main adsorbent, and By adhering the adsorbent to the inner surface of the pores of the adsorbent, the adsorption characteristics of the other adsorbent can be reduced by a low relative pressure with a high affinity to the target substance indicated by silica gel, zeolite, activated alumina and calcium silicate. The other adsorbent can effectively exhibit the high adsorptivity (large equilibrium adsorption amount) exhibited at the high relative pressure side at the low relative pressure side. It can be an excellent improving adsorbent that.

【0020】〔4〕請求項4記載の発明では、請求項2
又は3記載の発明の実施において、前記主体吸着剤に活
性炭を用い、前記添着吸着剤にシリカゲルを用いる。
[4] According to the invention described in claim 4, in claim 2
Alternatively, in the practice of the invention described in 3, the activated carbon is used as the main adsorbent, and the silica gel is used as the impregnated adsorbent.

【0021】つまり、活性炭を主体吸着剤とし、かつ、
シリカゲルを添着吸着剤として、活性炭の細孔内表面に
シリカゲルを添着すれば、図4からも判るように、シリ
カゲルが低相対圧域においては他の吸着剤に比べ比較的
大きな平衡吸着量を示すものであって、主体吸着剤とし
ての活性炭の吸着特性を低相対圧の側へシフトさせる作
用が強いこと、及び、主体吸着剤としての活性炭が本
来、高相対圧域で他の吸着剤よりも大きい平衡吸着量を
示すことが相まって、低相対圧域での吸着性が極めて高
い改良吸着剤にすることができる。
That is, activated carbon is used as the main adsorbent, and
When silica gel is impregnated on the inner surface of the pores of activated carbon using silica gel as an adsorbent, as can be seen from FIG. 4, silica gel exhibits a relatively large equilibrium adsorption amount as compared with other adsorbents in a low relative pressure region. That the effect of shifting the adsorption characteristics of activated carbon as the main adsorbent to the side of low relative pressure is strong, and that activated carbon as the main adsorbent is inherently higher than other adsorbents in the high relative pressure region. The combination of exhibiting a large equilibrium adsorption amount makes it possible to obtain an improved adsorbent having extremely high adsorptivity in a low relative pressure range.

【0022】〔5〕請求項5記載の発明では、請求項4
記載の発明の改良吸着剤を製造するにあたり、活性炭に
対し、ケイ酸ソーダを含浸させる第1工程と、乾燥させ
る第2工程と、硫酸を含浸させてシリカゾルを形成する
第3工程と、加熱によりゲル化処理する第4工程と、洗
浄により硫酸を除去する第5工程と、乾燥させる第6工
程とを、その順に実施して、活性炭の細孔内表面にシリ
カゲルを添着する。
[5] According to the fifth aspect of the present invention, the fourth aspect
In producing the improved adsorbent of the invention described, a first step of impregnating activated carbon with sodium silicate, a second step of drying, a third step of impregnating sulfuric acid to form a silica sol, and heating The fourth step of gelling, the fifth step of removing sulfuric acid by washing, and the sixth step of drying are performed in that order, and silica gel is attached to the inner surface of the pores of the activated carbon.

【0023】つまり、この製法によれば、上記第4工程
での加熱処理によりシリカゲルを熱的に熟成する形態
で、添着吸着材としてのシリカゲルを活性炭の細孔内表
面に対し熱化学的に凝着させて極めて安定な状態に添着
することができる。そして、このことにより、特性シフ
ト後の状態を安定的に保つことができて、活性炭が高相
対圧の側で示す高い吸着性(大きな平衡吸着量)を低相
対圧の側で極めて安定的に発揮できる良好な改良吸着剤
を得ることができる。また、製法そのものも簡単であ
り、能率良く安価に、この改良吸着剤を製造することが
できる。
In other words, according to this production method, the silica gel as the impregnated adsorbent is thermochemically condensed on the inner surface of the pores of the activated carbon in a form in which the silica gel is thermally aged by the heat treatment in the fourth step. It can be attached to an extremely stable state. Thus, the state after the characteristic shift can be stably maintained, and the high adsorptivity (large equilibrium adsorption amount) exhibited by the activated carbon on the high relative pressure side can be extremely stabilized on the low relative pressure side. A good improved adsorbent which can be exhibited can be obtained. Further, the production method itself is simple, and this improved adsorbent can be produced efficiently and at low cost.

【0024】なお、図6は第1工程で活性炭に含浸させ
るケイ酸ソーダ溶液の濃度を代えて、夫々、第1工程か
ら第6工程にわたるシリカゲル添着処理を一回だけ実施
した場合の実験結果を示す。
FIG. 6 shows the results of an experiment in which the concentration of the sodium silicate solution impregnated in the activated carbon in the first step was changed and the silica gel impregnation treatment from the first step to the sixth step was performed only once. Show.

【0025】〔6〕請求項6記載の発明では、請求項5
記載の発明の実施において、前記の第1工程から第6工
程にわたるシリカゲルの添着処理を活性炭に対し繰り返
して行う。
[6] According to the invention described in claim 6, in claim 5
In the practice of the invention described, the silica gel impregnation treatment from the first step to the sixth step is repeatedly performed on activated carbon.

【0026】つまり、前記の第1工程から第6工程にわ
たるシリカゲル添着処理を繰り返すことにより、一回だ
けの添着処理に比べ、活性炭細孔内表面の全体に対し一
層密な状態にムラ無くシリカゲルを添着することがで
き、これにより、活性炭が高相対圧の側で示す高い吸着
性(大きな平衡吸着量)を低相対圧の側において一層効
果的に発揮できるより優れた改良吸着剤を得ることがで
きる。
That is, by repeating the silica gel impregnation treatment from the first step to the sixth step, the silica gel can be uniformly and densely distributed over the entire inner surface of the activated carbon pores as compared with the one time impregnation treatment. This makes it possible to obtain a better improved adsorbent in which the activated carbon can exhibit the high adsorptivity (large equilibrium adsorption amount) exhibited on the high relative pressure side more effectively on the low relative pressure side. it can.

【0027】〔7〕請求項7記載の発明では、吸着冷凍
機を構成するのに、吸着剤周りでの冷媒の飽和蒸気圧に
対する冷媒蒸気圧の比の値である相対圧の高低によっ
て、冷媒に対する平衡吸着量に逆転が生じる異種の吸着
剤を用い、これら吸着剤のうち、高相対圧の側で他方の
吸着剤よりも大きい平衡吸着量を示す吸着剤を主体吸着
剤とし、かつ、低相対圧の側で前記主体吸着剤よりも大
きい平衡吸着量を示す吸着剤を添着吸着剤として、この
主体吸着剤の細孔内表面にその添着吸着剤を添着した改
良吸着剤(すなわち、請求項1記載の発明による改良吸
着剤)を冷凍サイクル用吸着剤として用いる。
[7] In the invention according to claim 7, in constituting the adsorption refrigerator, the refrigerant is determined by the relative pressure which is the value of the ratio of the refrigerant vapor pressure to the saturated vapor pressure of the refrigerant around the adsorbent. Of different types of adsorbents whose equilibrium adsorption amount is reversed with respect to the other adsorbents. An adsorbent exhibiting a larger equilibrium adsorption amount than the main adsorbent on the side of the relative pressure is used as the adsorbent, and the improved adsorbent in which the impregnated adsorbent is attached to the inner surface of the pores of the main adsorbent (that is, the claim 1) is used as an adsorbent for a refrigeration cycle.

【0028】そして、冷却用媒体による冷却下で上記の
冷凍サイクル用吸着剤に蒸発器での発生冷媒蒸気を吸着
させながら、その蒸発器で冷媒を蒸発させて、その冷媒
蒸発の際の気化熱奪取により冷熱を発生させる吸着・蒸
発工程と、駆動熱源による加熱下で冷凍サイクル用吸着
剤から吸着の冷媒蒸気を脱着させながら、その脱着冷媒
蒸気を凝縮器で凝縮させて、その冷媒凝縮により放熱用
媒体に対し放熱させる脱着・凝縮工程とを、交互に繰り
返し実施する装置構成とする。
Then, while adsorbing the refrigerant vapor generated in the evaporator onto the adsorbent for the refrigeration cycle under cooling by the cooling medium, the refrigerant is evaporated by the evaporator, and the heat of vaporization during the evaporation of the refrigerant is obtained. An adsorption / evaporation process that generates cold heat by deprivation, and a desorption refrigerant vapor is desorbed from a refrigeration cycle adsorbent under heating by a driving heat source, and the desorbed refrigerant vapor is condensed in a condenser, and heat is released by the refrigerant condensation. The desorption / condensation step of releasing heat to the application medium is alternately and repeatedly performed.

【0029】つまり、請求項7記載の発明によれば、前
記の請求項1記載の発明による改良吸着剤を冷凍サイク
ル用吸着剤に用いることで、吸着・蒸発工程の相対圧が
低く規定される条件下でも、高い吸着性をもって効率良
く冷媒蒸気を冷凍サイクル用吸着剤に吸着させることが
でき、これにより、従来の吸着冷凍機に比べ、冷凍能力
を効果的に高めることができ、また、吸着剤の必要量を
少なくして装置を効果的に小型化することができる。
That is, according to the seventh aspect of the present invention, by using the improved adsorbent according to the first aspect of the present invention as an adsorbent for a refrigeration cycle, the relative pressure in the adsorption / evaporation step is specified to be low. Even under the conditions, the refrigerant vapor can be efficiently adsorbed by the adsorbent for the refrigeration cycle with high adsorptivity, whereby the refrigerating capacity can be effectively increased as compared with the conventional adsorption refrigerator, and The apparatus can be effectively miniaturized by reducing the required amount of the agent.

【0030】〔8〕請求項8記載の発明では、請求項7
記載の発明の実施において、冷媒に水を用いるのに対
し、冷凍サイクル用吸着剤の主体吸着剤に活性炭を用い
る。
[8] According to the invention described in claim 8, according to claim 7,
In the practice of the described invention, water is used as the refrigerant, whereas activated carbon is used as the main adsorbent of the adsorbent for the refrigeration cycle.

【0031】すなわち、冷媒に水を用いるのに対し、前
記の請求項2記載の発明による改良吸着剤、つまり、水
に対して活性炭が高相対圧の側で示す他の吸着剤よりも
高い吸着性(図4参照)を低相対圧の側から効果的に発
揮できる改良吸着剤を、冷凍サイクル用吸着剤に用いる
のであり、これにより、冷媒に水を用いることによる環
境保全上の利点を活かしながら、その水冷媒吸着冷凍機
の冷凍能力の向上や、吸着剤必要量の低減による装置の
小型化を効果的に実現できる。
That is, while water is used as the refrigerant, the improved adsorbent according to the second aspect of the present invention, that is, activated carbon has a higher adsorption of water than the other adsorbents indicated on the high relative pressure side. The improved adsorbent, which can effectively exert the property (see FIG. 4) from the side of low relative pressure, is used for the adsorbent for the refrigeration cycle, thereby taking advantage of the environmental conservation advantage of using water as the refrigerant. However, it is possible to effectively improve the refrigerating capacity of the water refrigerant adsorption refrigerator and reduce the size of the apparatus by reducing the required amount of adsorbent.

【0032】[0032]

〔9〕請求項9記載の発明では、請求項7
又は8記載の発明の実施において、冷媒に水を用いるの
に対し、冷凍サイクル用吸着剤の添着吸着剤にシリカゲ
ル又はゼオライト又は活性アルミナ又はケイ酸カルシウ
ムを用いる。
[9] According to the ninth aspect, in the seventh aspect,
Alternatively, in the practice of the invention described in 8, the water is used as the refrigerant, while silica gel, zeolite, activated alumina, or calcium silicate is used as the adsorbent for the adsorbent for the refrigeration cycle.

【0033】すなわち、冷媒に水を用いるのに対し、前
記の請求項3記載の発明による改良吸着剤、つまり、シ
リカゲル、ゼオライト、活性アルミナ、ケイ酸カルシウ
ムが示す水への高い親和性(図4参照)をもって、主体
吸着剤が高相対圧の側で示す高い吸着性を低相対圧の側
で効果的に発揮できる改良吸着剤を、冷凍サイクル用吸
着剤に用いるのであり、これにより、上記の請求項8記
載の発明と同様に、冷媒に水を用いることによる環境保
全上の利点を活かしながら、その水冷媒吸着冷凍機の冷
凍能力の向上や、吸着剤必要量の低減による装置の小型
化を効果的に実現できる。
That is, while water is used as the refrigerant, the improved adsorbent according to the third aspect of the present invention, that is, silica gel, zeolite, activated alumina and calcium silicate exhibit high affinity for water (FIG. 4). ), The improved adsorbent which the main adsorbent can effectively exhibit the high adsorptivity exhibited at the high relative pressure side at the low relative pressure side is used for the refrigeration cycle adsorbent. Similarly to the invention of claim 8, while utilizing the environmental conservation advantage of using water as the refrigerant, the refrigerating capacity of the water refrigerant adsorption refrigerator is improved, and the size of the apparatus is reduced by reducing the required amount of adsorbent. Can be realized effectively.

【0034】〔10〕請求項10記載の発明では、請求
項8又は9記載の発明の実施において、冷媒に水を用い
るのに対し、冷凍サイクル用吸着剤の主体吸着剤に活性
炭を用い、かつ、冷凍サイクル用吸着剤の添着吸着剤に
シリカゲルを用いる。
[10] In the tenth aspect of the present invention, in the practice of the eighth or ninth aspect, water is used as a refrigerant, whereas activated carbon is used as a main adsorbent of a refrigeration cycle adsorbent, and Silica gel is used as the adsorbent for the adsorbent for the refrigeration cycle.

【0035】すなわち、冷媒に水を用いるのに対し、前
記の請求項4記載の発明による改良吸着剤、つまり、水
に対しシリカゲルが低相対圧域においては他の吸着剤に
比べ比較的大きな平衡吸着量を示す(図4参照)もので
あって、主体吸着剤としての活性炭の吸着特性を低相対
圧の側へシフトさせる作用が強いことと、主体吸着剤と
しての活性炭が水に対し高相対圧域で他の吸着剤よりも
大きい平衡吸着量を示す(図4参照)こととが相まって
低相対圧域で極めて高い吸着性を示す改良吸着剤を、冷
凍サイクル用吸着剤に用いるのであり、これにより、水
冷媒吸着冷凍機の冷凍能力の向上や、吸着剤必要量の低
減による装置の小型化を一層効果的に実現できる。
That is, while water is used as the refrigerant, the improved adsorbent according to the fourth aspect of the present invention, that is, silica gel has a relatively large equilibrium with water in the low relative pressure region as compared with other adsorbents. It indicates the amount of adsorption (see FIG. 4). It has a strong effect of shifting the adsorption characteristics of activated carbon as the main adsorbent to the side of low relative pressure, and shows that activated carbon as the main adsorbent has a high relative The improved adsorbent exhibiting a very high adsorptivity in the low relative pressure range, which is combined with exhibiting a larger equilibrium adsorption amount than other adsorbents in the pressure range (see FIG. 4), is used as the adsorbent for the refrigeration cycle. As a result, it is possible to more effectively realize the improvement of the refrigerating capacity of the water-refrigerant adsorption refrigerator, and the miniaturization of the apparatus by reducing the required amount of the adsorbent.

【0036】[0036]

【発明の実施の形態】図1は本発明を適用した吸着冷凍
機の概略装置構成を示し、1は吸着剤熱交換器2を内装
した吸着器、3は第1冷媒熱交換器4を内装した第1蒸
発・凝縮器、5は第2冷媒熱交換器6を内装した第2蒸
発・凝縮器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of an adsorption refrigerator to which the present invention is applied, 1 is an adsorber in which an adsorbent heat exchanger 2 is installed, and 3 is an interior of a first refrigerant heat exchanger 4. The first evaporator / condenser 5 is a second evaporator / condenser in which the second refrigerant heat exchanger 6 is provided.

【0037】吸着剤熱交換器2には冷凍サイクル用吸着
剤Aを付帯させてあり、吸着器1に対しては、第1蒸発
・凝縮器3と第2蒸発・凝縮器5とを冷媒蒸気路7を介
して並列に接続し、この冷媒蒸気路7には冷媒蒸気の流
れ経路を切り換える冷媒蒸気弁8を介装してある。ま
た、冷媒蒸気路7で結んだ吸着器1、第1蒸発・凝縮器
3、第2蒸発・凝縮器5の内部は、冷凍機運転において
真空ポンプ(図示せず)により所定圧力の減圧状態に保
つ。
The adsorbent heat exchanger 2 is provided with an adsorbent A for a refrigeration cycle. For the adsorber 1, the first evaporator / condenser 3 and the second evaporator / condenser 5 are connected to the refrigerant vapor. The refrigerant vapor path 7 is connected in parallel via a path 7 and is provided with a refrigerant vapor valve 8 for switching a refrigerant vapor flow path. Further, the interior of the adsorber 1, the first evaporator / condenser 3, and the second evaporator / condenser 5 connected by the refrigerant vapor path 7 is reduced to a predetermined pressure by a vacuum pump (not shown) during the operation of the refrigerator. keep.

【0038】冷凍サイクル用吸着剤Aには、図3に模式
的に示す如く、主体吸着剤xの細孔内表面に添着吸着剤
yを添着した改良吸着剤を用い、これら主体吸着剤x及
び添着吸着剤yの選定については、吸着剤周りでの冷媒
Rの飽和蒸気圧p0 に対する冷媒蒸気圧pの比の値であ
る相対圧p/p0 (換言すれば関係湿度%)の高低によ
り冷媒Rに対する平衡吸着量qに逆転が生じる異種の吸
着剤を選び、これら吸着剤のうち、高相対圧の側で他方
の吸着剤よりも大きい平衡吸着量qを示す吸着剤を主体
吸着剤xとし、かつ、低相対圧の側でその主体吸着剤x
よりも大きい平衡吸着量qを示す吸着剤を添着吸着剤y
としてある。
As the adsorbent A for the refrigeration cycle, as schematically shown in FIG. 3, an improved adsorbent in which an impregnated adsorbent y is attached to the inner surface of the pores of the main adsorbent x is used. The selection of the impregnated adsorbent y depends on the relative pressure p / p 0 (in other words, the relative humidity%), which is the value of the ratio of the refrigerant vapor pressure p to the saturated vapor pressure p 0 of the refrigerant R around the adsorbent. A different adsorbent in which the equilibrium adsorption amount q with respect to the refrigerant R is reversed is selected, and among these adsorbents, an adsorbent exhibiting a larger equilibrium adsorption amount q than the other adsorbent on the side of high relative pressure is a main adsorbent x And the main adsorbent x on the side of low relative pressure
Adsorbent with an equilibrium adsorption amount q greater than
There is.

【0039】つまり、添着吸着剤yが低相対圧の側で主
体吸着剤xよりも大きい平衡吸着量q(すなわち高い吸
着性)を示す原因と考えられる添着吸着剤yの冷媒Rに
対する高い親和性をもって、主体吸着剤xの吸着特性を
低相対圧の側へシフト(例えば、図4に破線で示す如く
活性炭の吸着特性を低相対圧の側へシフト)させ、この
特性シフトにより、主体吸着剤xが高相対圧の側で示す
高い吸着性(大きい平衡吸着量q)を低相対圧の側から
発揮できる改良吸着剤とする。そして、この改良吸着剤
を冷凍サイクル用吸着剤Aに用いることにより、相対圧
p/p0 が例えば0.4以下といった低い値に制限され
る運転条件下においても、後述の吸着・蒸発工程におい
て冷媒蒸気を冷凍サイクル用吸着剤Aに効率良く吸着で
きるようにしてある。
In other words, the high affinity of the adsorbent y for the refrigerant R, which is considered to be the cause of the fact that the impregnated adsorbent y exhibits a larger equilibrium adsorption amount q (that is, high adsorbability) than the main adsorbent x at the lower relative pressure side. With this, the adsorption characteristic of the main adsorbent x is shifted to the lower relative pressure side (for example, the adsorption characteristic of activated carbon is shifted to the lower relative pressure side as shown by the broken line in FIG. 4), and the characteristic shift causes x is an improved adsorbent which can exhibit the high adsorptivity (large equilibrium adsorption amount q) shown on the high relative pressure side from the low relative pressure side. By using this improved adsorbent as the adsorbent A for a refrigeration cycle, even in an operating condition in which the relative pressure p / p 0 is limited to a low value of, for example, 0.4 or less, in the adsorption / evaporation step described below. The refrigerant vapor can be efficiently adsorbed on the adsorbent A for the refrigeration cycle.

【0040】また、具体的には、冷媒Rとして水を用い
環境保全の面で優れた吸着冷凍機とするのに対し、主体
吸着剤xには、図4に示す如く高相対圧域で水に対し他
の吸着剤よりも高い吸着性(大きい平衡吸着量q)を示
す活性炭を、かつ、添着吸着剤yには、同図4に示す如
く低相対圧域で水に対し他の吸着剤に比べ比較的高い吸
着性(換言すれば水に対する高い親和性)を示すシリカ
ゲルを用い、これにより、上記の如き特性シフトによる
低相対圧域での吸着性の向上を効果的に実現する。
Specifically, while water is used as the refrigerant R to make the adsorption refrigerator excellent in environmental protection, the main adsorbent x contains water at a high relative pressure region as shown in FIG. Activated carbon showing higher adsorptivity (larger equilibrium adsorption amount q) than other adsorbents, and impregnated adsorbent y with water at a low relative pressure range as shown in FIG. Silica gel having a relatively high adsorptivity (in other words, a high affinity for water) is used, thereby effectively improving the adsorptivity in the low relative pressure range due to the characteristic shift as described above.

【0041】冷凍機運転は往サイクル運転と復サイクル
運転との交互実施により行うようにしてあり、往サイク
ル運転では図1に示す如く、第1冷媒熱交換器4に冷却
対象媒体としての冷水C(例えば、12℃から7℃程度
への冷却を要する冷水)を流通させるのに対し、第2冷
媒熱交換器6に放熱用媒体としての冷却水W(例えばク
ーリングタワーとの間で循環させる冷却水)を流通させ
る。また、復サイクル運転では図2に示す如く、往サイ
クル運転とは逆に、第1冷媒熱交換器4に放熱用媒体と
しての冷却水Wを流通させるのに対し、第2冷媒熱交換
器6に冷却対象媒体としての冷水Cを流通させる。
The refrigerating machine is operated by alternately performing the forward cycle operation and the backward cycle operation. In the forward cycle operation, as shown in FIG. 1, cold water C as a medium to be cooled is supplied to the first refrigerant heat exchanger 4. (For example, cooling water that needs to be cooled from 12 ° C. to about 7 ° C.), while cooling water W (for example, cooling water circulated between the cooling tower and the cooling tower) as a heat dissipation medium in the second refrigerant heat exchanger 6 ). Also, in the return cycle operation, as shown in FIG. 2, contrary to the forward cycle operation, the cooling water W as the heat radiating medium flows through the first refrigerant heat exchanger 4, whereas the second refrigerant heat exchanger 6 Of cold water C as a medium to be cooled.

【0042】そして、往サイクル運転の内容としては
(図1参照)、先ず、冷媒蒸気弁8の操作により、第2
蒸発・凝縮器5と吸着器1との間での冷媒蒸気流通を遮
断して、第1蒸発・凝縮器3と吸着器1との間での冷媒
蒸気流通のみを許すようにした状態で、吸着剤熱交換器
1に冷却用媒体としての冷却水W’(例えばクーリング
タワーとの間で循環させる冷却水)を流通させ、これに
より、往サイクル運転での吸着・蒸発工程として、冷却
水W’による冷却下で冷凍サイクル用吸着剤Aに第1蒸
発・凝縮器3での発生冷媒蒸気を吸着させながら、第1
蒸発・凝縮器3で冷媒Rを蒸発させて、その冷媒蒸発の
際の気化熱奪取により第1冷媒熱交換器4で冷水Cを冷
却する。すなわち、第1蒸発・凝縮器3を蒸発器EVと
して機能させて冷熱を発生させる。
The contents of the forward cycle operation (see FIG. 1) are as follows.
In a state in which the refrigerant vapor flow between the evaporator / condenser 5 and the adsorber 1 is cut off, and only the refrigerant vapor flow between the first evaporator / condenser 3 and the adsorber 1 is allowed, Cooling water W '(for example, cooling water circulated between the cooling tower) as a cooling medium is circulated through the adsorbent heat exchanger 1, whereby the cooling water W' is used as an adsorption / evaporation step in the forward cycle operation. While adsorbing the refrigerant vapor generated in the first evaporator / condenser 3 on the refrigeration cycle adsorbent A under cooling by the
The refrigerant R is evaporated by the evaporator / condenser 3, and the chilled water C is cooled by the first refrigerant heat exchanger 4 by removing vaporization heat during the evaporation of the refrigerant. That is, the first evaporator / condenser 3 functions as the evaporator EV to generate cold heat.

【0043】その後、冷媒蒸気弁8の操作により、第1
蒸発・凝縮器3と吸着器1との間での冷媒蒸気流通を遮
断して、第2蒸発・凝縮器5と吸着器1との間での冷媒
蒸気流通のみを許すようにした状態で、吸着剤熱交換器
1に駆動熱源としての温水H(例えば、80℃以下の廃
熱利用温水)を流通させ、これにより、往サイクル運転
での脱着・凝縮工程として、温水Hによる加熱下で冷凍
サイクル用吸着剤Aから吸着の冷媒蒸気を脱着させなが
ら、その脱着冷媒蒸気を第2蒸発・凝縮器5で凝縮させ
て、その冷媒凝縮により第2冷媒熱交換器6において冷
却水Wに対し放熱させる。すなわち、第2蒸発・凝縮器
5を凝縮器CDとして機能させて排熱を放熱させる。
Thereafter, the operation of the refrigerant vapor valve 8 causes the first
In a state where the refrigerant vapor flow between the evaporator / condenser 3 and the adsorber 1 is shut off, only the refrigerant vapor flow between the second evaporator / condenser 5 and the adsorber 1 is allowed, Hot water H (for example, hot water using waste heat of 80 ° C. or less) as a driving heat source is allowed to flow through the adsorbent heat exchanger 1, and thereby, as a desorption / condensation step in a forward cycle operation, refrigeration under heating with hot water H is performed. The desorbed refrigerant vapor is condensed by the second evaporator / condenser 5 while the adsorbed refrigerant vapor is desorbed from the cycle adsorbent A, and the refrigerant condenses to radiate heat to the cooling water W in the second refrigerant heat exchanger 6. Let it. That is, the second evaporator / condenser 5 is caused to function as the condenser CD to release the exhaust heat.

【0044】一方、復サイクル運転の内容としては(図
2参照)、往サイクル運転での脱着・凝縮工程と同様、
先ず、第1蒸発・凝縮器3と吸着器1との間での冷媒蒸
気流通を遮断して、第2蒸発・凝縮器5と吸着器1との
間での冷媒蒸気流通のみを許すようにした状態で、吸着
剤熱交換器1に冷却媒体としての冷却水W’を流通さ
せ、これにより、復サイクル運転での吸着・蒸発工程と
して、冷却水W’による冷却下で冷凍サイクル用吸着剤
Aに第2蒸発・凝縮器5での発生冷媒蒸気を吸着させな
がら、第2蒸発・凝縮器5で冷媒Rを蒸発させて、その
冷媒蒸発の際の気化熱奪取により第2冷媒熱交換器6で
冷水Cを冷却する。すなわち、第2蒸発・凝縮器5を蒸
発器EVとして機能させて冷熱を発生させる。
On the other hand, the content of the return cycle operation (see FIG. 2) is the same as the desorption / condensation step in the forward cycle operation.
First, the flow of the refrigerant vapor between the first evaporator / condenser 3 and the adsorber 1 is shut off, and only the flow of the refrigerant vapor between the second evaporator / condenser 5 and the adsorber 1 is allowed. In this state, the cooling water W ′ as a cooling medium is passed through the adsorbent heat exchanger 1, whereby the adsorbent for the refrigeration cycle is cooled under cooling by the cooling water W ′ as an adsorption / evaporation step in the return cycle operation. A adsorbs the refrigerant vapor generated in the second evaporator / condenser 5 while evaporating the refrigerant R in the second evaporator / condenser 5 and removes the vaporized heat at the time of evaporating the refrigerant. In step 6, the cold water C is cooled. That is, the second evaporator / condenser 5 functions as the evaporator EV to generate cold heat.

【0045】その後、冷媒蒸気弁8の操作により第2蒸
発・凝縮器5と吸着器1との間での冷媒蒸気流通を遮断
して、第1蒸発・凝縮器3と吸着器1との間での冷媒蒸
気流通のみを許すようにした状態で、吸着剤熱交換器1
に駆動熱源としての温水Hを流通させ、これにより、復
サイクル運転での脱着・凝縮工程として、温水Hによる
加熱下で冷凍サイクル用吸着剤Aから吸着の冷媒蒸気を
脱着させながら、その脱着冷媒蒸気を第1蒸発・凝縮器
3で凝縮させて、その冷媒凝縮により第1冷媒熱交換器
3において冷却水Wに対し放熱させる。すなわち、第1
蒸発・凝縮器3を凝縮器CDとして機能させて排熱を放
熱させる。そして、この後に往サイクル運転に再び戻
る。
Thereafter, by operating the refrigerant vapor valve 8, the refrigerant vapor flow between the second evaporator / condenser 5 and the adsorber 1 is cut off, and the flow between the first evaporator / condenser 3 and the adsorber 1 is interrupted. Adsorbent heat exchanger 1 with only refrigerant vapor flow allowed
Hot water H as a driving heat source is circulated, and as a desorption / condensation step in the return cycle operation, the desorbed refrigerant vapor is desorbed from the adsorbent A for the refrigeration cycle while being heated by the hot water H while being desorbed. The vapor is condensed in the first evaporator / condenser 3, and the refrigerant is condensed to radiate heat to the cooling water W in the first refrigerant heat exchanger 3. That is, the first
The evaporator / condenser 3 functions as a condenser CD to radiate the exhaust heat. After this, the operation returns to the forward cycle operation again.

【0046】活性炭を主体吸着剤xとし、かつ、シリカ
ゲルを添着吸着剤yとする上記改良吸着剤(冷凍サイク
ル用吸着剤A)の製法については、活性炭(例えば、粒
径1000μmふるい下の粉粒状活性炭)に対し、次の
第1工程から第6工程にわたるシリカゲル添着処理(図
5参照)を適当回数繰り返す手法を採る。
The method of producing the above-mentioned improved adsorbent (adsorbent A for a refrigeration cycle) using activated carbon as the main adsorbent x and silica gel as the adsorbent y is described below. A method of repeating the silica gel impregnating treatment (see FIG. 5) of the following first to sixth steps to the activated carbon) an appropriate number of times is employed.

【0047】第1工程:ケイ酸ソーダ溶液(例えば水溶
液)を含浸させる→第2工程:所定温度(例えば80
℃)の加熱雰囲気で所定時間、乾燥させる→第3工程:
硫酸(例えば3.9規定濃度)を含浸させて、ケイ酸ソ
ーダとの反応でシリカゾルを活性炭の細孔内表面に形成
する→第4工程:所定温度(例えば80℃)の加熱雰囲
気で所定時間(例えば24時間)、加熱熟成することに
より、シリカゾルをゲル化して、そのシリカゲルを活性
炭の細孔内表面に熱化学的に凝着させる→第5工程:水
で洗浄して硫酸分を除去する→第6工程:所定温度で所
定時間、乾燥させる。
First step: Impregnation with sodium silicate solution (for example, aqueous solution) → Second step: Predetermined temperature (for example, 80
C) in a heating atmosphere for a predetermined period of time → third step:
Impregnated with sulfuric acid (for example, 3.9 normal concentration) to form silica sol on the inner surface of the pores of the activated carbon by reaction with sodium silicate. → Fourth step: heating atmosphere at a predetermined temperature (for example, 80 ° C.) for a predetermined time By heating and aging (for example, 24 hours), the silica sol is gelled and the silica gel is thermochemically adhered to the inner surface of the pores of the activated carbon. → Fifth step: Washing with water to remove sulfuric acid. → Sixth step: drying at a predetermined temperature for a predetermined time.

【0048】なお、主体吸着剤xとして活性炭を用いる
場合、その活性炭には、800〜1500程度の比表面
積(m2 /g)を有する通常の活性炭、あるいは、20
00〜4000といった大きな比表面積(m2 /g)を
有する超多孔質活性炭(いわゆるスーパー活性炭)のい
ずれを用いてもよい。
When activated carbon is used as the main adsorbent x, the activated carbon may be an ordinary activated carbon having a specific surface area (m 2 / g) of about 800 to 1500, or 20 activated carbon.
Any of super porous activated carbon (so-called super activated carbon) having a large specific surface area (m 2 / g) such as 00 to 4000 may be used.

【0049】〔別の実施形態〕次に別の実施形態を列記
する。請求項1記載の発明の実施において、主体吸着剤
x及び添着吸着剤yには、活性炭(スーパー活性炭を含
む)とシリカゲルの組み合わせに限らず、相対圧p/p
0 の高低によって吸着対象質に対する平衡吸着量q(吸
着性)に逆転が生じる異種の吸着剤であれば、種々の吸
着剤を採用できる。
[Another Embodiment] Next, another embodiment will be described. In the embodiment of the present invention, the main adsorbent x and the impregnated adsorbent y are not limited to a combination of activated carbon (including super activated carbon) and silica gel, but have a relative pressure p / p.
Various kinds of adsorbents can be employed as long as the adsorbent is a different kind of adsorbent in which the equilibrium adsorption amount q (adsorbability) for the substance to be adsorbed is reversed depending on the level of 0 .

【0050】また、吸着対象質も水(水蒸気)に限定さ
れるものではなく、種々のものを吸着対象とすることが
でき、さらに、改良吸着剤の用途も吸着冷凍機の冷凍サ
イクル用吸着剤に限定されるものではなく、例えば、減
湿や脱臭などの各種の吸着利用分野に用いることができ
る。
The substance to be adsorbed is not limited to water (steam), but various substances can be used as the object to be adsorbed. Further, the improved adsorbent is also used as an adsorbent for a refrigeration cycle of an adsorption refrigerator. However, the present invention is not limited thereto, and can be used in various adsorption application fields such as dehumidification and deodorization.

【0051】請求項5記載の発明の実施において、第1
〜第6の各工程における温度、圧力、処理時間、溶液濃
度、使用洗浄液といった具体的処理条件は、前述の実施
形態で示した例に限らず、種々の変更が可能である。
In the embodiment of the invention described in claim 5, the first
Specific processing conditions such as temperature, pressure, processing time, solution concentration, and used cleaning liquid in each of the sixth to sixth steps are not limited to the example shown in the above-described embodiment, and various changes can be made.

【0052】また、第1〜第6工程にわたるシリカゲル
添着処理を複数回繰り返す場合、その繰り返し回数は改
良吸着剤としての必要吸着特性に応じ適宜決定すればよ
く、場合によっては、第1〜第6工程にわたるシリカゲ
ル添着処理の回数を一回だけとしてもよい。
When the silica gel impregnation treatment in the first to sixth steps is repeated a plurality of times, the number of repetitions may be appropriately determined according to the required adsorption characteristics as an improved adsorbent. The number of times of the silica gel impregnation treatment over the process may be only one.

【0053】請求項7記載の発明の実施において、吸着
冷凍機における吸着剤Aの装備構造、冷媒蒸気の流通構
造、冷却用媒体W’や駆動熱源Hの流通構造、吸着器1
・蒸発器EV・凝縮器CDの各容器構造といった具体的
装置構造は種々の構成変更が可能である。
In the embodiment of the present invention, the structure of the adsorbent A in the adsorption refrigerator, the flow structure of the refrigerant vapor, the flow structure of the cooling medium W 'and the driving heat source H, the adsorber 1
The specific device structure such as the container structure of the evaporator EV and the condenser CD can be variously changed.

【0054】また、冷却用媒体W’、駆動熱源H、冷却
対象媒体C、放熱用媒体Wも水に限らず、種々のものを
採用でき、さらに、冷媒Rも水に限定されるものではな
く、その他の冷媒を用いてもよい。
Further, the cooling medium W ', the driving heat source H, the cooling medium C, and the heat radiating medium W are not limited to water, but various types can be adopted. Further, the refrigerant R is not limited to water. Alternatively, other refrigerants may be used.

【0055】なお、特許請求の範囲の項に図面との対照
を便利にするため符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
Incidentally, reference numerals are written in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】吸着冷凍機の概略装置構成、及び、往サイクル
運転の運転状態を示す図
FIG. 1 is a diagram showing a schematic configuration of an adsorption refrigerator and an operation state of a forward cycle operation.

【図2】復サイクル運転の運転状態を示す図FIG. 2 is a diagram showing an operation state of a return cycle operation.

【図3】改良吸着剤の模式図FIG. 3 is a schematic diagram of an improved adsorbent.

【図4】各吸着剤の相対圧と平衡吸着量との関係を示す
等温吸着線図
FIG. 4 is an isothermal adsorption diagram showing the relationship between the relative pressure of each adsorbent and the equilibrium adsorption amount.

【図5】改良吸着剤の製法のフローシートFIG. 5 is a flow sheet of a method for producing an improved adsorbent.

【図6】シリカゲル添着による活性炭特性のシフト効果
を示す等温吸着線図
FIG. 6 is an isothermal adsorption diagram showing a shift effect of activated carbon characteristics by silica gel impregnation.

【符号の説明】[Explanation of symbols]

0 飽和蒸気圧 p 蒸気圧 x 主体吸着剤 y 添着吸着剤 R 冷媒 A 冷凍サイクル用吸着剤 W’ 冷却用媒体 EV 蒸発器 H 駆動熱源 CD 凝縮器 W 放熱用媒体p 0 saturated vapor pressure p vapor pressure x main adsorbent y impregnated adsorbent R refrigerant A adsorbent for refrigeration cycle W 'cooling medium EV evaporator H drive heat source CD condenser W heat dissipation medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内川 靖夫 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 (72)発明者 木村 二三夫 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 (72)発明者 竹本 洋介 東京都中央区日本橋室町3―1―3 株式 会社クボタ研究開発企画部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuo Uchikawa 1-1-1 Hama, Amagasaki-shi, Hyogo Prefecture Inside Kubota Research Institute of Technology (72) Inventor Fumio Kimura 1-1-1 Hama, Amagasaki-shi, Hyogo Co., Ltd. Kubota Research and Development Laboratory (72) Inventor Yosuke Takemoto 3-1-3 Nihonbashi Muromachi, Chuo-ku, Tokyo Kubota R & D Planning Dept.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 吸着剤周りでの吸着対象質の飽和蒸気圧
(p0 )に対する吸着対象質の蒸気圧(p)の比の値で
ある相対圧(p/p0 )の高低によって、吸着対象質に
対する平衡吸着量に逆転が生じる異種の吸着剤を用い、 これら吸着剤のうち、高相対圧の側で他方の吸着剤より
も大きい平衡吸着量を示す吸着剤を主体吸着剤(x)と
し、かつ、低相対圧の側で前記主体吸着剤(x)よりも
大きい平衡吸着量を示す吸着剤を添着吸着剤(y)とし
て、 前記主体吸着剤(x)の細孔内表面に前記添着吸着剤
(y)を添着してある改良吸着剤。
1. The method of claim 1 wherein the relative pressure (p / p 0 ), which is the value of the ratio of the vapor pressure (p) of the substance to be adsorbed to the saturated vapor pressure (p 0 ) of the substance to be adsorbed, around the adsorbent. Using a different type of adsorbent that causes a reversal in the equilibrium adsorption amount for the target substance, of these adsorbents, the adsorbent that shows a larger equilibrium adsorption amount than the other adsorbent on the high relative pressure side is the main adsorbent (x) And an adsorbent exhibiting a larger equilibrium adsorption amount than the main adsorbent (x) on the side of low relative pressure is used as an adsorbent adsorbent (y). An improved adsorbent to which an impregnated adsorbent (y) is impregnated.
【請求項2】 前記主体吸着剤(x)に活性炭を用いて
ある請求項1記載の改良吸着剤。
2. The improved adsorbent according to claim 1, wherein activated carbon is used as said main adsorbent (x).
【請求項3】 前記添着吸着剤(y)にシリカゲル又は
ゼオライト又は活性アルミナ又はケイ酸カルシウムを用
いてある請求項1又は2記載の改良吸着剤。
3. The improved adsorbent according to claim 1, wherein silica gel, zeolite, activated alumina, or calcium silicate is used as the adsorbent (y).
【請求項4】 前記主体吸着剤(x)に活性炭を用い、
前記添着吸着剤(y)にシリカゲルを用いてある請求項
2又は3記載の改良吸着剤。
4. An activated carbon is used as the main adsorbent (x),
The improved adsorbent according to claim 2 or 3, wherein silica gel is used as the adsorbent (y).
【請求項5】 請求項4記載の改良吸着剤の製造方法で
あって、 活性炭に対し、 ケイ酸ソーダ溶液を含浸させる第1工程と、 乾燥させる第2工程と、 硫酸を含浸させてシリカゾルを形成する第3工程と、 加熱によりシリカゾルをゲル化する第4工程と、 洗浄により硫酸を除去する第5工程と、 乾燥させる第6工程とを、 その順に実施して、活性炭の細孔内表面にシリカゲルを
添着する改良吸着剤の製造方法。
5. The method for producing an improved adsorbent according to claim 4, wherein a first step of impregnating the activated carbon with a sodium silicate solution, a second step of drying, and a step of impregnating the sulfuric acid with the silica sol. The third step of forming, the fourth step of gelling the silica sol by heating, the fifth step of removing sulfuric acid by washing, and the sixth step of drying are performed in this order, and the inner surface of the pores of the activated carbon is performed. A method for producing an improved adsorbent by impregnating silica gel with silica gel.
【請求項6】 前記の第1工程から第6工程にわたるシ
リカゲルの添着処理を活性炭に対し繰り返して行う請求
項5記載の改良吸着剤の製造方法。
6. The method for producing an improved adsorbent according to claim 5, wherein the silica gel impregnation treatment from the first step to the sixth step is repeatedly performed on the activated carbon.
【請求項7】 請求項1記載の改良吸着剤を用いた吸着
冷凍機であって、 吸着剤周りでの冷媒(R)の飽和蒸気圧(p0 )に対す
る冷媒蒸気圧(p)の比の値である相対圧(p/p0
の高低によって、冷媒(R)に対する平衡吸着量に逆転
が生じる異種の吸着剤を用い、 これら吸着剤のうち、高相対圧の側で他方の吸着剤より
も大きい平衡吸着量を示す吸着剤を主体吸着剤(x)と
し、かつ、低相対圧の側で前記主体吸着剤(x)よりも
大きい平衡吸着量を示す吸着剤を添着吸着剤(y)とし
て、 前記主体吸着剤(x)の細孔内表面に前記添着吸着剤
(y)を添着した改良吸着剤を冷凍サイクル用吸着剤
(A)とし、 冷却用媒体(W’)による冷却下で前記冷凍サイクル用
吸着剤(A)に蒸発器(EV)での発生冷媒蒸気を吸着
させながら、その蒸発器(EV)で冷媒(R)を蒸発さ
せて、その冷媒蒸発の際の気化熱奪取により冷熱を発生
させる吸着・蒸発工程と、 駆動熱源(H)による加熱下で前記冷凍サイクル用吸着
剤(A)から吸着の冷媒蒸気を脱着させながら、その脱
着冷媒蒸気を凝縮器(CD)で凝縮させて、その冷媒凝
縮により放熱用媒体(W)に対し放熱させる脱着・凝縮
工程とを、交互に繰り返し実施する構成としてある吸着
冷凍機。
7. An adsorption refrigerator using the improved adsorbent according to claim 1, wherein a ratio of a refrigerant vapor pressure (p) to a saturated vapor pressure (p 0 ) of the refrigerant (R) around the adsorbent is obtained. Relative pressure (p / p 0 )
Of different adsorbents whose equilibrium adsorption amount with respect to the refrigerant (R) is reversed depending on the level of the adsorbent. Among these adsorbents, the adsorbent showing a higher equilibrium adsorption amount than the other adsorbent at the side of high relative pressure is used. An adsorbent, which is a main adsorbent (x) and exhibits an equilibrium adsorption amount larger than that of the main adsorbent (x) on the side of low relative pressure, is an impregnated adsorbent (y). The improved adsorbent having the impregnated adsorbent (y) impregnated on the inner surface of the pores is referred to as a refrigerating cycle adsorbent (A), and the refrigerating cycle adsorbent (A) is cooled under a cooling medium (W ′). An adsorption / evaporation step of evaporating the refrigerant (R) in the evaporator (EV) while adsorbing the refrigerant vapor generated in the evaporator (EV) and generating cold heat by removing vaporization heat in evaporating the refrigerant; Adsorption for the refrigeration cycle under heating by a driving heat source (H) The desorption / condensation step of desorbing the desorbed refrigerant vapor in the condenser (CD) while desorbing the adsorbed refrigerant vapor from (A) and releasing heat to the heat radiation medium (W) by condensing the refrigerant is alternately performed. An adsorption refrigerator configured to be repeatedly implemented.
【請求項8】 前記冷媒(R)に水を用いるのに対し、
前記冷凍サイクル用吸着剤(A)の前記主体吸着剤
(x)に活性炭を用いてある請求項7記載の吸着冷凍
機。
8. Where water is used for the refrigerant (R),
The adsorption refrigerator according to claim 7, wherein activated carbon is used as the main adsorbent (x) of the adsorbent (A) for the refrigeration cycle.
【請求項9】 前記冷媒(R)に水を用いるのに対し、
前記冷凍サイクル用吸着剤(A)の前記添着吸着剤
(y)にシリカゲル又はゼオライト又は活性アルミナ又
はケイ酸カルシウムを用いてある請求項7又は8記載の
吸着冷凍機。
9. Where water is used as the refrigerant (R),
9. The adsorption refrigerator according to claim 7, wherein silica gel, zeolite, activated alumina, or calcium silicate is used for the adsorbent (y) of the adsorbent (A) for the refrigerating cycle.
【請求項10】 前記冷媒(R)に水を用いるのに対
し、前記冷凍サイクル用吸着剤(A)の前記主体吸着剤
(x)に活性炭を用い、かつ、前記冷凍サイクル用吸着
剤(A)の前記添着吸着剤(y)にシリカゲルを用いて
ある請求項8又は9記載の吸着冷凍機。
10. While water is used as the refrigerant (R), activated carbon is used as the main adsorbent (x) of the refrigeration cycle adsorbent (A), and the refrigeration cycle adsorbent (A) is used. The adsorption refrigerator according to claim 8 or 9, wherein silica gel is used for the adsorbent adsorbent (y)).
JP7703297A 1997-03-28 1997-03-28 Improved adsorbent, its production and adsorption refrigerating machine Pending JPH10263394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7703297A JPH10263394A (en) 1997-03-28 1997-03-28 Improved adsorbent, its production and adsorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7703297A JPH10263394A (en) 1997-03-28 1997-03-28 Improved adsorbent, its production and adsorption refrigerating machine

Publications (1)

Publication Number Publication Date
JPH10263394A true JPH10263394A (en) 1998-10-06

Family

ID=13622426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7703297A Pending JPH10263394A (en) 1997-03-28 1997-03-28 Improved adsorbent, its production and adsorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPH10263394A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220098A (en) * 2008-02-18 2009-10-01 Nagoya Electrical Educational Foundation Adsorbent made of composite active carbon and its production method
JP2010138047A (en) * 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
WO2014188523A1 (en) * 2013-05-22 2014-11-27 富士通株式会社 Adsorbent for adsorption heat pump, production method for same, and adsorption heat pump
JP2016117629A (en) * 2014-12-24 2016-06-30 トクラス株式会社 Modified active carbon, and production method of it, and filtration cartridge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220098A (en) * 2008-02-18 2009-10-01 Nagoya Electrical Educational Foundation Adsorbent made of composite active carbon and its production method
JP2010138047A (en) * 2008-12-15 2010-06-24 Nagoya Electrical Educational Foundation Method for producing composite activated carbon
WO2014188523A1 (en) * 2013-05-22 2014-11-27 富士通株式会社 Adsorbent for adsorption heat pump, production method for same, and adsorption heat pump
JPWO2014188523A1 (en) * 2013-05-22 2017-02-23 富士通株式会社 Adsorbent for adsorption heat pump, method for producing the same, and adsorption heat pump
US9975108B2 (en) 2013-05-22 2018-05-22 Fujitsu Limited Adsorbent for adsorption heat pumps, production method thereof, and adsorption heat pump
JP2016117629A (en) * 2014-12-24 2016-06-30 トクラス株式会社 Modified active carbon, and production method of it, and filtration cartridge

Similar Documents

Publication Publication Date Title
US5503222A (en) Carousel heat exchanger for sorption cooling process
Saha et al. Solar/waste heat driven two-stage adsorption chiller: the prototype
Myat et al. Experimental investigation on the optimal performance of Zeolite–water adsorption chiller
Tatlıer et al. A novel approach to enhance heat and mass transfer in adsorption heat pumps using the zeolite–water pair
US4183227A (en) Heat pump
JP6004381B2 (en) Adsorption refrigerator
JP5772172B2 (en) Heat recovery utilization system and heat recovery utilization method
JP2001235251A (en) Adsorbing type freezer machine
Chua et al. Entropy generation analysis of two-bed, silica gel-water, non-regenerative adsorption chillers
JPH10286460A (en) Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
JP6402511B2 (en) Adsorption heat pump system and cold heat generation method
JP5187827B2 (en) Adsorption heat pump system using low-temperature waste heat
JP2005127683A (en) Heat exchanger using heat transfer material having vapor adsorption/desorption function
JPH10263394A (en) Improved adsorbent, its production and adsorption refrigerating machine
JP2004325063A (en) Aluminum heat exchanger
Meunier Thermal swing adsorption refrigeration (heat pump)
RU2294796C2 (en) Methanol vapor sorbent and a method to produce cold by means of adsorption-cooling apparatus
JPH07301469A (en) Adsorption type refrigerator
WO2024048148A1 (en) Adsorption-type refrigerator
JP2000329422A (en) Adsorption refrigeration unit
JPS6311415A (en) Cooling method
SU955990A1 (en) Apparatus for separating gas mixtures
JPH04316966A (en) Adsorption type refrigerating machine and operating method thereof
JP4300677B2 (en) Adsorption type refrigerator
JPH11281190A (en) Double adsorption refrigerating machine