JPS6311415A - Cooling method - Google Patents

Cooling method

Info

Publication number
JPS6311415A
JPS6311415A JP15345586A JP15345586A JPS6311415A JP S6311415 A JPS6311415 A JP S6311415A JP 15345586 A JP15345586 A JP 15345586A JP 15345586 A JP15345586 A JP 15345586A JP S6311415 A JPS6311415 A JP S6311415A
Authority
JP
Japan
Prior art keywords
water
zeolite
steam
heat
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15345586A
Other languages
Japanese (ja)
Other versions
JPH0121005B2 (en
Inventor
Hiroshi Iizuka
弘 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP15345586A priority Critical patent/JPS6311415A/en
Publication of JPS6311415A publication Critical patent/JPS6311415A/en
Publication of JPH0121005B2 publication Critical patent/JPH0121005B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3202Cooling devices using evaporation, i.e. not including a compressor, e.g. involving fuel or water evaporation

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To avoid the need of a compressor driven by an engine by generating steam by heating the compound consisting of water and zeolite and allowing said steam to condense and liquefy and then cooling a cooled substance by the evaporation heat in the case when water changes to steam. CONSTITUTION:A rotor 1 in which the compound consisting of water and zeolite is accommodated is revolved to execute heat exchange. In the rotor 1, a plurality of sealed containers 2 are arranged radially around the center shaft of the rotor 1. The sectional surface of each sealed container 2 is divided into an outer peripheral part 2a which serves as an absorption and desorption part and a center part 2b which serves as a condensation and evaporation part. A shaped body 3 consisting of water and zeolite is arranged on the outer peripheral part 2a, and a water supplying member 4 is arranged in the center part 2b. Therefore, steam is generated by heating the shaped body 3, and said steam is condensed and liquefied by the water supplying member 4, and the condensation heat is discharged outside. Further, the water in the water supplying member 4 is evaporated, and the steam is adsorbed again into the shaped member 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、たとえば自動車内にて、コンプレッサを用い
なくても自動車用エンジンで発生する廃熱を熱源として
水とゼオライトの化合物の性質を利用して冷房すること
のできる冷房方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention utilizes the properties of a compound of water and zeolite as a heat source, for example in a car, by using waste heat generated by an automobile engine as a heat source without using a compressor. The present invention relates to a cooling method that can cool the room.

〔従来の技術〕[Conventional technology]

従来、自動車内にてその冷房を行なう方法としては1次
に示すような方法が知られている(自動車の熱管理入門
、爪溝編著、山海堂発行参照)。
Conventionally, the following method is known as a method for cooling the inside of an automobile (see Introduction to Automotive Thermal Management, edited by Tsumezo, published by Sankaido).

■まず、エンジン部に取り付けられたVベルトで駆動さ
れるコンプレッサがエバポレータから入ってきた冷媒を
高圧縮し、このように圧縮された冷媒はコンデンサ(ラ
ジェータ)に送られる。
■First, a compressor driven by a V-belt attached to the engine highly compresses the refrigerant coming in from the evaporator, and the thus compressed refrigerant is sent to the condenser (radiator).

■次に、コンデンサでは、前記コンプレッサから送られ
てきた冷媒が冷却されて液化する。
(2) Next, in the condenser, the refrigerant sent from the compressor is cooled and liquefied.

■さらに、液化した冷媒はエバポレータに送られて車内
の空気から気化熱を奪い、冷媒自体は気体となり車室内
は冷却される。
■Furthermore, the liquefied refrigerant is sent to the evaporator, which absorbs the heat of vaporization from the air inside the car, turning the refrigerant itself into a gas and cooling the inside of the car.

■そして、このように気体状となった冷媒は、前記コン
プレッサに送られて、再び前記■から■までの工程が繰
り返えされる。
(2) Then, the refrigerant thus turned into a gas is sent to the compressor, and the steps from (1) to (2) are repeated again.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような従来の方法を採用する自動車の冷房
方法では、コンプレッサをエンジン動力によって駆動し
ているため、 ■冷房時のエンジン負荷が増大し、燃料消費量が増大し
たり、加速走行性が悪くなる。
However, in these conventional methods of cooling automobiles, the compressor is driven by engine power, which increases the engine load during cooling, increases fuel consumption, and impairs acceleration performance. Deteriorate.

■エンジンの低速回転時や停止時には、冷房ができなく
なるなどの点で問題があった。
■There was a problem in that air conditioning was not possible when the engine was running at low speed or when it was stopped.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、このような点に鑑みて、水がゼオライトに吸
着する際の発熱反応と、ゼオライトから水が脱着する際
の吸熱反応が可逆的に起こることに着目し、この反応を
利用して完成するに至ったものである。
In view of these points, the present invention focuses on the fact that an exothermic reaction when water is adsorbed to zeolite and an endothermic reaction when water is desorbed from zeolite occur reversibly, and utilizes this reaction. It has been completed.

ゼオライトは、それが有する結晶水が他の鉱物に比して
著しく多く、沸石とも称されているように、加熱される
と連続的に盛んに水蒸気を放出し、脱水後にもその結晶
構造は破壊されずに多孔質状態になり、加熱をやめその
温度が低下すると外部の水蒸気を吸着する。
Zeolite contains significantly more water of crystallization than other minerals, and as it is also called zeolite, it continuously emits water vapor when heated, and its crystal structure is destroyed even after dehydration. It becomes porous without being heated, and when it stops heating and its temperature drops, it adsorbs water vapor from the outside.

結晶ゼオライトの単位格子は、単位格子式%式%( 金属イオン、nは結晶水の分子数)を有し、m値が約2
のときA型合酸ゼオライトm値が約2.5のときX型合
成ゼオライト、m値が約3.5〜6のときY型合成ゼオ
ライトと称されるものである。
The unit cell of crystalline zeolite has the unit cell formula % (metal ion, n is the number of crystal water molecules), and the m value is approximately 2.
When the m value is about 2.5, it is called an X type synthetic zeolite, and when the m value is about 3.5 to 6, it is called a Y type synthetic zeolite.

なお、合成ゼオライトであって、その他にも各種の天然
ゼオライトが知られている。
In addition to synthetic zeolites, various natural zeolites are also known.

ゼオライトの基本構造は、硅酸塩の基礎構造であるメタ
ンのSiO4四面体であり、このSin。
The basic structure of zeolite is the SiO4 tetrahedron of methane, which is the basic structure of silicates.

四面体の頂点の酸素分子は互いに共有し、順次縮合を行
なう。また、ゼオライトはとの縮合の度合いの高いテク
トケイ酸塩に属し、メタン型構造の5in4とAQO4
四面体が結合した三次元的網目状構造を有する。この構
造にあっては、ゼオライトのO/(Si+AQ)原子比
は2であり、全体の荷電に関しては5i44’をAQ”
+に置換したことにより生ずるAΩ04四面体の電荷の
不足を補うだけのアルカリまたはアルカリ土類金属イオ
ンが結合している。
The oxygen molecules at the vertices of the tetrahedron share each other and undergo sequential condensation. In addition, zeolite belongs to tectosilicates with a high degree of condensation with methane-type structures 5in4 and AQO4.
It has a three-dimensional network structure in which tetrahedrons are connected. In this structure, the O/(Si+AQ) atomic ratio of the zeolite is 2, and the overall charge is 5i44'
Alkali or alkaline earth metal ions are bound to compensate for the lack of charge on the AΩ04 tetrahedron caused by + substitution.

この三次元的網1」状構造の網11の孔の一部に、他の
鉱物に比較して著しく大きな孔をもち、かつその空洞に
は酸素原子の環状に配列した一定の径の孔路が存在する
。この空洞あるいは孔路内に結晶水を含み、加熱または
減圧によって結晶の格子構造を破壊することなく自由に
脱離し、しかも脱水ゼオライトを再び高湿度の状態に保
持すると水を吸着してもとの状態に戻るようになる。
Some of the pores in the network 11 of this three-dimensional network 1''-like structure have pores that are significantly larger than those of other minerals, and the pores have a constant diameter in which oxygen atoms are arranged in a ring. exists. Crystal water is contained within these cavities or pores, and can be freely desorbed by heating or depressurizing without destroying the crystal lattice structure. Moreover, when the dehydrated zeolite is kept in a high humidity state again, it adsorbs water and returns to its original form. The state will return to normal.

使用できる40種以上の市販ゼオライトのうちで、3A
、4A、5A、13Xが有利なものとなっている。たと
えば4Aの場合、細孔の直径は4人であり、細孔の径の
違いにより、吸着する結晶水の量が異なるし、結晶構造
により結晶水の量が異なる。また、各種ゼオライトの結
晶構造により、熱的構造安定性も異なるため、価格等も
合わせて最も有利なゼオライトを選択し得る。
Among the more than 40 commercially available zeolites that can be used, 3A
, 4A, 5A, 13X are preferred. For example, in the case of 4A, the diameter of the pores is 4, and the amount of crystal water adsorbed differs depending on the diameter of the pores, and the amount of crystal water differs depending on the crystal structure. Furthermore, since thermal structural stability differs depending on the crystal structure of various zeolites, the most advantageous zeolite can be selected in consideration of price and other factors.

すなわち、本願発明は、水とゼオライトの化合物に熱を
供給して該化合物から水を蒸発させ、該蒸発した水を凝
縮液化した後、該液体状の水が気体状の水蒸気になる際
に必要とする気化熱によって被冷却物を冷却することを
特徴とするものである。
That is, the present invention supplies heat to a compound of water and zeolite to evaporate water from the compound, and after condensing and liquefying the evaporated water, the liquid water becomes gaseous water vapor. It is characterized by cooling the object to be cooled using the heat of vaporization.

〔作用〕[Effect]

このようにすれば、エンジン動力によって駆動させなけ
ればならないコンプレッサを必要とすることがなくなる
ことから、エンジン側の悪影響を除くことができ、また
、エンジンの状態によって冷房の状態が変化するという
ようなことはなくなる。
In this way, there is no need for a compressor that must be driven by engine power, so it is possible to eliminate the negative effects of the engine, and it also eliminates the need for a compressor that must be driven by engine power. That will no longer be the case.

〔実施例〕〔Example〕

以下、本発明による冷房方法の一実施例を図面を用いて
説明する。
An embodiment of the cooling method according to the present invention will be described below with reference to the drawings.

まず、ゼオライ1−として4A型合成ゼオライトを用い
た場合を説明する。4A型合成ゼオライトの水分吸着量
(100gのゼオライトに対してのwt%)に対しての
温度、圧力変化を第4図に示す。
First, the case where 4A type synthetic zeolite is used as zeolite 1- will be explained. FIG. 4 shows the temperature and pressure changes with respect to the water adsorption amount (wt% relative to 100 g of zeolite) of the 4A type synthetic zeolite.

このような特性に対して、実際の冷房運転温度、圧力を
第2図に示す。第5図からも明らかなように、図中A点
で、水分を多く吸着したゼオライト(100gのゼオラ
イ1−に約16.5vt%の水分)を熱源により加熱し
、図中B点に至るまで水蒸気を追い出し、水蒸気は図中
E点の温度80℃で凝縮される。図中B点で水蒸気量的
5 、9 vt%のゼオライトは外気により冷却され、
図中C点で前記E点で凝縮液化された水を吸着し、一方
、水は図中F点すなわち約5℃で蒸発し、その蒸発潜熱
分だけ被冷却物を冷却する。水蒸気を吸着して水分量的
16.5wt%になったゼオライトは(図中り点)は加
熱源により加熱され図中A点に戻り、再び熱源より加熱
され水蒸気を脱着し図中B点に行きサイクルは継続する
Fig. 2 shows the actual cooling operation temperature and pressure with respect to these characteristics. As is clear from Fig. 5, at point A in the figure, zeolite that has adsorbed a large amount of water (approximately 16.5 vt% water in 100 g of zeolite 1-) is heated by a heat source until it reaches point B in the figure. The water vapor is expelled and condensed at a temperature of 80°C at point E in the figure. At point B in the figure, the zeolite with a water vapor content of 5.9 vt% is cooled by the outside air.
At point C in the figure, the water condensed and liquefied at point E is adsorbed, and on the other hand, the water evaporates at point F in the figure, that is, about 5° C., and the object to be cooled is cooled by the latent heat of evaporation. The zeolite, which adsorbs water vapor and has a water content of 16.5 wt% (dotted point in the figure), is heated by a heat source and returns to point A in the figure, then heated again by the heat source, desorbs water vapor, and returns to point B in the figure. The going cycle continues.

したがって、4A型合成ゼオライトの場合、このように
約280℃以上の加熱源と熱を棄てる外気があれば、水
とゼオライトの化合物によって冷房が達成できることに
なる。
Therefore, in the case of type 4A synthetic zeolite, if there is a heat source of about 280° C. or higher and outside air that discards the heat, cooling can be achieved by a compound of water and zeolite.

なお、第5図に示すサイクルは一例であり、図中A、B
点間の間隔すなわち作動する水冷媒の運転幅を変えても
同様の効果を奏する。
Note that the cycle shown in FIG. 5 is an example, and the cycles shown in FIG.
A similar effect can be obtained by changing the interval between points, that is, the operating width of the water refrigerant.

次に、上述した冷房方法の具体的な説明をする。Next, the above-mentioned cooling method will be specifically explained.

一般に市販されている回転式除湿材の原理と同じように
、駆動装置によってロータを回転することにより、その
内部の水とゼオライトの化合物を入れた脱着再生部分と
、それと空間的に連結された水蒸気の凝縮部分とで、そ
れぞれ水の脱着反応および凝縮反応を起こなわせる。ま
た、ロータを回転させることで逆過程の吸着、蒸発反応
を起こさせ、元の状態である水とゼオライトの化合物と
に戻し、再びロータを回転させ最初の脱着、凝縮過程の
位置で脱着、凝縮反応を起こさせる。このようにしてロ
ータを回転させ連続的運転ができることになる。
Similar to the principle of commercially available rotary dehumidifiers, by rotating the rotor using a driving device, a desorption/regeneration section containing a compound of water and zeolite is created, and water vapor is spatially connected to the desorption/regeneration section. The desorption reaction and condensation reaction of water occur respectively. In addition, by rotating the rotor, a reverse process of adsorption and evaporation reaction occurs, returning the water and zeolite compound to the original state.The rotor is then rotated again to cause desorption and condensation at the position of the initial desorption and condensation process. cause a reaction. In this way, the rotor can be rotated for continuous operation.

第3図にその回転ロータの熱の流れの模式図を示す。水
とゼオライトの化合物の入ったロータ1が回転し、熱源
からの入熱、外気への放電及び被冷却物からの入熱は直
接空気媒体を通じて熱交換される。ロータは、第3図の
位置で、熱源からロータの上半分の一部の更に外周部に
熱が供給され。
FIG. 3 shows a schematic diagram of the flow of heat in the rotating rotor. A rotor 1 containing a compound of water and zeolite rotates, and heat input from a heat source, discharge to the outside air, and heat input from an object to be cooled are exchanged directly through an air medium. When the rotor is in the position shown in FIG. 3, heat is supplied from the heat source to the outer periphery of a portion of the upper half of the rotor.

他の熱の出入も第3図に示されるような位置で行なわれ
るようになっている。ロータ1の内部は。
Other heat inputs and outputs also take place at locations as shown in FIG. Inside of rotor 1.

その構造が第1図に示すように、図中斜線に示した独立
の密閉容器2が複数個ロータの中心軸の回りに放射状に
配置されている。この各密閉容器2の間隙には、熱交換
される空気媒体が通過できるようになっており、前記密
閉容器1内の水、および水とゼオライトの化合物と熱交
換されるようになっている。
As its structure is shown in FIG. 1, a plurality of independent closed containers 2 shown by diagonal lines in the figure are arranged radially around the central axis of the rotor. An air medium to be heat exchanged is allowed to pass through the gap between each of the closed containers 2, and heat is exchanged with the water and the compound of water and zeolite in the closed container 1.

前記各密閉容器2の断面は、第2図に示すように、ロー
タ1内に配置させた際において、脱着−吸着部分となる
外周部2aと、凝縮−蒸発部分となる中心部2bとに区
分されている。前記外周部2aにあっては、水とゼオラ
イトの成形体3を熱交換が容易なように容器壁に密着さ
せ、その各壁間には水蒸気が通過できる空間が設けられ
ているとともに、前記中心部2b内には水を保持する布
、スポンジ等の吸水剤4が収納されている。
As shown in FIG. 2, the cross section of each sealed container 2 is divided into an outer peripheral part 2a which becomes a desorption/adsorption part and a central part 2b which becomes a condensation/evaporation part when placed inside the rotor 1. has been done. In the outer peripheral part 2a, the molded body 3 of water and zeolite is brought into close contact with the container wall for easy heat exchange, and a space is provided between each wall through which water vapor can pass, and the center A water-absorbing agent 4 such as cloth or sponge that retains water is housed in the portion 2b.

このようにすることによって、熱源により、水とゼオラ
イトの成形体3が加熱されて水蒸気が該成形体3から発
生し凝縮剤となる吸水剤4で凝縮液化され、これにより
発生する凝縮熱は外気に放熱される。そして、ロータ1
が回転することによって吸水剤4中の水は被冷却物から
熱を奪い蒸発気化し、該水蒸気は水とビオライト成形体
3に再び吸着され、その吸着熱は外気に放出されるよう
になる。したがって、この操作の繰り返しによって連続
運転ができるようになる。
By doing this, the molded body 3 of water and zeolite is heated by the heat source, water vapor is generated from the molded body 3, and is condensed and liquefied by the water-absorbing agent 4, which serves as a condensing agent. Heat is radiated to And rotor 1
As the water absorbing agent 4 rotates, the water in the water absorbing agent 4 removes heat from the object to be cooled and evaporates, and the water vapor is adsorbed again by the water and the biolite molded body 3, and the heat of adsorption is released to the outside air. Therefore, continuous operation can be achieved by repeating this operation.

なお、上述した例では、水とゼオライトの化合物の入っ
た容器を回転させることによって、連続サイクルを構成
できるようにしたものであるが、熱交換する空気熱媒体
自身の進路を連続的に変え=8− るようにしても同様の効果を奏する。
In the above example, a continuous cycle can be constructed by rotating the container containing the water and zeolite compound. 8- The same effect can be obtained even if it is made as follows.

上述した実施例では、水とゼオライトの化合物の入った
容器は真空脱気され、気体として水蒸気のみが封入され
たものである。したがって、ゼオライトへの水蒸気の吸
着速度、脱着速度を速めることができるようになる。
In the embodiments described above, the container containing the water and zeolite compound was vacuum degassed, and only water vapor was enclosed as a gas. Therefore, the rate of adsorption and desorption of water vapor to zeolite can be increased.

また、上述した実施例では、水とゼオライトの化合物か
らの水の脱着熱はほぼ1 、050 kcal/kg。
Further, in the above example, the heat of desorption of water from the compound of water and zeolite is approximately 1,050 kcal/kg.

水の蒸発潜熱はほぼ600kcal/kgとなり、顕熱
分を除いた成績係数すなわち、水の蒸発潜熱/脱着熱は
ほぼ0.57であるため、特に自動車に塔載して車内の
冷房を行なうのに有利となる効果を奏する。この場合、
熱源としてエンジンの廃熱を有効利用することが可能と
なる。
The latent heat of vaporization of water is approximately 600 kcal/kg, and the coefficient of performance excluding the sensible heat component, that is, the latent heat of vaporization/desorption heat of water, is approximately 0.57, so it is especially recommended to be installed in a car to cool the inside of the car. It has an advantageous effect. in this case,
It becomes possible to effectively use engine waste heat as a heat source.

〔発明の効果〕〔Effect of the invention〕

以上説明したことから明らかなように、本発明による冷
房方法によれば、エンジン動力によって駆動させなけれ
ばならないコンプレッサを必要とすることがなくなるこ
とから、エンジン側の悪影響を除くことができ、またエ
ンジンの状態によって冷房の状態が変化するというよう
なことはなくなる。
As is clear from the above explanation, according to the cooling method of the present invention, there is no need for a compressor that must be driven by engine power. The state of the air conditioner will no longer change depending on the state of the air conditioner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による冷房方法の一実施例に用発明に用
いられるゼオライトの水分吸着量に対しての温度、圧力
変化を示すグラフ、第5図は第十図に示す特性に対して
実際の冷房運転温度、圧力を示すグラフである。 1・・・ロータ、2・・・密閉容器、 3・・・ゼオライト成形体、4・・・吸水剤。
Figure 1 is a graph showing temperature and pressure changes with respect to the water adsorption amount of zeolite used in an embodiment of the cooling method according to the present invention, and Figure 5 is a graph showing the actual characteristics shown in Figure 10. It is a graph showing the cooling operation temperature and pressure of. DESCRIPTION OF SYMBOLS 1... Rotor, 2... Airtight container, 3... Zeolite molded body, 4... Water absorbing agent.

Claims (1)

【特許請求の範囲】[Claims] (1)水とゼオライトの化合物に熱を供給して該化合物
から水を蒸発させ、該蒸発した水を凝縮液化した後、該
液体状の水が気体状の水蒸気になる際に必要とする気化
熱によって被冷却物を冷却することを特徴とする冷房方
法。
(1) Heat is supplied to a compound of water and zeolite to evaporate water from the compound, the evaporated water is condensed and liquefied, and then the vaporization required when the liquid water becomes gaseous water vapor A cooling method characterized by cooling an object to be cooled using heat.
JP15345586A 1986-06-30 1986-06-30 Cooling method Granted JPS6311415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15345586A JPS6311415A (en) 1986-06-30 1986-06-30 Cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15345586A JPS6311415A (en) 1986-06-30 1986-06-30 Cooling method

Publications (2)

Publication Number Publication Date
JPS6311415A true JPS6311415A (en) 1988-01-18
JPH0121005B2 JPH0121005B2 (en) 1989-04-19

Family

ID=15562929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15345586A Granted JPS6311415A (en) 1986-06-30 1986-06-30 Cooling method

Country Status (1)

Country Link
JP (1) JPS6311415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208461A (en) * 1989-02-06 1990-08-20 Technol Res Assoc Super Heat Pump Energ Accum Syst Rotary chemical heat pump
JPH035678A (en) * 1989-06-01 1991-01-11 Matsushita Electric Ind Co Ltd Thermal driving type heat pump device
GB2422652A (en) * 2005-01-26 2006-08-02 Danisco Steam compressor and process for producing steam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427351A (en) * 1987-04-08 1989-01-30 Sekisui Chemical Co Ltd Telephone system with interruption function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427351A (en) * 1987-04-08 1989-01-30 Sekisui Chemical Co Ltd Telephone system with interruption function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208461A (en) * 1989-02-06 1990-08-20 Technol Res Assoc Super Heat Pump Energ Accum Syst Rotary chemical heat pump
JPH035678A (en) * 1989-06-01 1991-01-11 Matsushita Electric Ind Co Ltd Thermal driving type heat pump device
GB2422652A (en) * 2005-01-26 2006-08-02 Danisco Steam compressor and process for producing steam
GB2422652B (en) * 2005-01-26 2009-09-23 Danisco Process for producing steam and a steam compressor

Also Published As

Publication number Publication date
JPH0121005B2 (en) 1989-04-19

Similar Documents

Publication Publication Date Title
Gordeeva et al. Adsorptive heat storage and amplification: New cycles and adsorbents
Demir et al. A review on adsorption heat pump: Problems and solutions
Saha et al. Solar/waste heat driven two-stage adsorption chiller: the prototype
Aristov New family of solid sorbents for adsorptive cooling: Material scientist approach
US5503222A (en) Carousel heat exchanger for sorption cooling process
US4574874A (en) Chemisorption air conditioner
Grossman et al. Solar cooling and air conditioning
JPH0531077B2 (en)
JP5772172B2 (en) Heat recovery utilization system and heat recovery utilization method
Tchernev Natural zeolites in solar energy heating, cooling, and energy storage
JP5652189B2 (en) Adsorption heat pump
JP3358460B2 (en) Chemical storage air intake cooling system
JPS6311415A (en) Cooling method
Aristov et al. New composite sorbents of water and ammonia for chemical and adsorption heat pumps
RU2294796C2 (en) Methanol vapor sorbent and a method to produce cold by means of adsorption-cooling apparatus
Jani et al. A Progressive Review on Solid Desiccant Cooling Systems
JPH07301469A (en) Adsorption type refrigerator
Aristov Selective water sorbents, a new family of materials for adsorption cooling/heating: State of the art
JP2011191032A (en) Compression refrigerating cycle
JPH10263394A (en) Improved adsorbent, its production and adsorption refrigerating machine
JPH11281190A (en) Double adsorption refrigerating machine
JPH11223416A (en) Refrigerating device
Kian Jon et al. Adsorbent-Coated Heat and Mass Exchanger
JPH0658643A (en) Adsorptive type freezer
JP2000035256A (en) Adsorption heat pump