JP2011191032A - Compression refrigerating cycle - Google Patents

Compression refrigerating cycle Download PDF

Info

Publication number
JP2011191032A
JP2011191032A JP2010059409A JP2010059409A JP2011191032A JP 2011191032 A JP2011191032 A JP 2011191032A JP 2010059409 A JP2010059409 A JP 2010059409A JP 2010059409 A JP2010059409 A JP 2010059409A JP 2011191032 A JP2011191032 A JP 2011191032A
Authority
JP
Japan
Prior art keywords
compressor
refrigeration cycle
pressure
refrigerant
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010059409A
Other languages
Japanese (ja)
Inventor
Ryuichiro Kawakami
▲隆▼一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010059409A priority Critical patent/JP2011191032A/en
Publication of JP2011191032A publication Critical patent/JP2011191032A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce compression work done by a compressor and inexpensively improve efficiency of an refrigerating cycle. <P>SOLUTION: This compression refrigerating cycle is constituted by interconnecting an evaporator 1, the compressor 2, a condenser 3 and an expansion valve 4 via refrigerant piping 5. A cold taking-out pipe 6 is connected to the evaporator 1 to take out cold by evaporation latent heat in the evaporator 1. First and second adsorbers 8, 9 filled with an adsorbent are connected to a portion in the middle of the refrigerant piping 5 interconnecting the compressor 2 to the condenser 3, via a four-way change-over valve 7 as a switching means. Hot water piping 10 is connected to the first and second adsorbers 8, 9 and adsorbed refrigerant gas is desorbed by heating. Thus, refrigerant gas compressed by the compressor 2 is adsorbed by the first adsorber 8 and the pressure of the refrigerant gas on the outlet side of the compressor 2 is reduced. In the second adsorber 9, the adsorbed refrigerant gas is heated for desorption and is supplied to the condenser 3. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、冷媒液を蒸発気化する蒸発器と、その蒸発器で気化した冷媒ガスを圧縮する圧縮機と、その圧縮機で圧縮された冷媒ガスを凝縮液化する凝縮器と、その凝縮器で液化された冷媒液を低温低圧化する低温低圧化機構とを備え、蒸発器、圧縮機、凝縮器および低温低圧化機構をその順に冷媒を流すように冷媒配管を介して接続し、かつ、蒸発器での蒸発潜熱による冷熱を取り出すように構成した圧縮冷凍サイクルに関する。   The present invention includes an evaporator for evaporating a refrigerant liquid, a compressor for compressing a refrigerant gas evaporated by the evaporator, a condenser for condensing and liquefying the refrigerant gas compressed by the compressor, and the condenser. A low-temperature and low-pressure mechanism that lowers the temperature of the liquefied refrigerant liquid at low temperatures and low pressures. The present invention relates to a compression refrigeration cycle configured to take out cold heat due to latent heat of vaporization in a vessel.

この種の圧縮冷凍サイクルとしては、従来、圧縮機と凝縮器として機能する熱源側熱交換器と減圧機構と蒸発器として機能する利用側熱交換器とを、流路により接続して構成されている。そして、圧縮機で圧縮された高温・高圧の冷媒蒸気が、熱源側熱交換器(凝縮器)に導入され、ここで液冷媒とされるとともに、この液冷媒は減圧機構において減圧された後、利用側熱交換器(蒸発器)に導入され、ここで蒸発して低温・低圧の冷媒蒸気となり、さらに圧縮機に吸入されることで圧縮式の冷凍サイクルが構成される。   Conventionally, this type of compression refrigeration cycle is configured by connecting a heat source side heat exchanger functioning as a compressor and a condenser, a decompression mechanism, and a use side heat exchanger functioning as an evaporator through a flow path. Yes. Then, the high-temperature / high-pressure refrigerant vapor compressed by the compressor is introduced into the heat source side heat exchanger (condenser), where it is converted into a liquid refrigerant, and the liquid refrigerant is depressurized by the decompression mechanism, The refrigerant is introduced into a use side heat exchanger (evaporator), where it evaporates into a low-temperature / low-pressure refrigerant vapor, which is then sucked into the compressor to form a compression refrigeration cycle.

また、凝縮器と減圧機構とを接続する流路に、吸収式冷凍システムの蒸発器を介在させ、利用側熱交換器(蒸発器)に導入される液冷媒を、吸収式冷凍システムで発生した冷熱で過冷却するようになっている。
吸収式冷凍システムは、発生器と凝縮器と蒸発器と吸収器と溶液ポンプと溶液熱交換器とを備えて構成されている。
この吸収式冷凍システムは、発生器を加熱することで駆動される熱駆動式で構成されている。(特許文献1、図1参照)。
In addition, an absorption refrigeration system evaporator was interposed in the flow path connecting the condenser and the decompression mechanism, and liquid refrigerant introduced into the use side heat exchanger (evaporator) was generated in the absorption refrigeration system. Supercooled with cold heat.
The absorption refrigeration system includes a generator, a condenser, an evaporator, an absorber, a solution pump, and a solution heat exchanger.
This absorption refrigeration system is configured by a heat drive system that is driven by heating a generator. (See Patent Document 1 and FIG. 1).

特開平11−223412号公報Japanese Patent Laid-Open No. 11-223412

上記従来例によれば、通常の圧縮冷凍サイクルの場合におけるよりも、凝縮した液冷媒を過冷却することにより、冷凍能力を増加させて冷凍サイクルの効率を向上することができる。
すなわち、図5の(a)の通常の圧縮冷凍サイクル図に示される、圧縮工程(A→B)、凝縮工程(B→C)、断熱膨張行程(C→D)、蒸発工程(D→A)に対して、図5の(b)の従来例の過冷却を行う圧縮冷凍サイクル図に示されるように、(C→C´)分だけ凝縮工程を増大し(B→C´)、冷凍能力を増加できるのである。
According to the above-described conventional example, it is possible to increase the refrigeration capacity and improve the efficiency of the refrigeration cycle by supercooling the condensed liquid refrigerant than in the case of the normal compression refrigeration cycle.
That is, the compression process (A → B), the condensation process (B → C), the adiabatic expansion process (C → D), and the evaporation process (D → A) shown in the normal compression refrigeration cycle diagram of FIG. ), The condensing step is increased by (C → C ′) (B → C ′) as shown in the compression refrigeration cycle diagram in FIG. You can increase your ability.

しかしながら、上述従来例のものでは、圧縮冷凍サイクルの冷媒を冷却する冷熱を得るために、別途新たな冷凍システムが必要で、その吸収式冷凍システムにおいて、発生器、凝縮器、蒸発器、吸収器、溶液ポンプおよび溶液熱交換器などが必要になり、圧縮冷凍サイクルを構成する機器全体の構造が複雑になり、冷凍サイクルの効率向上の効果に比べて高価になる不都合があった。
また、圧縮冷凍サイクルの冷媒を冷却する冷熱を得るために、吸着式冷凍システムを用いる場合もあるが、吸収式冷凍システムの場合と同様に、圧縮冷凍サイクルを構成する機器全体の構造が複雑になり、冷凍サイクルの効率向上の効果に比べて高価になる不都合があった。
However, in the above-described conventional example, a separate new refrigeration system is required to obtain cold heat for cooling the refrigerant in the compression refrigeration cycle. In the absorption refrigeration system, a generator, a condenser, an evaporator, and an absorber In addition, a solution pump, a solution heat exchanger, and the like are required, the structure of the entire apparatus constituting the compression refrigeration cycle is complicated, and there is a disadvantage that the cost is higher than the effect of improving the efficiency of the refrigeration cycle.
In addition, an adsorption refrigeration system may be used to obtain cold heat for cooling the refrigerant in the compression refrigeration cycle. However, as in the case of the absorption refrigeration system, the structure of the entire equipment constituting the compression refrigeration cycle is complicated. Therefore, there is a disadvantage that the cost is higher than the effect of improving the efficiency of the refrigeration cycle.

本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、圧縮機の圧縮仕事量を減少し、冷凍サイクルの効率を安価にして向上できるようにすることを目的とし、請求項2に係る発明は、圧縮機の圧縮仕事量を効率良く減少できるようにすることを目的とし、請求項3に係る発明は、圧縮機の圧縮仕事量を一層減少できるようにすることを目的とし、請求項4に係る発明は、冷凍サイクルの効率を一層安価に向上できるようにすることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claim 1 is to reduce the compression work of the compressor and to improve the efficiency of the refrigeration cycle at a low cost. Therefore, the invention according to claim 2 aims to make it possible to efficiently reduce the compression work of the compressor, and the invention according to claim 3 makes it possible to further reduce the compression work of the compressor. Accordingly, an object of the present invention is to improve the efficiency of the refrigeration cycle at a lower cost.

請求項1に係る発明は、上述のような目的を達成するために、
冷媒液を蒸発気化する蒸発器と、
前記蒸発器で気化した冷媒ガスを圧縮する圧縮機と、
前記圧縮機で圧縮された冷媒ガスを凝縮液化する凝縮器と、
前記凝縮器で液化された冷媒液を低温低圧化する低温低圧化機構とを備え、
前記蒸発器、前記圧縮機、前記凝縮器および前記低温低圧化機構をその順に冷媒を流すように冷媒配管を介して接続し、かつ、前記蒸発器での蒸発潜熱による冷熱を取り出すように構成した圧縮冷凍サイクルにおいて
前記圧縮機と前記凝縮器とを接続する冷媒配管に、前記圧縮機で圧縮された高温高圧の冷媒ガスを吸着または吸収により受け入れて前記圧縮機の出口側での冷媒ガスの圧力を低下する圧力低下手段を設けて構成する。
In order to achieve the above-described object, the invention according to claim 1
An evaporator for evaporating the refrigerant liquid;
A compressor for compressing the refrigerant gas vaporized in the evaporator;
A condenser for condensing and liquefying the refrigerant gas compressed by the compressor;
A low-temperature and low-pressure mechanism for reducing the temperature and pressure of the refrigerant liquid liquefied by the condenser,
The evaporator, the compressor, the condenser, and the low-temperature and low-pressure mechanism are connected via a refrigerant pipe so that the refrigerant flows in that order, and the cooling heat due to latent heat of evaporation in the evaporator is taken out. In the compression refrigeration cycle, the refrigerant pipe connecting the compressor and the condenser receives the high-temperature and high-pressure refrigerant gas compressed by the compressor by adsorption or absorption, and the pressure of the refrigerant gas on the outlet side of the compressor A pressure reducing means for reducing the pressure is provided.

(作用・効果)
請求項1に係る発明の圧縮冷凍サイクルの構成によれば、圧力低下手段によって、圧縮機で圧縮された高温高圧の冷媒ガスを吸着または吸収により受け入れ、圧縮機の出口側での冷媒ガスの圧力を低下することができる。
したがって、冷媒ガスを吸着または吸収により受け入れる圧力低下手段を設けるだけでありながら、圧縮機の出口側での冷媒ガスの圧力を低下して圧縮機の圧縮仕事量を減少できるから、従来の凝縮した液冷媒を過冷却する冷熱を得るために、発生器、凝縮器、蒸発器、吸収器、溶液ポンプおよび溶液熱交換器などを必要とする吸収式冷凍システムなどを設ける場合に比べて、圧縮冷凍サイクルを構成する機器全体の構造を簡略化でき、冷凍サイクルの効率を安価にして向上できる。
(Action / Effect)
According to the configuration of the compression refrigeration cycle of the invention according to claim 1, the pressure reducing means accepts the high-temperature and high-pressure refrigerant gas compressed by the compressor by adsorption or absorption, and the refrigerant gas pressure on the outlet side of the compressor Can be reduced.
Therefore, it is possible to reduce the compression work of the compressor by reducing the pressure of the refrigerant gas on the outlet side of the compressor while only providing a pressure reducing means for receiving the refrigerant gas by adsorption or absorption. Compressed refrigeration compared to the case where an absorption refrigeration system that requires generators, condensers, evaporators, absorbers, solution pumps, solution heat exchangers, etc. is provided to obtain cold heat that supercools the liquid refrigerant. The structure of the entire equipment constituting the cycle can be simplified, and the efficiency of the refrigeration cycle can be reduced and improved.

また、請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載の圧縮冷凍サイクルにおいて、
圧力低下手段を、
冷媒ガスの圧力を低下する圧力低下剤を収容した容器の複数個を冷媒配管に並列接続し、圧縮機からの冷媒ガスを受け入れる状態と受け入れた冷媒ガスを凝縮器側に排出する状態とに切替える切替手段を備えて構成する。
In order to achieve the above-described object, the invention according to claim 2
In the compression refrigeration cycle according to claim 1,
Pressure drop means,
A plurality of containers containing pressure reducing agents for reducing the pressure of the refrigerant gas are connected in parallel to the refrigerant pipe, and the state is switched between accepting the refrigerant gas from the compressor and discharging the accepted refrigerant gas to the condenser side. It comprises a switching means.

(作用・効果)
請求項2に係る発明の圧縮冷凍サイクルの構成によれば、ひとつの圧力低下手段で圧縮機からの冷媒ガスを受け入れている間に、他の圧力低下手段で受け入れた冷媒ガスを凝縮器側に排出することができ、連続的に圧縮機の出口側での冷媒ガスの圧力を低下することができる。
したがって、冷媒ガスの圧力低下手段への受け入れと冷媒ガスの圧力低下手段からの排出とを間歇的に行う場合に比べて、圧縮機の圧縮仕事量を効率良く減少でき、冷凍サイクルの効率を一層向上できる。
(Action / Effect)
According to the configuration of the compression refrigeration cycle of the invention according to claim 2, while the refrigerant gas from the compressor is received by one pressure reducing means, the refrigerant gas received by the other pressure reducing means is transferred to the condenser side. The refrigerant gas can be discharged and the pressure of the refrigerant gas on the outlet side of the compressor can be continuously reduced.
Therefore, the compression work of the compressor can be efficiently reduced and the efficiency of the refrigeration cycle can be further improved as compared with the case where the refrigerant gas is received into the pressure reduction means and the refrigerant gas is discharged from the pressure reduction means intermittently. Can be improved.

また、請求項3に係る発明は、前述のような目的を達成するために、
請求項1または2に記載の圧縮冷凍サイクルにおいて、
圧力低下手段に、冷媒ガスの受け入れに際して発生する熱を冷却する冷却手段を付設して構成する。
In order to achieve the above-described object, the invention according to claim 3
In the compression refrigeration cycle according to claim 1 or 2,
A cooling means for cooling the heat generated when the refrigerant gas is received is attached to the pressure lowering means.

(作用・効果)
請求項3に係る発明の圧縮冷凍サイクルの構成によれば、圧力低下手段での発生熱を冷却し、圧力低下手段での圧力低下性能を高めることができる。
したがって、圧縮機の出口側での冷媒ガスの圧力をより良好に低下できるから、圧縮機の圧縮仕事量を一層減少でき、冷凍サイクルの効率を一層向上できる。
(Action / Effect)
According to the configuration of the compression refrigeration cycle of the invention according to claim 3, it is possible to cool the heat generated by the pressure reducing means and enhance the pressure reducing performance of the pressure reducing means.
Therefore, since the pressure of the refrigerant gas at the outlet side of the compressor can be reduced more favorably, the compression work of the compressor can be further reduced, and the efficiency of the refrigeration cycle can be further improved.

また、請求項4に係る発明は、前述のような目的を達成するために、
請求項1、2、3のいずれかに記載の圧縮冷凍サイクルにおいて、
圧縮機を駆動するエンジンを備え、
圧力低下手段に、冷媒ガスの排出に際して、前記エンジンからの排熱により加熱する加熱手段を付設して構成する。
In order to achieve the above-described object, the invention according to claim 4
In the compression refrigeration cycle according to any one of claims 1, 2, and 3,
With an engine that drives the compressor,
When the refrigerant gas is discharged, the pressure lowering means is provided with a heating means for heating with exhaust heat from the engine.

(作用・効果)
請求項4に係る発明の圧縮冷凍サイクルの構成によれば、圧縮機を駆動するエンジンからの排熱により、圧力低下手段から冷媒ガスを排出させることができる。
したがって、圧力低下手段からの冷媒ガスの排出に、圧縮機を駆動するエンジンからの排熱を利用するから、加熱のための別の熱源を備えずに済み、冷凍サイクルの効率を一層安価に向上できる。
(Action / Effect)
According to the configuration of the compression refrigeration cycle of the invention according to claim 4, the refrigerant gas can be discharged from the pressure reducing means by the exhaust heat from the engine that drives the compressor.
Therefore, since the exhaust heat from the engine that drives the compressor is used for the discharge of the refrigerant gas from the pressure reducing means, it is not necessary to provide another heat source for heating, and the efficiency of the refrigeration cycle is further improved at a lower cost. it can.

本発明において適用する圧力低下手段としては、圧力低下剤として吸着剤を用いて冷媒ガスを吸着する構成と、圧力低下剤として吸収剤を用いて冷媒ガスを吸収する構成とが採用できる。
吸着剤としては、活性炭、合成ゼオライト、シリカゲルのいずれか、またはそれらの複数種から成るものが使用でき、吸収剤としては、テトラエチレングリコールジメチルエーテル、水のいずれかが使用できる(請求項5)。
As the pressure lowering means applied in the present invention, a configuration for adsorbing refrigerant gas using an adsorbent as a pressure reducing agent and a configuration for absorbing refrigerant gas using an absorbent as a pressure lowering agent can be adopted.
As the adsorbent, any one of activated carbon, synthetic zeolite, silica gel, or a combination thereof can be used, and as the absorbent, either tetraethylene glycol dimethyl ether or water can be used.

また、本発明の圧縮冷凍サイクルにおいて使用する冷媒としては、ハイドロフルオロカーボン(HFC)、アンモニア(NH)、ハイドロフルオロオレフィン(HFO)、二酸化炭素(CO)、イソブタンのいずれかが使用できる(請求項6)。 Further, as the refrigerant used in the compression refrigeration cycle of the present invention, any of hydrofluorocarbon (HFC), ammonia (NH 3 ), hydrofluoroolefin (HFO), carbon dioxide (CO 2 ), and isobutane can be used (invoice) Item 6).

請求項1に係る発明の圧縮冷凍サイクルによれば、圧力低下手段によって、圧縮機で圧縮された高温高圧の冷媒ガスを吸着または吸収により受け入れ、圧縮機の出口側での冷媒ガスの圧力を低下することができる。
したがって、冷媒ガスを吸着または吸収により受け入れる圧力低下手段を設けるだけでありながら、圧縮機の出口側での冷媒ガスの圧力を低下して圧縮機の圧縮仕事量を減少できるから、従来の凝縮した液冷媒を過冷却する冷熱を得るために、発生器、凝縮器、蒸発器、吸収器、溶液ポンプおよび溶液熱交換器などを必要とする吸収式冷凍システムなどを設ける場合に比べて、圧縮冷凍サイクルを構成する機器全体の構造を簡略化でき、冷凍サイクルの効率を安価にして向上できる。
According to the compression refrigeration cycle of the first aspect of the invention, the pressure reducing means accepts the high-temperature and high-pressure refrigerant gas compressed by the compressor by adsorption or absorption, and reduces the pressure of the refrigerant gas on the outlet side of the compressor. can do.
Therefore, it is possible to reduce the compression work of the compressor by reducing the pressure of the refrigerant gas on the outlet side of the compressor while only providing a pressure reducing means for receiving the refrigerant gas by adsorption or absorption. Compressed refrigeration compared to the case where an absorption refrigeration system that requires generators, condensers, evaporators, absorbers, solution pumps, solution heat exchangers, etc. is provided to obtain cold heat that supercools the liquid refrigerant. The structure of the entire equipment constituting the cycle can be simplified, and the efficiency of the refrigeration cycle can be reduced and improved.

本発明に係る圧縮冷凍サイクルの実施例1を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 1 of the compression refrigeration cycle which concerns on this invention. 本発明の圧縮冷凍サイクル図である。It is a compression refrigeration cycle diagram of the present invention. 本発明に係る圧縮冷凍サイクルの実施例2を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 2 of the compression refrigeration cycle which concerns on this invention. 本発明に係る圧縮冷凍サイクルの実施例3を示す全体概略構成図である。It is a whole schematic block diagram which shows Example 3 of the compression refrigeration cycle which concerns on this invention. (a)は通常の圧縮冷凍サイクル図、(b)は従来例の過冷却を行う圧縮冷凍サイクル図である。(A) is a normal compression refrigeration cycle figure, (b) is a compression refrigeration cycle figure which performs the supercooling of a prior art example.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る圧縮冷凍サイクルの実施例1を示す全体概略構成図であり、ハイドロフルオロカーボン(HFC)が冷媒とされ、冷媒液を蒸発気化する蒸発器1と、蒸発器1で気化した冷媒ガスを圧縮する圧縮機2と、圧縮機2で圧縮された冷媒ガスを凝縮液化する凝縮器3と、凝縮器3で液化された冷媒液を低温低圧化する低温低圧化機構としての膨張弁4とが備えられ、蒸発器1、圧縮機2、凝縮器3および膨張弁4が、その順に冷媒を流すように冷媒配管5を介して接続されて圧縮冷凍サイクルが構成されている。
低温低圧化機構としては、膨張弁4に代えてキャピラリーチューブなどを用いても良い。
蒸発器1には、冷熱取り出し管6が接続され、蒸発器1での蒸発潜熱により、冷房、冷蔵、冷凍などのための冷熱を取り出すように構成されている。
FIG. 1 is an overall schematic configuration diagram showing a first embodiment of a compression refrigeration cycle according to the present invention, in which hydrofluorocarbon (HFC) is used as a refrigerant, and an evaporator 1 that evaporates and evaporates a refrigerant liquid. The compressor 2 that compresses the refrigerant gas, the condenser 3 that condenses and liquefies the refrigerant gas compressed by the compressor 2, and the expansion as a low-temperature and low-pressure mechanism that lowers the temperature of the refrigerant liquid liquefied by the condenser 3 The evaporator 1, the compressor 2, the condenser 3, and the expansion valve 4 are connected via a refrigerant pipe 5 so that the refrigerant flows in that order, thereby forming a compression refrigeration cycle.
As the low temperature / low pressure mechanism, a capillary tube or the like may be used instead of the expansion valve 4.
The evaporator 1 is connected to a cold heat extraction pipe 6, and is configured to extract cold heat for cooling, refrigeration, freezing, and the like by latent heat of vaporization in the evaporator 1.

圧縮機2と凝縮器3とを接続する冷媒配管5の途中箇所に、切替手段としての四路切替弁7を介して第1および第2の吸着器8,9が並列接続されている。
第1および第2の吸着器8,9それぞれは、容器内に吸着剤としての活性炭を充填して構成されている。
また、第1および第2の吸着器8,9それぞれには、エンジン排熱(エンジン冷却水の排熱や燃焼排ガスの二次利用熱)や太陽熱やゴミ処理装置の燃焼排熱などを利用して得られた温水を供給する温水配管10が接続され、第1および第2の吸着器8,9それぞれに吸着された冷媒ガスを加熱によって脱着するように構成されている。
First and second adsorbers 8 and 9 are connected in parallel through a four-way switching valve 7 as a switching means at a midpoint of the refrigerant pipe 5 that connects the compressor 2 and the condenser 3.
Each of the first and second adsorbers 8 and 9 is configured by filling activated carbon as an adsorbent in a container.
The first and second adsorbers 8 and 9 utilize engine exhaust heat (exhaust heat from engine cooling water or secondary use heat from combustion exhaust gas), solar heat, combustion exhaust heat from a waste disposal device, and the like. A hot water pipe 10 for supplying the hot water obtained in this way is connected, and the refrigerant gas adsorbed by the first and second adsorbers 8 and 9 is desorbed by heating.

上記構成により、四路切替弁7を切換え、実線で示すように、第1の吸着器8を圧縮機2側に、第2の吸着器9を凝縮器3側にそれぞれ接続し、圧縮機2で圧縮された冷媒ガスを第1の吸着器8で吸着して圧縮機2の出口側での冷媒ガスの圧力を低下し、その一方、第2の吸着器9では、そこに吸着された冷媒ガスを加熱して脱着させ、凝縮器3に供給できるようになっている。
例えば、タイマーなどで設定された2〜3分間などの所定時間経過後に、四路切替弁7を切換え、破線で示すように、第1の吸着器8を凝縮器3側に、第2の吸着器9を圧縮機2側にそれぞれ接続し、圧縮機2で圧縮された冷媒ガスを第2の吸着器9で吸着して圧縮機2の出口側での冷媒ガスの圧力を低下し、その一方、第1の吸着器8では、そこに吸着された冷媒ガスを加熱して脱着させ、凝縮器3に供給できるようになっている。上記動作を交互に繰り返すことにより、冷媒ガスの吸着と脱着を連続的に行えるようになっている。
With the above configuration, the four-way switching valve 7 is switched, and the first adsorber 8 is connected to the compressor 2 side and the second adsorber 9 is connected to the condenser 3 side, as indicated by the solid line. The refrigerant gas compressed in step 1 is adsorbed by the first adsorber 8 to reduce the pressure of the refrigerant gas on the outlet side of the compressor 2, while in the second adsorber 9, the refrigerant adsorbed there The gas is heated and desorbed, and can be supplied to the condenser 3.
For example, after a predetermined time such as 2 to 3 minutes set by a timer or the like has elapsed, the four-way switching valve 7 is switched, and the first adsorber 8 is placed on the condenser 3 side as shown by the broken line, and the second adsorption is performed. The compressor 9 is connected to the compressor 2 side, and the refrigerant gas compressed by the compressor 2 is adsorbed by the second adsorber 9 to reduce the pressure of the refrigerant gas on the outlet side of the compressor 2. In the first adsorber 8, the refrigerant gas adsorbed thereon can be heated and desorbed and supplied to the condenser 3. By alternately repeating the above operation, the refrigerant gas can be continuously adsorbed and desorbed.

上記処理の結果、図2の本発明の圧縮冷凍サイクル図に示すように、圧縮機2で圧縮された冷媒ガスを第1の吸着器8または第2の吸着器9で吸着することにより、圧縮機2の出口側での冷媒ガスの圧力を低下させ、圧縮機2の圧縮仕事量を減少(減少仕事量をWで示している)し、冷凍サイクルの効率を向上できるようになっている。   As a result of the above processing, the refrigerant gas compressed by the compressor 2 is adsorbed by the first adsorber 8 or the second adsorber 9 as shown in the compression refrigeration cycle diagram of the present invention in FIG. The pressure of the refrigerant gas at the outlet side of the machine 2 is reduced, the compression work of the compressor 2 is reduced (the reduced work is indicated by W), and the efficiency of the refrigeration cycle can be improved.

図3は、本発明に係る圧縮冷凍サイクルの実施例2を示す全体概略構成図であり、実施例1と異なるところは次の通りである。
すなわち、圧縮機2にエンジン11が連動連結され、そのエンジン11に、外気との熱交換によって内部を流れる水を冷却する放熱用熱交換器12と冷却水ポンプ13とを介装した冷却水供給管14が接続されるとともに、エンジン冷却後の高温冷却水を取り出す冷却水排出管15が接続されている。
FIG. 3 is an overall schematic configuration diagram showing a second embodiment of the compression refrigeration cycle according to the present invention. The differences from the first embodiment are as follows.
That is, an engine 11 is linked and connected to the compressor 2, and a cooling water supply is provided to the engine 11 through a heat-dissipating heat exchanger 12 and a cooling water pump 13 for cooling the water flowing inside through heat exchange with the outside air. A pipe 14 is connected, and a cooling water discharge pipe 15 for taking out high-temperature cooling water after engine cooling is connected.

第1および第2の吸着器8,9それぞれの温水配管10の一端側に、二方弁16と第1の中間配管17を介して冷却水排出管15が接続されるとともに、温水配管10の他端側に第2の中間配管18を介して冷却水供給管14が接続されている。
二方弁16と四路切替弁7とが、圧縮機2からの冷媒ガスが供給されていない側の吸着器(図3では、第2の吸着器9)にエンジン冷却後の高温冷却水を供給するように連動して切替られるように構成されている。
A cooling water discharge pipe 15 is connected to one end of each hot water pipe 10 of each of the first and second adsorbers 8 and 9 via a two-way valve 16 and a first intermediate pipe 17. A cooling water supply pipe 14 is connected to the other end side via a second intermediate pipe 18.
The two-way valve 16 and the four-way switching valve 7 supply high-temperature cooling water after engine cooling to the adsorber (the second adsorber 9 in FIG. 3) on the side where the refrigerant gas from the compressor 2 is not supplied. It is configured to be switched in conjunction with the supply.

上記構成により、エンジン冷却後の高温冷却水を第1の吸着器8または第2の吸着器9のいずれか一方に供給するように、すなわち、エンジン排熱を利用して、第1の吸着器8または第2の吸着器9に吸着された冷媒ガスを脱着できるようになっている。他の構成は実施例1と同じであり、同一番号を付すことにより、その説明は省略する。
上述のエンジン排熱を第1の吸着器8または第2の吸着器9のいずれか一方に供給するための、温水配管10の一端側に、二方弁16と第1の中間配管17を介して冷却水排出管15を接続するとともに、温水配管10の他端側に第2の中間配管18を介して冷却水供給管14を接続する構成をして加熱手段と称する。
With the above configuration, the first adsorber is configured to supply the high-temperature cooling water after engine cooling to either the first adsorber 8 or the second adsorber 9, that is, using engine exhaust heat. The refrigerant gas adsorbed by the 8 or the second adsorber 9 can be desorbed. Other configurations are the same as those of the first embodiment, and the description thereof is omitted by giving the same numbers.
One end side of the hot water pipe 10 for supplying the engine exhaust heat described above to either the first adsorber 8 or the second adsorber 9 is provided via a two-way valve 16 and a first intermediate pipe 17. The cooling water discharge pipe 15 is connected and the cooling water supply pipe 14 is connected to the other end side of the hot water pipe 10 via the second intermediate pipe 18 and is referred to as a heating means.

図4は、本発明に係る圧縮冷凍サイクルの実施例3を示す全体概略構成図であり、実施例2と異なるところは次の通りである。
すなわち、凝縮器3の冷却ファン3aによる冷風を利用して冷却するように吸着剤側放熱用熱交換器21が設けられ、その吸着剤側放熱用熱交換器21の一方に、吸着剤用冷却水ポンプ22を介装した吸着剤用冷却水供給配管23が、他方に、吸着剤用冷却水戻り配管24がそれぞれ接続されている。
FIG. 4 is an overall schematic configuration diagram showing a third embodiment of the compression refrigeration cycle according to the present invention. The differences from the second embodiment are as follows.
That is, the adsorbent side heat-dissipating heat exchanger 21 is provided so as to cool using the cool air from the cooling fan 3a of the condenser 3, and the adsorbent-side heat dissipating heat exchanger 21 is provided with one of the adsorbent side heat dissipating heat exchangers 21. An adsorbent cooling water supply pipe 23 having a water pump 22 interposed therebetween is connected to the other adsorbent cooling water return pipe 24.

第1の中間配管17,17と冷却水排出管15および吸着剤用冷却水戻り配管24が第1の四路切替弁25を介して接続されるとともに、第2の中間配管18,18と冷却水供給管14および吸着剤用冷却水供給配管23が第2の四路切替弁26を介して接続されている。
四路切替弁7と第1および第2の四路切替弁25,26とが、圧縮機2からの冷媒ガスが供給されている側の吸着器(図4では、第1の吸着器8)に吸着剤側放熱用熱交換器21で冷却された冷却水(温度としては、例えば、約40℃程度)を供給しながら、圧縮機2からの冷媒ガスが供給されていない側の吸着器(図4では、第2の吸着器9)にエンジン冷却後の高温冷却水を供給するように連動して切替られるように構成されている。他の構成は実施例2と同じであり、同一番号を付すことにより、その説明は省略する。
The first intermediate pipes 17, 17 are connected to the cooling water discharge pipe 15 and the adsorbent cooling water return pipe 24 via the first four-way switching valve 25, and the second intermediate pipes 18, 18 are cooled. The water supply pipe 14 and the adsorbent coolant supply pipe 23 are connected via a second four-way switching valve 26.
The four-way switching valve 7 and the first and second four-way switching valves 25 and 26 are adsorbers on the side to which the refrigerant gas is supplied from the compressor 2 (the first adsorber 8 in FIG. 4). The adsorber on the side to which the refrigerant gas from the compressor 2 is not supplied while the cooling water cooled by the adsorbent side heat radiating heat exchanger 21 (with a temperature of about 40 ° C., for example) is supplied to In FIG. 4, the second adsorber 9) is configured to be switched in conjunction so as to supply the high-temperature cooling water after engine cooling. Other configurations are the same as those of the second embodiment, and the description thereof is omitted by assigning the same numbers.

上述の圧縮機2からの冷媒ガスが供給されている側の吸着器を冷却するための、吸着剤側放熱用熱交換器21、吸着剤用冷却水ポンプ22、吸着剤用冷却水供給配管23、吸着剤用冷却水戻り配管24、第1および第2の四路切替弁25,26から成る構成をして冷却手段と称する。   The adsorbent side heat radiation heat exchanger 21, the adsorbent cooling water pump 22, and the adsorbent cooling water supply pipe 23 for cooling the adsorber on the side supplied with the refrigerant gas from the compressor 2 described above. The adsorbent coolant return pipe 24 and the first and second four-way switching valves 25 and 26 are referred to as cooling means.

次に、具体数値の一例を用いながら上記構成による作用について説明する。
蒸発器1での冷媒の蒸発潜熱を利用して冷熱を取り出し、蒸発器1で蒸発した冷媒ガス(温度5℃、圧力0.9MPa)が圧縮機2に吸い込まれる。
圧縮機2で冷媒ガスが断熱圧縮されて温度約70℃、圧力2.8MPaの高圧のガスになる。圧縮機2からの冷媒ガスは、第1の吸着器8に供給されて吸着剤に吸着される。この際に吸着剤は発熱するが、吸着剤側放熱用熱交換器21で冷却された冷却水によって冷却されるので、吸着剤は固有の平衡圧力、平衡温度になるまで冷媒ガスを吸着する。実施例3では、平衡圧力が2MPa、平衡温度約50℃になる。
Next, the effect | action by the said structure is demonstrated, using an example of a specific numerical value.
Cold heat is extracted using the latent heat of vaporization of the refrigerant in the evaporator 1, and refrigerant gas (temperature 5 ° C., pressure 0.9 MPa) evaporated in the evaporator 1 is sucked into the compressor 2.
The refrigerant gas is adiabatically compressed by the compressor 2 to become a high-pressure gas having a temperature of about 70 ° C. and a pressure of 2.8 MPa. The refrigerant gas from the compressor 2 is supplied to the first adsorber 8 and is adsorbed by the adsorbent. At this time, the adsorbent generates heat, but is cooled by the cooling water cooled by the adsorbent-side heat-dissipating heat exchanger 21, so that the adsorbent adsorbs the refrigerant gas until it reaches a specific equilibrium pressure and equilibrium temperature. In Example 3, the equilibrium pressure is 2 MPa and the equilibrium temperature is about 50 ° C.

冷媒ガスを吸着して冷媒ガスの吸着能力が低下すると、四路切替弁7と第1および第2の四路切替弁25,26とが切替られ、第1の吸着器8が凝縮器3に接続されるとともに、第1の吸着器8にエンジン冷却後のエンジン冷却水(温度約80℃)が供給され、第1の吸着器8の吸着剤が加熱されて、吸着された冷媒ガスが脱着される。このとき、第2の吸着器9が吸着状態に切替られ、圧縮機2からの冷媒ガスが第2の吸着器9の吸着剤に吸着される。
四路切替弁7と第1および第2の四路切替弁25,26の切替は、約2〜3分毎に行われる。
第1の吸着器8で脱着された冷媒ガス(温度約60℃、圧力2.8MPa)は凝縮器3で凝縮液化され、温度45℃、圧力2.8MPaの冷媒液となる。
When the refrigerant gas is adsorbed and the refrigerant gas adsorption capacity is reduced, the four-way switching valve 7 and the first and second four-way switching valves 25 and 26 are switched, and the first adsorber 8 is switched to the condenser 3. In addition to being connected, engine cooling water (temperature of about 80 ° C.) after engine cooling is supplied to the first adsorber 8, the adsorbent of the first adsorber 8 is heated, and the adsorbed refrigerant gas is desorbed Is done. At this time, the second adsorber 9 is switched to the adsorbing state, and the refrigerant gas from the compressor 2 is adsorbed by the adsorbent of the second adsorber 9.
Switching between the four-way switching valve 7 and the first and second four-way switching valves 25 and 26 is performed approximately every 2 to 3 minutes.
The refrigerant gas (temperature about 60 ° C., pressure 2.8 MPa) desorbed by the first adsorber 8 is condensed and liquefied by the condenser 3 to become a refrigerant liquid having a temperature of 45 ° C. and a pressure of 2.8 MPa.

上記構成により、第1の吸着器8または第2の吸着器9の吸着剤が圧縮機2からの冷媒ガスを吸着するから、圧縮機2の出口での冷媒ガスの圧力を低下することができ、圧縮機2の圧縮仕事量を減少でき、圧縮冷凍サイクルの効率を向上できる。   With the above configuration, since the adsorbent of the first adsorber 8 or the second adsorber 9 adsorbs the refrigerant gas from the compressor 2, the pressure of the refrigerant gas at the outlet of the compressor 2 can be reduced. The compression work of the compressor 2 can be reduced and the efficiency of the compression refrigeration cycle can be improved.

上記実施例では、吸着器を2個備えて構成しているが、例えば、一つの容器の中央部に隔壁を設け、その隔壁の両側それぞれに吸着剤を充填し、回転によって吸着位置と脱着再生位置とに交互に変更するように構成する、いわゆるデシカント型に構成するものでも良い。
また、吸収器を3個以上備えて構成するものでも良い。吸着器の冷媒ガス吸着特性は、吸着開始時に吸着量が最も多く、吸着の進行に伴って吸着量が徐々に低下するため、個数が多い程吸着量が高い状態で平均化されて、圧縮機2の出口での冷媒ガスの圧力低下性能を向上できる利点がある。
In the above embodiment, two adsorbers are provided. For example, a partition is provided at the center of one container, adsorbents are filled on both sides of the partition, and the adsorption position and desorption regeneration are performed by rotation. A so-called desiccant type may be used which is alternately changed to the position.
Further, it may be configured with three or more absorbers. The adsorber has the largest adsorption amount at the start of adsorption, and the adsorption amount gradually decreases as the adsorption progresses. There exists an advantage which can improve the pressure fall performance of the refrigerant gas in 2 exits.

また、上記実施例では、容器内に吸着剤を充填した第1および第2の吸着器8,9を用いて圧縮機2からの冷媒ガスを吸着するように構成しているが、吸収剤を収容した吸収器を用いても良く、それらの圧縮機2からの冷媒ガスを吸着または吸収する構成をして圧力低下手段と総称する。   Moreover, in the said Example, although comprised so that the refrigerant gas from the compressor 2 may be adsorbed using the 1st and 2nd adsorbers 8 and 9 which filled the container with the adsorbent, You may use the accommodated absorber, and it has the structure which adsorb | sucks or absorbs the refrigerant gas from those compressors 2, and is named a pressure reduction means generically.

上記実施例では、冷媒としてハイドロフルオロカーボン(HFC)を用い、吸着器の吸着剤として活性炭を用いているが、各種の冷媒、吸着剤ならびに吸収剤を用いることができ、以下に冷媒と吸着剤、および、冷媒と吸収剤それぞれの組み合わせについて列記する。吸着剤および吸収剤について複数ある場合、性能が高い順番に記載する。
(A)冷媒と吸着剤の組み合わせ例
A1.冷媒:ハイドロフルオロカーボン(HFC)
吸着剤:活性炭
:ハニカム型活性炭
:二酸化炭素処理された活性炭
:水蒸気処理された活性炭
:カーボンゲル微粒子
:メソポーラスシリカ
A2.冷媒:アンモニア(NH
吸着剤:合成ゼオライト
:活性炭
:シリカゲル
A3.冷媒:ハイドロフルオロオレフィン、次亜鉛フッ素酸(HFO)
吸着剤:活性炭
:ハニカム型活性炭
:二酸化炭素処理された活性炭
:水蒸気処理された活性炭
:カーボンゲル微粒子
:メソポーラスシリカ
A4.冷媒:二酸化炭素(CO
吸着剤:活性炭
:合成ゼオライト
:シリカゲル
A5.冷媒:イソブタン
吸着剤:活性炭
:合成ゼオライト
:シリカゲル
(B)冷媒と吸収剤の組み合わせ例
B1.冷媒:ハイドロフルオロカーボン(HFC)
吸収剤:テトラエチレングリコールジメチルエーテル
:ジメチルホルムアミド
:ジブチルフタル酸エステル
B2.冷媒:アンモニア(NH
吸収剤:水
B3.冷媒:ハイドロフルオロオレフィン、次亜鉛フッ素酸(HFO)
吸収剤:テトラエチレングリコールジメチルエーテル
B4.冷媒:二酸化炭素(CO
吸収剤:水
In the above embodiment, hydrofluorocarbon (HFC) is used as the refrigerant and activated carbon is used as the adsorbent of the adsorber, but various refrigerants, adsorbents and absorbents can be used. And it lists about each combination of a refrigerant | coolant and an absorber. When there are a plurality of adsorbents and absorbents, they are listed in order of performance.
(A) Combination example of refrigerant and adsorbent A1. Refrigerant: Hydrofluorocarbon (HFC)
Adsorbent: Activated carbon
: Honeycomb activated carbon
: Carbon dioxide treated activated carbon
: Activated carbon treated with steam
: Carbon gel fine particles
: Mesoporous silica A2. Refrigerant: Ammonia (NH 3 )
Adsorbent: Synthetic zeolite
: Activated carbon
: Silica gel A3. Refrigerant: Hydrofluoroolefin, Hypozinc fluoric acid (HFO)
Adsorbent: Activated carbon
: Honeycomb activated carbon
: Carbon dioxide treated activated carbon
: Activated carbon treated with steam
: Carbon gel fine particles
: Mesoporous silica A4. Refrigerant: Carbon dioxide (CO 2 )
Adsorbent: Activated carbon
: Synthetic zeolite
: Silica gel A5. Refrigerant: Isobutane Adsorbent: Activated carbon
: Synthetic zeolite
: Example of combination of silica gel (B) refrigerant and absorbent B1. Refrigerant: Hydrofluorocarbon (HFC)
Absorbent: Tetraethylene glycol dimethyl ether
: Dimethylformamide
: Dibutyl phthalate ester B2. Refrigerant: Ammonia (NH 3 )
Absorbent: Water B3. Refrigerant: Hydrofluoroolefin, Hypozinc fluoric acid (HFO)
Absorbent: Tetraethylene glycol dimethyl ether B4. Refrigerant: Carbon dioxide (CO 2 )
Absorbent: water

1…蒸発器
2…圧縮機
3…凝縮器
4…膨張弁(低温低圧化機構)
5…冷媒配管
7…四路切換弁(切替手段)
8…第1の吸着器(圧力低下手段)
9…第2の吸着器(圧力低下手段)
11…エンジン
16…二方弁(加熱手段)
17…第1の中間(加熱手段)
18…第2の中間(加熱手段)
21…吸着剤側放熱用熱交換器(冷却手段)
22…吸着剤用冷却水ポンプ(冷却手段)
23…吸着剤用冷却水供給配管(冷却手段)
24…吸着剤用冷却水戻り配管(冷却手段)
25…第1の四路切換弁(冷却手段)
26…第2の四路切換弁(冷却手段)
1 ... Evaporator
2 ... Compressor
3 ... Condenser
4. Expansion valve (low temperature and low pressure mechanism)
5 ... Refrigerant piping
7. Four-way switching valve (switching means)
8: First adsorber (pressure reduction means)
9: Second adsorber (pressure reduction means)
11 ... Engine 16 ... Two-way valve (heating means)
17 ... 1st middle (heating means)
18 ... second intermediate (heating means)
21 ... Adsorbent side heat dissipation heat exchanger (cooling means)
22 ... Cooling water pump for adsorbent (cooling means)
23 ... Adsorbent cooling water supply pipe (cooling means)
24 ... Coolant return pipe for adsorbent (cooling means)
25. First four-way switching valve (cooling means)
26: Second four-way switching valve (cooling means)

Claims (6)

冷媒液を蒸発気化する蒸発器と、
前記蒸発器で気化した冷媒ガスを圧縮する圧縮機と、
前記圧縮機で圧縮された冷媒ガスを凝縮液化する凝縮器と、
前記凝縮器で液化された冷媒液を低温低圧化する低温低圧化機構とを備え、
前記蒸発器、前記圧縮機、前記凝縮器および前記低温低圧化機構をその順に冷媒を流すように冷媒配管を介して接続し、かつ、前記蒸発器での蒸発潜熱による冷熱を取り出すように構成した圧縮冷凍サイクルにおいて
前記圧縮機と前記凝縮器とを接続する冷媒配管に、前記圧縮機で圧縮された高温高圧の冷媒ガスを吸着または吸収により受け入れて前記圧縮機の出口側での冷媒ガスの圧力を低下する圧力低下手段を設けたことを特徴とする圧縮冷凍サイクル。
An evaporator for evaporating the refrigerant liquid;
A compressor for compressing the refrigerant gas vaporized in the evaporator;
A condenser for condensing and liquefying the refrigerant gas compressed by the compressor;
A low-temperature and low-pressure mechanism for reducing the temperature and pressure of the refrigerant liquid liquefied by the condenser,
The evaporator, the compressor, the condenser, and the low-temperature and low-pressure mechanism are connected via a refrigerant pipe so that the refrigerant flows in that order, and the cooling heat due to latent heat of evaporation in the evaporator is taken out. In the compression refrigeration cycle, the refrigerant pipe connecting the compressor and the condenser receives the high-temperature and high-pressure refrigerant gas compressed by the compressor by adsorption or absorption, and the pressure of the refrigerant gas on the outlet side of the compressor A compression refrigeration cycle, characterized in that pressure reducing means for reducing the pressure is provided.
請求項1に記載の圧縮冷凍サイクルにおいて、
圧力低下手段が、
冷媒ガスの圧力を低下する圧力低下剤を収容した容器の複数個を冷媒配管に並列接続し、圧縮機からの冷媒ガスを受け入れる状態と受け入れた冷媒ガスを凝縮器側に排出する状態とに切替える切替手段を備えて構成したものである圧縮冷凍サイクル。
In the compression refrigeration cycle according to claim 1,
Pressure drop means
A plurality of containers containing pressure reducing agents for reducing the pressure of the refrigerant gas are connected in parallel to the refrigerant pipe, and the state is switched between accepting the refrigerant gas from the compressor and discharging the accepted refrigerant gas to the condenser side. A compression refrigeration cycle comprising switching means.
請求項1または2に記載の圧縮冷凍サイクルにおいて、
圧力低下手段に、冷媒ガスの受け入れに際して発生する熱を冷却する冷却手段を付設してある圧縮冷凍サイクル。
In the compression refrigeration cycle according to claim 1 or 2,
A compression refrigeration cycle in which a cooling means for cooling heat generated upon reception of refrigerant gas is attached to the pressure lowering means.
請求項1、2、3のいずれかに記載の圧縮冷凍サイクルにおいて、
圧縮機を駆動するエンジンを備え、
圧力低下手段に、冷媒ガスの排出に際して、前記エンジンからの排熱により加熱する加熱手段を付設してある圧縮冷凍サイクル。
In the compression refrigeration cycle according to any one of claims 1, 2, and 3,
With an engine that drives the compressor,
A compression refrigeration cycle in which heating means for heating with exhaust heat from the engine is attached to the pressure lowering means when the refrigerant gas is discharged.
請求項1、2、3、4のいずれかに記載の圧縮冷凍サイクルにおいて、
圧力低下剤が、活性炭、合成ゼオライト、シリカゲル、テトラエチレングリコールジメチルエーテル、水のいずれか、またはそれらの複数種から成るものである圧縮冷凍サイクル。
In the compression refrigeration cycle according to any one of claims 1, 2, 3, and 4,
A compression refrigeration cycle in which the pressure reducing agent is one of activated carbon, synthetic zeolite, silica gel, tetraethylene glycol dimethyl ether, water, or a plurality thereof.
請求項1、2、3、4、5のいずれかに記載の圧縮冷凍サイクルにおいて、
冷媒が、ハイドロフルオロカーボン(HFC)、アンモニア(NH)、ハイドロフルオロオレフィン(HFO)、二酸化炭素(CO)、イソブタンのいずれかである圧縮冷凍サイクル。
In the compression refrigeration cycle according to any one of claims 1, 2, 3, 4, and 5,
A compression refrigeration cycle in which the refrigerant is any one of hydrofluorocarbon (HFC), ammonia (NH 3 ), hydrofluoroolefin (HFO), carbon dioxide (CO 2 ), and isobutane.
JP2010059409A 2010-03-16 2010-03-16 Compression refrigerating cycle Pending JP2011191032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059409A JP2011191032A (en) 2010-03-16 2010-03-16 Compression refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059409A JP2011191032A (en) 2010-03-16 2010-03-16 Compression refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2011191032A true JP2011191032A (en) 2011-09-29

Family

ID=44796152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059409A Pending JP2011191032A (en) 2010-03-16 2010-03-16 Compression refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2011191032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004971A1 (en) * 2022-06-28 2024-01-04 ダイキン工業株式会社 Refrigeration cycle device
WO2024004972A1 (en) * 2022-06-28 2024-01-04 ダイキン工業株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223412A (en) * 1998-02-04 1999-08-17 Daikin Ind Ltd Refrigerating device
JP2000035256A (en) * 1998-07-16 2000-02-02 Daikin Ind Ltd Adsorption heat pump
JP2002048428A (en) * 2000-08-02 2002-02-15 Denso Corp Adsorption type refrigerating machine
JP2004028401A (en) * 2002-06-24 2004-01-29 Denso Corp Air-conditioner for vehicle
JP2007327668A (en) * 2006-06-06 2007-12-20 Denso Corp Refrigerating device comprising waste heat utilization device
WO2009145278A1 (en) * 2008-05-28 2009-12-03 国立大学法人九州大学 Hybrid refrigeration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223412A (en) * 1998-02-04 1999-08-17 Daikin Ind Ltd Refrigerating device
JP2000035256A (en) * 1998-07-16 2000-02-02 Daikin Ind Ltd Adsorption heat pump
JP2002048428A (en) * 2000-08-02 2002-02-15 Denso Corp Adsorption type refrigerating machine
JP2004028401A (en) * 2002-06-24 2004-01-29 Denso Corp Air-conditioner for vehicle
JP2007327668A (en) * 2006-06-06 2007-12-20 Denso Corp Refrigerating device comprising waste heat utilization device
WO2009145278A1 (en) * 2008-05-28 2009-12-03 国立大学法人九州大学 Hybrid refrigeration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004971A1 (en) * 2022-06-28 2024-01-04 ダイキン工業株式会社 Refrigeration cycle device
WO2024004972A1 (en) * 2022-06-28 2024-01-04 ダイキン工業株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
AU2021203862B2 (en) Split type sorption air conditioning unit
WO2009145278A1 (en) Hybrid refrigeration system
JP5017611B2 (en) Refrigeration apparatus and multistage refrigeration apparatus
Uddin et al. Performance investigation of adsorption–compression hybrid refrigeration systems
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP5974541B2 (en) Air conditioning system
JP2011191032A (en) Compression refrigerating cycle
WO2008109937A1 (en) Apparatus and method for transferring heat
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP4086011B2 (en) Refrigeration equipment
JP2002250573A (en) Air conditioner
JPH07301469A (en) Adsorption type refrigerator
US20220042452A1 (en) Hybrid power generation systems and methods
JPH03204569A (en) Refrigerating method using oil injection type screw compressor and heat pump method
JPH11223416A (en) Refrigerating device
Kapilan TECHNICAL ASPECTS OF ADSORPTION COOLING SYSTEM
JP2005127614A (en) Adsorption type refrigerating machine and its operating method
BR112017014868B1 (en) AIR CONDITIONING UNITS AND METHODS FOR ADSORPTION COOLING
JP2004125259A (en) Air conditioner
JP2000035256A (en) Adsorption heat pump
JPH0325259A (en) Operation method of adsorption type refrigerator
JPH04177069A (en) Refrigeration cycle plant
Zhong Studies on equilibrium and dynamic characteristics of new adsorption pairs
JP2005090880A (en) Ice making machine
JPH0926227A (en) Engine driven cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Effective date: 20131021

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311