WO2009145278A1 - Hybrid refrigeration system - Google Patents

Hybrid refrigeration system Download PDF

Info

Publication number
WO2009145278A1
WO2009145278A1 PCT/JP2009/059817 JP2009059817W WO2009145278A1 WO 2009145278 A1 WO2009145278 A1 WO 2009145278A1 JP 2009059817 W JP2009059817 W JP 2009059817W WO 2009145278 A1 WO2009145278 A1 WO 2009145278A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
condenser
compressor
evaporator
Prior art date
Application number
PCT/JP2009/059817
Other languages
French (fr)
Japanese (ja)
Inventor
繁 小山
ビデュット バラン シャハ
アヌトシュ チャクラボルティ
カンダダイ シュリニヴァッサン
憲 桑原
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2010514541A priority Critical patent/JPWO2009145278A1/en
Publication of WO2009145278A1 publication Critical patent/WO2009145278A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the present invention relates to a hybrid refrigeration system in which a vapor compression refrigeration cycle and an adsorption refrigeration cycle are combined.
  • JP-A-11-63719 Patent Document 1
  • JP-A-11-83235 Patent Document 2
  • JP-A-2005-308355 Patent Document 3
  • a compressor, a condenser, an expander, and Combining a vapor compression refrigeration cycle comprising an evaporator with an adsorption refrigeration cycle having at least a pair of adsorbers that alternately adsorb refrigerant and alternately desorb the adsorbed refrigerant to improve the performance of the adsorption refrigeration cycle Technology is disclosed.
  • Japanese Patent Laid-Open No. 11-63719 Japanese Patent Laid-Open No. 11-83235 JP 2005-308355 A
  • the main focus is on improving the performance of the adsorption refrigeration cycle.
  • the adsorption refrigeration cycle is used. There has been little consideration of using.
  • An object of the present invention is to provide a hybrid refrigeration system that can reduce mechanical work in a vapor compression refrigeration cycle.
  • the hybrid refrigeration system of the present invention includes a vapor compression refrigeration cycle including a compressor, a condenser, an expander, and an evaporator, and at least a pair of adsorbers that alternately adsorb refrigerant and desorb the adsorbed refrigerant alternately.
  • An adsorption refrigeration cycle is combined.
  • the condenser is a concept including a gas cooler.
  • the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to reduce the compression pressure of the compressor in the vapor compression refrigeration cycle. As a result, the mechanical work in the vapor compression refrigeration cycle can be most effectively reduced.
  • the inventor has two specific types. Proposed invention.
  • the first type of the invention at least a pair of adsorbers that alternately adsorb the refrigerant compressed by the compressor and alternately desorb the adsorbed refrigerant between the compressor and the condenser in the vapor compression refrigeration cycle.
  • the refrigerant is compressed to the intermediate pressure by the compressor, and the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle. If it does in this way, the compression pressure by the compressor in a vapor compression refrigeration cycle can be made lower than before, and the mechanical work in a vapor compression refrigeration cycle can be reduced.
  • an internal heat exchanger for exchanging heat between the refrigerant flow path connecting the evaporator and the compressor and the refrigerant flow path connecting the condenser and the expander may be further provided.
  • an internal heat exchanger is provided, the specific enthalpy between the expander inlet and the evaporator inlet of the vapor compression refrigeration cycle can be lowered by absorbing heat from the refrigerant passing through the condenser. As a result, it is possible to increase the heat flow rate (refrigeration capacity) taken by the refrigerant from the surroundings in the evaporator.
  • the vapor compression refrigeration cycle used in the second type of invention includes a first compressor that compresses the first refrigerant, a first condenser that condenses the first refrigerant compressed by the first compressor, and a first condenser.
  • a first expander that expands the condensed first refrigerant and a first evaporator that evaporates the first refrigerant expanded by the first expander are provided.
  • the adsorption refrigeration cycle includes at least a pair of adsorbers that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, a second condenser that condenses the second refrigerant desorbed from the adsorber, A second expander that expands the second refrigerant condensed by the second condenser and a second evaporator that evaporates the second refrigerant expanded by the second expander are provided.
  • the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to absorb heat from the first refrigerant passing through the first condenser via the second evaporator.
  • the heat is absorbed from the first refrigerant passing through the first condenser through the second evaporator without increasing the compression pressure of the first compressor of the vapor compression refrigeration cycle.
  • the specific enthalpy between the expander inlet and the evaporator inlet of the refrigeration cycle can be lowered.
  • the heat absorption from the first refrigerant passing through the first condenser can be realized by configuring a heat exchanger between the first condenser and the second evaporator.
  • the heat exchanger can be configured to exchange heat directly between the first condenser and the second evaporator.
  • the heat exchanger may have a structure including a refrigerant circulation path in which a third refrigerant circulates and includes a radiator and is arranged to exchange heat between the first condenser and the second evaporator. it can. If such a heat exchanger is used, a vapor compression refrigeration cycle can be combined so that oil from the first compressor is not mixed into the adsorption refrigeration cycle.
  • FIG. 1 It is a figure which shows the structure of a general vapor compression refrigeration system. It is a figure which shows the structure of the vapor
  • FIG. 2 is a PT (pressure-temperature) diagram of a simple transcritical cycle using carbon dioxide for three different compressor outlet pressures.
  • FIG. 13 is a Ph (pressure-specific enthalpy) diagram corresponding to FIG. FIG.
  • FIG. 3 is a diagram showing a coefficient of performance (COP) as a function of compressor outlet pressure for different gas cooler (condenser) temperatures. It is a figure which shows the performance map of the cooling capacity of the hybrid refrigeration system with respect to different adsorption temperature and desorption pressure. It is a figure which shows the performance map of COP (coefficient of performance) of a hybrid type refrigeration system with respect to different adsorption temperature and desorption pressure. It is a diagram showing a refrigerant amount based on the mass of CO 2 per dry Maxsorb III unit mass for different adsorption temperature and desorption pressure. It is a figure which shows the Ph diagram in adsorption temperature (308K, 313K, and 318K) when there is no internal heat exchanger IHE.
  • COP coefficient of performance
  • FIG. 5 is a diagram showing refrigerant flow rates as a function of desorption pressure with respect to four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG.
  • FIG. 5 is a diagram showing refrigerant flow rates as a function of desorption pressure with respect to four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG.
  • FIG. 19 is a table showing performance data of the hybrid refrigeration system showing the Ph diagram of FIG. 18.
  • FIG. 20 is a table showing performance data of a hybrid refrigeration system with an internal heat exchanger (IHE) in the Ph diagram of FIG. 19.
  • IHE internal heat exchanger
  • a general vapor compression refrigeration system includes a compressor 2, a gas cooler (condenser) 3, a receiver 4, an expander 5 and an evaporator 6 as schematically shown in FIG.
  • FIG. 2 shows a configuration of a vapor compression refrigeration system including an internal heat exchanger 7 used in the present embodiment.
  • the internal heat exchanger 7 is used at the outlet of the gas cooler (condenser) 3 and the outlet of the evaporator 6. By exchanging heat between them, the outlet temperature of the gas cooler (condenser) 3 is further reduced, and the evaporator 6 The outlet temperature of the rises more.
  • FIG. 3 shows a general configuration of a single stage adsorption refrigeration cycle 8.
  • the adsorption refrigeration cycle 8 includes a gas cooler (or condenser) 9, an evaporator 10, a pair of adsorbers (absorption / desorption heat exchangers) 11 and 12, and four valves 13 to 16.
  • activated carbon for example, Maxsorb III (trademark)
  • the refrigerant is adsorbed by one of the adsorbers 11 and 12, and desorption is caused in the adsorber in which the refrigerant is first adsorbed in the evaporation process.
  • the adsorbers 11 and 12 alternately repeat adsorption and desorption by alternately cooling and heating.
  • the refrigerant (CO 2 ) evaporates at the evaporation temperature in the evaporator 10 and is adsorbed by the adsorber (Bed 1) 12. Adsorption continues until the refrigerant concentration of the adsorbent becomes high. Cooling water is used to remove the heat of adsorption.
  • the adsorber (Bed2) 11 functioning as a desorber is heated to a desorption temperature by driving heat input (exhaust heat or a heat source from a renewable energy source).
  • the refrigerant desorbed from the adsorber (Bed2) 11 is cooled (or condensed) by the gas cooler (or condenser) 9.
  • the heat of condensation in the condenser 9 is removed by the cooling water.
  • the driving time for suction / desorption continues for 240 to 600 seconds, and the condensed refrigerant liquid returns to the evaporator 10 according to a prescribed cycle.
  • the time for closing all valves 13 to 16 is introduced for about 30 seconds so that no evaporation occurs.
  • the complete reverse cycle then continues with all valves in the reverse mode.
  • FIG. 4 shows a schematic configuration of the first embodiment of the present invention in which the vapor compression refrigeration cycle of FIG. 1 and the adsorption refrigeration cycle of FIG. 3 are combined.
  • members similar to those shown in FIGS. 1 and 3 are given the same reference numerals as those shown in FIGS. 1 and 2 plus 100.
  • the hybrid refrigeration system of the first embodiment shown in FIG. 4 alternately adsorbs and adsorbs the refrigerant compressed by the compressor 102 between the compressor 102 and the condenser 103 in the vapor compression refrigeration cycle 101.
  • the adsorption refrigeration cycle 108 is combined so that at least a pair of adsorbers 111 and 112 and 111 'and 112' for alternately desorbing the refrigerant are located.
  • the adsorbers 111 and 111 ′ and the adsorbers 112 and 112 ′ alternately perform adsorption and desorption operations.
  • the batch operation of the adsorption cycle has two time intervals called the switching period and the operation period.
  • suction and desorption are performed to maintain compression pressure and gas cooler (or condenser) pressure.
  • a water-cooled or air-cooled gas cooler (or condenser) cools the fluid desorbed from a designated desorber (the one of the adsorbers 111 to 112 ′ that is desorbing), and the fluid that has become the supercooled liquid is then expanded into the expander 105.
  • the refrigeration cycle is completed.
  • the function of the adsorber (including the adsorbent) that has been desorbed is restored by switching that switches the direction of the external heat source.
  • external cooling is also switched to the designated adsorbers, and similarly, the compressor 102 and condenser 103 are also switched to their respective adsorbers and desorbers (adsorbers performing desorption).
  • the heated desorber (desorbing adsorber) and the condenser 103 are also switched to their respective adsorbers and desorbers (adsorbers performing desorption).
  • FIG. 5 shows the refrigeration cycle w2 of the embodiment of FIG.
  • symbols with numerals 1 to 4 are added in circles, but these symbols are enclosed in parentheses in the specification because of restrictions on characters that can be used in the specification. Describe using the characters “(1) to (4)” with numbers. Also in the drawings after FIG. 4, when a symbol with a number is added in a circle, similarly for these symbols, use the characters (1) to (4). Describe. FIG. 4 shows an evaporation end point (1), an intermediate compression end point (2) ′, a compression end point (2) ”, a gas cooler (or condenser) outlet (3), an evaporator shown in the refrigeration cycle of FIG.
  • the compressor 102 compresses the refrigerant to an intermediate pressure [(1) ⁇ ( 2) ′] Then, without increasing the compression pressure of the compressor 102 to (2), the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle 108 [(2) ′ ⁇ ( 2) ”]. If it does in this way, the compression pressure by the compressor 102 in the vapor compression refrigeration cycle 101 can be made an intermediate pressure lower than before, and the mechanical work (power) in the vapor compression refrigeration cycle 101 is reduced. be able to.
  • the main process is (i) the heat load on the evaporator 106 maintained at a constant temperature (5 ° C.) and a constant pressure (39.8 bar). Then, the CO 2 liquid refrigerant evaporates [(4) ⁇ (1)], and (ii) the vaporized CO 2 liquid refrigerant is pressurized from the evaporation pressure to the compression pressure (intermediate pressure) through the compressor 102 [ (1) ⁇ (2) ′]. (iii) The compressed CO 2 vapor is thermally compressed by desorption in the adsorption refrigeration cycle 108. (iv) Gas cooler (or condenser) pressure undergoes isobaric heat release process by gas cooler (or condenser) [(2) ” ⁇ (3)], (v) and adiabatic expansion process [(3) ⁇ ( 4)].
  • FIG. 6 is a diagram showing a configuration of the second embodiment of the present invention as a modification of the first embodiment shown in FIG.
  • FIG. 6 the same members as those of the first embodiment shown in FIG.
  • FIG. 7 shows the refrigeration cycle of the embodiment shown in FIG.
  • FIG. 6 shows the evaporation end point (1), intermediate compression end point (2) ′, compression end point (2) ”, gas cooler (or condenser) outlet (3), evaporator shown in the refrigeration cycle of FIG.
  • the same symbol [(1) to (4) ′] is attached to the position corresponding to the inlet (4) ′.
  • the refrigerant flow path FP1 connecting the evaporator 106 and the compressor 102 and the condensation are provided.
  • the internal heat exchanger 107 which performs heat exchange between the refrigerant
  • the internal heat exchanger 107 is the gas cooler (or condenser) 103. Used between the outlet and the outlet of the evaporator 106, the heat exchange between them lowers the outlet temperature of the gas cooler (or condenser) 103 and further increases the outlet temperature of the evaporator 106. This increases the coefficient of performance (COP) of the system.
  • COP coefficient of performance
  • the specific enthalpy (h) of the expander inlet (3) ′ and the evaporator inlet (4) ′ of the vapor compression refrigeration cycle 101 ′ is absorbed by absorbing heat from the refrigerant passing through the condenser 103, Compared with the case where the internal heat exchanger 107 is not provided, the internal heat exchanger 107 can be lowered (reduced), and as a result, without increasing the compression pressure by the compressor 102 [without increasing the pressure to (2)], the evaporator 106 can generate refrigerant.
  • the heat flow (refrigeration capacity) taken away from the surroundings can be increased, that is, the mechanical work in the vapor compression refrigeration cycle 101 'can be reduced also by this embodiment.
  • FIG. 8 shows the configuration of the third embodiment of the hybrid refrigeration system of the present invention.
  • the number of 100 is added to the number of the reference numerals shown in FIGS. 4 and 6 to the same members as those of the first embodiment shown in FIG. A number of symbols are attached.
  • the adsorption refrigeration cycle since the refrigerant of the vapor compression refrigeration cycle 101 and the adsorption refrigeration cycle 108 are common, the adsorption refrigeration cycle unless a filter device is installed in the refrigerant flow path. Contaminants such as machine oil that are likely to be contained in the refrigerant at 108 pass through the adsorbers (211 and 212, 211 'and 212').
  • the adsorbers (211 and 212, 211 'and 212') become contaminated, it becomes necessary to clean them regularly. Therefore, in the third embodiment, a configuration is adopted in which the adsorbers (211 and 212, 211 ′ and 212 ′) are protected from dirt.
  • the refrigerant used in the vapor compression refrigeration cycle 201 is different from the refrigerant used in the adsorption refrigeration cycle 208, and heat exchange is performed between both cycles.
  • the vapor compression refrigeration cycle 201 used in the third embodiment includes a first compressor 202 that compresses the first refrigerant, a first condenser 203 that condenses the first refrigerant compressed by the first compressor 202, A first expander 205 that expands the first refrigerant condensed by the first condenser 203 and a first evaporator 206 that evaporates the first refrigerant expanded by the first expander 205 are provided.
  • the adsorption refrigeration cycle 208 includes at least a pair of adsorbers (211 and 212, 211 'and 212') that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, and desorb from the adsorber.
  • Gas cooler (or second condenser) 223 for condensing the second refrigerant, the second expander 221 and the second expander for expanding the second refrigerant cooled (or condensed) by the gas cooler (or second condenser) 223
  • a second evaporator 222 is provided for evaporating the second refrigerant expanded by 221.
  • the 1st condenser 203 and the 2nd evaporator 222 are comprised as one unit so that a heat exchanger may be comprised between both.
  • this heat exchanger can exchange heat directly between the first condenser 202 and the second evaporator 222, or can exchange heat by arranging a circulation path containing another refrigerant between them.
  • its configuration is arbitrary.
  • the adsorption refrigeration cycle 208 is combined with the vapor compression refrigeration cycle 201 so as to absorb heat from the first refrigerant passing through the first condenser 203 via the second evaporator 222.
  • FIG. 9 shows the refrigeration cycle of the embodiment of FIG.
  • FIG. 9 shows the evaporation end point (1) (5), compression end point (2) ′ (6), condensation end point (3) ′ (7), and expansion end point (4) shown in the refrigeration cycle of FIG.
  • the same symbol [(1) to (8)] is attached to the position corresponding to) ′ (8).
  • heat is absorbed from the first refrigerant passing through the first condenser 206 via the second evaporator 222 without increasing the compression pressure of the first compressor 202 of the vapor compression refrigeration cycle 201.
  • the specific enthalpy of the expander inlet (3) ′ and the evaporator inlet (4) ′ of the vapor compression refrigeration cycle 201 can be reduced (to a small value).
  • the refrigerant is surrounded by the first evaporator 206 without increasing the compression pressure (compression work) of the first compressor 202 as in the first and second embodiments.
  • the heat flow (refrigeration capacity) deprived from can be increased.
  • FIG. 10 shows a fourth embodiment as a modification of the third embodiment shown in FIG.
  • the same number as that of the third embodiment shown in FIG. 8 is obtained by adding 100 to the number of reference numerals attached in FIG. 8.
  • symbol is attached
  • the 1st condenser 203 and the 2nd evaporator 222 are comprised as one unit so that a heat exchanger may be comprised between both.
  • the heat exchanger that performs heat exchange between the first condenser 203 and the second evaporator 222 includes a radiator 324, and includes the first condenser 303 and the second condenser 303.
  • the structure is provided with a refrigerant circulation path 328 in which the third refrigerant circulates and is arranged so as to exchange heat with the evaporator 310.
  • the adsorbers 311 and 312 have a structure that is regenerated by the exhaust heat of the engine 327 of the automobile. Valves 326 and 329 are arranged between the engine 327 and the pair of adsorbers 311 and 312 for alternately connecting the engine 327 and the radiator 325 to the adsorbers 311 and 312 at the time of desorption.
  • the first evaporator 306 is used to generate cooling capacity, and the second evaporator 310 prevents the adsorbers 311 and 312 from being mixed with oil. Used to operate the adsorber.
  • the condenser 309 is used to dissipate the heat absorbed by the second evaporator 310 to the outside.
  • FIG. 11 shows experimental data of adsorption isotherms of the adsorbent used in the adsorber.
  • the paper ⁇ S. Himeno, T. Komatsu and S. Fujita, High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons, J. Chem. Eng. Data 50 (2005), 369-376 ''
  • Maxsorb III TM the results of measurement in a temperature range of 273 to 348 K and a pressure of up to 4 MPa are described.
  • FIG. 11 shows the relationship of the amount of adsorption with respect to the pressure change at various adsorption temperatures. From FIG. 11, it can be seen that the maximum amount of CO 2 adsorbed is 1.5 kg per 1 kg of Maxsorb III.
  • the adsorption capacity defined by the maximum isothermal adsorption per gram of adsorbent is “F. Dreisbach, R. Staudt and JU Keller, J High-pressure adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated. Carbon. Adsorption 5 (1999), 215-227., ⁇ A. Kapoor and RT Yang, Kinetic Separation of Methane-Carbon Dioxide Mixture by Adsorption on Molecular Sieve Carbon. Chem. Eng.
  • W is the adsorption volume
  • W 0 is the maximum adsorption volume to the micropores
  • K is a Langmuir constant that is an adsorption index when the adsorption amount is very small
  • P is the pressure.
  • K can be expressed as a function of temperature as follows:
  • R is a gas constant
  • T is an equilibrium temperature
  • K 0 is a coefficient
  • ⁇ H ads is an adsorption heat. Langmuir's adsorption isotherm model was confirmed to agree with the experimental data within ⁇ 5%.
  • FIG. 12 shows a PT (pressure-temperature) diagram of a simple transcritical cycle using carbon dioxide for three different compressor outlet pressures.
  • the Ph (pressure-specific enthalpy) diagram that coincides with this is as shown in FIG.
  • Transcritical CO 2 cycle consists of (a) isoenthalpy compression process (1-2 or 1-2 'or 1-2 "), (b) isobaric heat release process (2-3 or 2'-3' or 2" -3 "), (c) Adiabatic expansion process (3-4 or 3'-5 or 3" -6), (d) Isobaric evaporation process (4-1 or 5-1 or 6-1) Is shown.
  • FIG. 13 is a PT (pressure-temperature) diagram of a vapor compression refrigeration cycle. 13 A represents the cycle 1-2-3-4-1, B represents the cycle 1-2'-3'-5-1, and C represents the cycle 1-2 "-3"- 6-1.
  • FIGS. 14A to 14C show cycles 1-2-3-4-1 and cycle 1-2'- shown in the PT and Ph diagrams of the vapor compression refrigeration cycle of FIGS. 3′-5-1 and cycle 1-2 ′′ -3 ′′ -6-1 are shown.
  • vapor compression is the analysis result of the general vapor compression refrigeration cycle of FIG. 1
  • IHE-use vapor compression is the result of the vapor compression refrigeration cycle having the internal heat exchanger of FIG. 2. It is an analysis result.
  • 15 and 16 show the performance maps of the cooling capacity and COP (coefficient of performance) of the hybrid refrigeration system for different adsorption temperatures (308K, 313K and 318K) and desorption pressure, respectively.
  • 15 and 16 A shows the analysis result of the hybrid refrigeration system of the first embodiment shown in FIG. 4, and B shows the hybrid refrigeration system of the second embodiment shown in FIG. An analysis result is shown.
  • the COP (coefficient of performance) is close to 8.0, which is about twice that of the vapor compression refrigeration cycle for the optimum condition of a gas cooler (condenser) temperature of 35 ° C.
  • FIG. 16 shows that when an internal heat exchanger (IHE) is added, the COP (coefficient of performance) is 10 or more depending on the gas cooler (condenser) temperature and the desorption pressure.
  • IHE internal heat exchanger
  • FIG. 17 shows the amount of refrigerant based on the mass of CO 2 per unit mass of dry Maxsorb III for different adsorption temperatures (308K, 313K and 318K) and desorption pressure.
  • 17, A shows the analysis result of the hybrid refrigeration system of the first embodiment shown in FIG. 4, and B shows the analysis result of the hybrid refrigeration system of the second embodiment shown in FIG. Show. From this analysis, the amount of Maxsorb III for the required cooling capacity can be easily estimated.
  • the Ph diagrams at the adsorption temperatures (308K, 313K, and 318K) when there is no internal heat exchanger IHE (FIG. 18) and when there is (FIG. 19) are shown in FIGS.
  • FIGS. 20A and 20B and FIG. 21 show the four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG.
  • the cooling capacity, COP (coefficient of performance) and refrigerant flow are shown as a function of desorption pressure.
  • FIG. 22 shows a vapor compression process, a thermal compression process (adsorption-preheating-desorption-precooling) and an expansion process.
  • the compressor outlet pressure is 60 bar and the gas cooler temperature is 35.degree.
  • FIG. 25 and FIG. 25 shows performance data of the hybrid refrigeration system of FIG. 16
  • FIG. 26 shows performance data of the hybrid refrigeration system with an internal heat exchanger (IHE) of FIG.
  • IHE internal heat exchanger
  • the hybrid refrigeration system of the present invention is not only highly efficient but also provides a high refrigeration effect and can eliminate problems caused by compressors and valves. Therefore, the hybrid refrigeration system of the present invention can be sufficiently applied to an automobile air conditioning system and a heat pump system.
  • a compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expander that expands the refrigerant condensed by the condenser, and the refrigerant that is expanded by the expander At least adsorbs the refrigerant compressed by the compressor and desorbs the adsorbed refrigerant alternately between the compressor and the condenser in a vapor compression refrigeration cycle comprising an evaporator for evaporating at least An adsorption refrigeration cycle having a pair of adsorbers is provided, the refrigerant is compressed to an intermediate pressure by the compressor, and the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle.
  • a hybrid refrigeration system characterized by:
  • a first compressor that compresses the first refrigerant, a first condenser that condenses the first refrigerant compressed by the first compressor, and expands the first refrigerant condensed by the first condenser.
  • a vapor compression refrigeration cycle comprising: a first expander that causes the first refrigerant to evaporate the first refrigerant expanded by the first expander; At least a pair of adsorbers that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, a second condenser that condenses the second refrigerant desorbed from the adsorber, and the second An adsorption refrigeration cycle comprising a second expander that expands the second refrigerant condensed by the condenser and a second evaporator that evaporates the second refrigerant expanded by the second expander;
  • the hybrid refrigeration system wherein the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to absorb heat from the first ref
  • the heat exchanger includes a refrigerant circulation path in which a third refrigerant circulates and includes a radiator and is arranged to exchange heat between the first condenser and the second evaporator.
  • the hybrid refrigeration system according to (3) above.
  • the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to reduce the compression pressure of the compressor in the vapor compression refrigeration cycle.
  • the amount of work can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A hybrid refrigeration system configured such that mechanical work load in a vapor compression refrigeration cycle is reduced.  A hybrid refrigeration system is formed by a combination of a vapor compression refrigeration cycle (101) having a compressor (102), a condenser (103), an expander (105), and an evaporator (106) and of an adsorption refrigeration cycle (108) having at least a pair of adsorbers (111-112') for alternately adsorbing a refrigerant and alternately desorbing the adsorbed refrigerant.  The adsorption refrigeration cycle (108) is combined with the vapor compression refrigeration cycle (101) so that the compression pressure of the compressor (102) in the vapor compression refrigeration cycle (101) is reduced.

Description

ハイブリッド式冷凍システムHybrid refrigeration system
 本発明は、蒸気圧縮式冷凍サイクルと吸着式冷凍サイクルとが組み合わされてなるハイブリッド式冷凍システムに関するものである。 The present invention relates to a hybrid refrigeration system in which a vapor compression refrigeration cycle and an adsorption refrigeration cycle are combined.
 特開平11-63719号公報(特許文献1)、特開平11-83235号公報(特許文献2)及び特開2005-308355号公報(特許文献3)には、圧縮機、凝縮器、膨張器及び蒸発器からなる蒸気圧縮式冷凍サイクルを、冷媒を交互に吸着し且つ吸着した冷媒を交互に脱着する少なくとも一対の吸着器を有する吸着式冷凍サイクルと組み合わせて、吸着式冷凍サイクルの性能を改善する技術が開示されている。
特開平11-63719号公報 特開平11-83235号公報 特開2005-308355号公報
JP-A-11-63719 (Patent Document 1), JP-A-11-83235 (Patent Document 2) and JP-A-2005-308355 (Patent Document 3) describe a compressor, a condenser, an expander, and Combining a vapor compression refrigeration cycle comprising an evaporator with an adsorption refrigeration cycle having at least a pair of adsorbers that alternately adsorb refrigerant and alternately desorb the adsorbed refrigerant to improve the performance of the adsorption refrigeration cycle Technology is disclosed.
Japanese Patent Laid-Open No. 11-63719 Japanese Patent Laid-Open No. 11-83235 JP 2005-308355 A
 従来のハイブリッド式冷凍システムの開発では、吸着式冷凍サイクルの性能を改善することに主眼が置かれており、蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減する目的のために、吸着式冷凍サイクルを活用することはほとんど検討されていなかった。 In the development of the conventional hybrid refrigeration system, the main focus is on improving the performance of the adsorption refrigeration cycle. For the purpose of reducing mechanical work in the vapor compression refrigeration cycle, the adsorption refrigeration cycle is used. There has been little consideration of using.
 本発明の目的は、蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減することを可能にしたハイブリッド式冷凍システムを提供することにある。 An object of the present invention is to provide a hybrid refrigeration system that can reduce mechanical work in a vapor compression refrigeration cycle.
 本発明のハイブリッド式冷凍システムは、圧縮機、凝縮器、膨張器及び蒸発器からなる蒸気圧縮式冷凍サイクル、冷媒を交互に吸着し且つ吸着した冷媒を交互に脱着する少なくとも一対の吸着器を有する吸着式冷凍サイクルが組み合わされて構成される。なお本願明細書においては、凝縮器は、ガスクーラを含む概念である。本発明では、蒸気圧縮式冷凍サイクルにおける圧縮機の圧縮圧力を低減するように、吸着式冷凍サイクルを蒸気圧縮式冷凍サイクルに組み合わせる。その結果、最も効果的に、蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減することができる。 The hybrid refrigeration system of the present invention includes a vapor compression refrigeration cycle including a compressor, a condenser, an expander, and an evaporator, and at least a pair of adsorbers that alternately adsorb refrigerant and desorb the adsorbed refrigerant alternately. An adsorption refrigeration cycle is combined. In the present specification, the condenser is a concept including a gas cooler. In the present invention, the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to reduce the compression pressure of the compressor in the vapor compression refrigeration cycle. As a result, the mechanical work in the vapor compression refrigeration cycle can be most effectively reduced.
 蒸気圧縮式冷凍サイクルに吸着式冷凍サイクルを組み合わせて、蒸気圧縮式冷凍サイクルにおける圧縮機の圧縮圧力(機械的仕事量)を低減するための具体的な構成として、発明者は2種類の具体的な発明を提案する。第1の種類の発明では、蒸気圧縮式冷凍サイクルにおける圧縮機と凝縮器との間に、圧縮機により圧縮された冷媒を交互に吸着し且つ吸着した冷媒を交互に脱着する少なくとも一対の吸着器が位置するように吸着式冷凍サイクルを組み合わせる。そして本発明においては、圧縮機により冷媒を中間圧力まで圧縮し、中間圧力まで圧縮した冷媒を吸着式冷凍サイクルにより中間圧力よりも高い圧力まで昇圧する。このようにすれば、蒸気圧縮式冷凍サイクルにおける圧縮機による圧縮圧力を従来よりも低くすることができて、蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減することができる。 As a specific configuration for reducing the compression pressure (mechanical work amount) of a compressor in a vapor compression refrigeration cycle by combining an adsorption refrigeration cycle with a vapor compression refrigeration cycle, the inventor has two specific types. Proposed invention. In the first type of the invention, at least a pair of adsorbers that alternately adsorb the refrigerant compressed by the compressor and alternately desorb the adsorbed refrigerant between the compressor and the condenser in the vapor compression refrigeration cycle. Combine the adsorption refrigeration cycle so that is located. In the present invention, the refrigerant is compressed to the intermediate pressure by the compressor, and the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle. If it does in this way, the compression pressure by the compressor in a vapor compression refrigeration cycle can be made lower than before, and the mechanical work in a vapor compression refrigeration cycle can be reduced.
 なお第1の種類の発明において、蒸発器と圧縮機とをつなぐ冷媒流路と凝縮器と膨張器とをつなぐ冷媒流路との間で熱交換を行う内部熱交換器をさらに備えていてもよいのは勿論である。このような内部熱交換器を設ければ、凝縮器を通った冷媒から吸熱することにより、蒸気圧縮式冷凍サイクルの膨張器入口と蒸発器入口の比エンタルピーを下げることができる。その結果、蒸発器で冷媒が周囲から奪う熱流量(冷凍能力)を大きくすることができる。 In the first type of invention, an internal heat exchanger for exchanging heat between the refrigerant flow path connecting the evaporator and the compressor and the refrigerant flow path connecting the condenser and the expander may be further provided. Of course it is good. If such an internal heat exchanger is provided, the specific enthalpy between the expander inlet and the evaporator inlet of the vapor compression refrigeration cycle can be lowered by absorbing heat from the refrigerant passing through the condenser. As a result, it is possible to increase the heat flow rate (refrigeration capacity) taken by the refrigerant from the surroundings in the evaporator.
 第2の種類の発明で用いる蒸気圧縮式冷凍サイクルは、第1冷媒を圧縮する第1圧縮機、第1圧縮機により圧縮された第1冷媒を凝縮する第1凝縮器、第1凝縮器により凝縮された第1冷媒を膨張させる第1膨張器及び第1膨張器により膨張させられた第1冷媒を蒸発させる第1蒸発器を備えている。また吸着式冷凍サイクルは、蒸発した第2冷媒を交互に吸着し且つ吸着した第2冷媒を交互に脱着する少なくとも一対の吸着器、吸着器から脱着した第2冷媒を凝縮する第2凝縮器、第2凝縮器により凝縮された第2冷媒を膨張させる第2膨張器及び第2膨張器により膨張させられた第2冷媒を蒸発させる第2蒸発器を備えている。そして第1凝縮器を通る第1冷媒から第2蒸発器を介して吸熱するように吸着式冷凍サイクルを蒸気圧縮式冷凍サイクルに組み合わせる。 The vapor compression refrigeration cycle used in the second type of invention includes a first compressor that compresses the first refrigerant, a first condenser that condenses the first refrigerant compressed by the first compressor, and a first condenser. A first expander that expands the condensed first refrigerant and a first evaporator that evaporates the first refrigerant expanded by the first expander are provided. The adsorption refrigeration cycle includes at least a pair of adsorbers that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, a second condenser that condenses the second refrigerant desorbed from the adsorber, A second expander that expands the second refrigerant condensed by the second condenser and a second evaporator that evaporates the second refrigerant expanded by the second expander are provided. The adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to absorb heat from the first refrigerant passing through the first condenser via the second evaporator.
 この発明によれば、蒸気圧縮式冷凍サイクルの第1圧縮機の圧縮圧力を高くすることなく、第1凝縮器を通る第1冷媒から第2蒸発器を介して吸熱することにより、蒸気圧縮式冷凍サイクルの膨張器入口と蒸発器入口の比エンタルピーを下げることができる。その結果、第1圧縮機の圧縮圧力(圧縮仕事)を大きくすることなく、第1蒸発器で冷媒が周囲から奪う熱流量(冷凍能力)を大きくすることができる。 According to the present invention, the heat is absorbed from the first refrigerant passing through the first condenser through the second evaporator without increasing the compression pressure of the first compressor of the vapor compression refrigeration cycle. The specific enthalpy between the expander inlet and the evaporator inlet of the refrigeration cycle can be lowered. As a result, it is possible to increase the heat flow rate (refrigeration capacity) that the refrigerant takes from the surroundings in the first evaporator without increasing the compression pressure (compression work) of the first compressor.
 第1凝縮器を通る第1冷媒からの吸熱は、第1凝縮器と第2蒸発器との間に熱交換器を構成することにより実現することができる。この熱交換器は、第1凝縮器と第2蒸発器との間で直接熱交換するように構成することができる。またこの熱交換器は、放熱器を備え第1凝縮器及び第2蒸発器との間で熱交換するように配置された、第3冷媒が循環する冷媒循環路を備えた構造とすることもできる。このような熱交換器を用いれば、吸着式冷凍サイクルに第1圧縮機から出る油が混入しないように蒸気圧縮式冷凍サイクルを組み合わせることができる。 The heat absorption from the first refrigerant passing through the first condenser can be realized by configuring a heat exchanger between the first condenser and the second evaporator. The heat exchanger can be configured to exchange heat directly between the first condenser and the second evaporator. In addition, the heat exchanger may have a structure including a refrigerant circulation path in which a third refrigerant circulates and includes a radiator and is arranged to exchange heat between the first condenser and the second evaporator. it can. If such a heat exchanger is used, a vapor compression refrigeration cycle can be combined so that oil from the first compressor is not mixed into the adsorption refrigeration cycle.
一般的な蒸気圧縮式冷凍システムの構成を示す図である。It is a figure which shows the structure of a general vapor compression refrigeration system. 本実施の形態で利用する内部熱交換器を備えた蒸気圧縮式冷凍システムの構成を示す図である。It is a figure which shows the structure of the vapor | steam compression refrigeration system provided with the internal heat exchanger utilized by this Embodiment. シングルステージの吸着式冷凍サイクルの一般的な構成を示す図である。It is a figure which shows the general structure of a single stage adsorption type refrigerating cycle. 蒸気圧縮式冷凍サイクルと吸着式冷凍サイクルとを組み合わせた本発明の第1の実施の形態の概略構成を示す図である。It is a figure showing a schematic structure of a 1st embodiment of the present invention which combined a vapor compression refrigerating cycle and an adsorption refrigerating cycle. 図4の実施の形態の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of embodiment of FIG. 本願発明の第2の実施の形態の構成を示す図である。It is a figure which shows the structure of 2nd Embodiment of this invention. 図6に示した実施の形態の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of embodiment shown in FIG. 本発明のハイブリッド式冷凍システムの第3の実施の形態の構成を示す図である。It is a figure which shows the structure of 3rd Embodiment of the hybrid refrigeration system of this invention. 図8の実施の形態の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of embodiment of FIG. 本発明のハイブリッド式冷凍システムの第4の実施の形態の構成を示す図である。It is a figure which shows the structure of 4th Embodiment of the hybrid refrigeration system of this invention. 吸着器で使用する吸着剤の吸着等温線の実験データを示す図である。It is a figure which shows the experimental data of the adsorption isotherm of the adsorption agent used with an adsorption machine. 三つの異なる圧縮機出口圧力に対する二酸化炭素を用いた単純な遷臨界サイクルのP-T(圧力-温度)線図である。FIG. 2 is a PT (pressure-temperature) diagram of a simple transcritical cycle using carbon dioxide for three different compressor outlet pressures. 図12に対応するP-h(圧力-比エンタルピー)線図である。FIG. 13 is a Ph (pressure-specific enthalpy) diagram corresponding to FIG. 異なるガスクーラ(凝縮器)温度に対する圧縮機出口圧力の関数としての成績係数(COP)を示す図である。FIG. 3 is a diagram showing a coefficient of performance (COP) as a function of compressor outlet pressure for different gas cooler (condenser) temperatures. 異なる吸着温度と脱着圧力に対するハイブリッド式冷凍システムの冷却能力の性能マップを示す図である。It is a figure which shows the performance map of the cooling capacity of the hybrid refrigeration system with respect to different adsorption temperature and desorption pressure. 異なる吸着温度と脱着圧力に対するハイブリッド式冷凍システムのCOP(成績係数)の性能マップを示す図である。It is a figure which shows the performance map of COP (coefficient of performance) of a hybrid type refrigeration system with respect to different adsorption temperature and desorption pressure. 異なる吸着温度と脱着圧力に対する乾燥Maxsorb III単位質量あたりのCO2の質量に基づく冷媒量を示す図である。It is a diagram showing a refrigerant amount based on the mass of CO 2 per dry Maxsorb III unit mass for different adsorption temperature and desorption pressure. 内部熱交換器IHEが無い場合の、吸着温度(308K,313K及び318K)におけるP-h線図を示す図である。It is a figure which shows the Ph diagram in adsorption temperature (308K, 313K, and 318K) when there is no internal heat exchanger IHE. 内部熱交換器IHEがある場合の、吸着温度(308K,313K及び318K)におけるP-h線図を示す図である。It is a figure which shows the Ph diagram in adsorption | suction temperature (308K, 313K, and 318K) when there exists an internal heat exchanger IHE. (A)及び(B)は、図4に示した第1の実施の形態のハイブリッド式冷凍システムの四つの異なる圧縮機吐出圧力(60、 65、 70 and 75 bars)に対する冷却能力及びCOP(成績係数)を脱着圧力の関数として示す図である。(A) and (B) are the cooling capacity and COP (results) for the four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG. It is a figure which shows a coefficient as a function of the desorption pressure. 図4に示した第1の実施の形態のハイブリッド式冷凍システムの四つの異なる圧縮機吐出圧力(60、 65、 70 and 75 bars)に対する冷媒流量を脱着圧力の関数として示す図である。FIG. 5 is a diagram showing refrigerant flow rates as a function of desorption pressure with respect to four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG. 図4に示したハイブリッド式冷凍システムの図18及び図19の性能曲線に示されたY=94barにおける、圧力-温度-濃度線図である。FIG. 20 is a pressure-temperature-concentration diagram at Y = 94 bar shown in the performance curves of FIGS. 18 and 19 of the hybrid refrigeration system shown in FIG. 図18及び図19に示したY=94barsにおけるハイブリッド式冷凍システムのP-h線図である。FIG. 20 is a Ph diagram of the hybrid refrigeration system at Y = 94 bar shown in FIGS. 18 and 19. 図4に示したハイブリッド式冷凍システムの操作概念の把握のために、X=81bars,Y=94bars及びZ=110barsの三つの操作条件に対するP-h線図を示す図である。FIG. 5 is a Ph diagram for three operating conditions of X = 81 bars, Y = 94 bars and Z = 110 bars in order to understand the operating concept of the hybrid refrigeration system shown in FIG. 図18のP-h線図を示すハイブリッド式冷凍システムの性能データを示す表図である。FIG. 19 is a table showing performance data of the hybrid refrigeration system showing the Ph diagram of FIG. 18. 図19のP-h線図の内部熱交換機(IHE)付きのハイブリッド式冷凍システムの性能データを示す表図である。FIG. 20 is a table showing performance data of a hybrid refrigeration system with an internal heat exchanger (IHE) in the Ph diagram of FIG. 19.
 以下図面を参照して、本発明のハイブリッド式冷凍システムの実施の形態を詳細に説明する。本発明の実施の形態では、二酸化炭素(CO2)を冷媒として、蒸気圧縮式冷凍サイクルと吸着式冷凍サイクルとを組み合わせて蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減する。二酸化炭素は、ODP(オゾン破壊係数)が0で、GWP(地球温暖化係数)が無視できるほど小さい(=1)無毒で不燃性の自然冷媒である。二酸化炭素は幅広い範囲への適用性を持ち、自動車用空調システムでも広範囲で利用可能である。個々のサイクルでは一見低い効率が、2つのサイクルを組み合わせることで高効率となる。本実施の形態のハイブリッド式冷凍システムでは、自動車用空調機に適用するのに適しており、吸着式冷凍サイクルはエンジン排熱で駆動される。 Hereinafter, embodiments of a hybrid refrigeration system of the present invention will be described in detail with reference to the drawings. In the embodiment of the present invention, mechanical work in the vapor compression refrigeration cycle is reduced by combining the vapor compression refrigeration cycle and the adsorption refrigeration cycle using carbon dioxide (CO 2 ) as a refrigerant. Carbon dioxide is a non-toxic and non-flammable natural refrigerant that has an ODP (ozone depletion potential) of 0 and a negligible GWP (global warming potential) (= 1). Carbon dioxide has a wide range of applicability and can be used in a wide range of automotive air conditioning systems. The seemingly low efficiency in each cycle is high by combining the two cycles. The hybrid refrigeration system of the present embodiment is suitable for application to an automobile air conditioner, and the adsorption refrigeration cycle is driven by engine exhaust heat.
 本実施の形態の二酸化炭素を用いたハイブリッド式冷凍システムの実施の形態を説明する前に、蒸気圧縮式冷凍サイクル及び吸着式冷凍サイクルについて説明する。 Before describing an embodiment of a hybrid refrigeration system using carbon dioxide of the present embodiment, a vapor compression refrigeration cycle and an adsorption refrigeration cycle will be described.
 一般的な蒸気圧縮式冷凍システムは、図1に概略を示すように圧縮機2、ガスクーラ(凝縮器)3、受液器4,膨張器5および蒸発器6から構成される。また図2には、本実施の形態で利用する内部熱交換器7を備えた蒸気圧縮式冷凍システムの構成が示されている。内部熱交換器7は、ガスクーラ(凝縮器)3の出口と蒸発器6の出口で用いられ、この間で熱交換することにより、ガスクーラ(凝縮器)3の出口温度はより低下し、蒸発器6の出口温度がより上昇する。 A general vapor compression refrigeration system includes a compressor 2, a gas cooler (condenser) 3, a receiver 4, an expander 5 and an evaporator 6 as schematically shown in FIG. FIG. 2 shows a configuration of a vapor compression refrigeration system including an internal heat exchanger 7 used in the present embodiment. The internal heat exchanger 7 is used at the outlet of the gas cooler (condenser) 3 and the outlet of the evaporator 6. By exchanging heat between them, the outlet temperature of the gas cooler (condenser) 3 is further reduced, and the evaporator 6 The outlet temperature of the rises more.
 図3は、シングルステージの吸着式冷凍サイクル8の一般的な構成を示している。この吸着式冷凍サイクル8は、ガスクーラ(または凝縮器)9、蒸発器10および一対の吸着器(吸・脱着熱交換器)11及び12と4つのバルブ13乃至16を備えている。吸着剤としては、活性炭[例えばMaxsorb III(商標)]が吸着器11及び12内に充填されている。蒸発過程において、吸着器11及び12の一方で冷媒の吸着が行われ、蒸発過程において先に冷媒の吸着が行われた吸着器で脱着が引き起こされる。吸着器11及び12は、交互の冷却と加熱により、交互に吸着と脱着とを繰り返す。図3の状況においては、冷媒(CO2)は蒸発器10において蒸発温度で蒸発し、吸着器(Bed1)12で吸着される。吸着は吸着剤の冷媒濃度が高濃度になるまで継続する。冷却水が吸着熱を取り除くために用いられる。脱着器として機能する吸着器(Bed2)11は駆動熱入力(排熱あるいは再生可能エネルギー源からの熱源)によって脱着温度まで加熱される。吸着器(Bed2)11から脱着した冷媒はガスクーラ(または凝縮器)9で冷却される(または凝縮する)。凝縮器9における凝縮熱は冷却水によって除去される。通常、吸・脱着の駆動時間は、240から600秒間継続し、凝縮した冷媒液は規定のサイクルに従い蒸発器10に戻る。蒸発が起こらないようにすべてのバルブ13乃至16を閉鎖している時間が約30秒間導入される。その後、すべてのバルブを逆のモードにすることにより、完全に逆のサイクルが継続する。 FIG. 3 shows a general configuration of a single stage adsorption refrigeration cycle 8. The adsorption refrigeration cycle 8 includes a gas cooler (or condenser) 9, an evaporator 10, a pair of adsorbers (absorption / desorption heat exchangers) 11 and 12, and four valves 13 to 16. As the adsorbent, activated carbon [for example, Maxsorb III (trademark)] is filled in the adsorbers 11 and 12. In the evaporation process, the refrigerant is adsorbed by one of the adsorbers 11 and 12, and desorption is caused in the adsorber in which the refrigerant is first adsorbed in the evaporation process. The adsorbers 11 and 12 alternately repeat adsorption and desorption by alternately cooling and heating. In the situation of FIG. 3, the refrigerant (CO 2 ) evaporates at the evaporation temperature in the evaporator 10 and is adsorbed by the adsorber (Bed 1) 12. Adsorption continues until the refrigerant concentration of the adsorbent becomes high. Cooling water is used to remove the heat of adsorption. The adsorber (Bed2) 11 functioning as a desorber is heated to a desorption temperature by driving heat input (exhaust heat or a heat source from a renewable energy source). The refrigerant desorbed from the adsorber (Bed2) 11 is cooled (or condensed) by the gas cooler (or condenser) 9. The heat of condensation in the condenser 9 is removed by the cooling water. Normally, the driving time for suction / desorption continues for 240 to 600 seconds, and the condensed refrigerant liquid returns to the evaporator 10 according to a prescribed cycle. The time for closing all valves 13 to 16 is introduced for about 30 seconds so that no evaporation occurs. The complete reverse cycle then continues with all valves in the reverse mode.
 図4は、図1の蒸気圧縮式冷凍サイクルと図3の吸着式冷凍サイクルとを組み合わせた本発明の第1の実施の形態の概略構成を示している。図4において、図1及び図3に示した部材と同様の部材には、図1及び図2に付した符号の数に100の数を加えた数の符号を付してある。図4の第1の実施の形態のハイブリッド式冷凍システムは、蒸気圧縮式冷凍サイクル101における圧縮機102と凝縮器103との間に、圧縮機102により圧縮された冷媒を交互に吸着し且つ吸着した冷媒を交互に脱着する少なくとも一対の吸着器111及び112並びに111′及び112′が位置するように吸着式冷凍サイクル108を組み合わせている。吸着式冷凍サイクル108では、吸着器111及び111′と吸着器112及び112′とが、交互に吸着及び脱着動作を行う。連続運転のために、吸着サイクルのバッチ操作は、スウィッチング期間とオペレーション期間と呼ばれる二つの時間間隔を備えている。運転中、吸・脱着は圧縮圧力とガスクーラ(または凝縮器)圧力を維持するために行われる。水冷あるいは空冷のガスクーラ(または凝縮器)は指定の脱着器(吸着器111~112′のうち脱着動作にあるもの)から脱着した流体を冷却し、そこで過冷液となった流体は膨張器105を経て蒸発器106に戻り、冷凍サイクルを終了する。脱着を終えた吸着器(吸着剤を含む)の機能は、外部排熱源の方向を切り替えるスウィッチングによって回復する。同時に、外部冷却もまた指定された吸着器にスウィッチされ、同様に、圧縮機102と凝縮器103もまた各々の吸着器と脱着器(脱着を行う吸着器)にスウィッチされる。ただし、スウィッチング期間は加熱された脱着器(脱着する吸着器)と凝縮器103との間、冷却された吸着器(吸着する吸着器)と圧縮機102との間の物質移動は無い。 FIG. 4 shows a schematic configuration of the first embodiment of the present invention in which the vapor compression refrigeration cycle of FIG. 1 and the adsorption refrigeration cycle of FIG. 3 are combined. In FIG. 4, members similar to those shown in FIGS. 1 and 3 are given the same reference numerals as those shown in FIGS. 1 and 2 plus 100. The hybrid refrigeration system of the first embodiment shown in FIG. 4 alternately adsorbs and adsorbs the refrigerant compressed by the compressor 102 between the compressor 102 and the condenser 103 in the vapor compression refrigeration cycle 101. The adsorption refrigeration cycle 108 is combined so that at least a pair of adsorbers 111 and 112 and 111 'and 112' for alternately desorbing the refrigerant are located. In the adsorption refrigeration cycle 108, the adsorbers 111 and 111 ′ and the adsorbers 112 and 112 ′ alternately perform adsorption and desorption operations. For continuous operation, the batch operation of the adsorption cycle has two time intervals called the switching period and the operation period. During operation, suction and desorption are performed to maintain compression pressure and gas cooler (or condenser) pressure. A water-cooled or air-cooled gas cooler (or condenser) cools the fluid desorbed from a designated desorber (the one of the adsorbers 111 to 112 ′ that is desorbing), and the fluid that has become the supercooled liquid is then expanded into the expander 105. After returning to the evaporator 106, the refrigeration cycle is completed. The function of the adsorber (including the adsorbent) that has been desorbed is restored by switching that switches the direction of the external heat source. At the same time, external cooling is also switched to the designated adsorbers, and similarly, the compressor 102 and condenser 103 are also switched to their respective adsorbers and desorbers (adsorbers performing desorption). However, there is no mass transfer between the heated desorber (desorbing adsorber) and the condenser 103 and between the cooled adsorber (adsorbing adsorber) and the compressor 102 during the switching period.
 図5に図4の実施の形態の冷凍サイクルw2を示す。図4中には、丸印の中に数字1~4を付した記号を付してあるが、明細書中で使用できる文字の制限の関係で、明細書中ではこれらの記号を括弧の中に数字を入れた「(1)~(4)」の文字を用いて記述する。また図4以降の図面中においても、丸印の中に数字を付した記号を付してある場合には、同様にこれらの記号については、(1)~(4)等の文字を用いて記述する。図4には、図5の冷凍サイクルに示した蒸発終了点(1)、中間圧縮終了点(2)′、圧縮終了点(2)“、ガスクーラ(または凝縮器)出口(3)、蒸発器入口(4)に対応する位置に同じ記号[(1)~(4)]を付してある。なお本実施の形態では、圧縮機102により冷媒を中間圧力まで圧縮する[(1)→(2)′]。そして圧縮器102の圧縮圧力を(2)まで上げることなく、中間圧力まで圧縮した冷媒を吸着式冷凍サイクル108により中間圧力よりも高い圧力まで昇圧する[(2)′→(2)”]。このようにすれば、蒸気圧縮式冷凍サイクル101における圧縮機102による圧縮圧力を従来よりも低い中間圧力とすることができて、蒸気圧縮式冷凍サイクル101における機械的仕事量(動力)を低減することができる。 FIG. 5 shows the refrigeration cycle w2 of the embodiment of FIG. In FIG. 4, symbols with numerals 1 to 4 are added in circles, but these symbols are enclosed in parentheses in the specification because of restrictions on characters that can be used in the specification. Describe using the characters “(1) to (4)” with numbers. Also in the drawings after FIG. 4, when a symbol with a number is added in a circle, similarly for these symbols, use the characters (1) to (4). Describe. FIG. 4 shows an evaporation end point (1), an intermediate compression end point (2) ′, a compression end point (2) ”, a gas cooler (or condenser) outlet (3), an evaporator shown in the refrigeration cycle of FIG. The same symbol [(1) to (4)] is attached to the position corresponding to the inlet (4) In this embodiment, the compressor 102 compresses the refrigerant to an intermediate pressure [(1) → ( 2) ′] Then, without increasing the compression pressure of the compressor 102 to (2), the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle 108 [(2) ′ → ( 2) ”]. If it does in this way, the compression pressure by the compressor 102 in the vapor compression refrigeration cycle 101 can be made an intermediate pressure lower than before, and the mechanical work (power) in the vapor compression refrigeration cycle 101 is reduced. be able to.
 CO2液冷媒を用いる本実施の形態の具体的な実施例では、主要な過程は(i)一定温度(5℃)、一定圧力(39.8bar)に維持された蒸発器106に熱負荷がかかり、CO2液冷媒が蒸発し[(4)→(1)]、(ii)気化したCO2液冷媒は圧縮機102を通って蒸発圧力から圧縮圧力(中間圧力)まで加圧される[(1)→(2)′]。(iii) 吸着式冷凍サイクル108における脱着により、圧縮されたCO2蒸気は熱的に圧縮される。(iv)ガスクーラ(または凝縮器)圧力で、ガスクーラ(または凝縮器)による等圧熱放出過程を経る[(2)”→(3)]、(v)そして断熱膨張過程[(3)→(4)]を経る。 In a specific example of this embodiment using a CO 2 liquid refrigerant, the main process is (i) the heat load on the evaporator 106 maintained at a constant temperature (5 ° C.) and a constant pressure (39.8 bar). Then, the CO 2 liquid refrigerant evaporates [(4) → (1)], and (ii) the vaporized CO 2 liquid refrigerant is pressurized from the evaporation pressure to the compression pressure (intermediate pressure) through the compressor 102 [ (1) → (2) ′]. (iii) The compressed CO 2 vapor is thermally compressed by desorption in the adsorption refrigeration cycle 108. (iv) Gas cooler (or condenser) pressure undergoes isobaric heat release process by gas cooler (or condenser) [(2) ”→ (3)], (v) and adiabatic expansion process [(3) → ( 4)].
 図6は、図4に示した第1の実施の形態の変形例としての本願発明の第2の実施の形態の構成を示す図である。図6には、図4に示した第1の実施の形態の部材と同じ部材には、同じ符号を付してある。図7は、図6に示した実施の形態の冷凍サイクルを示す。図6には、図7の冷凍サイクルに示した蒸発終了点(1)、中間圧縮終了点(2)′、圧縮終了点(2)”、ガスクーラ(または凝縮器)出口(3)、蒸発器入口(4)′に対応する位置に同じ記号[(1)~(4)′]を付してある。本実施の形態では、蒸発器106と圧縮機102とをつなぐ冷媒流路FP1と凝縮器103と膨張器105とをつなぐ冷媒流路FP2との間で熱交換を行う内部熱交換器107を備えている。この実施の形態では、内部熱交換器107がガスクーラ(または凝縮器)103出口と蒸発器106の出口との間で用いられ、それらの間の熱交換により、ガスクーラ(または凝縮器)103の出口温度はより低下し、蒸発器106の出口温度はより上昇する。そしてそのことによりシステムの成績係数(COP)が上昇する。このような内部熱交換器107を設ければ、凝縮器103を通った冷媒から吸熱することにより、蒸気圧縮式冷凍サイクル101′の膨張器入口(3)′と蒸発器入口(4)′の比エンタルピー(h)を、内部熱交換器107を設けない場合と比べて、下げる(小さくする)ことができる。その結果、圧縮器102による圧縮圧力を上げることなく[(2)まで上げることなく]、蒸発器106で冷媒が周囲から奪う熱流量(冷凍能力)を大きくすることができる。すなわち本実施の形態によっても、蒸気圧縮式冷凍サイクル101′における機械的仕事量を低減することができる。 FIG. 6 is a diagram showing a configuration of the second embodiment of the present invention as a modification of the first embodiment shown in FIG. In FIG. 6, the same members as those of the first embodiment shown in FIG. FIG. 7 shows the refrigeration cycle of the embodiment shown in FIG. FIG. 6 shows the evaporation end point (1), intermediate compression end point (2) ′, compression end point (2) ”, gas cooler (or condenser) outlet (3), evaporator shown in the refrigeration cycle of FIG. The same symbol [(1) to (4) ′] is attached to the position corresponding to the inlet (4) ′. In this embodiment, the refrigerant flow path FP1 connecting the evaporator 106 and the compressor 102 and the condensation are provided. The internal heat exchanger 107 which performs heat exchange between the refrigerant | coolant flow path FP2 which connects the apparatus 103 and the expander 105 is provided.In this embodiment, the internal heat exchanger 107 is the gas cooler (or condenser) 103. Used between the outlet and the outlet of the evaporator 106, the heat exchange between them lowers the outlet temperature of the gas cooler (or condenser) 103 and further increases the outlet temperature of the evaporator 106. This increases the coefficient of performance (COP) of the system. If 07 is provided, the specific enthalpy (h) of the expander inlet (3) ′ and the evaporator inlet (4) ′ of the vapor compression refrigeration cycle 101 ′ is absorbed by absorbing heat from the refrigerant passing through the condenser 103, Compared with the case where the internal heat exchanger 107 is not provided, the internal heat exchanger 107 can be lowered (reduced), and as a result, without increasing the compression pressure by the compressor 102 [without increasing the pressure to (2)], the evaporator 106 can generate refrigerant. The heat flow (refrigeration capacity) taken away from the surroundings can be increased, that is, the mechanical work in the vapor compression refrigeration cycle 101 'can be reduced also by this embodiment.
 図8は、本発明のハイブリッド式冷凍システムの第3の実施の形態の構成を示している。図8に示した実施の形態には、図4に示した上記第1の実施の形態の構成部材と同様の構成部材に、図4及び図6に付した符号の数に100の数を加えた数の符号を付してある。第1の実施の形態の構成では、蒸気圧縮式冷凍サイクル101と吸着式冷凍サイクル108との冷媒が共通しているため、冷媒流路の途中にフィルタ装置を設置しなければ、吸着式冷凍サイクル108において冷媒に含まれてしまう可能性が高い機械油等の汚染物質が、吸着器(211及び212,211′及び212′)を通過する。吸着器(211及び212,211′及び212′)が汚染されると、定期的にクリーニングする必要性が生じる。そこで第3の実施の形態では、吸着器(211及び212,211′及び212′)を汚れから守る構成を採用した。第3の実施の形態では、蒸気圧縮式冷凍サイクル201で使用する冷媒と吸着式冷凍サイクル208で使用する冷媒とを別のものとして、両サイクルの間で熱交換を行う。そこで第3の実施の形態で用いる蒸気圧縮式冷凍サイクル201は、第1冷媒を圧縮する第1圧縮機202、第1圧縮機202により圧縮された第1冷媒を凝縮する第1凝縮器203、第1凝縮器203により凝縮された第1冷媒を膨張させる第1膨張器205及び第1膨張器205により膨張させられた第1冷媒を蒸発させる第1蒸発器206を備えている。また吸着式冷凍サイクル208は、蒸発した第2冷媒を交互に吸着し且つ吸着した第2冷媒を交互に脱着する少なくとも一対の吸着器(211及び212,211′及び212′)、吸着器から脱着した第2冷媒を凝縮するガスクーラ(または第2凝縮器)223、ガスクーラ(または第2凝縮器)223により冷却(または凝縮)された第2冷媒を膨張させる第2膨張器221及び第2膨張器221により膨張させられた第2冷媒を蒸発させる第2蒸発器222を備えている。第1凝縮器203と第2蒸発器222とは、両者間に熱交換器を構成するように一つのユニットとして構成されている。なおこの熱交換器は、第1凝縮器202と第2蒸発器222との間で直接熱交換するものでも、また別の冷媒を含む循環路を両者の間に配置して熱交換するものでもよく、その構成は任意である。本実施の形態では、第1凝縮器203を通る第1冷媒から第2蒸発器222を介して吸熱するように吸着式冷凍サイクル208を蒸気圧縮式冷凍サイクル201に組み合わせている。 FIG. 8 shows the configuration of the third embodiment of the hybrid refrigeration system of the present invention. In the embodiment shown in FIG. 8, the number of 100 is added to the number of the reference numerals shown in FIGS. 4 and 6 to the same members as those of the first embodiment shown in FIG. A number of symbols are attached. In the configuration of the first embodiment, since the refrigerant of the vapor compression refrigeration cycle 101 and the adsorption refrigeration cycle 108 are common, the adsorption refrigeration cycle unless a filter device is installed in the refrigerant flow path. Contaminants such as machine oil that are likely to be contained in the refrigerant at 108 pass through the adsorbers (211 and 212, 211 'and 212'). When the adsorbers (211 and 212, 211 'and 212') become contaminated, it becomes necessary to clean them regularly. Therefore, in the third embodiment, a configuration is adopted in which the adsorbers (211 and 212, 211 ′ and 212 ′) are protected from dirt. In the third embodiment, the refrigerant used in the vapor compression refrigeration cycle 201 is different from the refrigerant used in the adsorption refrigeration cycle 208, and heat exchange is performed between both cycles. Therefore, the vapor compression refrigeration cycle 201 used in the third embodiment includes a first compressor 202 that compresses the first refrigerant, a first condenser 203 that condenses the first refrigerant compressed by the first compressor 202, A first expander 205 that expands the first refrigerant condensed by the first condenser 203 and a first evaporator 206 that evaporates the first refrigerant expanded by the first expander 205 are provided. In addition, the adsorption refrigeration cycle 208 includes at least a pair of adsorbers (211 and 212, 211 'and 212') that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, and desorb from the adsorber. Gas cooler (or second condenser) 223 for condensing the second refrigerant, the second expander 221 and the second expander for expanding the second refrigerant cooled (or condensed) by the gas cooler (or second condenser) 223 A second evaporator 222 is provided for evaporating the second refrigerant expanded by 221. The 1st condenser 203 and the 2nd evaporator 222 are comprised as one unit so that a heat exchanger may be comprised between both. Note that this heat exchanger can exchange heat directly between the first condenser 202 and the second evaporator 222, or can exchange heat by arranging a circulation path containing another refrigerant between them. Well, its configuration is arbitrary. In the present embodiment, the adsorption refrigeration cycle 208 is combined with the vapor compression refrigeration cycle 201 so as to absorb heat from the first refrigerant passing through the first condenser 203 via the second evaporator 222.
 図9には、図8の実施の形態の冷凍サイクルを示す。図9には、図8の冷凍サイクルに示した蒸発終了点(1)(5)、圧縮終了点(2)′(6)、凝縮終了点(3)′(7)、膨張終了点(4)′(8)に対応する位置に同じ記号[(1)~(8)]を付してある。本実施の形態によれば、蒸気圧縮式冷凍サイクル201の第1圧縮機202の圧縮圧力を高くすることなく、第1凝縮器206を通る第1冷媒から第2蒸発器222を介して吸熱することにより、蒸気圧縮式冷凍サイクル201の膨張器入口(3)′と蒸発器入口(4)′の比エンタルピーを下げる(小さい値にする)ことができる。その結果、本実施の形態によっても、第1及び第2の実施の形態と同様に、第1圧縮機202の圧縮圧力(圧縮仕事)を大きくすることなく、第1蒸発器206で冷媒が周囲から奪う熱流量(冷凍能力)を大きくすることができる。 FIG. 9 shows the refrigeration cycle of the embodiment of FIG. FIG. 9 shows the evaporation end point (1) (5), compression end point (2) ′ (6), condensation end point (3) ′ (7), and expansion end point (4) shown in the refrigeration cycle of FIG. The same symbol [(1) to (8)] is attached to the position corresponding to) ′ (8). According to the present embodiment, heat is absorbed from the first refrigerant passing through the first condenser 206 via the second evaporator 222 without increasing the compression pressure of the first compressor 202 of the vapor compression refrigeration cycle 201. As a result, the specific enthalpy of the expander inlet (3) ′ and the evaporator inlet (4) ′ of the vapor compression refrigeration cycle 201 can be reduced (to a small value). As a result, also in the present embodiment, the refrigerant is surrounded by the first evaporator 206 without increasing the compression pressure (compression work) of the first compressor 202 as in the first and second embodiments. The heat flow (refrigeration capacity) deprived from can be increased.
 図10は、図8に示した第3の実施の形態の変形例としての第4の実施の形態である。図10に示した実施の形態には、図8に示した上記第3の実施の形態の構成部材と同様の構成部材には、図8に付した符号の数に100の数を加えた数の符号を付してある。第3の実施の形態では、第1凝縮器203と第2蒸発器222とを、両者間に熱交換器を構成するように一つのユニットとして構成している。これに対して第4の実施の形態では、第1凝縮器203と第2蒸発器222との間で熱交換を行う熱交換器は、放熱器324を備え、第1凝縮器303及び第2蒸発器310との間で熱交換するように配置された、第3冷媒が循環する冷媒循環路328を備えた構造としている。また第4の実施の形態では、吸着器311及び312が自動車のエンジン327の排熱で再生される構造を有している。エンジン327と一対の吸着器311及び312との間には、脱着の際にエンジン327およびラジエーター325を交互に吸着器311及び312と接続するためのバルブ326及び329が配置されている。この具体例では、第3の実施の形態と同様に、第1蒸発器306は冷却能力を発生させるために使用され、第2の蒸発器310は、吸着器311及び312に油が混入しないように吸着器を運転するために使用される。また凝縮器309は第2蒸発器310で吸熱した熱を外部に放熱するために用いられる。 FIG. 10 shows a fourth embodiment as a modification of the third embodiment shown in FIG. In the embodiment shown in FIG. 10, the same number as that of the third embodiment shown in FIG. 8 is obtained by adding 100 to the number of reference numerals attached in FIG. 8. The code | symbol is attached | subjected. In 3rd Embodiment, the 1st condenser 203 and the 2nd evaporator 222 are comprised as one unit so that a heat exchanger may be comprised between both. On the other hand, in the fourth embodiment, the heat exchanger that performs heat exchange between the first condenser 203 and the second evaporator 222 includes a radiator 324, and includes the first condenser 303 and the second condenser 303. The structure is provided with a refrigerant circulation path 328 in which the third refrigerant circulates and is arranged so as to exchange heat with the evaporator 310. Further, in the fourth embodiment, the adsorbers 311 and 312 have a structure that is regenerated by the exhaust heat of the engine 327 of the automobile. Valves 326 and 329 are arranged between the engine 327 and the pair of adsorbers 311 and 312 for alternately connecting the engine 327 and the radiator 325 to the adsorbers 311 and 312 at the time of desorption. In this specific example, as in the third embodiment, the first evaporator 306 is used to generate cooling capacity, and the second evaporator 310 prevents the adsorbers 311 and 312 from being mixed with oil. Used to operate the adsorber. The condenser 309 is used to dissipate the heat absorbed by the second evaporator 310 to the outside.
 以下上記各実施の形態の性能を確認するために役立つ各種の試験結果について説明する。図11は、吸着器で使用する吸着剤の吸着等温線の実験データである。「S. Himeno, T. Komatsu and S. Fujita, High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons, J. Chem. Eng. Data 50 (2005), 369-376」の論文には、超微細多孔質の活性炭[Maxsorb III(商標)]への冷媒として用いるCO2の吸着に関するデータとして、温度範囲が273 to 348 K、圧力が最高4MPaの範囲で測定された結果が記載されている。図11の実験データは、種々の吸着温度における圧力変化に対する吸着量の関係を示している。図11からは、CO2の吸着量はMaxsorb III 1kgあたり最大1.5kgになることが判る。吸着剤1gあたりの最大等温吸着量で定義される吸着能力は、「F. Dreisbach, R. Staudt and J.U. Keller, J High-pressure adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated Carbon. Adsorption 5 (1999), 215-227.」、「A. Kapoor and R.T. Yang, Kinetic Separation of Methane-Carbon Dioxide Mixture by Adsorption on Molecular Sieve Carbon. Chem. Eng. Sci. 44 (1989), 1723-1783.」及び「S. Ozawa, S. Kusumi and Y. Ogino, Physical adsorption of gases at high pressure. An improvement of the Dubinin-Astakhov equation. J. Colloid. Interface Sci. 56 (1976), 83-91.」等に示された他の吸着剤を用いた他のCO2の等温吸着データと比較しても、Maxsorb IIIを使用した結果が最も高い値を示すことが確認されている。Langmuirの式は、Maxsorb IIIを使用した冷凍冷却システムの実験データと良好な一致を示している。そこで、Langmuirの式を等温線パラメータや吸着熱を見積もるために用いた。実験において用いたLangmuirの式は以下の通りである。
Figure JPOXMLDOC01-appb-M000001
Various test results useful for confirming the performance of each of the above embodiments will be described below. FIG. 11 shows experimental data of adsorption isotherms of the adsorbent used in the adsorber. The paper `` S. Himeno, T. Komatsu and S. Fujita, High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons, J. Chem. Eng. Data 50 (2005), 369-376 '' As data relating to the adsorption of CO 2 used as a refrigerant on microporous activated carbon [Maxsorb III ™], the results of measurement in a temperature range of 273 to 348 K and a pressure of up to 4 MPa are described. The experimental data in FIG. 11 shows the relationship of the amount of adsorption with respect to the pressure change at various adsorption temperatures. From FIG. 11, it can be seen that the maximum amount of CO 2 adsorbed is 1.5 kg per 1 kg of Maxsorb III. The adsorption capacity defined by the maximum isothermal adsorption per gram of adsorbent is “F. Dreisbach, R. Staudt and JU Keller, J High-pressure adsorption Data of Methane, Nitrogen, Carbon Dioxide and their Binary and Ternary Mixtures on Activated. Carbon. Adsorption 5 (1999), 215-227., `` A. Kapoor and RT Yang, Kinetic Separation of Methane-Carbon Dioxide Mixture by Adsorption on Molecular Sieve Carbon. Chem. Eng. Sci. 44 (1989), 1723- 1783. '' and `` S. Ozawa, S. Kusumi and Y. Ogino, Physical adsorption of gases at high pressure.An improvement of the Dubinin-Astakhov equation.J. Colloid.Interface Sci. 56 (1976), 83-91. Compared with other CO 2 isothermal adsorption data using other adsorbents shown in the above, it has been confirmed that the result using Maxsorb III shows the highest value. Langmuir's equation is in good agreement with experimental data for a refrigeration cooling system using Maxsorb III. Therefore, Langmuir's formula was used to estimate isotherm parameters and heat of adsorption. The Langmuir equation used in the experiment is as follows.
Figure JPOXMLDOC01-appb-M000001
 ここで、Wは吸着体積、Wは微細孔への最大吸着体積、Kは非常に吸着量が小さい場合の吸着指標であるLangmuir定数、Pは圧力である。定数Kは温度の関数として以下のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
Here, W is the adsorption volume, W 0 is the maximum adsorption volume to the micropores, K is a Langmuir constant that is an adsorption index when the adsorption amount is very small, and P is the pressure. The constant K can be expressed as a function of temperature as follows:
Figure JPOXMLDOC01-appb-M000002
 ここで、Rはガス定数、Tは平衡温度、Kは係数、ΔHadsは吸着熱である。Langmuirの吸着等温モデルは、実験データと±5%以内で一致することが確認できた。 Here, R is a gas constant, T is an equilibrium temperature, K 0 is a coefficient, and ΔH ads is an adsorption heat. Langmuir's adsorption isotherm model was confirmed to agree with the experimental data within ± 5%.
 図12は、三つの異なる圧縮機出口圧力に対する二酸化炭素を用いた単純な遷臨界サイクルのP-T(圧力-温度)線図を示す。これと一致するP-h(圧力-比エンタルピー)線図は図13のようになる。遷臨界CO2サイクルは(a)等エンタルピー圧縮過程(1-2 or 1-2’ or 1-2”)、(b)等圧熱放出過程(2-3 or 2'-3' or 2"-3")、(c)断熱膨張過程(3-4 or 3'-5 or 3"-6)、(d)等圧蒸発過程(4-1 or 5-1 or 6-1)からなることを示している。 FIG. 12 shows a PT (pressure-temperature) diagram of a simple transcritical cycle using carbon dioxide for three different compressor outlet pressures. The Ph (pressure-specific enthalpy) diagram that coincides with this is as shown in FIG. Transcritical CO 2 cycle consists of (a) isoenthalpy compression process (1-2 or 1-2 'or 1-2 "), (b) isobaric heat release process (2-3 or 2'-3' or 2" -3 "), (c) Adiabatic expansion process (3-4 or 3'-5 or 3" -6), (d) Isobaric evaporation process (4-1 or 5-1 or 6-1) Is shown.
 蒸気圧縮式冷凍機の理論COP(成績係数)は以下の式で与えられる。
Figure JPOXMLDOC01-appb-M000003
The theoretical COP (coefficient of performance) of a vapor compression refrigerator is given by the following equation.
Figure JPOXMLDOC01-appb-M000003
 ここで、Qrefは冷凍能力、Wcompは圧縮仕事を示す。h1、 h2、 h2’、 h2”、 h4、 h5、 h6は図13と一致する点でのCO2の比エンタルピーである。図13は、蒸気圧縮式冷凍サイクルのP-T(圧力-温度)線図を示す。図13において、Aはサイクル1-2-3-4-1を示し、Bはサイクル1-2′-3′-5-1を示し、Cはサイクル1-2” -3” -6-1を示している。 Here, Q ref indicates the refrigerating capacity, and W comp indicates the compression work. h1, h2, h2 ′, h2 ″, h4, h5, and h6 are specific enthalpies of CO 2 at points that coincide with FIG. 13. FIG. 13 is a PT (pressure-temperature) diagram of a vapor compression refrigeration cycle. 13, A represents the cycle 1-2-3-4-1, B represents the cycle 1-2'-3'-5-1, and C represents the cycle 1-2 "-3"- 6-1.
 異なるガスクーラ(または凝縮器)温度に対する圧縮機出口圧力の関数としての成績係数(COP)を図14に示す。図14のA乃至Cは、図12及び図13の蒸気圧縮式冷凍サイクルのP-T及びP-h線図に示されたサイクル1-2-3-4-1、サイクル1-2′-3′-5-1、及びサイクル1-2” -3” -6-1を示している。 Figure 14 shows the coefficient of performance (COP) as a function of compressor outlet pressure for different gas cooler (or condenser) temperatures. FIGS. 14A to 14C show cycles 1-2-3-4-1 and cycle 1-2'- shown in the PT and Ph diagrams of the vapor compression refrigeration cycle of FIGS. 3′-5-1 and cycle 1-2 ″ -3 ″ -6-1 are shown.
 この解析より、ガスクーラ(凝縮器)温度35℃に対する最適条件でCOPは4.0になることがわかる。ここで、ガスクーラ(凝縮器)温度が上昇するとCOPが低下することに注意すべきである。図14において、「蒸気圧縮」は図1の一般的な蒸気圧縮式冷凍サイクルの解析結果であり、「IHE利用蒸気圧縮」は、図2の内部熱交換器を備えた蒸気圧縮式冷凍サイクルの解析結果である。 From this analysis, it can be seen that the COP is 4.0 under the optimum conditions for a gas cooler (condenser) temperature of 35 ° C. It should be noted here that the COP decreases as the gas cooler (condenser) temperature increases. In FIG. 14, “vapor compression” is the analysis result of the general vapor compression refrigeration cycle of FIG. 1, and “IHE-use vapor compression” is the result of the vapor compression refrigeration cycle having the internal heat exchanger of FIG. 2. It is an analysis result.
 図15及び図16は、異なる吸着温度(308K,313K及び318K)と脱着圧力に対するハイブリッド式冷凍システムの冷却能力およびCOP(成績係数)の性能マップをそれぞれ示す。図15及び図16において、Aは図4に示した第1の実施の形態のハイブリッド式冷凍システムの解析結果を示す、Bは図6に示した第2の実施の形態のハイブリッド式冷凍システムの解析結果を示す。COP(成績係数)はガスクーラ(凝縮器)温度35℃の最適条件に対して蒸気圧縮式冷凍サイクルの約二倍にあたる8.0近くになる。内部熱交換器(IHE)が付加されると、COP(成績係数)はガスクーラ(凝縮器)温度と脱着圧力によっては10以上になることが図16に示されている。 15 and 16 show the performance maps of the cooling capacity and COP (coefficient of performance) of the hybrid refrigeration system for different adsorption temperatures (308K, 313K and 318K) and desorption pressure, respectively. 15 and 16, A shows the analysis result of the hybrid refrigeration system of the first embodiment shown in FIG. 4, and B shows the hybrid refrigeration system of the second embodiment shown in FIG. An analysis result is shown. The COP (coefficient of performance) is close to 8.0, which is about twice that of the vapor compression refrigeration cycle for the optimum condition of a gas cooler (condenser) temperature of 35 ° C. FIG. 16 shows that when an internal heat exchanger (IHE) is added, the COP (coefficient of performance) is 10 or more depending on the gas cooler (condenser) temperature and the desorption pressure.
 熱的圧縮機を設計するために、吸着剤の量を計算することは非常に重要である。異なる吸着温度(308K,313K及び318K)と脱着圧力に対する乾燥Maxsorb III単位質量あたりのCO2の質量に基づく冷媒量を図17に示す。図17において、Aは図4に示した第1の実施の形態のハイブリッド式冷凍システムの解析結果を示す、Bは図6に示した第2の実施の形態のハイブリッド式冷凍システムの解析結果を示す。この解析より、必要とされる冷却能力に対するMaxsorb IIIの量を容易に見積もることができる。内部熱交換器IHEが無い場合(図18)および有る場合(図19)の、吸着温度(308K,313K及び318K)におけるP-h線図を図18および図19にそれぞれ示す。これらの図を用いることにより、複合することによって節約されるエネルギー量を容易に計算できる。また図20(A)及び(B)並びに図21に、図4に示した第1の実施の形態のハイブリッド式冷凍システムの四つの異なる圧縮機吐出圧力(60、 65、 70 and 75 bars)に対する冷却能力、COP(成績係数)および冷媒流量を脱着圧力の関数として示す。ここで、三つの操作点X=81bars,Y=94bars及びZ=110barsが示され、Yは最適点として選ばれた。 In order to design a thermal compressor, it is very important to calculate the amount of adsorbent. FIG. 17 shows the amount of refrigerant based on the mass of CO 2 per unit mass of dry Maxsorb III for different adsorption temperatures (308K, 313K and 318K) and desorption pressure. 17, A shows the analysis result of the hybrid refrigeration system of the first embodiment shown in FIG. 4, and B shows the analysis result of the hybrid refrigeration system of the second embodiment shown in FIG. Show. From this analysis, the amount of Maxsorb III for the required cooling capacity can be easily estimated. The Ph diagrams at the adsorption temperatures (308K, 313K, and 318K) when there is no internal heat exchanger IHE (FIG. 18) and when there is (FIG. 19) are shown in FIGS. 18 and 19, respectively. By using these figures, the amount of energy saved by combining can be easily calculated. FIGS. 20A and 20B and FIG. 21 show the four different compressor discharge pressures (60, 65, 70 and 75 bars) of the hybrid refrigeration system of the first embodiment shown in FIG. The cooling capacity, COP (coefficient of performance) and refrigerant flow are shown as a function of desorption pressure. Here, three operating points X = 81 bars, Y = 94 bars and Z = 110 bars are shown, Y being chosen as the optimum point.
 図22には、図4に示したハイブリッド式冷凍システムの図18及び図19の性能曲線に示されたY=94barにおける、圧力-温度-濃度線図を示す。図22には、蒸気圧縮過程、熱的圧縮過程(吸着-予熱-脱着-予冷)および膨張過程を示してある。図22において、圧縮機出口圧力は60barであり、ガスクーラ温度は35℃である。 FIG. 22 shows a pressure-temperature-concentration diagram at Y = 94 bar shown in the performance curves of FIGS. 18 and 19 of the hybrid refrigeration system shown in FIG. FIG. 22 shows a vapor compression process, a thermal compression process (adsorption-preheating-desorption-precooling) and an expansion process. In FIG. 22, the compressor outlet pressure is 60 bar and the gas cooler temperature is 35.degree.
 最適条件での図4および図6に示したハイブリッド式冷凍システムの性能は図25及び図26に示した表にも示す。図25は図16のハイブリッド式冷凍システムの性能データを示し、図26は図17の内部熱交換機(IHE)付きのハイブリッド式冷凍システムの性能データを示す。 The performance of the hybrid refrigeration system shown in FIG. 4 and FIG. 6 under optimum conditions is also shown in the tables shown in FIG. 25 and FIG. 25 shows performance data of the hybrid refrigeration system of FIG. 16, and FIG. 26 shows performance data of the hybrid refrigeration system with an internal heat exchanger (IHE) of FIG.
 図4に示したハイブリッド式冷凍システムの操作概念の把握のために、X=81bars,Y=94bars及びZ=110bars(図24のサイクル1-2-3-4―5,サイクル1-2-3′-4′-5′及びサイクル1-2-3” -4” -5”が対応)の三つの操作条件に対するP-h線図を図24に示す。なお図23は、図18及び図19に示したY=94barsにおけるハイブリッド式冷凍システムのP-h線図であり、図23においてサイクル1-2-3-4-5は60barの圧縮機出口圧力における線図であり、サイクル1-2′-2”-3′-4-5は75barの圧縮機出口圧力における線図である。 In order to understand the operation concept of the hybrid refrigeration system shown in FIG. 4, X = 81 bars, Y = 94 bars and Z = 110 bars (cycle 1-2-3-4-5, cycle 1-2-3 in FIG. 24). 24) shows a Ph diagram for three operating conditions ('-4'-5' and cycle 1-2-3 "-4" -5 "). FIG. 23 is a Ph diagram of the hybrid refrigeration system at Y = 94 bar shown in FIG. 19, and in FIG. 23, cycle 1-2-3-4-5 is a diagram at a compressor outlet pressure of 60 bar, 2'-2 "-3'-4-5 is a diagram at a compressor outlet pressure of 75 bar.
 上記実験データは、本発明のハイブリッド型冷凍システムは、高効率であるばかりで無く、高い冷凍効果をもたらすこと、および圧縮機やバルブに起因する問題を排除できることを示している。よって本発明のハイブリッド型冷凍システムは、自動車用空調システムおよびヒートポンプシステムに十分に適用が可能である。 The above experimental data show that the hybrid refrigeration system of the present invention is not only highly efficient but also provides a high refrigeration effect and can eliminate problems caused by compressors and valves. Therefore, the hybrid refrigeration system of the present invention can be sufficiently applied to an automobile air conditioning system and a heat pump system.
 本願明細書中に記載された、いくつかの発明の構成を列記すると以下のとおりになる。 Some configurations of the invention described in the present specification are listed as follows.
(1) 冷媒を圧縮する圧縮機、前記圧縮機により圧縮された前記冷媒を凝縮する凝縮器、前記凝縮器により凝縮された前記冷媒を膨張させる膨張器及び前記膨張器により膨張させられた前記冷媒を蒸発させる蒸発器からなる蒸気圧縮式冷凍サイクルにおける前記圧縮機と前記凝縮器との間に、前記圧縮機により圧縮された前記冷媒を交互に吸着し且つ吸着した前記冷媒を交互に脱着する少なくとも一対の吸着器を有する吸着式冷凍サイクルを備え、前記圧縮機により前記冷媒を中間圧力まで圧縮し、前記中間圧力まで圧縮した前記冷媒を前記吸着式冷凍サイクルにより前記中間圧力よりも高い圧力まで昇圧することを特徴とするハイブリッド式冷凍システム。 (1) A compressor that compresses the refrigerant, a condenser that condenses the refrigerant compressed by the compressor, an expander that expands the refrigerant condensed by the condenser, and the refrigerant that is expanded by the expander At least adsorbs the refrigerant compressed by the compressor and desorbs the adsorbed refrigerant alternately between the compressor and the condenser in a vapor compression refrigeration cycle comprising an evaporator for evaporating at least An adsorption refrigeration cycle having a pair of adsorbers is provided, the refrigerant is compressed to an intermediate pressure by the compressor, and the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle. A hybrid refrigeration system characterized by:
(2) 第1冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された前記第1冷媒を凝縮する第1凝縮器、前記第1凝縮器により凝縮された前記第1冷媒を膨張させる第1膨張器及び前記第1膨張器により膨張させられた前記第1冷媒を蒸発させる第1蒸発器からなる蒸気圧縮式冷凍サイクルと、
 蒸発した第2冷媒を交互に吸着し且つ吸着した前記第2冷媒を交互に脱着する少なくとも一対の吸着器、前記吸着器から脱着した前記第2冷媒を凝縮する第2凝縮器、及び前記第2凝縮器により凝縮された前記第2冷媒を膨張させる第2膨張器及び前記第2膨張器により膨張させられた前記第2冷媒を蒸発させる第2蒸発器を備えた吸着式冷凍サイクルとを備え、
 前記第1凝縮器を通る前記第1冷媒から前記第2蒸発器を介して吸熱するように前記吸着式冷凍サイクルが前記蒸気圧縮式冷凍サイクルに組み合わされていることを特徴とするハイブリッド式冷凍システム。
(2) A first compressor that compresses the first refrigerant, a first condenser that condenses the first refrigerant compressed by the first compressor, and expands the first refrigerant condensed by the first condenser. A vapor compression refrigeration cycle comprising: a first expander that causes the first refrigerant to evaporate the first refrigerant expanded by the first expander;
At least a pair of adsorbers that alternately adsorb the evaporated second refrigerant and alternately desorb the adsorbed second refrigerant, a second condenser that condenses the second refrigerant desorbed from the adsorber, and the second An adsorption refrigeration cycle comprising a second expander that expands the second refrigerant condensed by the condenser and a second evaporator that evaporates the second refrigerant expanded by the second expander;
The hybrid refrigeration system, wherein the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to absorb heat from the first refrigerant passing through the first condenser via the second evaporator. .
(3)第1凝縮器と前記第2蒸発器との間に熱交換器が構成されている上記(2)に記載のハイブリッド式冷凍システム。 (3) The hybrid refrigeration system according to (2), wherein a heat exchanger is configured between the first condenser and the second evaporator.
(4)前記熱交換器は、前記第1凝縮器と前記第2蒸発器との間で直接熱交換するように構成されている上記(3)に記載のハイブリッド式冷凍システム。 (4) The hybrid refrigeration system according to (3), wherein the heat exchanger is configured to directly exchange heat between the first condenser and the second evaporator.
(5)前記熱交換器は、放熱器を備え前記第1凝縮器及び前記第2蒸発器との間で熱交換するように配置された、第3冷媒が循環する冷媒循環路を備えている上記(3)に記載のハイブリッド式冷凍システム。 (5) The heat exchanger includes a refrigerant circulation path in which a third refrigerant circulates and includes a radiator and is arranged to exchange heat between the first condenser and the second evaporator. The hybrid refrigeration system according to (3) above.
 本発明によれば、蒸気圧縮式冷凍サイクルにおける圧縮機の圧縮圧力を低減するように、吸着式冷凍サイクルを蒸気圧縮式冷凍サイクルに組み合わせるので、最も効果的に、蒸気圧縮式冷凍サイクルにおける機械的仕事量を低減することができる。 According to the present invention, the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to reduce the compression pressure of the compressor in the vapor compression refrigeration cycle. The amount of work can be reduced.

Claims (7)

  1.  圧縮機、凝縮器、膨張器及び蒸発器からなる蒸気圧縮式冷凍サイクルと、冷媒を交互に吸着し且つ吸着した前記冷媒を交互に脱着する少なくとも一対の吸着器を有する吸着式冷凍サイクルとが組み合わされてなるハイブリッド式冷凍システムであって、前記蒸気圧縮式冷凍サイクルにおける前記圧縮機の圧縮圧力を低減するように、前記吸着式冷凍サイクルが前記蒸気圧縮式冷凍サイクルに組み合わされていることを特徴とするハイブリッド式冷凍システム。 A vapor compression refrigeration cycle comprising a compressor, a condenser, an expander and an evaporator is combined with an adsorption refrigeration cycle having at least a pair of adsorbers that alternately adsorb the refrigerant and alternately desorb the adsorbed refrigerant. In the hybrid refrigeration system, the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to reduce the compression pressure of the compressor in the vapor compression refrigeration cycle. A hybrid refrigeration system.
  2.  前記蒸気圧縮式冷凍サイクルにおける前記圧縮機と前記凝縮器との間に、前記圧縮機により圧縮された前記冷媒を交互に吸着し且つ吸着した前記冷媒を交互に脱着する少なくとも一対の吸着器が位置するように前記吸着式冷凍サイクルを組み合わせて、前記圧縮機により前記冷媒を中間圧力まで圧縮し、前記中間圧力まで圧縮した前記冷媒を前記吸着式冷凍サイクルにより前記中間圧力よりも高い圧力まで昇圧することを特徴とする請求項1に記載のハイブリッド式冷凍システム。 Positioned between the compressor and the condenser in the vapor compression refrigeration cycle is at least a pair of adsorbers that alternately adsorb the refrigerant compressed by the compressor and alternately desorb the adsorbed refrigerant. The adsorption refrigeration cycle is combined, the refrigerant is compressed to an intermediate pressure by the compressor, and the refrigerant compressed to the intermediate pressure is increased to a pressure higher than the intermediate pressure by the adsorption refrigeration cycle. The hybrid refrigeration system according to claim 1.
  3.  前記蒸気圧縮式冷凍サイクルは、第1冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された前記第1冷媒を凝縮する第1凝縮器、前記第1凝縮器により凝縮された前記第1冷媒を膨張させる第1膨張器及び前記第膨張器により膨張させられた前記第1冷媒を蒸発させる第1蒸発器を備え、
     前記吸着式冷凍サイクルは、蒸発した第2冷媒を交互に吸着し且つ吸着した前記第2冷媒を交互に脱着する少なくとも一対の吸着器、前記吸着器から脱着した前記第2冷媒を凝縮する第2凝縮器、及び前記第2凝縮器により凝縮された前記第2冷媒を膨張させる第2膨張器及び前記第2膨張器により膨張させられた前記第2冷媒を蒸発させる第2蒸発器を備えており、
     前記第1凝縮器を通る前記第1冷媒から前記第2蒸発器を介して吸熱するように前記吸着式冷凍サイクルが前記蒸気圧縮式冷凍サイクルに組み合わされている請求項1に記載のハイブリッド式冷凍システム。
    The vapor compression refrigeration cycle includes a first compressor that compresses a first refrigerant, a first condenser that condenses the first refrigerant compressed by the first compressor, and the first condenser that is condensed by the first condenser. A first expander that expands the first refrigerant and a first evaporator that evaporates the first refrigerant expanded by the first expander;
    The adsorption refrigeration cycle alternately adsorbs the evaporated second refrigerant and at least a pair of adsorbers that alternately desorb the adsorbed second refrigerant, and condenses the second refrigerant desorbed from the adsorber. A condenser, a second expander that expands the second refrigerant condensed by the second condenser, and a second evaporator that evaporates the second refrigerant expanded by the second expander. ,
    The hybrid refrigeration according to claim 1, wherein the adsorption refrigeration cycle is combined with the vapor compression refrigeration cycle so as to absorb heat from the first refrigerant passing through the first condenser via the second evaporator. system.
  4.  前記第1凝縮器と前記第2蒸発器との間に熱交換器が構成されている請求項3に記載のハイブリッド式冷凍システム。 The hybrid refrigeration system according to claim 3, wherein a heat exchanger is configured between the first condenser and the second evaporator.
  5.  前記熱交換器は、前記第1凝縮器と前記第2蒸発器との間で直接熱交換するように構成されている請求項4に記載のハイブリッド式冷凍システム。 The hybrid refrigeration system according to claim 4, wherein the heat exchanger is configured to directly exchange heat between the first condenser and the second evaporator.
  6.  前記熱交換器は、放熱器を備え前記第1凝縮器及び前記第2蒸発器との間で熱交換するように配置された、第3冷媒が循環する冷媒循環路を備えている請求項4に記載のハイブリッド式冷凍システム。 5. The heat exchanger includes a refrigerant circulation path in which a third refrigerant circulates and includes a radiator and is arranged to exchange heat between the first condenser and the second evaporator. The hybrid refrigeration system described in 1.
  7.  前記蒸発器と前記圧縮機とをつなぐ冷媒流路と前記凝縮器と前記膨張器とをつなぐ冷媒流路との間で熱交換を行う内部熱交換器をさらに備えている請求項2に記載のハイブリッド式冷凍システム。 The internal heat exchanger which performs heat exchange between the refrigerant | coolant flow path which connects the said evaporator and the said compressor, and the refrigerant | coolant flow path which connects the said condenser and the said expander is further provided. Hybrid refrigeration system.
PCT/JP2009/059817 2008-05-28 2009-05-28 Hybrid refrigeration system WO2009145278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010514541A JPWO2009145278A1 (en) 2008-05-28 2009-05-28 Hybrid refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13009708P 2008-05-28 2008-05-28
US61/130,097 2008-05-28

Publications (1)

Publication Number Publication Date
WO2009145278A1 true WO2009145278A1 (en) 2009-12-03

Family

ID=41377148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059817 WO2009145278A1 (en) 2008-05-28 2009-05-28 Hybrid refrigeration system

Country Status (2)

Country Link
JP (1) JPWO2009145278A1 (en)
WO (1) WO2009145278A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191032A (en) * 2010-03-16 2011-09-29 Osaka Gas Co Ltd Compression refrigerating cycle
CN103453689A (en) * 2012-05-30 2013-12-18 财团法人工业技术研究院 Composite refrigeration system and control method thereof
CN106403361A (en) * 2015-10-18 2017-02-15 李华玉 Type V thermally driven compression-absorption heat pump
WO2017103939A1 (en) 2015-12-18 2017-06-22 Bry-Air [Asia] Pvt. Ltd. Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
WO2019069598A1 (en) * 2017-10-06 2019-04-11 株式会社デンソー Adsorber and adsorption-type refrigerator
JP2019070509A (en) * 2017-10-06 2019-05-09 株式会社デンソー Adsorber and adsorptive refrigeration machine
US10551097B2 (en) 2014-11-12 2020-02-04 Carrier Corporation Refrigeration system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163719A (en) * 1997-08-26 1999-03-05 Denso Corp Freezer device
JPH1183235A (en) * 1997-07-09 1999-03-26 Denso Corp Refrigerating equipment and air conditioner
JPH11142015A (en) * 1997-11-05 1999-05-28 Denso Corp Engine-driven type refrigerating unit
JPH11190569A (en) * 1997-12-25 1999-07-13 Denso Corp Refrigerating unit
JPH11223415A (en) * 1998-02-05 1999-08-17 Denso Corp Refrigerating device
JPH11223416A (en) * 1998-02-05 1999-08-17 Denso Corp Refrigerating device
JP2000346466A (en) * 1999-06-02 2000-12-15 Sanden Corp Vapor compression type refrigerating cycle
JP2005308355A (en) * 2004-04-23 2005-11-04 Denso Corp Refrigeration unit
JP2005326073A (en) * 2004-05-13 2005-11-24 Denso Corp Refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183235A (en) * 1997-07-09 1999-03-26 Denso Corp Refrigerating equipment and air conditioner
JPH1163719A (en) * 1997-08-26 1999-03-05 Denso Corp Freezer device
JPH11142015A (en) * 1997-11-05 1999-05-28 Denso Corp Engine-driven type refrigerating unit
JPH11190569A (en) * 1997-12-25 1999-07-13 Denso Corp Refrigerating unit
JPH11223415A (en) * 1998-02-05 1999-08-17 Denso Corp Refrigerating device
JPH11223416A (en) * 1998-02-05 1999-08-17 Denso Corp Refrigerating device
JP2000346466A (en) * 1999-06-02 2000-12-15 Sanden Corp Vapor compression type refrigerating cycle
JP2005308355A (en) * 2004-04-23 2005-11-04 Denso Corp Refrigeration unit
JP2005326073A (en) * 2004-05-13 2005-11-24 Denso Corp Refrigeration device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191032A (en) * 2010-03-16 2011-09-29 Osaka Gas Co Ltd Compression refrigerating cycle
CN103453689A (en) * 2012-05-30 2013-12-18 财团法人工业技术研究院 Composite refrigeration system and control method thereof
CN103453689B (en) * 2012-05-30 2015-09-09 财团法人工业技术研究院 Composite refrigeration system and control method thereof
US10551097B2 (en) 2014-11-12 2020-02-04 Carrier Corporation Refrigeration system
CN106403361A (en) * 2015-10-18 2017-02-15 李华玉 Type V thermally driven compression-absorption heat pump
WO2017103939A1 (en) 2015-12-18 2017-06-22 Bry-Air [Asia] Pvt. Ltd. Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP2019504276A (en) * 2015-12-18 2019-02-14 ブライ・エアー・アジア・ピーヴイティー・リミテッド Apparatus having a hybrid vapor compression-adsorption cycle and method for implementing the same
WO2019069598A1 (en) * 2017-10-06 2019-04-11 株式会社デンソー Adsorber and adsorption-type refrigerator
JP2019070509A (en) * 2017-10-06 2019-05-09 株式会社デンソー Adsorber and adsorptive refrigeration machine

Also Published As

Publication number Publication date
JPWO2009145278A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
Saha et al. Solar/waste heat driven two-stage adsorption chiller: the prototype
WO2009145278A1 (en) Hybrid refrigeration system
Uddin et al. Performance investigation of adsorption–compression hybrid refrigeration systems
JP2007120872A (en) Hybrid heat pump system
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP5974541B2 (en) Air conditioning system
JP6481651B2 (en) Heat pump system and cold heat generation method
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
Miyazaki et al. Study toward high-performance thermally driven air-conditioning systems
JP2002250573A (en) Air conditioner
JP4066485B2 (en) Refrigeration equipment
JP2002162130A (en) Air conditioner
Meunier Thermal swing adsorption refrigeration (heat pump)
JP4086011B2 (en) Refrigeration equipment
JP5389366B2 (en) Steam compression / absorption hybrid refrigerator
JP2011191032A (en) Compression refrigerating cycle
JP4281180B2 (en) Adsorption type refrigerator
JP4069691B2 (en) Air conditioner for vehicles
JPH11281190A (en) Double adsorption refrigerating machine
JPH11223416A (en) Refrigerating device
JP4404295B2 (en) Reheat adsorption refrigerator
JP2744712B2 (en) Adsorption cooling device
Jribi et al. Performance Investigation of a Novel CO2 Compression-Adsorption Based Hybrid Cooling Cycle
KR101283489B1 (en) 1-stage compressing-absorbing type heat pump and 2-stage compressing-absorbing type heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754786

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010514541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754786

Country of ref document: EP

Kind code of ref document: A1