JP4281180B2 - Adsorption type refrigerator - Google Patents

Adsorption type refrigerator Download PDF

Info

Publication number
JP4281180B2
JP4281180B2 JP32018999A JP32018999A JP4281180B2 JP 4281180 B2 JP4281180 B2 JP 4281180B2 JP 32018999 A JP32018999 A JP 32018999A JP 32018999 A JP32018999 A JP 32018999A JP 4281180 B2 JP4281180 B2 JP 4281180B2
Authority
JP
Japan
Prior art keywords
heat
adsorber
refrigeration
adsorbent
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32018999A
Other languages
Japanese (ja)
Other versions
JP2001141327A (en
Inventor
伸 本田
勝也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32018999A priority Critical patent/JP4281180B2/en
Publication of JP2001141327A publication Critical patent/JP2001141327A/en
Application granted granted Critical
Publication of JP4281180B2 publication Critical patent/JP4281180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、吸着式冷凍機に関するもので、空調装置や冷蔵庫等の冷蔵装置に適用して有効である。
【0002】
【従来の技術】
吸着式冷凍機を利用した空調装置は、例えば特開平5−126432号公報に記載のごとく、ケーシング内に水等の冷媒及びシリカゲル等の吸着剤を封入するとともに、ケーシング内の液相冷媒を蒸発させて冷凍能力を発生させ、一方、その蒸発した気相冷媒(水蒸気)を吸着剤にて吸着して液相冷媒の蒸発を持続させるものである。
【0003】
そして、液相冷媒の蒸発が進行して吸着剤の水分吸着能力が飽和すると、ケーシング内の圧力が上昇して冷媒の蒸発が停止するので、水分吸着能力が飽和したときには、吸着剤を加熱して吸着された水分を脱離させ(以下、この行為を吸着剤の再生と呼ぶ。)、その後、再び水蒸気を吸着させる。
【0004】
【発明が解決しようとする課題】
ところで、吸着式冷凍機の冷凍能力を増大させるには、吸着剤が吸着する水分量を増大させる必要があるが、吸着剤が吸着する水分量を増大させると、吸着剤を再生するに必要な熱(以下、この熱を再生熱と呼ぶ。)も増大してしまう。
【0005】
一方、吸着式冷凍機の成績係数(=冷凍能力/再生熱量)は、吸着剤の能力によって変化するものの、概ね0.5〜0.8程度と蒸気圧縮式冷凍機の成績係数(3〜5)に比べて著しく低い。
【0006】
このため、上記公報に記載のごとく、再生熱の熱源として太陽熱温水器からの熱やボイラーの廃熱等を利用する場合には、成績係数が低くても問題とならないが、火力発電による電力やガス等の化石燃料を燃焼させることにより得られる熱を再生熱の熱源とすると、二酸化炭素排出量の増大を招いてしまう。
【0007】
本発明は、上記点に鑑み、二酸化炭素排出量が増大することを抑制しつつ、吸着式冷凍機の冷凍能力及び成績係数を向上させることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、冷媒及び吸着剤が封入された冷凍用吸着器(20)及び熱回収用吸着器(30)とを備え、冷凍用吸着器(20)は、吸熱対象から熱を奪って冷媒を蒸発させるとともに、内部で発生した廃熱を室外空気に放熱し、熱回収用吸着器(30)は、室外空気から熱を奪って冷媒を蒸発させるとともに、熱源(10)から供給される熱によって、熱回収用吸着器(20)内に封入された吸着剤を加熱して、吸着された冷媒を脱離させ、熱回収用吸着器(30)の内部で発生した廃熱は、冷凍用吸着器(20)に供給され、さらに、冷凍用吸着器(20)は、熱回収用吸着器(30)から供給される熱によって、冷凍用吸着器(20)内に封入された吸着剤を加熱して、吸着された冷媒を脱離させることを特徴とする。
【0011】
これにより、冷凍用吸着器(20)には、熱源(10)から供給された熱に加えて室外空気から吸熱された熱が再生熱として供給されるので、二酸化炭素排出量が増大することを抑制しつつ、吸着式冷凍機の冷凍能力及び成績係数を向上させることができる。
【0012】
請求項3に記載の発明では、冷凍用吸着器(20)の廃熱を外部に放熱するための放熱器(51)に液体を噴射し、放熱器(51)の放熱能力を増大させる噴射装置(60)を備えることを特徴とする。
【0013】
これにより、冷凍用吸着器(20)の廃熱を確実に外部に放熱することができるので、確実に冷凍能力(冷熱)を得ることができる。
【0014】
請求項4に記載の発明では、冷凍用吸着器(20)に封入された吸着剤と、熱回収用吸着器(30)に封入された吸着剤とは、冷媒の吸着特性が異なるものであることを特徴とする。
【0015】
これにより、吸着剤の量をいたずらに増やして吸着冷凍機の大型化を招くことなく、冷凍能力及び成績係数を向上させることが可能となる。
【0016】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る吸着式冷凍機を空調装置に適用したものであって、図1は本実施形態に係る空調装置(吸着式冷凍機)の模式図である。
【0018】
10は灯油等の化石(石油)燃料を燃焼させることにより熱を発生し、熱媒体(本実施形態では、エチレングリコール系の不凍液が混入された水)を加熱するバーナ(熱源)である。20、30は冷媒(本実施形態では、水)を蒸発又は凝縮させる吸着器であり、これら吸着器20、30は、同一構造を有するものであるので、吸着器20を例に吸着器20、30の構造について述べる。
【0019】
図2は吸着器20の模式図であり、第1、2吸着ユニット21、22及び熱媒体流れを切り換える第1〜4切換弁V21〜V24を有して構成されたものである。そして、第1、2吸着ユニット21、22は、冷媒が封入された略真空のケーシング21a、22a、このケーシング21a、22a内に収納された冷媒を脱着する吸着剤(本実施形態では、シリカゲル)21b、22b、熱媒体と吸着剤21b、22bとを熱交換する第1熱交換器21c、22c、及びケーシング21a、22a内に封入された冷媒と熱媒体とを熱交換する第2熱交換器21d、22d等からなる周知のものである。また、吸着剤21b、22bは、周知のごとく、気相冷媒を吸着する際に熱を発生し、かつ、加熱されることによりその吸着した冷媒を脱離するものである。
【0020】
なお、前述のごとく、両吸着器20、30は同一構造であるので、吸着器30のうち吸着器20に対応するものは、図3に示すように、数字符号の2桁目を3とした。
【0021】
また、図1中、40は室内空気(冷却対象)と熱媒体とを熱交換する室内熱交換器(以下、室内器と略す。)であり、51は吸着器20から流出する熱媒体と室外空気(外部)とを熱交換する第1室外熱交換器(以下、第1室外器と略す。)であり、52は吸着器30から流出する熱媒体と室外空気(外部)とを熱交換する第2室外熱交換器(以下、第2室外器と略す。)である。
【0022】
P1〜P5は熱媒体を循環させる第1〜7ポンプであり、第1〜5ポンプP1〜P5、第1〜4切換弁V21〜V24、V31〜V34及びバーナ10は、電子制御装置(図示せず。)により制御されている。
【0023】
次に、本実施形態に係る冷蔵装置(吸着式冷凍機)の作動について述べる。
【0024】
先ず、吸着器20、30作動を吸着器20を例に述べる(図2参照)。
【0025】
第1〜4切換弁V21〜V24が実線に示す状態になっているとき(以下、
この状態を第1状態と呼ぶ。)においては、第1吸着ユニット21内の液相冷媒が第2熱交換器21dを流通する冷媒から熱を奪って蒸発するとともに、その蒸発した気相冷媒(水蒸気)を吸着剤21bにて吸着する。なお、水蒸気を吸着する際に発生する吸着熱(凝縮熱)は、第1熱交換器21cを循環する熱媒体により吸熱される。
【0026】
一方、第2吸着ユニット22内の吸着剤22bは、第1熱交換器22cを介して加熱されて吸着していた冷媒(水分)を脱離する(再生される)。なお、脱離した水蒸気は第2熱交換器22dにより冷却されて凝縮し、その凝縮熱が第2熱交換器22d内を流通する熱媒体に吸熱される。
【0027】
そして、第1状態で所定時間運転し続け、吸着剤21bの水分吸着能力及び吸着剤22bの水分脱離量が飽和したときは、第1〜4切換弁V21〜V24を破線に示す状態(以下、この状態を第2状態と呼ぶ。)とする。これにより、第2吸着ユニット22内の液相冷媒が第2熱交換器22dを流通する冷媒から熱を奪って蒸発するとともに、その蒸発した気相冷媒(水蒸気)を吸着剤22bにて吸着する。なお、水蒸気を吸着する際に発生する吸着熱(凝縮熱)は、第1熱交換器22cを循環する熱媒体により吸熱される。
【0028】
一方、第1吸着ユニット21内の吸着剤21bは、第1熱交換器21cを介して加熱されて吸着していた冷媒(水分)を脱離する(再生される)。なお、脱離した水蒸気は第2熱交換器21dにより冷却されて凝縮し、その凝縮熱が第2熱交換器21d内を流通する熱媒体に吸熱される。
【0029】
その後、第1状態と第2状態とを所定時間毎に交互に行う。なお、所定時間は、吸着剤の水分吸着特性及び水分脱離特性等を考慮して適宜選定されるものである。
【0030】
次に、冷蔵装置の全体作動(熱の流れ)について述べる。
【0031】
第1〜5ポンプP1〜P5及びバーナ10を稼働させる。
【0032】
これにより、吸着器20内で液相冷媒が蒸発することにより発生した冷凍能力(冷熱)は、第2熱交換器21d、22d及び熱媒体を介して室内器40に伝達され、室内空気(吸熱対象)を冷却する。そこで、本実施形態では、吸着器20を冷凍用吸着器20と呼ぶ。
【0033】
また、冷凍用吸着器20内部で発生した廃熱(水蒸気が吸着される際に発生する吸着熱と脱離した水蒸気を冷却凝縮させる際に発生する凝縮熱)は、第1室外器51から室外空気中に放熱される。
【0034】
一方、吸着器30内では、液相冷媒が第2室外器52を流通する熱媒体から熱を奪って蒸発するこにより、室外空気から熱を吸熱する。そこで、本実施形態では、吸着器30を熱回収用吸着器30と呼ぶ。
【0035】
ところで、熱回収用吸着器30は、バーナ10の熱を再生熱として吸着剤31b、32bを再生するとともに、内部で発生した廃熱(水蒸気が吸着される際に発生する吸着熱と脱離した水蒸気を冷却凝縮させる際に発生する凝縮熱)を冷凍用吸着器20に供給する。そして、冷凍用吸着器20は熱回収用吸着器30の廃熱を再生熱として吸着剤を再生する。
【0036】
次に、本実施形態の特徴を述べる。
【0037】
本実施形態では、室内空気を冷却するのは冷凍用吸着器20で発生する冷凍能力(冷熱)Qrであり、冷凍能力Qrを発生させるために冷凍用吸着器20に供給する再生熱は、熱回収用吸着器30の廃熱Q1である。
【0038】
一方、熱回収用吸着器30の廃熱Q1は、バーナ10から供給した熱Q2と熱回収用吸着器30にて室外空気から回収した熱Q3との和である。したがって、本実施形態に係る吸着式冷凍機の成績係数(COP)は、Qr/(Q1−Q3)=Qr/Q2となるので、本実施形態に係る吸着式冷凍機の成績係数は、冷凍用吸着器20単体の成績係数(=Qr/Q1)が従来と同様に0.5〜0.8であっても、従来の技術に係る吸着式冷凍機より大きくなる。
【0039】
つまり、本実施形態では、冷凍用吸着器20には、バーナ10から(熱回収用冷凍機30を介して)供給された熱に加えて室外空気から回収された熱が再生熱として供給されるので、二酸化炭素排出量が増大することを抑制しつつ、吸着式冷凍機の冷凍能力及び成績係数を向上させることができる。因みに、両吸着器20、30それぞれの成績係数を0.75とすれば、本実施形態に係る吸着式冷凍機の成績係数は1.31となる。
【0040】
(第2実施形態)
本実施形態は、図4に示すように、熱回収用熱交換器30を2個(2段)としたものである。以下、本実施形態の特徴的作動を述べる。
【0041】
なお、紙面左側の(バーナ10から直接に熱の供給を受ける)熱回収用吸着器30を第1熱回収用吸着器30と呼び、紙面右側の(冷凍用吸着器20に廃熱の供給する)熱回収用吸着器30を第2熱回収用吸着器30と呼ぶ。
【0042】
第1熱回収用吸着器30は、バーナ10から直接に熱の供給を受けて吸着剤の再生を行いながら室外空気から熱を回収し、内部で発生した廃熱を第2熱回収用吸着器30に供給する。第2熱回収用吸着器30は、第1熱回収用吸着器30の廃熱を受けて吸着剤の再生を行いながら室外空気から熱を回収し、内部で発生した廃熱を冷凍用吸着器30に供給する。そして、冷凍用吸着器20は、第2熱回収用吸着器30の廃熱を受けて吸着剤の再生を行いながら室内空気を冷却して、内部で発生した廃熱を室外に放熱する。
【0043】
したがって、本実施形態では、第1実施形態に比べて室外空気から回収する熱量を増大させることができるので、二酸化炭素排出量が増大することを抑制しつつ、吸着式冷凍機の冷凍能力及び成績係数をより一層向上させることができる。
【0044】
因みに、第1熱回収用吸着器30の成績係数を0.75とし、第2熱回収用吸着器30の成績係数を0.85とし、冷凍用吸着器20の成績係数を0.79とれば、本実施形態に係る吸着式冷凍機の成績係数は2.56となる。
【0045】
(第3実施形態)
ところで、第1実施形態に係る吸着式冷凍機において、例えばバーナ10から供給される熱媒体の温度が約80℃とし、室外空気温度が35℃として、室内温度(庫内温度)を10℃とすると、熱回収用吸着器30の廃熱温度は約50℃となり、冷凍用吸着器20の廃熱温度は約20℃となり、冷凍用吸着器20の廃熱温度が室外空気温度より低くなるので、冷凍用吸着器20の廃熱を室外空気に放熱することができない。
【0046】
そこで、本実施形態では、図5に示すように、第1室外器(放熱器)51に霧状(ミスト状)の水(液体)噴射し、第1室外器51の放熱能力を増大させる噴射装置60を設けたものである。
【0047】
因みに、噴射装置60は、水タンク61、噴射ポンプ62及び噴射弁(インジェクタ)63からなるもので、冷凍用吸着器20の廃熱温度と室外空気温度との温度差が所定温度以下となったときに水を噴射するように構成されている。
【0048】
これにより、冷凍用吸着器20の廃熱を確実に室外(庫外)に放熱することができるので、確実に冷凍能力(冷熱)を得ることができる。
【0049】
なお、本実施形態は、第1実施形態に係る吸着式冷凍機に対して噴射装置60を設けたものであったが、第2実施形態に係る吸着式冷凍機に設けてもよい。
【0050】
(第4実施形態)
本実施形態は、冷凍用吸着器20に封入された吸着剤の水分脱着特性と、熱回収用吸着器30(第1、2熱回収用吸着器30を含む。)に封入された吸着剤の水分脱着特性とを相違させたものである。
【0051】
具体的には、第1実施形態に係る吸着式冷凍機において、例えばバーナ10から供給される熱媒体の温度が約80℃とし、室外空気温度が35℃として、室内温度(庫内温度)を10℃とすると、前述のごとく、熱回収用吸着器30の廃熱温度は約50℃となり、冷凍用吸着器20の廃熱温度は約20℃となる。
【0052】
このとき、冷凍用吸着器20が水分を吸着する際に吸着剤31b、32bが晒される相対湿度は約52%であり、水分を脱離するとき(再生時)の相対湿度は約19%である。また、熱回収用吸着器30が水分を吸着する際に吸着剤31b、32bが晒される相対湿度は約46%であり、水分を脱離するとき(再生時)の相対湿度は約26%である。
【0053】
したがって、冷凍用吸着器20には、図6の吸着剤Aで示すような水分脱着特性を有する吸着剤を使用すれば、吸着剤Bで示すような水分脱着特性を有する吸着剤を使用する場合に比べて、水分吸着量を増大させることができ、冷凍能力及び成績係数を向上させることができる。
【0054】
一方、熱回収用吸着器30には、図6の吸着剤Bで示すような水分脱着特性を有する吸着剤を使用すれば、吸着剤Aで示すような水分脱着特性を有する吸着剤を使用する場合に比べて、水分吸着量を増大させることができ、冷凍能力及び成績係数を向上させることができる。
【0055】
つまり、吸着器の作動相対湿度範囲の上限と下限とおいて、水分吸着量の差ができる限り大きくなるような水分脱着特性を有する吸着剤を採用すれば、吸着剤の量をいたずらに増やして吸着冷凍機の大型化を招くことなく、冷凍能力及び成績係数を向上させることが可能となる。
【0056】
(その他の実施形態)
上述の実施形態では空調装置に本願発明を適用したが、本発明はこれに限定されるものではなく、冷蔵装置等のその他の冷凍装置にも適用することができる。
【0057】
また、熱回収用吸着器30は、1個又は2個に限定されるものではなく、3個以上であってもよい。
【0058】
また、上述の実施形態では、吸着剤としてシリカゲルを用いたが、本発明はこれに限定されるものではなく、吸着剤として活性炭、ゼオライト、活性アルミナなどを用いてもよい。
【0059】
また、上述の実施形態では、熱源として化石燃料を燃焼させるバーナを用いたが、本発明はこれに限定されるものではなく、発電機のエンジン廃熱、燃料電池の廃熱及び太陽熱等の100℃以下の低温熱源であっても十分に機能する。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る吸着式冷凍機の模式図である。
【図2】本発明の第1実施形態に係る冷凍用吸着器の模式図である。
【図3】本発明の第1実施形態に係る熱回収用吸着器の模式図である。
【図4】本発明の第2実施形態に係る吸着式冷凍機の模式図である。
【図5】本発明の第3実施形態に係る吸着式冷凍機の模式図である。
【図6】本発明の第3実施形態に係る吸着式冷凍機に使用される吸着剤の水分脱着特性(相対湿度と水分吸着量との関係)を示すグラフである。
【符号の説明】
10…バーナ(熱源)、20…冷凍用吸着器、30…熱回収用吸着器、
40…室内熱交換器、51…第1室外熱交換器(放熱器)、
52…第1室外熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorption refrigeration machine, and is effective when applied to a refrigeration apparatus such as an air conditioner or a refrigerator.
[0002]
[Prior art]
An air conditioner using an adsorption type refrigerator encloses a refrigerant such as water and an adsorbent such as silica gel in a casing and evaporates the liquid phase refrigerant in the casing, as described in, for example, Japanese Patent Laid-Open No. 5-126432. Thus, the refrigerating capacity is generated, and the evaporated gas-phase refrigerant (water vapor) is adsorbed by the adsorbent to keep the liquid-phase refrigerant from evaporating.
[0003]
When the evaporation of the liquid refrigerant proceeds and the moisture adsorption capacity of the adsorbent is saturated, the pressure in the casing rises and the evaporation of the refrigerant stops, so when the moisture adsorption capacity is saturated, the adsorbent is heated. The moisture adsorbed in this way is desorbed (this action is hereinafter referred to as regeneration of the adsorbent), and then water vapor is adsorbed again.
[0004]
[Problems to be solved by the invention]
By the way, in order to increase the refrigerating capacity of the adsorption refrigerator, it is necessary to increase the amount of water adsorbed by the adsorbent. However, if the amount of water adsorbed by the adsorbent is increased, it is necessary to regenerate the adsorbent. Heat (hereinafter referred to as regeneration heat) also increases.
[0005]
On the other hand, the coefficient of performance of the adsorption refrigerator (= refrigeration capacity / regeneration heat amount) varies depending on the capacity of the adsorbent, but is approximately 0.5 to 0.8, and the coefficient of performance of the vapor compression refrigerator (3 to 5). ) Is significantly lower.
[0006]
For this reason, as described in the above publication, when using heat from a solar water heater or waste heat from a boiler as a heat source for regeneration heat, there is no problem even if the coefficient of performance is low. If heat obtained by burning fossil fuel such as gas is used as a heat source for regeneration heat, an increase in carbon dioxide emissions will be caused.
[0007]
In view of the above points, an object of the present invention is to improve the refrigeration capacity and coefficient of performance of an adsorption refrigeration machine while suppressing an increase in carbon dioxide emission.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a refrigeration adsorber (20) and a heat recovery adsorber (30) in which a refrigerant and an adsorbent are sealed are provided. The adsorber (20) takes heat from the endothermic object and evaporates the refrigerant, and dissipates the waste heat generated inside to the outdoor air, and the heat recovery adsorber (30) takes heat from the outdoor air. The refrigerant is evaporated, and the adsorbent enclosed in the heat recovery adsorber (20) is heated by the heat supplied from the heat source (10) to desorb the adsorbed refrigerant. waste heat generated inside the adsorber (30) is supplied to the freezer adsorber (20), further freezing adsorber (20) is waste heat supplied from the heat recovery adsorber (30) The adsorbent enclosed in the refrigeration adsorber (20) is heated and adsorbed by Wherein the desorbing refrigerant.
[0011]
Thus, the freezing adsorber (20), the heat is absorbed from the outdoor air in addition to the heat supplied from the heat source (10) is supplied as the regeneration heat, that carbon dioxide emissions are increased While suppressing, the refrigerating capacity and coefficient of performance of the adsorption refrigerator can be improved.
[0012]
In invention of Claim 3, a spray device which injects a liquid to the heat radiator (51) for radiating the waste heat of a freezer adsorber (20) outside, and increases the heat dissipation capability of a heat radiator (51) (60).
[0013]
Thus, the waste heat of the refrigeration adsorber (20) can be reliably radiated to the outside, so that the refrigeration capacity (cold heat) can be reliably obtained.
[0014]
In the invention according to claim 4, the adsorbent enclosed in the refrigeration adsorber (20) and the adsorbent enclosed in the heat recovery adsorber (30) have different adsorption characteristics of the refrigerant. It is characterized by that.
[0015]
Thereby, it becomes possible to improve the refrigerating capacity and the coefficient of performance without increasing the amount of the adsorbent and increasing the size of the adsorption refrigerator.
[0016]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the adsorption refrigerator according to the present invention is applied to an air conditioner, and FIG. 1 is a schematic diagram of the air conditioner (adsorption refrigerator) according to the present embodiment.
[0018]
Reference numeral 10 denotes a burner (heat source) that generates heat by burning fossil (petroleum) fuel such as kerosene and heats a heat medium (in this embodiment, water mixed with an ethylene glycol antifreeze). 20 and 30 are adsorbers for evaporating or condensing the refrigerant (in this embodiment, water). Since these adsorbers 20 and 30 have the same structure, the adsorber 20 is taken as an example, The structure of 30 will be described.
[0019]
FIG. 2 is a schematic diagram of the adsorber 20, which includes first and second adsorption units 21, 22 and first to fourth switching valves V21 to V24 for switching the heat medium flow. The first and second adsorption units 21 and 22 are substantially vacuum casings 21a and 22a in which a refrigerant is sealed, and an adsorbent (in this embodiment, silica gel) that desorbs the refrigerant stored in the casings 21a and 22a. 21b, 22b, first heat exchangers 21c, 22c for exchanging heat between the heat medium and the adsorbents 21b, 22b, and a second heat exchanger for exchanging heat between the refrigerant sealed in the casings 21a, 22a and the heat medium It is a well-known one consisting of 21d, 22d and the like. As is well known, the adsorbents 21b and 22b generate heat when adsorbing the gas-phase refrigerant, and desorb the adsorbed refrigerant when heated.
[0020]
As described above, since both the adsorbers 20 and 30 have the same structure, the adsorber 30 corresponding to the adsorber 20 is represented by 3 in the second digit of the numerical code as shown in FIG. .
[0021]
In FIG. 1, 40 is an indoor heat exchanger (hereinafter abbreviated as an indoor unit) for exchanging heat between indoor air (a cooling target) and a heat medium, and 51 is a heat medium flowing out of the adsorber 20 and the outdoor. A first outdoor heat exchanger (hereinafter abbreviated as a first outdoor unit) that exchanges heat with air (external), and 52 performs heat exchange between the heat medium flowing out from the adsorber 30 and outdoor air (external). This is a second outdoor heat exchanger (hereinafter abbreviated as a second outdoor unit).
[0022]
P1 to P5 are first to seventh pumps for circulating the heat medium. The first to fifth pumps P1 to P5, the first to fourth switching valves V21 to V24, V31 to V34, and the burner 10 are electronic control devices (not shown). Z)).
[0023]
Next, the operation of the refrigeration apparatus (adsorption refrigerator) according to this embodiment will be described.
[0024]
First, the operation of the adsorbers 20 and 30 will be described using the adsorber 20 as an example (see FIG. 2).
[0025]
When the first to fourth switching valves V21 to V24 are in a state indicated by a solid line (hereinafter,
This state is referred to as a first state. ), The liquid-phase refrigerant in the first adsorption unit 21 takes heat from the refrigerant flowing through the second heat exchanger 21d and evaporates, and adsorbs the evaporated gas-phase refrigerant (water vapor) with the adsorbent 21b. To do. The heat of adsorption (condensation heat) generated when adsorbing water vapor is absorbed by the heat medium circulating in the first heat exchanger 21c.
[0026]
On the other hand, the adsorbent 22b in the second adsorption unit 22 desorbs (regenerates) the refrigerant (water) adsorbed by being heated via the first heat exchanger 22c. The desorbed water vapor is cooled and condensed by the second heat exchanger 22d, and the heat of condensation is absorbed by the heat medium flowing through the second heat exchanger 22d.
[0027]
And when it continues driving | running for the predetermined time in a 1st state and the water | moisture-content adsorption capacity of the adsorption agent 21b and the water | moisture-content desorption amount of the adsorption agent 22b are saturated, the state (henceforth the following) shows the 1st-4th switching valves V21-V24 This state is referred to as a second state). Thereby, the liquid phase refrigerant in the second adsorption unit 22 evaporates by taking heat from the refrigerant flowing through the second heat exchanger 22d, and adsorbs the vapor phase refrigerant (water vapor) by the adsorbent 22b. . The heat of adsorption (condensation heat) generated when adsorbing water vapor is absorbed by the heat medium circulating in the first heat exchanger 22c.
[0028]
On the other hand, the adsorbent 21b in the first adsorption unit 21 desorbs (regenerates) the refrigerant (moisture) adsorbed by being heated through the first heat exchanger 21c. The desorbed water vapor is cooled and condensed by the second heat exchanger 21d, and the heat of condensation is absorbed by the heat medium flowing through the second heat exchanger 21d.
[0029]
Thereafter, the first state and the second state are alternately performed every predetermined time. The predetermined time is appropriately selected in consideration of the moisture adsorption characteristics and moisture desorption characteristics of the adsorbent.
[0030]
Next, the overall operation (heat flow) of the refrigeration apparatus will be described.
[0031]
The first to fifth pumps P1 to P5 and the burner 10 are operated.
[0032]
Thereby, the refrigerating capacity (cold heat) generated by the evaporation of the liquid-phase refrigerant in the adsorber 20 is transmitted to the indoor unit 40 via the second heat exchangers 21d and 22d and the heat medium, and the room air (heat absorption) Cool the target). Therefore, in this embodiment, the adsorber 20 is referred to as a refrigeration adsorber 20.
[0033]
In addition, waste heat generated inside the refrigeration adsorber 20 (adsorption heat generated when water vapor is adsorbed and condensation heat generated when the desorbed water vapor is cooled and condensed) is transferred from the first outdoor unit 51 to the outdoor. Heat is released into the air.
[0034]
Meanwhile, within the adsorber 30 by a child evaporation removes heat from the heat medium liquid refrigerant flows through the second outdoor unit 52, and absorbs heat from the outdoor air. Therefore, in this embodiment, the adsorber 30 is referred to as a heat recovery adsorber 30.
[0035]
By the way, the heat recovery adsorber 30 regenerates the adsorbents 31b and 32b using the heat of the burner 10 as regeneration heat and desorbs it from waste heat generated inside (adsorption heat generated when water vapor is adsorbed). (Condensation heat generated when water vapor is cooled and condensed) is supplied to the refrigeration adsorber 20. The refrigeration adsorber 20 regenerates the adsorbent using the waste heat of the heat recovery adsorber 30 as regeneration heat.
[0036]
Next, features of the present embodiment will be described.
[0037]
In this embodiment, to cool the room air is the refrigeration capacity (cold) Qr generated by freezing adsorber 20, regenerative heat supplied to the freezer for adsorber 20 to generate the refrigerating capacity Qr is This is the waste heat Q1 of the heat recovery adsorber 30.
[0038]
On the other hand, the waste heat Q1 of the heat recovery adsorber 30 is the sum of the heat Q2 supplied from the burner 10 and the heat Q3 recovered from outdoor air by the heat recovery adsorber 30. Therefore, since the coefficient of performance (COP) of the adsorption chiller according to the present embodiment is Qr / (Q1−Q3) = Qr / Q2, the coefficient of performance of the adsorption chiller according to the present embodiment is for refrigeration. Even if the coefficient of performance (= Qr / Q1) of the adsorber 20 alone is 0.5 to 0.8 as in the conventional case, it is larger than the adsorption type refrigerator according to the conventional technology.
[0039]
That is, in this embodiment, the heat recovered from the outdoor air in addition to the heat supplied from the burner 10 (via the heat recovery refrigerator 30) is supplied to the refrigeration adsorber 20 as regeneration heat. Therefore, it is possible to improve the refrigeration capacity and the coefficient of performance of the adsorption refrigeration machine while suppressing an increase in carbon dioxide emission. Incidentally, if the coefficient of performance of each of the adsorbers 20 and 30 is 0.75, the coefficient of performance of the adsorption refrigerator according to the present embodiment is 1.31.
[0040]
(Second Embodiment)
In the present embodiment, as shown in FIG. 4, two heat recovery heat exchangers 30 are provided (two stages). The characteristic operation of this embodiment will be described below.
[0041]
Note that the heat recovery adsorber 30 on the left side of the paper surface (received heat supply directly from the burner 10) is referred to as a first heat recovery adsorber 30, and the waste heat is supplied to the refrigeration adsorber 20 on the right side of the paper surface. ) The heat recovery adsorber 30 is referred to as a second heat recovery adsorber 30.
[0042]
The first heat recovery adsorber 30 receives heat directly from the burner 10 and recovers heat from the outdoor air while regenerating the adsorbent, and the waste heat generated inside is absorbed into the second heat recovery adsorber. 30. The second heat recovery adsorber 30 receives the waste heat of the first heat recovery adsorber 30 and recovers heat from the outdoor air while regenerating the adsorbent, and the waste heat generated inside is adsorbed for freezing. 30. The refrigeration adsorber 20 receives the waste heat of the second heat recovery adsorber 30, cools the room air while regenerating the adsorbent, and dissipates the waste heat generated inside to the outside.
[0043]
Therefore, in this embodiment, since the amount of heat recovered from outdoor air can be increased compared to the first embodiment, the refrigerating capacity and performance of the adsorption refrigeration machine can be suppressed while suppressing an increase in carbon dioxide emission. The coefficient can be further improved.
[0044]
Incidentally, if the coefficient of performance of the first heat recovery adsorber 30 is 0.75, the coefficient of performance of the second heat recovery adsorber 30 is 0.85, and the coefficient of performance of the refrigeration adsorber 20 is 0.79. The coefficient of performance of the adsorption refrigerator according to this embodiment is 2.56.
[0045]
(Third embodiment)
By the way, in the adsorption type refrigerator according to the first embodiment, for example, the temperature of the heat medium supplied from the burner 10 is about 80 ° C., the outdoor air temperature is 35 ° C., and the indoor temperature (internal temperature) is 10 ° C. Then, the waste heat temperature of the heat recovery adsorber 30 becomes about 50 ° C., the waste heat temperature of the refrigeration adsorber 20 becomes about 20 ° C., and the waste heat temperature of the refrigeration adsorber 20 becomes lower than the outdoor air temperature. The waste heat of the refrigeration adsorber 20 cannot be radiated to the outdoor air.
[0046]
Therefore, in the present embodiment, as shown in FIG. 5, spraying water (liquid) in the form of mist (mist) to the first outdoor unit (radiator) 51 and increasing the heat dissipation capability of the first outdoor unit 51. A device 60 is provided.
[0047]
Incidentally, the injection device 60 is composed of a water tank 61, an injection pump 62, and an injection valve (injector) 63, and the temperature difference between the waste heat temperature of the refrigeration adsorber 20 and the outdoor air temperature becomes a predetermined temperature or less. Sometimes configured to inject water.
[0048]
As a result, the waste heat of the refrigeration adsorber 20 can be reliably radiated to the outside (outside of the cabinet), so that the refrigeration capacity (cold heat) can be reliably obtained.
[0049]
In addition, although this embodiment provided the injection apparatus 60 with respect to the adsorption type refrigerator which concerns on 1st Embodiment, you may provide in the adsorption type refrigerator which concerns on 2nd Embodiment.
[0050]
(Fourth embodiment)
In the present embodiment, the moisture desorption characteristics of the adsorbent enclosed in the refrigeration adsorber 20 and the adsorbent enclosed in the heat recovery adsorber 30 (including the first and second heat recovery adsorbers 30). The moisture desorption characteristics are different.
[0051]
Specifically, in the adsorption refrigerator according to the first embodiment, for example, the temperature of the heat medium supplied from the burner 10 is about 80 ° C., the outdoor air temperature is 35 ° C., and the room temperature (inside temperature) is set. Assuming that the temperature is 10 ° C., as described above, the waste heat temperature of the heat recovery adsorber 30 is about 50 ° C., and the waste heat temperature of the refrigeration adsorber 20 is about 20 ° C.
[0052]
At this time, the relative humidity to which the adsorbents 31b and 32b are exposed when the refrigeration adsorber 20 adsorbs moisture is about 52%, and the relative humidity when the moisture is desorbed (regeneration) is about 19%. is there. Further, when the heat recovery adsorber 30 adsorbs moisture, the relative humidity to which the adsorbents 31b and 32b are exposed is about 46%, and when the moisture is desorbed (during regeneration), the relative humidity is about 26%. is there.
[0053]
Therefore, if an adsorbent having moisture desorption characteristics as shown by the adsorbent A in FIG. 6 is used for the refrigeration adsorber 20, an adsorbent having moisture desorption characteristics as shown by the adsorbent B is used. As compared with the above, the amount of moisture adsorption can be increased, and the refrigerating capacity and the coefficient of performance can be improved.
[0054]
On the other hand, in the heat recovery adsorber 30, if an adsorbent having a moisture desorption characteristic as shown by the adsorbent B in FIG. 6 is used, an adsorbent having a moisture desorption characteristic as shown by the adsorbent A is used. Compared to the case, the moisture adsorption amount can be increased, and the refrigerating capacity and the coefficient of performance can be improved.
[0055]
In other words, if an adsorbent that has a moisture desorption characteristic that maximizes the difference in the amount of moisture adsorption at the upper and lower limits of the operating relative humidity range of the adsorber is adopted, the amount of adsorbent can be increased by a large amount. Refrigerating capacity and coefficient of performance can be improved without increasing the size of the refrigerator.
[0056]
(Other embodiments)
In the above-described embodiment, the present invention is applied to the air conditioner. However, the present invention is not limited to this, and can be applied to other refrigeration apparatuses such as a refrigerator.
[0057]
Also, the heat recovery adsorber 30 is not limited to one or two, and may be three or more.
[0058]
In the above-described embodiment, silica gel is used as the adsorbent. However, the present invention is not limited to this, and activated carbon, zeolite, activated alumina, or the like may be used as the adsorbent.
[0059]
In the above-described embodiment, the burner that burns fossil fuel is used as the heat source. However, the present invention is not limited to this, and the engine waste heat of the generator, the waste heat of the fuel cell, the solar heat, etc. Even a low-temperature heat source of ℃ or less works well.
[Brief description of the drawings]
FIG. 1 is a schematic view of an adsorption refrigerator according to a first embodiment of the present invention.
FIG. 2 is a schematic view of the refrigeration adsorber according to the first embodiment of the present invention.
FIG. 3 is a schematic view of the heat recovery adsorber according to the first embodiment of the present invention.
FIG. 4 is a schematic diagram of an adsorption chiller according to a second embodiment of the present invention.
FIG. 5 is a schematic view of an adsorption refrigerator according to a third embodiment of the present invention.
FIG. 6 is a graph showing the moisture desorption characteristics (relationship between relative humidity and moisture adsorption amount) of the adsorbent used in the adsorption refrigerator according to the third embodiment of the present invention.
[Explanation of symbols]
10 ... Burner (heat source), 20 ... Adsorber for freezing, 30 ... Adsorber for heat recovery,
40 ... indoor heat exchanger, 51 ... first outdoor heat exchanger (radiator),
52 ... 1st outdoor heat exchanger.

Claims (3)

気相冷媒を吸着する際に熱を発生し、かつ、加熱されることによりその吸着した冷媒を脱離する吸着剤を有する吸着式冷凍機であって、
熱を発生する熱源(10)と、
冷媒及び前記吸着剤が封入された冷凍用吸着器(20)及び熱回収用吸着器(30)とを備え、
前記冷凍用吸着器(20)は、吸熱対象から熱を奪って冷媒を蒸発させるとともに、内部で発生した廃熱を室外空気に放熱し、
前記熱回収用吸着器(30)は、室外空気から熱を奪って冷媒を蒸発させるとともに、前記熱源(10)から供給される熱によって、前記熱回収用吸着器(20)内に封入された吸着剤を加熱して、吸着された冷媒を脱離させ、
前記熱回収用吸着器(30)の内部で発生した廃熱は、前記冷凍用吸着器(20)に供給され、
さらに、前記冷凍用吸着器(20)は、前記熱回収用吸着器(30)から供給される廃熱によって、前記冷凍用吸着器(20)内に封入された吸着剤を加熱して、吸着された冷媒を脱離させることを特徴とする吸着式冷凍機。
An adsorptive refrigerator having an adsorbent that generates heat when adsorbing a gas-phase refrigerant and desorbs the adsorbed refrigerant when heated.
A heat source (10) for generating heat;
A refrigeration adsorber (20) and a heat recovery adsorber (30) enclosing the refrigerant and the adsorbent;
The refrigeration adsorber (20) removes heat from the endothermic object and evaporates the refrigerant, and dissipates waste heat generated inside to the outdoor air,
The heat recovery adsorber (30) takes heat from outdoor air and evaporates the refrigerant, and is enclosed in the heat recovery adsorber (20) by heat supplied from the heat source (10). Heat the adsorbent to desorb the adsorbed refrigerant,
Waste heat generated inside the heat recovery adsorber (30) is supplied to the refrigeration adsorber (20),
Further, the refrigeration adsorber (20) adsorbs the adsorbent enclosed in the refrigeration adsorber (20) by waste heat supplied from the heat recovery adsorber (30). An adsorptive refrigeration machine, wherein the extracted refrigerant is desorbed.
前記冷凍用吸着器(20)の廃熱を外部に放熱するための放熱器(51)に液体を噴射し、前記放熱器(51)の放熱能力を増大させる噴射装置(60)を備えることを特徴とする請求項に記載の吸着式冷凍機。It is provided with an injection device (60) for injecting liquid onto a radiator (51) for radiating waste heat of the refrigeration adsorber (20) to the outside and increasing the heat radiation capability of the radiator (51). The adsorption type refrigerator according to claim 1 , wherein 前記冷凍用吸着器(20)に封入された前記吸着剤と、前記熱回収用吸着器(30)に封入された前記吸着剤とは、冷媒の吸着特性が異なるものであることを特徴とする請求項1または2に記載の吸着式冷凍機。The adsorbent enclosed in the refrigeration adsorber (20) and the adsorbent enclosed in the heat recovery adsorber (30) have different refrigerant adsorption characteristics. The adsorption type refrigerator according to claim 1 or 2 .
JP32018999A 1999-11-10 1999-11-10 Adsorption type refrigerator Expired - Fee Related JP4281180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32018999A JP4281180B2 (en) 1999-11-10 1999-11-10 Adsorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32018999A JP4281180B2 (en) 1999-11-10 1999-11-10 Adsorption type refrigerator

Publications (2)

Publication Number Publication Date
JP2001141327A JP2001141327A (en) 2001-05-25
JP4281180B2 true JP4281180B2 (en) 2009-06-17

Family

ID=18118707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32018999A Expired - Fee Related JP4281180B2 (en) 1999-11-10 1999-11-10 Adsorption type refrigerator

Country Status (1)

Country Link
JP (1) JP4281180B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961184B (en) * 2004-01-28 2010-06-23 联邦科学及工业研究组织 Method, apparatus and system for transferring heat
FR2990267B1 (en) * 2012-05-03 2018-04-06 Coldway DEVICE AND METHOD FOR THE CONTINUOUS PRODUCTION OF THERMOCHEMICAL COLD
JP6028758B2 (en) 2014-03-24 2016-11-16 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
JP6065882B2 (en) 2014-06-30 2017-01-25 株式会社豊田中央研究所 Adsorption heat pump system and cold heat generation method
JP6722860B2 (en) * 2017-02-07 2020-07-15 パナソニックIpマネジメント株式会社 Adsorption refrigerator, method for controlling adsorption refrigerator and cooling system

Also Published As

Publication number Publication date
JP2001141327A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP4096646B2 (en) Cooling system
AU2021203862B2 (en) Split type sorption air conditioning unit
JP4192385B2 (en) Adsorption type refrigerator
JP6028799B2 (en) Carbon dioxide supply device
JP2003074374A (en) Cogeneration system
WO2009145278A1 (en) Hybrid refrigeration system
JP4281180B2 (en) Adsorption type refrigerator
JP5974541B2 (en) Air conditioning system
JP2002250573A (en) Air conditioner
JP2002162130A (en) Air conditioner
JP4186354B2 (en) Thermal management device
JPH07301469A (en) Adsorption type refrigerator
JP2001215068A (en) Adsorption type refrigerator
JP4069691B2 (en) Air conditioner for vehicles
JPH11281190A (en) Double adsorption refrigerating machine
JPH11223416A (en) Refrigerating device
JPH11223415A (en) Refrigerating device
JP2000329422A (en) Adsorption refrigeration unit
JP4196753B2 (en) Adsorption type refrigerator
JP4300677B2 (en) Adsorption type refrigerator
JPH11223414A (en) Refrigerating device
JP4186338B2 (en) Adsorption type refrigerator
JP2006029605A (en) Adsorption heat pump system, and cogeneration system
JP4186690B2 (en) Heating element cooling system and mobile phone base station
JP2022158396A (en) Control method for adsorption type heat pump, computer program, and adsorption type heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees