JPH0325259A - Operation method of adsorption type refrigerator - Google Patents

Operation method of adsorption type refrigerator

Info

Publication number
JPH0325259A
JPH0325259A JP16179889A JP16179889A JPH0325259A JP H0325259 A JPH0325259 A JP H0325259A JP 16179889 A JP16179889 A JP 16179889A JP 16179889 A JP16179889 A JP 16179889A JP H0325259 A JPH0325259 A JP H0325259A
Authority
JP
Japan
Prior art keywords
working medium
adsorption
adsorbent
heat exchanger
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16179889A
Other languages
Japanese (ja)
Other versions
JPH0810092B2 (en
Inventor
Noboru Kobayashi
昇 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16179889A priority Critical patent/JPH0810092B2/en
Publication of JPH0325259A publication Critical patent/JPH0325259A/en
Publication of JPH0810092B2 publication Critical patent/JPH0810092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To promote the capacity of an overall system by a method wherein at the change-over time between an adsorption stroke and a regeneration stroke, respective heat exchangers for operating medium of respective adsorption refrigeration units are changed over to an adsorption stroke or a regeneration stroke in step with their actual operating modes. CONSTITUTION:At the change-over time from an adsorption stroke to a regeneration stroke, fluid supplied to connectors in series of respective heat exchangers 2A, 2B, 2C... with adsorbent is changed and following that, after the elapse of a fixed time, respective heat exchangers 3A, 3B, 3C... for working fluid carrying out the adsorption stroke till then are changed over to carry out the regeneration stroke in turns starting with an exchanger on the upper stream side of the heating fluid F4. At the change-over time from the regeneration stroke to the adsorption stroke, fluid supplied to the connectors in series of respective heat exchangers 2 is changed and following that, after the elapse of a fixed time, respective heat exchangers 3A, 3B, 3C... carrying out the regeneration stroke till then are changed to carry out the adsorption stroke in turns from the exchanger near the upper course of the cooling fluid F5. Thereby, the capacity of an overall system can be promoted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、気相と液相の間で相変化する作動媒体を充
填してなる密閉容器の中に、冷却用流体又は加熱用流体
の供給を受け冷却用流体の受給時には上記作動媒体を吸
猜する一方加熱用流体の受給時には上記作動媒体を放出
する作用をする吸着剤付熱交換器と、該吸着剤付熱交換
器による作動媒体の吸着・放出にともなって該作動媒体
との間で熱交換を行いそれによって該作動媒体に蒸発又
は凝縮作用を生ぜしめる作用をする作動媒体用熱交換器
とをそなえ、上記作動媒体の蒸発時に生じる冷熱を冷却
用熱源として利用するように構成された、吸着式冷凍装
置の運転方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a system for storing a cooling fluid or a heating fluid in a closed container filled with a working medium that changes phase between a gas phase and a liquid phase. an adsorbent-equipped heat exchanger that absorbs the working medium when receiving a cooling fluid and discharges the working medium when receiving a heating fluid; and a working medium produced by the adsorbent-equipped heat exchanger. and a working medium heat exchanger that exchanges heat with the working medium as the working medium is adsorbed and released, thereby causing an evaporation or condensation action in the working medium. The present invention relates to a method of operating an adsorption refrigeration apparatus configured to utilize generated cold heat as a cooling heat source.

第9図には上記のような吸着式冷凍装置の基本システム
図が示されている。この第9図を使用して該吸着式冷凍
装置の基本サイクルを説明すると、第9図において符号
1は密閉容器であり、該密閉容器内には、気相と戒相の
間で相変化する、たとえば水などの作動媒体Wが充填さ
れている。さらに上記密閉容器l内には2種類の熱交換
器2,3が組込まれている。一方の熱交換器2は供給さ
れる流体の温度に応じてガス状の作動媒体Wgを吸着し
たり放出したりするゼオライ1・などの吸着剤12を付
設した吸着剤付島交換鼎であり、他方の熱交換器3は、
上記作動媒体Wと熱交換して該作動媒体Wの蒸発時には
該作動媒体Wから冷熱を受け、該作動媒体Wの凝縮時に
は該作動媒体Wを冷却する作用をする作動媒体用熱交t
IA器を示している。
FIG. 9 shows a basic system diagram of the adsorption refrigeration apparatus as described above. The basic cycle of the adsorption refrigeration system will be explained using FIG. 9. In FIG. 9, reference numeral 1 is a closed container, and inside the closed container, there is a gas that changes phase between the gas phase and the gaseous phase. , for example, is filled with a working medium W such as water. Furthermore, two types of heat exchangers 2 and 3 are built into the closed container 1. One heat exchanger 2 is an adsorbent-equipped island exchanger equipped with an adsorbent 12 such as zeolite 1, which adsorbs or releases the gaseous working medium Wg depending on the temperature of the supplied fluid. The other heat exchanger 3 is
A heat exchanger for a working medium that exchanges heat with the working medium W, receives cold heat from the working medium W when the working medium W evaporates, and cools the working medium W when the working medium W is condensed.
It shows an IA device.

一方の吸着剤付熱交換器2にはバルブ42及び同43の
切換に応じて、ボンブ4lにより、同吸着剤付熱交換器
2の吸着剤l2に作動媒体Wの吸着作用を生ぜしめるた
めの冷却用流体F,又は同吸着剤12に作動媒体Wの放
出作用を生ぜしめるための加熱用流体F,が供給され、
他方の作動媒体用熱交換器3には、バルブ62及び同6
3の切換に応じて、ポンブ61により、吸着剤による作
動媒体吸着時に液状の作動媒体Wffを蒸発させて該蒸
発時に作動媒体Wより冷熱をうける作用をする彼冷却用
流体F.又は吸着剤l2から放出されたガス状の作動媒
体Wgを冷却して該作動媒体Wgを凝縮させる作用をす
る凝縮用流体F,が供給される。第9図中、符号4は吸
請剤付熱交換固2に加熱用流体F.を供給するための加
熱用流体供給源(たとえば高温加熱オイル、あるいはボ
イラ廃水、太陽熱温水器など)、同5は吸着剤付熱交換
器2に冷却用流体F5を供給するための冷却用流体供給
源(例えば地下水あるいはクーリングタワーなと)を示
し、又符号6は被冷却用流体F,が作動媒体Wより受け
る冷熱を利用して冷房などを行わしめるための冷熱利用
機器(たとえば空調用室内熱交換器)、同7は吸着剤付
熱交換器2の吸着剤l2より放出されたガス状の作動媒
体Wgを凝縮させる凝縮用流体F7を供給するための凝
縮用流体供給源(たとえば空調用室外熱交換器)を示し
ている。
In one of the adsorbent heat exchangers 2, in response to switching of the valves 42 and 43, a bomb 4l is used to cause the adsorption action of the working medium W on the adsorbent l2 of the adsorbent heat exchanger 2. A cooling fluid F or a heating fluid F for causing the adsorbent 12 to release the working medium W is supplied,
The other working medium heat exchanger 3 includes a valve 62 and a valve 62.
3, the pump 61 evaporates the liquid working medium Wff when the working medium is adsorbed by the adsorbent and receives cooling heat from the working medium W at the time of evaporation. Alternatively, a condensing fluid F is supplied which acts to cool the gaseous working medium Wg released from the adsorbent l2 and condense the working medium Wg. In FIG. 9, reference numeral 4 indicates a heating fluid F. 5 is a heating fluid supply source (for example, high-temperature heating oil, boiler waste water, solar water heater, etc.) for supplying cooling fluid F5 to the adsorbent heat exchanger 2. The reference numeral 6 indicates a cold energy utilization device (for example, an indoor heat exchanger for air conditioning) for cooling the fluid F to be cooled by using the cold heat received from the working medium W. 7 is a condensing fluid supply source (for example, an outdoor heat source for air conditioning exchanger) is shown.

この吸着式冷凍装置は次のように作用する。This adsorption refrigeration system works as follows.

すなわち、吸着剤付熱交換益2に対する冷却用流体F,
の供給により同吸着剤付熱交換器2の吸着剤l2が、ガ
ス状の作動媒体Wgを吸着する吸着行程にあるときは、
その作動媒体吸着にともなって液状の作動媒体WI2が
連続的に蒸発して該作動媒体W1の温度を低下せしめ、
それによって作動媒体用熱交換器3に供給される流体(
被冷却用流体)F,を冷却する。この冷却された被冷却
用流体F6が冷房などの冷熱源として利用される。
That is, the cooling fluid F for the adsorbent heat exchange gain 2,
When the adsorbent l2 of the adsorbent heat exchanger 2 is in the adsorption process of adsorbing the gaseous working medium Wg due to the supply of
As the working medium is adsorbed, the liquid working medium WI2 is continuously evaporated to lower the temperature of the working medium W1,
The fluid thereby supplied to the working medium heat exchanger 3 (
Cool the fluid to be cooled) F. This cooled fluid F6 to be cooled is used as a cold heat source for air conditioning or the like.

次に、吸着剤付熱交換器2の吸轡剤12における作動媒
体Wの吸着行程が一定時間継続されると、同吸着行程を
終了せしめ、次にはバルブ42,43の切換により、吸
着剤付熱交換謂2に対してそれまでの冷却用流体F,に
かえて加熱用流体F,が供給される。それによって吸着
剤付熱交換器2の吸着剤12が加熱されると、該吸η剤
l2中に吸着されていた作動媒体Wが放出されて該吸猜
剤12は再生行程へ移行する。この再生行程において吸
着剤l2から放出されたガス状の作動媒体Wgを凝縮さ
せるために、作動媒体用熱交換器3に対してはバルブ6
2.63の切換により、それまでの被冷却用流体F6に
かえて凝縮用流体F,が供給される(たとえば空調用の
室外熱交換器7などから〉。これにより、ガス状の作動
媒体Wgの凝縮が促進され、それにともなって吸着剤付
熱交換器2の吸着剤12における作動媒体の放出(吸着
剤12の再生)が連続的に行われる。この吸着剤l2の
再生行程が所定時間経過すれば再度吸着行程に切換えら
れ、以後この吸着行程及び再生行程が交互に繰り返され
る。
Next, when the adsorption stroke of the working medium W in the absorbent 12 of the adsorbent heat exchanger 2 continues for a certain period of time, the adsorption stroke is ended, and then the adsorbent is A heating fluid F is supplied to the so-called heat exchanger 2 instead of the cooling fluid F that was previously used. When the adsorbent 12 of the heat exchanger with adsorbent 2 is thereby heated, the working medium W adsorbed in the η absorber l2 is released, and the suction absorber 12 moves to a regeneration process. In order to condense the gaseous working medium Wg released from the adsorbent l2 in this regeneration process, a valve 6 is connected to the working medium heat exchanger 3.
2.63, the condensing fluid F is supplied instead of the fluid to be cooled F6 (for example, from the outdoor heat exchanger 7 for air conditioning). As a result, the gaseous working medium Wg The condensation of the adsorbent 12 is promoted, and the working medium is continuously released from the adsorbent 12 of the adsorbent heat exchanger 2 (regeneration of the adsorbent 12). Then, the system is switched to the adsorption process again, and thereafter the adsorption process and the regeneration process are alternately repeated.

(従来の技術) 上記のような吸着式冷凍装置は従来から知られており、
さらにそのような吸着式冷凍装置を攬数ユニット接続し
て大規模な冷凍能力を得ようとするものも知られている
。その際、複数基の吸着式冷凍ユニットに対して接続さ
れるシステム構成用機器の点数を少なくしようとする場
合は、それらの複数基の吸着式冷凍装置における各吸着
剤付熱交換器及び各作動媒体用熱交換器は相互に直列に
接続されることになる(たとえば特開昭63−4635
6号公報参照)。
(Prior art) Adsorption refrigeration equipment as described above has been known for a long time.
Furthermore, it is also known to connect several units of such adsorption refrigeration devices to obtain a large-scale refrigeration capacity. At that time, if you are trying to reduce the number of system configuration devices connected to multiple adsorption refrigeration units, each adsorbent heat exchanger and each operating unit in those multiple adsorption refrigeration units The medium heat exchangers will be connected in series (for example, as disclosed in Japanese Patent Application Laid-Open No. 63-4635).
(See Publication No. 6).

この種の吸着式冷凍装置は、吸着剤付熱交換器が冷却用
流体を受給するときに気相の作動媒体を吸着するのにと
もなって密閉容器内の液相の作動媒体が蒸発する(その
蒸発熱によって他方の熱交換器内を流通する流体を冷却
する)という作用を利用して冷却作用を行わしめるもの
であるため、吸着剤付熱交換器における作動媒体の吸着
作用が鈍化又は停止(すなわち飽和状態)すれば、吸着
剤付熱交換器へは冷却用流体にかえて加熱用流体く作動
媒体放出用流体)を供給しなければならない。
In this type of adsorption refrigeration system, when the adsorbent-equipped heat exchanger receives cooling fluid, it adsorbs the gas phase working medium, and the liquid phase working medium in the closed container evaporates. The cooling effect is achieved by using the heat of evaporation to cool the fluid flowing in the other heat exchanger, so the adsorption effect of the working medium in the adsorbent heat exchanger slows down or stops ( In other words, if the adsorbent-equipped heat exchanger is in a saturated state, it is necessary to supply a heating fluid (or a working medium discharge fluid) to the adsorbent heat exchanger instead of the cooling fluid.

ところで、複数基の吸積式冷凍ユニットにおける直列に
接続された各吸着剤付熱交t*器に吸着剤冷却用又は加
熱用の流体を供給した場合は、該冷却用流体と加熱用流
体の切換タイミングと複数基ある各吸着式冷凍ユニット
における実際の吸着剤の吸着又は再生作用の切換わりタ
イミングとは必ずしも一致しない。すなわち、相互に直
列接続された各吸着剤付熱交換器に対する冷却用流体又
は加熱用流体の切換が行われても、各吸着剤付熱交′f
IAuの熱容量の関係から、それと同時に全ての吸着式
冷凍ユニットが実際に吸着行程から再生行程、あるいは
再生行程から吸着行程へ切換わる訳ではない(ある吸着
式冷凍ユニットでは吸着行程であっても一時的には他の
吸着式冷凍ユニットでは再生行程中である、という作動
時間領域が生じる)。
By the way, when a fluid for cooling or heating the adsorbent is supplied to each heat exchanger with adsorbent connected in series in a plurality of suction type refrigeration units, the difference between the cooling fluid and the heating fluid is The switching timing does not necessarily coincide with the actual switching timing of the adsorption or regeneration action of the adsorbent in each of the plurality of adsorption refrigeration units. In other words, even if the cooling fluid or heating fluid is switched for each adsorbent heat exchanger connected in series, each adsorbent heat exchanger'f
Due to the heat capacity of IAu, not all adsorption refrigeration units actually switch from the adsorption process to the regeneration process or from the regeneration process to the adsorption process at the same time (some adsorption refrigeration units temporarily switch even during the adsorption process). In other adsorption refrigeration units, there is a period of operation time during which the regeneration process is in progress).

第10図は第9図中の吸着剤12をlO分割して測定点
P。−P,。を設定し、各測定点P0〜P,。
In FIG. 10, the adsorbent 12 in FIG. 9 is divided into lO to measure point P. -P,. and set each measurement point P0 to P,.

において吸着剤の含水率がどのように変化するかを測定
した結果を示すグラフである。このグラフによると、再
生行程から吸着行程に切換った場合でも各測定点では瞬
時に含水率が上昇し始める訳ではなく、冷却用流体F,
の下流側の測定点になる程(po→p.)、吸着行程へ
の実質的転換(含水率の増加)が遅れ、しばらくは前行
程での作用である吸着剤再生作用(含水率の低下)が継
続されることが示されている。このような現象は、吸着
行程から再生行程への切換時においても同様であり、加
熱用流体F,の下流側の測定点になる程(P,。神P0
)、再生行程への実質的転換(含水率の低下)が遅れる
ことが示されている。なお、第10図において、白丸印
は、各測定点P0〜PIGにおける含水率最低点(実質
的な再生行程終了時点)を示し、黒丸印は、各測定点P
0〜P,。における含水率最高点く実質的な吸着行程終
了時点)を示している。
2 is a graph showing the results of measuring how the water content of an adsorbent changes in According to this graph, even when switching from the regeneration process to the adsorption process, the water content does not start to rise instantly at each measurement point;
As the measuring point moves downstream (po → p.), the actual conversion to the adsorption process (increase in water content) is delayed, and for a while the adsorbent regeneration effect (decreasing in water content), which is the effect of the previous process, is delayed. ) is shown to continue. This phenomenon is the same when switching from the adsorption process to the regeneration process, and the closer the measurement point is to the downstream side of the heating fluid F (P, .
), it has been shown that substantial conversion to the regeneration process (reduction in water content) is delayed. In FIG. 10, white circles indicate the lowest water content points (substantially at the end of the regeneration process) at each measurement point P0 to PIG, and black circles indicate each measurement point P
0~P,. The water content reaches its maximum point (at the actual end of the adsorption process).

しかるに、従来の複数ユニット接続型吸着式冷凍装置で
は、各吸着剤付熱交換益を相互に直列に接続したのに対
応して各作動媒体用熱交換器も相互に直列に接続し、各
吸着剤付熱交換器に対する冷却用流体又は加熱用流体の
切換に対応して各作動媒体用熱交換器に対する流体(W
i冷却用流体又は凝縮用流体)の切換えを行わしめてい
る。
However, in conventional multi-unit adsorption refrigeration equipment, each heat exchanger with adsorbent is connected in series with each other, and each working medium heat exchanger is also connected in series with each other. The fluid (W) for each working medium heat exchanger is
i Cooling fluid or condensing fluid) is switched.

(発明が解決しようとする課題) 本願発明は、上記のような腹数基の冷凍ユニノト接続型
の吸猜式冷凍装置における、直列接続の吸着剤付熱交P
A器への冷却用流体又は加熱用流体の切換タイミングと
、相互に直列接続された各吸着式冷凍ユニットの作動媒
体用熱交換器に対する彼冷却用流体又は凝縮用流体の切
換タイミングとの間に時間差を設けることによって各吸
着式冷凍ユニッ1・の作動媒体用熱交換器に対する戒冷
却用流体又は凝縮用流体の供給を同吸着式冷凍ユニット
において実際に生じる吸着剤の吸着又は再生作用に合致
させようとするものである。
(Problems to be Solved by the Invention) The present invention is directed to a series-connected heat exchanger P with an adsorbent in a suction type refrigerating apparatus of the above-mentioned refrigeration uni-noto connection type.
Between the timing of switching the cooling fluid or heating fluid to unit A and the timing of switching the cooling fluid or condensing fluid to the working medium heat exchanger of each adsorption refrigeration unit connected in series. By providing a time difference, the supply of cooling fluid or condensing fluid to the working medium heat exchanger of each adsorption refrigeration unit 1 can be made to match the adsorption or regeneration effect of the adsorbent that actually occurs in the adsorption refrigeration unit. This is what we are trying to do.

(課題を達成するための手段) 本願発明の吸着式冷凍装置の運転方法は、上記課題を達
成するために、第1図ないし第6図に例示するような吸
着式冷凍装置、すなわち、気相と液相の間で相変化する
作動媒体Wを充填してなる複数の密閉容器IA.,IB
,IC・・・のそれぞれの中に、冷却用流体または加熱
用流体の供給を受け、冷却用流体受給時には前記作動媒
体Wを吸着する一方加熱用流体受給時には前記作動媒体
Wを放出する作用をする吸着剤付熱交換器2A,2B,
2C・・・と、該吸着剤付熱交換器2A,2B,2C・
・・による作動媒体Wの吸着・放出にともなって該作動
媒体Wとの間で熱交換を行いそれによって該作動媒体W
に蒸発又は凝縮作用を生ぜしめる作用をする作動媒体用
熱交換器3A,3B,3G・・・とを設置する一方、前
記各容器1A、IB,IC・・・外には、前記各作動媒
体用熱交換器3A,3B,3C・・・に接続されて前記
作動媒体Wの蒸発作用時に冷却されるべき被冷却用流体
F.を供給する冷熱利用機器6と、同しく各作動媒体用
熱交換il3A,3B,3C・・・に接続されて前記作
動媒体Wの凝縮作用時に凝縮用流体F7を供給する凝縮
用流体供給源7を設けるとともに、さらに前記各吸着剤
付熱交換器2A,2B.2C・・・はこれを相互に直列
に接続する一方、前記各作動媒体用熱交換i13A,3
B.3C・・・はこれを相互に直列に、又はそれぞれ個
別に、前記冷熱利用機器6又は凝縮用流体供給源7に選
択的に接続し得るようにし、しかもこれらの作動媒体用
熱交換器3 A, 3 B, 3 C・・・は、同一密
閉容器IA.,IB,Ic・・・内にある各吸着剤付熱
交換器2A,2B,2C・・・において実際に生じる作
動媒体Wの吸着又は放出作用に対応して、その実際の吸
着作用時には前記冷熱利用機器6に、又その実際の放出
作用時には凝縮用流体供給源7に接続されるように、そ
れぞれの作動媒体用熱交換器3A,3B,3C・・・が
相互に時間差をもって前記冷熱利用機器6又は凝縮用流
体供給[7に接続されるようにしたことを特徴とするも
のである。
(Means for Achieving the Object) In order to achieve the above object, the method of operating an adsorption refrigeration apparatus of the present invention is directed to an adsorption refrigeration apparatus as illustrated in FIGS. 1 to 6, that is, a gas phase A plurality of sealed containers IA. ,IB
, IC... are supplied with a cooling fluid or a heating fluid, and have the function of adsorbing the working medium W when receiving the cooling fluid, and releasing the working medium W when receiving the heating fluid. Adsorbent-equipped heat exchangers 2A, 2B,
2C... and the heat exchanger with adsorbent 2A, 2B, 2C...
As the working medium W is adsorbed and released by..., heat exchange occurs between the working medium W and the working medium W.
Working medium heat exchangers 3A, 3B, 3G, etc., which act to cause evaporation or condensation are installed in the containers 1A, IB, IC... The fluid to be cooled F. is connected to the heat exchangers 3A, 3B, 3C, . . . and is to be cooled during the evaporation of the working medium W. and a condensing fluid supply source 7 which is also connected to each working medium heat exchanger il3A, 3B, 3C, etc. and supplies a condensing fluid F7 when the working medium W is condensed. are provided, and each of the adsorbent heat exchangers 2A, 2B. 2C... connects them in series, while each of the working medium heat exchangers i13A, 3
B. 3C... can be selectively connected to the cold energy utilization equipment 6 or the condensing fluid supply source 7 mutually in series or each individually, and these working medium heat exchangers 3A , 3 B, 3 C... are the same sealed container IA. , IB, Ic..., corresponding to the adsorption or release action of the working medium W that actually occurs in the adsorbent-equipped heat exchangers 2A, 2B, 2C..., during the actual adsorption action. Each of the working medium heat exchangers 3A, 3B, 3C, etc. is connected to the cooling energy utilization equipment with a time difference so that it is connected to the utilization equipment 6 and to the condensing fluid supply source 7 during the actual discharge operation. 6 or a condensing fluid supply [7].

(作 用) 本願発明の吸着式冷凍装置の運転方法では吸着行程から
再生行程への切換に際しては、先ず、各吸着剤付熱交換
i1(2A.2B.2C・・・)の直列接続体への流体
切換(冷却用流体F,から加熱用流体F,への切換)を
行い、それに続いて所定時間をおきながら、それまで吸
養行程を行っていた各作動媒体用熱交換器(3A,3B
,3C・・・)を加熱用流体F.の上流側に近いものか
ら順次再生行程へ切換える一方、再生行程から吸着行程
への切換に際しては、先ず各吸着剤付熱交換器2の直列
接続体への流体切換(加熱用流体F,から冷却用流体F
,への切換)を行い、それに続いて、所定時間をおきな
がら、それまで再生行程を行っていた各作動媒体用熱交
換i!(3A,3B.3G・・・)を冷却用流体F,の
上流側に近いものから順次吸着行程へ切換える。このよ
うにして、吸着行程と再生行程の間の切換に際して、各
作動媒体用熱交換器く3A,3B,3C・・・)での切
換をそれぞれの作動媒体用熱交換器(3A,3B,3C
・・・)の実質に合致させるようにする。
(Function) In the operating method of the adsorption refrigeration system of the present invention, when switching from the adsorption process to the regeneration process, first, the series connection body of each heat exchanger with adsorbent i1 (2A, 2B, 2C...) (switching from cooling fluid F to heating fluid F), and then after a predetermined period of time, each working medium heat exchanger (3A, 3A, 3B
, 3C...) as heating fluid F. When switching from the regeneration process to the adsorption process, first the fluid is switched to the series connection body of each adsorbent heat exchanger 2 (from the heating fluid F, to the cooling fluid F). Fluid F
, ), and then, after a predetermined period of time, the heat exchange i! (3A, 3B, 3G...) are sequentially switched to the adsorption process from the one closest to the upstream side of the cooling fluid F. In this way, when switching between the adsorption process and the regeneration process, the switching in each working medium heat exchanger (3A, 3B, 3C, etc.) is performed. 3C
...) to match the substance of the matter.

(発明の効果) 以上のように本願発明では、腹数基の吸潰式冷凍ユニソ
ト(Ua,Ub,Uc・・・)を接続してなる吸着式冷
凍装置の運転に際して、吸善行程と再生行程の間の切換
時に、各吸着式冷凍ユニッl−(Ua,U b, U 
c・・・)の各作動媒体用熱交換器(3 A, 3B,
3C・・・)をそれぞれの実際の作動暢様に合わせて吸
着行程又は再生行程に切換えるようにしているので、各
吸着式冷凍ユニットでは最大限その冷却能力を発揮する
ことが可能となり、システム全体の能力を向上させるこ
とができる。
(Effects of the Invention) As described above, in the present invention, when operating an adsorption type refrigerating device formed by connecting several suction type refrigerating units (Ua, Ub, Uc...), the suction process and the regeneration process are performed. When switching between strokes, each adsorption refrigeration unit l-(Ua, Ub, U
c...) working medium heat exchangers (3A, 3B,
3C...) is switched to the adsorption stroke or regeneration stroke according to the actual operating performance of each adsorption refrigeration unit, so each adsorption refrigeration unit can maximize its cooling capacity, and the entire system can improve their abilities.

(実施例) 続いて第1図ないし第7図を参照して本願発明の実施例
にかかる吸着式冷凍装置の運転方法の一例を説明すると
、第l図ないし第6図には3基の吸着式冷凍ユニットU
 al U b, U cを並設してなる吸着式冷凍装
置のいくつかの運転態様が示されている。各吸着式冷凍
ユニット(Ua,Ub,Uc)は、密閉容器(1A、I
 B,IC)中に後述の吸着剤付熱交換器(2A.2B
,2G)と作動媒体用熱交換器(3A,3B,3C)を
装備し、さらに同密閉容器(I A,IB.IC)の中
に、気相と液相の間で相変化する、換言すれば蒸発、凝
縮作用を繰り返す、作動媒体(W a, W b, W
 c)を充填している。なお、これらの各吸着式冷凍ユ
ニット(U a, U b, U c)は、さきに第8
図を参照しつつ説明した基本システムのものと同一シス
テムのものであり、これら各吸着式冷凍ユニットの構成
及び作用のうち、同基本システムのものと重複する部分
については同基本システムに関する説明を援用し、以下
においては、同実施例のシステムに独自の部分について
重点的に説明を進めることとする。
(Example) Next, an example of a method of operating an adsorption refrigeration system according to an embodiment of the present invention will be explained with reference to FIGS. 1 to 7. FIGS. type refrigeration unit U
Several operating modes of an adsorption refrigeration system in which al U b and U c are installed in parallel are shown. Each adsorption refrigeration unit (Ua, Ub, Uc) has a closed container (1A, I
A heat exchanger with adsorbent (2A.2B) described below is installed in B, IC).
, 2G) and a heat exchanger for the working medium (3A, 3B, 3C), and in the same sealed container (I A, IB. The working medium (W a, W b, W
c) is filled. In addition, each of these adsorption refrigeration units (U a, U b, U c) is
This system is the same as that of the basic system explained with reference to the diagram, and the explanation regarding the same basic system is referred to for parts of the structure and function of each adsorption refrigeration unit that overlap with those of the same basic system. However, in the following, the explanation will focus on parts unique to the system of the same embodiment.

各吸着式冷凍ユニット(Ua,Ub,Uc)中の吸着剤
付熱交換ti(2A.2B,2C)は、熱交換器本体(
1 1A,l IB,1 1C)にゼオライト等の吸着
剤(1 2A. 1 2 B, ! 2C)を付設した
もので、熱交換器本体(l I.A,IIB,IIC)
へ冷却用流体F,を供給することによって作動媒体(W
 ag, W bg, Wcg)を吸着しく吸着行程)
、これに対して熱交換器本体(1 1A,l IB,1
 1c)に加熱用流体F,を供給することによって作動
媒体を放出する(再生行程)作用を行うものである。
The adsorbent heat exchanger ti (2A, 2B, 2C) in each adsorption refrigeration unit (Ua, Ub, Uc) is connected to the heat exchanger body (
1 1A, l IB, 1 1C) with an adsorbent such as zeolite (1 2A, 1 2 B, ! 2C) attached to the heat exchanger body (l I.A, IIB, IIC)
By supplying the cooling fluid F, to the working medium (W
ag, W bg, Wcg)
, whereas the heat exchanger body (1 1A, l IB, 1
1c) by supplying the heating fluid F, the working medium is discharged (regeneration process).

各吸着式冷凍ユニット中の吸着剤付熱交換器における各
熱交換器本体(1 1A,1 1B,1 1c)は相互
に直列に接続されており、その直列接続体に対して加熱
用流体供給源4と冷却用流体供給rA5トカバルブ42
.43の切換により選択的に接続されるようになってい
る。
Each heat exchanger body (1 1A, 1 1B, 1 1c) in the adsorbent heat exchanger in each adsorption refrigeration unit is connected in series, and heating fluid is supplied to the series connected body. source 4 and cooling fluid supply rA5 toka valve 42
.. The connection can be made selectively by switching 43.

一方、各吸着式冷凍ユニット(Ua,Ub,Ue)にお
ける作動媒体用熱交換器(3A,3B,3C)は、それ
らの各作動媒体用熱交換器(3A,3B,3C)の両端
に接続した6個のバルブ(81,82,8384,85
.86)の切換により相互に直列に接続されたり、ある
いは相互に並列に接続されたりすることが可能となるよ
うにされている。それによって、上記各作動媒体用熱交
換器(3A,3B,3C)は、それぞれ単独で冷熱利用
機器6又は凝縮用流体供給源7に接続されたり、あるい
は他の1つ又は2つの作動媒体用熱交換器と直列状態で
冷熱利用機器6又は凝縮用流体供給源7に接続されたり
することが可能とされている。
On the other hand, the working medium heat exchangers (3A, 3B, 3C) in each adsorption refrigeration unit (Ua, Ub, Ue) are connected to both ends of each working medium heat exchanger (3A, 3B, 3C). 6 valves (81, 82, 8384, 85
.. By switching 86), it is possible to connect them in series or in parallel. Thereby, each of the working medium heat exchangers (3A, 3B, 3C) may be connected to the cold energy utilization equipment 6 or the condensing fluid supply source 7, or may be connected to one or two other working medium heat exchangers (3A, 3B, 3C). It is possible to connect it to the cold energy utilization equipment 6 or the condensing fluid supply source 7 in series with the heat exchanger.

なお、第1図ないし第6図において符号41は吸着剤付
熱交換器(2A.2B,2C)への冷却用流体又は加熱
用流体循環用のポンプ、6lは冷熱利用機器6と各作動
媒体用熱交1m!!(3 A, 3 r3, 3C)の
間に被冷却用流体を循環させるためのポンプ、71は凝
縮用流体供給源7と各作動媒体用熱交換!(3 A, 
3 B, 3 C)の間に凝縮用流体を循環させるため
のポンプを示している。
In addition, in FIGS. 1 to 6, the reference numeral 41 is a pump for circulating cooling fluid or heating fluid to the adsorbent heat exchanger (2A, 2B, 2C), and 6l is the cold energy utilization equipment 6 and each working medium. 1m heat exchanger! ! (3A, 3r3, 3C), a pump for circulating the fluid to be cooled, and 71 a heat exchanger for each working medium with the condensing fluid supply source 7! (3 A,
3B, 3C) shows a pump for circulating the condensing fluid.

次に、図示実施例の吸着式冷凍装置の作用を第1図〜第
6図と第7図のタイムチャートを併用しつつ説明すると
、先ず第1図は同吸着式冷凍装置が始動された直後の状
態(各吸着剤付熱交換器の吸着剤1 2A. 1. 2
B, 1 2Cが全て所定の再生状態にある、第7図に
おいて時刻To)を示している。
Next, the operation of the adsorption refrigeration system according to the illustrated embodiment will be explained using the time charts shown in FIGS. 1 to 6 and FIG. (adsorbent 1 2A. 1. 2 of each adsorbent heat exchanger)
In FIG. 7, time To) is shown, when B, 12C are all in a predetermined reproduction state.

このとき、各吸着式冷凍ユニットの各吸着剤付熱交換益
(2A.2B,2C)の熱交換器本体(IIA.,11
B.lIC)の直列接続体は、バルブ42,43の切換
により冷却用流体供給源(たとえばクーリングタワー)
5に接続されている。又、各吸着式冷凍ユニットの各作
動媒体用熱交換器(3A,3B, 3 C)はバルブ8
2,83,84.85の切換により相互に直列に接続さ
れており、しかもこれらの各作動媒体用熱交換器(3A
,3B,3G)の直911接続体は、バルブ81.86
の切換により冷熱利用機器6に接続されている。したが
ってこの第1図の状態では、冷熱利用機器6に冷熱をも
たらすべき流体(被冷却用流体)F8はボンプ6lによ
り加圧され、管路Lea、作動媒体用熱交換器3A、管
路t,.b,作動媒体用熱交換i3B、管路Lsc、作
動媒体用熱交換器3C、管路L,d、冷熱利用機器6の
如く循環する。なお、各吸着式冷凍ユニッ}(Ua,U
b,Uc)の各密閉容器(I A., I B. l 
C)内には、それぞれ、液状作動媒体(WaCWb1,
Wc6)の当初の液面位H a, H b, H cが
ほぼ同一高さになるように、作動媒体Wが充填されてい
る。
At this time, the heat exchanger body (IIA., 11
B. The series connection body of IC) is connected to a cooling fluid supply source (for example, a cooling tower) by switching valves 42 and 43.
5. In addition, each working medium heat exchanger (3A, 3B, 3C) of each adsorption refrigeration unit has valve 8.
2, 83, 84, and 85 are connected in series, and each of these working medium heat exchangers (3A
, 3B, 3G), the direct 911 connection is for valve 81.86
It is connected to the cooling/heat utilization equipment 6 by switching. Therefore, in the state shown in FIG. 1, the fluid (fluid to be cooled) F8 that should bring cold heat to the cold energy utilization equipment 6 is pressurized by the pump 6l, and is connected to the pipe Lea, the working medium heat exchanger 3A, the pipe t, .. It circulates through the working medium heat exchanger i3B, the working medium heat exchanger 3C, the working medium heat exchanger 3C, the pipes L and d, and the cold energy utilization equipment 6. In addition, each adsorption type refrigeration unit} (Ua, U
b, Uc) each airtight container (I A., I B. l
C) contains liquid working media (WaCWb1,
The working medium W is filled so that the initial liquid levels Ha, Hb, and Hc of Wc6) are approximately the same height.

この第l図の状態で、ポンブ41により冷却用流体供給
源5を介して冷却用流体F7を各吸着剤付熱交換器(2
A,2B,2C)の直列接続体に供給すると、それらの
各吸着剤付熱交換器(2 A. 2 82C)における
吸着剤(1 2A,1 2B,1 2C)は冷却されて
作動媒体(Wa,Wb,Wc)の蒸気(ガス状作動媒体
W ag, W bg. W c++)を連続的に吸着
するようになり、それにともなって液状作動媒体(Wa
&W b Q , W c (1 )の連続的蒸発が生
じ、その蒸発潜熱により各液状作動媒体(Wa# ,W
b+2 ,Wcli )が4度降下する。このようにし
て′a1度降下せしめられる液状作動媒体(Wa1.W
b+2 ,Wcf2 )によって各作動媒体用熱交換1
(3A,3B,3C)を流通する流体(彼冷却用流体)
F.が冷却され、その冷熱が冷熱利用機器6において冷
房用熱源として利用される。
In the state shown in FIG. 1, the pump 41 supplies cooling fluid F7 to each adsorbent heat exchanger (2
When the adsorbent (1 2A, 1 2B, 1 2C) in each heat exchanger with adsorbent (2 A. 2 82C) is supplied to the series connected body of the working medium (A, 2B, 2C), it is cooled and the working medium ( Wa, Wb, Wc) vapor (gaseous working medium W ag, W bg. W c++) is continuously adsorbed, and along with this, the liquid working medium (Wa
Continuous evaporation of &W b Q , W c (1) occurs, and the latent heat of vaporization causes each liquid working medium (Wa#, W
b+2, Wcli) falls by 4 degrees. In this way, the liquid working medium (Wa1.W
b+2 , Wcf2 ) for each working medium heat exchange 1
Fluid circulating (3A, 3B, 3C) (cooling fluid)
F. is cooled, and the cold energy is used as a cooling heat source in the cold energy utilization device 6.

ところで、この場合において、相互に直列に接続されて
いる各吸着剤付熱交換器(2A,2B,2C)は、それ
らの有する熱容量の関係から、冷却用流体F,の最上流
側に位置する第lの吸着剤付熱交tjls2Aにおいて
もつとも早くガス状作動媒体(Wag)の吸着作用が始
まり、同冷却用流体F,の最下流側に位置する第3の吸
着剤付熱交換器2Cにおいてもっとも遅くガス状作動媒
体(Wag)の吸着作用が始まる。また、中間に位置す
る第2の吸着剤付熱交換器2Bは両側の各吸着剤付熱交
換器2A.2Cの中間時期にガス状作動媒体(Wbg)
の吸着作用が始まる。
By the way, in this case, the adsorbent-equipped heat exchangers (2A, 2B, 2C) that are connected in series are located at the most upstream side of the cooling fluid F, due to their heat capacities. The adsorption action of the gaseous working medium (Wag) starts as soon as possible in the first heat exchanger with adsorbent tjls2A, and the adsorption action of the gaseous working medium (Wag) starts as soon as possible in the first heat exchanger with adsorbent tjls2A, and the adsorption action of the gaseous working medium (Wag) starts most quickly in the third heat exchanger with adsorbent 2C located at the most downstream side of the cooling fluid F. The adsorption action of the gaseous working medium (Wag) begins late. In addition, the second heat exchanger with adsorbent 2B located in the middle is connected to each heat exchanger with adsorbent 2A on both sides. Gaseous working medium (Wbg) in the middle of 2C
adsorption action begins.

第1図中のH a’ , H b’ + H c’ は
、各吸着式冷凍ユニット(Ua,Ub,Uc)の各吸着
剤付熱交換i’!N ( 2八,2B,2C)がガス状
作動媒体(W ag. W bg, W cg)の吸着
作用を継続している途中における、各密閉容器(1A、
IB,IC)内での液状作動媒体(Wal!,WbLW
cl2)の液面位の状態を示しており、もつとも作動媒
体の吸着作用が進んでいる第1の吸着式冷凍ユニットL
Jaにおいて液面位(Ha’)がもつとも低《、次いで
第2の吸着式冷凍ユニッl− U bにおける液面位(
Hb’)、第3の吸着式冷凍ユニソトUcにおける液面
位(Ha’ )の順になっている。
In FIG. 1, H a' , H b' + H c' represents each adsorbent-equipped heat exchange i'! of each adsorption refrigeration unit (Ua, Ub, Uc). While N (28, 2B, 2C) continues to adsorb the gaseous working medium (W ag. W bg, W cg),
Liquid working medium (Wal!, WbLW) in IB, IC)
cl2), showing the state of the liquid level of the first adsorption refrigeration unit L, in which the adsorption action of the working medium is progressing.
At Ja, the liquid level (Ha') is at its lowest, and then at the second adsorption refrigeration unit l-Ub
Hb'), and the liquid level (Ha') in the third adsorption type refrigeration unit Uc.

このようにして、各吸着式冷凍ユニット(Ua,ub,
υC)中の各吸着剤(1 2A,1 2B,1 2C)
においてガス状作動媒体の吸着作用が進行して一定時間
経過すると、やがてその作動媒体の吸着作用が鈍化する
ようになるので、この実施例では所定運転時間(たとえ
ば1*=約20分)ごとに各吸普式冷凍ユニノ}(Ua
,Ub,Uc)を吸着行程から再生行程へ切換えるよう
にてしいる。
In this way, each adsorption refrigeration unit (Ua, ub,
Each adsorbent (1 2A, 1 2B, 1 2C) in υC)
As the adsorption effect of the gaseous working medium progresses and a certain period of time elapses, the adsorption effect of the working medium eventually slows down. Each suction type frozen unino} (Ua
, Ub, Uc) from the adsorption process to the regeneration process.

図示の実施例において、各吸着式冷凍ユニットを吸善行
程から再生行程へ切換えるには、第2図に示すように、
バルブ42.43を切換えて各吸着剤付熱交換器(2A
,2B,2C)の直列接続体を加熱用流体供給譚4に接
続し、さらにポンブ4lを逆転せしめて加熱用流体供給
源4で生戊された加熱用流体(約200℃の高温オイル
)F4を第3の吸着式冷凍ユニットUc側から供給する
ようにする。
In the illustrated embodiment, in order to switch each adsorption refrigeration unit from the absorption stage to the regeneration stage, as shown in FIG.
Switch valves 42 and 43 to connect each heat exchanger with adsorbent (2A
, 2B, 2C) are connected to the heating fluid supply source 4, and the pump 4l is further reversed to supply the heating fluid (high temperature oil of approximately 200°C) produced by the heating fluid supply source 4 F4. is supplied from the third adsorption refrigeration unit Uc side.

ところで、各吸着式冷凍ユニットの各吸着剤付熱交換器
(2A,2B,2C)はそれまで吸着行程にあって低温
の怜却用流体F,を供給されていたため、吸着行程から
再生行程への切換にあたり、各吸着剤付熱交換器(2 
A, 2 B, 2 C)へ高温の加熱用流体F4を供
給しても、それらの各吸着剤付熱交換器(2A.2B,
2C)が実際に再生行程に移行するまではある程度の時
間遅れがあり、そしてそれは加熱用流体F4の下流側に
位置する吸N剤付熱交換RN(2B,2A)ほど顕著と
なる。
By the way, each adsorbent heat exchanger (2A, 2B, 2C) of each adsorption refrigeration unit was in the adsorption process and was supplied with the low-temperature purification fluid F, so it was not possible to switch from the adsorption process to the regeneration process. When switching, each heat exchanger with adsorbent (2
Even if high-temperature heating fluid F4 is supplied to each adsorbent-equipped heat exchanger (2A, 2B, 2C)
There is a certain amount of time delay until 2C) actually shifts to the regeneration process, and this becomes more noticeable in the heat exchanger RN with a nitrogen absorbing agent (2B, 2A) located downstream of the heating fluid F4.

本願発明は、図示実施例のように?!数基の吸着式冷凍
ユニノトU a. IJ b, tJ c・・を直夕1
1に接続1−,てなる吸着式冷凍装置を運転するに際し
て、上記のような、吸着行程および再生行程間の切換時
における実際の吸着・再生切換作用実現までの時間遅れ
に着目して、これを逆に利用することにより、各吸橙式
冷凍ユニ,トの能力を最大限に活用ナベ’. f( 士
{I f: L tT+−Q、l’l「I−. I’i
 イ7 (:t、,7 11 j’: I”)4 TI
’明の技術思想が図示実施例においてどのように実現さ
れるかを説明する。
Is the present invention as shown in the illustrated embodiment? ! Several adsorption-type refrigeration units U a. IJ b, tJ c... directly evening 1
When operating an adsorption refrigeration system connected to 1-, we focused on the time delay until the actual adsorption/regeneration switching effect is realized when switching between the adsorption process and the regeneration process, as described above. By using it in reverse, you can maximize the capacity of each suction type refrigeration unit. f( 士{I f: L tT+-Q, l'l "I-. I'i
i7 (:t,,7 11 j': I”)4 TI
How Ming's technical idea is realized in the illustrated embodiment will be explained.

第2図は、3基の吸着式冷凍ユエット(Ua,UbUc
)からなる吸着式冷凍装置が吸着行程から再生行程へ切
換えられた直後の状態(第7図において時刻T8)を示
しており、この状態では、第3の吸着式冷凍ユニットU
cの吸着剤付熱交換器2C側から加熱用流体F4を供給
しても、第2及び第1の吸着式冷凍ユニ・ノトUb,U
a側ではそれと同時的には再生作用が実現されない。そ
こで、作動媒体用熱交換圏(3A,3B,3C)側にお
いては、これに対応して実質的に再生行程に移行する第
3の吸着式冷凍ユニットUcの作動媒体用熱交換器3C
のみを凝縮用流体供給源7に接続して(バルブ85.8
6の切換による)、当該凝縮用流体供給源7から冷却用
流体(ガス状作動媒体Wagの凝縮用流体)F?を供給
し、残りの2基の吸着式冷凍ユニッ}Ub,Uaはしば
らくこれを冷熱利用機藤6に接続したままでそのまま吸
着行程を続行(冷熱利用機謂6への牌冷却用流体Fnl
j拾淋続)さけろ1、上記の状態でしばらくすると(た
とえば第7図においてt.=2分間程度)、やがて第2
の吸着式冷凍ユニッ}Ubにおける吸着剤付熱交換器2
Bの吸着剤12Bも温度上昇し、該吸着剤12B中に吸
着されている作動媒体を気化放出し始める(実質的な再
生行程の開始)ので、次にこれを凝縮せしめるべく、バ
ルブ83,84.85の切換により当該第2の吸着式冷
凍ユニットUbの作動媒体用熱交換器3pを凝縮用流体
供給源7側に接続させる(第3図)。このとき、残りの
第1の吸着式冷凍ユニットUaではまだ吸着剤付熱交換
器2Aの吸着剤12Aが十分に温度上昇しておらず、当
該第1の吸着式冷凍ユニツl・Uaでは作動媒体用熱交
換器3Aをそのまま冷熱利用機器6に接続して吸着行程
を続行させる。
Figure 2 shows three adsorption refrigeration units (Ua, UbUc).
) shows the state (time T8 in FIG. 7) immediately after the adsorption refrigeration system is switched from the adsorption process to the regeneration process, and in this state, the third adsorption refrigeration unit U
Even if the heating fluid F4 is supplied from the adsorbent heat exchanger 2C side of c, the second and first adsorption type refrigeration unit Ub, U
At the same time, no regeneration effect is realized on the a side. Therefore, on the working medium heat exchange zone (3A, 3B, 3C) side, the working medium heat exchanger 3C of the third adsorption refrigeration unit Uc, which substantially shifts to the regeneration process, corresponds to this.
only to the condensing fluid supply 7 (valve 85.8
6), the cooling fluid (fluid for condensing the gaseous working medium Wag) F? from the condensing fluid supply source 7. The remaining two adsorption refrigeration units (Ub and Ua) continue the adsorption process while remaining connected to the cold energy utilization unit 6 (the tile cooling fluid Fnl is supplied to the cold energy utilization unit 6).
Sakero 1, after a while in the above state (for example, about t. = 2 minutes in Figure 7), the second
Heat exchanger 2 with adsorbent in adsorption refrigeration unit Ub
The B adsorbent 12B also rises in temperature and begins to vaporize and release the working medium adsorbed in the B adsorbent 12B (substantially the start of the regeneration process). By switching .85, the working medium heat exchanger 3p of the second adsorption refrigeration unit Ub is connected to the condensing fluid supply source 7 (FIG. 3). At this time, in the remaining first adsorption refrigeration unit Ua, the temperature of the adsorbent 12A of the adsorbent heat exchanger 2A has not yet risen sufficiently, and in the first adsorption refrigeration unit l/Ua, the working medium The heat exchanger 3A is directly connected to the cold energy utilization equipment 6 to continue the adsorption process.

次に、さらにこの状態でしばらくすると(たとえば第7
図において(.=4分間程度)、やがて第1の吸着式冷
凍ユニットUaにおける吸着剤付熱交換器2Aの吸着剤
12Aも諷度上昇1,、該吸着剤12A中に吸着されて
いる作動媒体を放出し始める(実質的な再生行程の開始
)ので、次にはこれを凝縮せしめるべくバルブ81,8
2.83の切換により、当該第lの吸着式冷凍ユニット
Uaの作動媒体用熱交換器3Aを凝縮用流体供給R7側
に接続させる(第4図)。この状態に至ると冷熱利用機
醪6に接続される吸着式冷凍ユニットはなくなり、ポン
プ61は休止する。このようにして全ての吸着式冷凍ユ
ニッ}(Ua,Ub,Uc)において再生行程が行われ
、これが次回の吸着行程への切換(第7図において時刻
T.)まで継続される(この再生行程の時間tn=約2
0分)。なお、上記の再生行程時において作動媒体用熱
交換器3A〜3C内を流通する凝縮用流体F,が作動媒
体W a = W cから奪う凝縮熱は、これを種々の
加熱用熱源として利用することが可能である(たとえば
、凝縮用流体供給源7を暖房用放熱器、乾燥器あるいは
給湯器等として利用することが可能)。又、その場合に
おいて、凝縮用流体供給源7を給湯器とし、そこで作ら
れた温湯を一定容積をもつ貯湯槽に蓄積しておけば、仮
りに各冷凍ユニットUa=Ucの吸着剤12A〜12C
が吸着行程中であっても連続して温湯を利用することが
できる。
Next, if you stay in this state for a while (for example, the seventh
In the figure (.=about 4 minutes), the adsorbent 12A of the adsorbent heat exchanger 2A in the first adsorption refrigeration unit Ua also increases in level 1, and the working medium adsorbed in the adsorbent 12A. begins to be released (substantially the start of the regeneration process), then valves 81 and 8 are activated to condense this.
By switching 2.83, the working medium heat exchanger 3A of the first adsorption refrigeration unit Ua is connected to the condensing fluid supply R7 side (FIG. 4). When this state is reached, the adsorption refrigeration unit connected to the cold energy utilization device 6 disappears, and the pump 61 stops. In this way, the regeneration process is performed in all adsorption refrigeration units (Ua, Ub, Uc), and this continues until the next adsorption process (time T in FIG. 7). time tn = approx. 2
0 minutes). In addition, the condensation heat taken from the working medium W a = W c by the condensing fluid F flowing through the working medium heat exchangers 3A to 3C during the above-mentioned regeneration process is utilized as a heat source for various heating purposes. (For example, it is possible to use the condensing fluid supply source 7 as a heating radiator, a dryer, a water heater, etc.). In that case, if the condensing fluid supply source 7 is a water heater and the hot water produced there is stored in a hot water storage tank with a certain volume, then the adsorbents 12A to 12C of each refrigeration unit Ua=Uc
Hot water can be used continuously even during the adsorption process.

次に、図示実施例の吸着式冷凍装置が再生行程から吸着
行程に切換わる場合について説明すると、図示実施例の
吸着式冷凍装置が再生行程に切換わって所定時間(tn
)経過する(第7図において時刻T!)と、第5図に示
すように、バルブ42.43が切換わり、さらにポンブ
41が逆転せしめられて各吸着式冷凍ユニット(Ua.
Ub.Uc)の吸着剤付熱交換器(2A,2B,2C)
の直列接続体は、それまでの加熱用流体供給源4からの
加熱用流体F,供給にかわって冷却用流体供給源5から
の冷却用流体F,供給に切換えられる。このとき、各吸
着式冷凍ユニットの吸着剤付熱交換器(2A,2B.2
C)はそれまでの再生行程における加熱用流体の供給に
よって高温状態にあるため、それらに冷却用流体F.を
供給しても同時的にはそれらの温度が低下せず、したが
って実際の吸着行程への切換は所定の時間差をもって順
次的に行われることになる。
Next, a case will be described in which the adsorption refrigeration system of the illustrated embodiment switches from the regeneration process to the adsorption process.
) has elapsed (time T in FIG. 7), the valves 42 and 43 are switched as shown in FIG.
Ub. Uc) heat exchanger with adsorbent (2A, 2B, 2C)
The series connection of is switched to the supply of cooling fluid F from the cooling fluid supply source 5 instead of the heating fluid F supplied from the heating fluid supply source 4. At this time, the adsorbent heat exchanger (2A, 2B.2
C) are in a high temperature state due to the supply of heating fluid in the regeneration process up to that point, so cooling fluid F. Even if they are supplied, their temperatures do not decrease simultaneously, and therefore, switching to the actual adsorption process is performed sequentially with a predetermined time difference.

すなわち、この再生行程から吸着行程への切換に際して
は、さきに説明した吸着行程から再生行程への切換の場
合とは逆に、先ず第lの吸着式冷凍エニットU aの吸
着剤付熱交換器2Aにおいて作動媒体の吸着作用が開始
され、したがって同第1の吸着式冷凍ユニットUaにお
ける作動媒体用熱交換器3Aのみが冷熱利用機器6に接
続されてポンプ6lにより被冷却用流体F8の供給をう
け、他の2つの作動媒体用熱交換13B,3Cは、なお
凝縮用流体供給源7にt妾続されたままでポンプ71に
より凝縮用流体F7の供給を受け続ける。
That is, when switching from the regeneration process to the adsorption process, contrary to the case of switching from the adsorption process to the regeneration process described earlier, first the adsorbent-equipped heat exchanger of the l-th adsorption type refrigeration unit Ua is 2A, the adsorption action of the working medium is started, and therefore, only the working medium heat exchanger 3A in the first adsorption refrigeration unit Ua is connected to the cold energy utilization equipment 6, and the pump 6l starts supplying the fluid to be cooled F8. In response, the other two working medium heat exchangers 13B and 3C continue to be supplied with the condensing fluid F7 by the pump 71 while still being connected to the condensing fluid supply source 7.

上記の状態でしばらくすると(たとえば第7図において
t.=2分間程度)、やがて第2の吸着式冷凍ユニyト
Ubにおける吸着剤付熱交換12Bの吸費剤1. 2 
Bも畠度低下して作動媒体の吸着作用を開始するので、
同第2の吸着式冷凍ユニットUbの作動媒体用熱交換器
3Bもこれに合わせて凝縮用流体供給17から冷熱利用
機器6への接続に切換える。すなわち、第6図がこの状
態で、バルブ82,83.84の切換により、作動媒体
用熱交換IN3Aと同3Bが直列に接続されてポンプ6
lにより戒冷却用流体F0の供給を受け、残りの作動媒
体用熱交換器3Cにのみ、なお凝縮用流体F,の供給が
継続される。
After a while in the above state (for example, about t.=2 minutes in FIG. 7), the absorbent 1. 2
Since B also starts to absorb the working medium due to the decrease in crop quality,
The working medium heat exchanger 3B of the second adsorption refrigeration unit Ub is also switched from the condensing fluid supply 17 to the cold energy utilization equipment 6 in accordance with this. That is, in this state as shown in FIG. 6, by switching the valves 82, 83 and 84, the working medium heat exchangers IN3A and IN3B are connected in series, and the pump 6
1 receives the supply of cooling fluid F0, and continues to supply the condensing fluid F only to the remaining working medium heat exchanger 3C.

そしてさらに所定時間(第7図においてt*s= 4分
間程度)経過すると、第3の吸着式冷凍ユニッ}UCに
おいても吸着剤12Cの温度降下により実質的な吸着作
用が開始されるようになるので、同第3の吸着式冷凍ユ
ニッ}Ucの作動媒体用熱交換W3Cもこれに合せて凝
縮用流体供給源7から冷熱利用m器6への接続に切換え
る。すなわち、第1図がこの状態で、第6図に比較する
と、バルブ84,85.86が第1図に示す如く切換え
られ、ポンプ71は休止状態となる(第7図において時
刻T。)。そして、この状態が次の再生行程への切換(
第7図においてT8)まで継続され、以後、上述の運転
サイクルが繰り返される。
Then, after a further predetermined period of time (t*s = about 4 minutes in Fig. 7) has elapsed, a substantial adsorption action begins in the third adsorption refrigeration unit (UC) due to the temperature drop of the adsorbent 12C. Accordingly, the working medium heat exchange W3C of the third adsorption refrigeration unit Uc is also switched from the condensing fluid supply source 7 to the cold energy utilization unit 6. That is, when FIG. 1 is in this state and compared with FIG. 6, the valves 84, 85, and 86 are switched as shown in FIG. 1, and the pump 71 is in a rest state (time T in FIG. 7). This state is the switch to the next regeneration process (
The operation continues until T8) in FIG. 7, and thereafter the above-described operation cycle is repeated.

このように、図示実施例では本願発明を適用して吸着行
程と再生行程間の切換にあたって東数基の吸着式冷凍ユ
ニット(Ua.Ub,Ua)の各作動媒体用熱交換器(
3A,3B,3C)に対して所定の時間差をもって、各
吸着式冷凍ユニット中の各吸着剤における実質的な吸着
作用又は再生作用に合わせて被冷却用流体F.又は凝縮
用流体F,を供給し、各吸着式冷凍ユニット(Ua,U
b,Ue)を可及的に有効に稼動せしめるようにしてい
るので運転効率を向」ニさせることが可能となる。
As described above, in the illustrated embodiment, the present invention is applied to each working medium heat exchanger (
3A, 3B, 3C), the fluid to be cooled F. or condensing fluid F, to each adsorption refrigeration unit (Ua, U
b, Ue) are made to operate as effectively as possible, making it possible to improve the operating efficiency.

次に、第1図ないし第6図を参照して説明した図示実施
例の吸着式冷凍装置の運転方法を第8図のフローチャー
トを使用して説明するが、その場合、第8図におけるス
タート時点T8は、第7図のタイムチャート中で時刻T
IとT,の中間点にあるとする(すなわち、前回の運転
停止時刻が再生行程中の時刻T.とT,の間の時刻Ts
であったとする)。この時刻Tsは、前回の吸着行程か
ら再生行程への切換時点(T8)から時間tsだけ経過
した時点であって、この吸着式冷凍装置を運転するにあ
たっては、先ずステップS,において、同冷凍装置を一
定の再生行程終了状態になるまで(時間tn−tsだけ
)初期再生行程を行わせる。なお、前回の運転終了時に
おける上記時刻(T1)からの経過時間((S)は同冷
凍装置の制御器内に記憶されており、上記初期再生行程
の時間(tn − ts)は同制御器によって自動的に
計算される。
Next, a method of operating the adsorption refrigeration system of the illustrated embodiment explained with reference to FIGS. 1 to 6 will be explained using the flowchart of FIG. T8 is the time T in the time chart of FIG.
Suppose that it is at the midpoint between I and T (that is, the time Ts is between the time when the previous operation stopped and the time T during the regeneration process)
). This time Ts is the time when time ts has elapsed since the previous switching point from the adsorption process to the regeneration process (T8), and in order to operate this adsorption refrigeration system, first, in step S, the refrigeration system The initial regeneration process is performed until a certain regeneration process is completed (for a period of time tn-ts). Note that the elapsed time ((S) from the above time (T1) at the end of the previous operation is stored in the controller of the refrigeration system, and the time (tn - ts) of the above initial regeneration process is stored in the controller of the refrigeration system. automatically calculated by

次に、上記の如く初期再生行程が終了するとく第7図に
おいて時刻T8)、ステップS,に示すように吸着剤付
熱交換器2A..2B,2Cの直列接続体を冷却用流体
供給源5に接続して再生行程から吸着行程に切換える。
Next, when the initial regeneration process is completed as described above (time T8 in FIG. 7), as shown in step S, the adsorbent heat exchanger 2A. .. The series connection of 2B and 2C is connected to the cooling fluid supply source 5 to switch from the regeneration process to the adsorption process.

このとき、それまで相互に直列に接続されていた3つの
作動媒体用熱交換器3A,38.3Cのうち第1の作動
媒体用熱交換器3Aのみが冷熱利用機器6に接続され、
残りの第2、第3の作動媒体用熱交換器3B,3Cは凝
縮用流体供給源7に接続されたままで、そのまま再生行
程を継続する。
At this time, only the first working medium heat exchanger 3A among the three working medium heat exchangers 3A, 38.3C that had been connected in series until then is connected to the cold energy utilization equipment 6,
The remaining second and third working medium heat exchangers 3B and 3C remain connected to the condensing fluid supply source 7 and continue the regeneration process.

この状態で時間h,が経過すると、第2の作動媒体用熱
交換器3Bが冷熱利用機器6に接続され(第1の作動媒
体用熱交換i33Aと直列)、残りの“第3の作動媒体
用熱交換器3Cのみが再生行程を継続する(ステップS
S)。又、さらに第7図中の時刻′r,からの経過時間
がtl3に達するど、さらに残りの第3の作動媒体用熱
交換器3Cも冷熱利用llil器6に接続され(第l及
び第2の作動媒体用熱交換器3A,3Bと直列〉、全て
の冷凍ユニットUa, U b, U cにおいて吸着
行程が行われる(ステップS4)。
When time h has elapsed in this state, the second working medium heat exchanger 3B is connected to the cold energy utilization equipment 6 (in series with the first working medium heat exchanger i33A), and the remaining "third working medium" is Only the heat exchanger 3C continues the regeneration process (step S
S). Furthermore, when the elapsed time from time 'r in FIG. In series with the working medium heat exchangers 3A and 3B>, an adsorption process is performed in all the refrigeration units Ua, Ub, and Uc (step S4).

この吸着行程は、第7図中の時刻T,から時間t喝が経
過する(時刻T8)まで継続され、時刻T,に達すると
、次は吸着剤付熱交換器2 A, 2 B, 2 Cの
直列接続体が冷却用流体供給源5から加熱用流体供給源
4への接続に切換えられる。又それと同時に3つの作動
媒体用熱交換器3A,3B,3Cのうち、第3の作動媒
体用熱交換13cのみが凝縮用流体供給源7に接続され
、残りの第2、第1の作動媒体用熱交換器3B,3Aは
そのまま冷熱利用機器6に接続される(ステップS8)
This adsorption process continues from time T in FIG. 7 until time t has elapsed (time T8), and when time T is reached, the adsorbent-equipped heat exchangers 2A, 2B, 2 The series connection C is switched from the cooling fluid supply 5 to the heating fluid supply 4 connection. At the same time, among the three working medium heat exchangers 3A, 3B, and 3C, only the third working medium heat exchanger 13c is connected to the condensing fluid supply source 7, and the remaining second and first working medium The heat exchangers 3B and 3A are directly connected to the cold energy utilization equipment 6 (step S8).
.

次に、この時刻T,から時間t.だけ遅れて第2の作動
媒体用熱交換器3Bが凝縮用流体供給源7に接続され(
ステップSS)、さらに同時刻T,から時間(.たけ経
過すると第1の作動媒体用熱交換器3Aが凝縮用流体供
給11iX7に接続されて(ステ・ノブS?)、全ての
吸着式冷凍ユエッh U a, U b, U cにお
いて再生行程が行われる。そして、この再生行程が第7
図中の時刻T,から時間(nだけ経過する(時刻T.)
まで継続されると、再度吸着行程に切換えられ(ステノ
ブS8)、以下このサイクルが繰り返される。
Next, from this time T, to time t. After a delay, the second working medium heat exchanger 3B is connected to the condensing fluid supply source 7 (
Step SS), and furthermore, when time (.) has elapsed since the same time T, the first working medium heat exchanger 3A is connected to the condensing fluid supply 11iX7 (step SS?), and all adsorption refrigeration h A regeneration process is performed at U a, U b, and U c. This regeneration process is performed at the seventh
Time (n has elapsed since time T in the figure (time T.)
When the suction process is continued until then, the suction process is switched again (Stenob S8), and this cycle is repeated thereafter.

なお、上記実施例においては、吸猜行程から再生行程へ
の切換、あるいは再生行程から吸着行程への切換に際し
て、各作動媒体用熱交換訝3A,3B,3Cと冷熱利用
機慈6又は凝縮用流体供給[L7との接続遅れを予しめ
設定した時間Lll+Ll*t*++ teffiにし
たがって実行させているが、この各作動媒体用熱交tl
+l3A,sB,3cと冷熱利用機器6又はMm用流体
供給源7との接続タイミングは、上記実施例のように時
間によって行う場合のほか、たとえば各作動媒体用熱交
換13 A, 3 B,3Cに対応している第1、第2
、第3の各吸着剤付熱交換器2A.2B,2Cの温度に
よって行ったり、あるいは、それぞれの作動媒体用熱交
換器3A3B,3Cに対応する密閉容器IA.I.B,
I.C内の液状作動媒体WaLWb&,Wcl2の液面
高さHaH b. H cによって行ったりすることが
できる。
In the above embodiment, when switching from the suction process to the regeneration process or from the regeneration process to the adsorption process, each working medium heat exchanger 3A, 3B, 3C and the cold energy utilization unit 6 or condensing Fluid supply [The connection delay with L7 is executed according to the preset time Lll+Ll*t*++ teffi, but this heat exchanger for each working medium tl
The connection timing between +13A, sB, 3c and the cold energy utilization equipment 6 or the fluid supply source 7 for Mm may be determined by time as in the above embodiment, or for example, for each working medium heat exchanger 13A, 3B, 3C. 1st and 2nd corresponding to
, each third heat exchanger with adsorbent 2A. 2B, 2C, or the airtight container IA. I. B,
I. Liquid level height HaH of liquid working medium WaLWb&, Wcl2 in C b. This can be done by H c.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図はそれぞれ、本願発明の実施例にか
かる吸着式冷凍装置の運転方法実行中の各行程説明図、
第7図はそのタイムチャート、第8図は同実施例運転方
法のフローチャート、第9図は吸着式冷凍装置の基本概
念説明図、第10図は第9図図示の吸着式冷凍装置にお
ける吸着剤12の各測定点における含水率変化図である
。 1A、 IB, Ic  ・・・・・密閉容藩2A 2
B 2C  ・・・・・吸着剤付熱交換語3A. 3B
. 3C  ・・・・・作動媒体用熱交換器4    
・・・・・加熱用流体供給源5    ・・・・・冷却
用流体供給源6    ・・・・・冷熱利用機器 7    ・・・・・凝縮用流体供給源11A IIB
 IIC ・・・・熱交換器本体12A I2B 12
c ・●・・吸着剤41,6L7k  ・・・・争ボン
ブ F,   ・・・・・加熱用流体 F,    ・・・・・冷却用流体 F@    ・・・・・被冷却用流体 F?    ・・・・・凝縮用流体 UalUb,Uc  I I 冒al wb, wC   1  1 ”a+L llbg,實cg  a ma& ,Wb& ,’Ic& 吸請式冷凍ユニット 作動媒体 ガス状作動媒体 1夜状作動媒体
FIGS. 1 to 6 are explanatory diagrams of each process during execution of the method of operating the adsorption refrigeration apparatus according to the embodiment of the present invention, respectively;
Fig. 7 is a time chart thereof, Fig. 8 is a flowchart of the operating method of the same embodiment, Fig. 9 is an explanatory diagram of the basic concept of the adsorption refrigeration system, and Fig. 10 is an adsorbent in the adsorption refrigeration equipment shown in Fig. 9. It is a moisture content change diagram at each of 12 measurement points. 1A, IB, Ic... Sealed container 2A 2
B 2C ・・・・Heat exchange with adsorbent 3A. 3B
.. 3C...Working medium heat exchanger 4
... Heating fluid supply source 5 ... Cooling fluid supply source 6 ... Cold energy utilization equipment 7 ... Condensing fluid supply source 11A IIB
IIC...Heat exchanger body 12A I2B 12
c ・●・・Adsorbent 41,6L7k ・・・・・・・・・・・・・・・・・・Fluid for heating F, ・・・・Fluid for cooling F @ ・・・・・・・Fluid to be cooled F? ...Condensing fluid UalUb, Uc I I al wb, wC 1 1 ''a+L llbg, actual cg a ma& , Wb& , 'Ic& Suction type refrigeration unit Working medium Gaseous working medium 1 Night working medium

Claims (1)

【特許請求の範囲】[Claims] 1、気相と液相の間で相変化する作動媒体(W)を充填
してなる複数の密閉容器(1A、1B、1C・・・)の
それぞれの中に、冷却用流体または加熱用流体の供給を
受け、冷却用流体受給時には前記作動媒体(W)を吸着
する一方加熱用流体受給時には前記作動媒体(W)を放
出する作用をする吸着剤付熱交換器(2A、2B、2C
・・・)と、該吸着剤付熱交換器(2A、2B、2C・
・・)による作動媒体(W)の吸着・放出にともなって
該作動媒体(W)との間で熱交換を行いそれによって該
作動媒体(W)に蒸発又は凝縮作用を生ぜしめる作用を
する作動媒体用熱交換器(3A、3B、3C・・・)と
を設置する一方、前記各密閉容器(1A、1B、1C・
・・)外には、前記各作動媒体用熱交換器(3A、3B
、3C・・・)に接続されて前記作動媒体(W)の蒸発
作用時の冷熱を利用すべく被冷却用流体(F_8)を供
給する冷熱利用機器(6)と、同じく各作動媒体用熱交
換器(3A、3B、3C・・・)に接続されて前記作動
媒体(W)の凝縮作用時に凝縮用流体(F_7)を供給
する凝縮用流体供給源(7)を設けるとともに、さらに
前記各吸着剤付熱交換器(2A、2B、2C・・・)は
これを相互に直列に接続する一方、前記各作動媒体用熱
交換器(3A、3B、3C・・・)はこれを相互に直列
に、又はそれぞれ個別に、前記冷熱利用機器(6)又は
凝縮用流体供給源(7)に選択的に接続し得るようにし
、しかもこれらの作動媒体用熱交換器(3A、3B、3
C・・・)は、同一容器(1A、1B、1C・・・)内
にある各吸着剤付熱交換器(2A、2B、2C・・・)
において実際に生じる作動媒体(W)の吸着又は放出作
用に対応して、その実際の吸着作用時には前記冷熱利用
機器(6)に、又その実際の放出作用時には凝縮用流体
供給源(7)に接続されるように、それぞれの作動媒体
用熱交換器(3A、3B、3C・・・)が相互に時間差
をもって前記冷熱利用機器(6)又は凝縮用流体供給源
(7)に接続されるようにしたことを特徴とする吸着式
冷凍装置の運転方法。
1. A cooling fluid or a heating fluid is placed in each of a plurality of closed containers (1A, 1B, 1C...) filled with a working medium (W) that changes phase between a gas phase and a liquid phase. Adsorbent-equipped heat exchangers (2A, 2B, 2C) that adsorb the working medium (W) when receiving the cooling fluid and release the working medium (W) when receiving the heating fluid.
) and the heat exchanger with adsorbent (2A, 2B, 2C・
...) as the working medium (W) is adsorbed and released by the working medium (W), heat is exchanged with the working medium (W), thereby causing an evaporation or condensation action in the working medium (W). While installing medium heat exchangers (3A, 3B, 3C...), each airtight container (1A, 1B, 1C...) is installed.
...) Outside each working medium heat exchanger (3A, 3B
, 3C...) for supplying the fluid to be cooled (F_8) to utilize the cold heat during the evaporation of the working medium (W), and A condensing fluid supply source (7) is provided that is connected to the exchanger (3A, 3B, 3C...) and supplies a condensing fluid (F_7) during the condensation action of the working medium (W), and further The adsorbent heat exchangers (2A, 2B, 2C...) are connected in series, while the working medium heat exchangers (3A, 3B, 3C...) are connected to each other in series. It can be selectively connected to the cold energy utilization equipment (6) or the condensing fluid supply source (7) in series or individually, and these working medium heat exchangers (3A, 3B, 3
C...) is each heat exchanger with adsorbent (2A, 2B, 2C...) in the same container (1A, 1B, 1C...)
Corresponding to the adsorption or release action of the working medium (W) that actually occurs, the cooling energy utilization equipment (6) is provided during the actual adsorption action, and to the condensing fluid supply source (7) during the actual release action. so that the respective working medium heat exchangers (3A, 3B, 3C...) are connected to the cold energy utilization equipment (6) or the condensing fluid supply source (7) with a time difference from each other. A method of operating an adsorption refrigeration system characterized by:
JP16179889A 1989-06-22 1989-06-22 Operating method of adsorption refrigeration system Expired - Fee Related JPH0810092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16179889A JPH0810092B2 (en) 1989-06-22 1989-06-22 Operating method of adsorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16179889A JPH0810092B2 (en) 1989-06-22 1989-06-22 Operating method of adsorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH0325259A true JPH0325259A (en) 1991-02-04
JPH0810092B2 JPH0810092B2 (en) 1996-01-31

Family

ID=15742115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16179889A Expired - Fee Related JPH0810092B2 (en) 1989-06-22 1989-06-22 Operating method of adsorption refrigeration system

Country Status (1)

Country Link
JP (1) JPH0810092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322364A (en) * 1992-05-21 1993-12-07 Kajima Corp Adsorption type heat pump
KR20030033350A (en) * 2001-10-22 2003-05-01 김성국 Absorption pad for onetime
WO2016076030A1 (en) * 2014-11-10 2016-05-19 日本碍子株式会社 Chemical heat pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322364A (en) * 1992-05-21 1993-12-07 Kajima Corp Adsorption type heat pump
KR20030033350A (en) * 2001-10-22 2003-05-01 김성국 Absorption pad for onetime
WO2016076030A1 (en) * 2014-11-10 2016-05-19 日本碍子株式会社 Chemical heat pump
JPWO2016076030A1 (en) * 2014-11-10 2017-08-17 日本碍子株式会社 Chemical heat pump
US10451323B2 (en) 2014-11-10 2019-10-22 Ngk Insulators, Ltd. Chemical heat pump

Also Published As

Publication number Publication date
JPH0810092B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
Wang Adsorption refrigeration research in Shanghai Jiao Tong University
Saha et al. Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller
Liu et al. Experimental study on a continuous adsorption water chiller with novel design
Akahira et al. Experimental investigation of mass recovery adsorption refrigeration cycle
KR930005665B1 (en) Method of operating adsorption refrigerator
JP2004044848A (en) Cooling system
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
CN1982809A (en) Solid adsorptive refrigerator
WO1996009504A1 (en) Thermal compressive device
Jiang et al. Investigation on an innovative cascading cycle for power and refrigeration cogeneration
Akahira et al. Mass recovery four-bed adsorption refrigeration cycle with energy cascading
JPH08303901A (en) Refrigerating cycle forming method of adsorption heat storing refrigerating device using solar energy
JPH0325259A (en) Operation method of adsorption type refrigerator
JP2010106764A (en) Power generation method of electric power using exhaust heat
JPH07113495B2 (en) Low temperature heat driven adsorption refrigerator system and adsorption refrigerator
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
KR101949679B1 (en) Refrigeration system of recycling wasted heat type
CN210089182U (en) Absorption type supercooling refrigerating system
JPH07301469A (en) Adsorption type refrigerator
JPH0810550A (en) Method for recovering latent heat from waste gas and device therefor
JP3037648B2 (en) Dehumidification air conditioning system
JP2005172380A (en) Adsorption-type heat pump
JP2678211B2 (en) Heat storage type cold / heat generator
JP2011191032A (en) Compression refrigerating cycle
JP4164929B2 (en) Absorption refrigeration apparatus and refrigeration system including the absorption refrigeration apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees