JPH0810550A - Method for recovering latent heat from waste gas and device therefor - Google Patents

Method for recovering latent heat from waste gas and device therefor

Info

Publication number
JPH0810550A
JPH0810550A JP6147494A JP14749494A JPH0810550A JP H0810550 A JPH0810550 A JP H0810550A JP 6147494 A JP6147494 A JP 6147494A JP 14749494 A JP14749494 A JP 14749494A JP H0810550 A JPH0810550 A JP H0810550A
Authority
JP
Japan
Prior art keywords
exhaust gas
latent heat
adsorbent
water
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147494A
Other languages
Japanese (ja)
Inventor
Yoshio Naganuma
義男 永沼
Makoto Shimoda
下田  誠
Akira Yamada
章 山田
Ryokichi Yamada
良吉 山田
Yasuo Koseki
康雄 小関
Norio Arashi
紀夫 嵐
Hiroshi Miyadera
博 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6147494A priority Critical patent/JPH0810550A/en
Publication of JPH0810550A publication Critical patent/JPH0810550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To efficiently recover the latent heat and sensible heat of steam from a waste combustion gas by using the steam absorptivity of the adsorbent and moisture absorbent and the heat of reaction in absorption. CONSTITUTION:This device consists of a waste gas branching means 2 to introduce a waste gas into a heat recovery system 3 from a flue 1, a means 6 in which the adsorption tower 52 and moisture absorbing tower 52 for recovering steam from the waste gas on the downstream side of the system 3 and discharging the steam on the upstream side are provided in a waste gas passage, generating a waste gas having a high content of steam and condensing the waste gas to recover latent heat, a means for recovering the sensible heat of the waste gas increased in temp. by the heat generated in adsorption and absorption reactions. The latent heat recovering means 6 and the sensible heat recovering means 7 are continuously operated to obtain a utilizable heat recovered from the waste gas contg. steam which has been discarded so far, and energy is effectively utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水蒸気を含有する排ガ
スの潜熱回収方法とそれに用いる装置、特に液化天然ガ
ス(LNG)や石炭、石油を燃料とする火力発電所や工場
から排出される燃焼ガス、化学プロセスなどで排出され
るオフガスからの潜熱回収方法およびその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering latent heat of exhaust gas containing water vapor and an apparatus used for the method, and particularly to combustion of liquefied natural gas (LNG), coal or petroleum as a fuel for thermal power plants or factories. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a latent heat recovery method and apparatus for off-gas discharged in gas, chemical process, and the like.

【0002】[0002]

【従来の技術】工場や発電所において有効に利用可能な
排熱は、熱交換器や再熱ボイラ等の熱回収装置を用いて
回収され、原料の予熱などに使用されていた。これらの
排熱は、おおむね300℃以上の排熱を回収して利用する
ものであった。
2. Description of the Related Art Exhaust heat that can be effectively used in factories and power plants is recovered by using heat recovery devices such as heat exchangers and reheat boilers, and used for preheating of raw materials. These exhaust heats were generally used by recovering the exhaust heat of 300 ° C or higher.

【0003】しかし、最近ではエネルギー資源の枯渇や
環境問題を背景として、従来はコストや技術面から利用
されていなかった300℃以下の排熱利用が種々検討され
ている。これらの中で、30℃から40℃の温排水はそのま
ま、養殖等の用途に利用されるほか、給湯用のヒートポ
ンプの熱源として利用される例がある。
However, recently, against the background of exhaustion of energy resources and environmental problems, various uses of exhaust heat at 300 ° C. or lower, which have not been used conventionally in terms of cost and technology, have been studied. Among these, there is an example in which hot wastewater at 30 to 40 ° C is used as it is for purposes such as aquaculture, and is also used as a heat source for a heat pump for hot water supply.

【0004】しかし、150℃レベルの燃焼排ガス中に含
まれる水蒸気が保有する凝縮潜熱は、熱交換器の腐食等
の問題を生じるため、ほとんど未利用の状態でそのまま
煙突等の排気設備から排出されているのが現状である。
ただし、この排ガス中の水蒸気の凝縮で生じる水を、煙
道に設けられた湿式排煙脱硫装置の補給水源として利用
することが、実用新案公報平2-25471号に開示されてい
る。
However, the latent heat of condensation contained in the steam contained in the combustion exhaust gas at a temperature of 150 ° C. causes a problem such as corrosion of the heat exchanger, so that it is discharged from an exhaust facility such as a chimney in an almost unused state. Is the current situation.
However, it is disclosed in Utility Model Publication No. 2-25471 that the water produced by the condensation of water vapor in the exhaust gas is used as a supplementary water source for a wet flue gas desulfurization device provided in a flue.

【0005】これは、脱硫装置後段に設けた排ガス中の
水蒸気を吸着剤を用いて吸収除去し、吸着剤に吸収され
た水分を脱硫装置の上流で吐き出させ、水蒸気濃度を高
めた排ガスを脱硫装置に送ることにより、脱硫装置の吸
収液からの水蒸気発生を抑制するとともに、排ガス中に
含まれる余分な水蒸気を吸収液に吸収させることにより
水分を回収するものである。
This is because the water vapor in the exhaust gas provided in the latter stage of the desulfurization device is absorbed and removed by using an adsorbent, and the water absorbed by the adsorbent is discharged upstream of the desulfurization device to desulfurize the exhaust gas with a high water vapor concentration. By sending the water to the device, it is possible to suppress the generation of water vapor from the absorbing liquid of the desulfurization device and to collect the water by absorbing the excess water vapor contained in the exhaust gas into the absorbing liquid.

【0006】[0006]

【発明が解決しようとする課題】上述のように、150℃
レベルの水蒸気を含んだ排ガスからの潜熱回収は行なわ
れておらず、排ガスの流路となる煙道に湿式脱硫装置を
設ける場合に、水分を回収して利用するアイデアがある
だけである。
As described above, the temperature is 150 ° C.
No latent heat recovery from exhaust gas containing a level of water vapor has been carried out, and there is only an idea of recovering and using water when a wet desulfurization device is installed in a flue which is a flow path of exhaust gas.

【0007】本発明は、潜熱熱回収源とされなかった15
0℃レベルの水蒸気を含んだ排ガスから水蒸気を効率的
に凝縮させて潜熱を回収すると同時に、給湯や吸収冷凍
機の熱源として利用可能な温度レベルの回収熱を得るこ
とを目的とする。
The present invention was not used as a latent heat recovery source 15
The objective is to efficiently condense steam from exhaust gas containing 0 ° C steam to recover latent heat and at the same time obtain recovered heat at a temperature level that can be used as a heat source for hot water supply or an absorption refrigerator.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するた
め、本発明では、排ガスの排気設備の煙道に、排ガスか
らの潜熱回収に必要な量の排ガスを分岐し潜熱回収シス
テムに導く分岐手段を設け、分岐した排ガス流路に熱回
収システムを設ける。この熱回収システムの排ガス流路
には、下流の排ガス中の水蒸気を上流の排ガスに導く手
段を設け、上流部で水蒸気濃度を高めた排ガスから水蒸
気凝縮させることにより潜熱を回収する。
In order to solve the above-mentioned problems, in the present invention, a branching means for branching an amount of exhaust gas necessary for recovering latent heat from exhaust gas to a flue of an exhaust gas exhaust facility and guiding it to a latent heat recovery system. And a heat recovery system is installed in the branched exhaust gas flow path. In the exhaust gas flow path of this heat recovery system, means for guiding the steam in the downstream exhaust gas to the upstream exhaust gas is provided, and the latent heat is recovered by condensing steam from the exhaust gas having an increased steam concentration in the upstream portion.

【0009】下流の排ガス中の水蒸気を上流の排ガスに
導く具体的な手段としては、本発明では、分岐した排ガ
ス流路に吸着剤による水蒸気の吸着部と脱着部を設け、
吸着部と脱着部の間を吸着剤を移動層により循環させる
手段を設け、排ガス流路下流で水蒸気を吸着した吸着剤
を上流部に移動させ脱着させる方法がある。
In the present invention, as a concrete means for introducing the water vapor in the downstream exhaust gas to the upstream exhaust gas, a water vapor adsorbing section and a desorbing section by an adsorbent are provided in the branched exhaust gas flow path,
There is a method in which a means for circulating the adsorbent by a moving layer is provided between the adsorbing section and the desorbing section, and the adsorbent that adsorbs water vapor is moved to the upstream section to be desorbed in the exhaust gas flow channel downstream.

【0010】また、分岐した排ガス流路に水蒸気を吸着
・脱着する吸・脱着塔を設け、分岐した排ガスを吸・脱
着塔の脱着工程に導き、脱着工程の後段の排ガス流路に
潜熱回収手段、さらに潜熱回収手段の後段に吸着工程、
吸着工程の後段に顕熱回収手段を設け、分岐した排ガス
を吸着塔と脱着塔に交互に切り替えて導く手段により、
熱回収システムに導入した排ガスの入口温度と出口温度
の温度差を利用したサーマルスイングを行なう方法があ
る。
Further, an adsorption / desorption tower for adsorbing / desorbing water vapor is provided in the branched exhaust gas passage, the branched exhaust gas is guided to the desorption process of the adsorption / desorption tower, and latent heat recovery means is provided in the exhaust gas passage after the desorption process. , An adsorption step after the latent heat recovery means,
By providing sensible heat recovery means in the latter stage of the adsorption step, by means of introducing the branched exhaust gas by alternately switching to the adsorption tower and the desorption tower,
There is a method of performing a thermal swing utilizing the temperature difference between the inlet temperature and the outlet temperature of the exhaust gas introduced into the heat recovery system.

【0011】これらの方法で、更に回収熱の温度を高め
るために、潜熱回収手段と顕熱回収手段を連続して利用
する。ここで、吸着剤としては、水蒸気の吸着・脱着に
好適な、ゼオライト、アルミナ等を用いる。
In these methods, the latent heat recovery means and the sensible heat recovery means are continuously used in order to further raise the temperature of the recovered heat. Here, as the adsorbent, zeolite, alumina, or the like, which is suitable for adsorption / desorption of water vapor, is used.

【0012】また、他の具体的手段としては、分岐した
排ガス流路に臭化リチウム水溶液などの吸湿剤と排ガス
を接触させ排ガス中の水蒸気を吸湿・脱湿(再生)する
反応塔を設け、分岐した排ガスを脱湿塔に導き、吸湿剤
から水蒸気の脱湿工程の後段の排ガス流路に潜熱回収手
段、さらに潜熱回収手段の後段に吸湿塔を設置し、吸湿
塔における吸湿工程の後段に顕熱回収手段を設け、吸・
脱湿塔間を吸湿剤を循環しながら、熱回収システムに導
入した排ガスの入口温度と出口温度の温度差を利用し、
吸湿・脱湿変化を行なうことによる。
Further, as another specific means, a reaction tower is provided in which a hygroscopic agent such as an aqueous solution of lithium bromide and exhaust gas are brought into contact with a branched exhaust gas flow path to absorb and dehumidify (regenerate) water vapor in the exhaust gas, The branched exhaust gas is guided to the dehumidification tower, and a latent heat recovery unit is installed in the exhaust gas flow path after the dehumidification process of the water vapor from the hygroscopic agent. Sensible heat recovery means is provided to absorb and
Utilizing the temperature difference between the inlet temperature and the outlet temperature of the exhaust gas introduced into the heat recovery system while circulating the hygroscopic agent between the dehumidifying towers,
By changing moisture absorption / dehumidification.

【0013】[0013]

【作用】上記のように、分岐した排ガス流路に設けた吸
・脱着塔に充填した吸着剤や反応塔における吸湿剤は、
排ガスと接触することにより、接触する排ガスの温度レ
ベルにより、排ガス中の水蒸気分を吸着あるいは吸収し
たり、逆に吸着剤や吸湿剤に吸着あるいは吸湿した水蒸
気を排ガス中に放出するように作用する。この作用を熱
回収システム入口の排ガス温度レベルである150℃と排
ガス中の水蒸気を飽和凝縮させる50℃レベルの温度差を
利用して、吸着あるいは脱着変化を行なわせる。以下、
吸着剤を用いた場合を例にその作用を排ガスの流れに沿
って説明する。
As described above, the adsorbent filled in the adsorption / desorption tower provided in the branched exhaust gas passage and the hygroscopic agent in the reaction tower are
By contacting with the exhaust gas, depending on the temperature level of the contacting exhaust gas, it acts to adsorb or absorb the water vapor content in the exhaust gas, or conversely release the water vapor adsorbed or absorbed by the adsorbent or hygroscopic agent into the exhaust gas. . This action is carried out by using the temperature difference between the exhaust gas temperature level of 150 ° C at the inlet of the heat recovery system and the temperature level of 50 ° C at which the water vapor in the exhaust gas is saturated and condensed, to cause adsorption or desorption change. Less than,
The operation will be described along the flow of the exhaust gas, taking the case of using an adsorbent as an example.

【0014】吸着剤の水蒸気吸着特性は、一般に温度が
低いほど単位吸着剤質量当たり多くの水分を吸着し、温
度が高くなるほどその吸着量は低下する。また、吸・脱
着変化のときにはそれぞれ、吸着熱の移動が生じる。す
なわち、水蒸気を吸着する場合は発熱が生じ、逆に水蒸
気を脱着(放出)するときは周囲の熱を吸収する。
Regarding the water vapor adsorption characteristics of the adsorbent, generally, the lower the temperature, the more water is adsorbed per unit mass of the adsorbent, and the higher the temperature, the lower the adsorption amount. Further, the adsorption heat is transferred when the adsorption / desorption changes. That is, when water vapor is adsorbed, heat is generated, and conversely, when water vapor is desorbed (released), ambient heat is absorbed.

【0015】このため、排気設備から分岐した150℃レ
ベルの排ガスを、これより低い温度で水蒸気を吸着した
吸着剤に接触させると、吸着剤は、塔を通過する排ガス
に加熱され温度が上昇するため、吸着特性が低下し、吸
着していた水分を排ガス中に放出するように作用する。
Therefore, when the exhaust gas at the 150 ° C. level branched from the exhaust equipment is brought into contact with the adsorbent that has adsorbed water vapor at a lower temperature, the adsorbent is heated by the exhaust gas passing through the tower and the temperature rises. Therefore, the adsorption property is lowered, and the adsorbed water content is released into the exhaust gas.

【0016】この場合、150℃で塔に入った排ガスは、
吸着剤の加熱のためと脱着による吸熱のために温度が低
下し出口温度が約80℃まで低下する。このとき塔の出口
では、入口より排ガス中の水分濃度が増加する。このた
め、排ガスの飽和温度が通常の排ガスより高くなり、こ
の脱着作用を行なう塔の後段に設けた潜熱回収手段にお
いて、排ガスを冷却し中に含まれる水蒸気を容易に凝縮
するように作用する。
In this case, the exhaust gas entering the tower at 150 ° C.
The temperature decreases due to the heating of the adsorbent and the heat absorption due to desorption, and the outlet temperature decreases to about 80 ° C. At this time, at the outlet of the tower, the water concentration in the exhaust gas increases from the inlet. For this reason, the saturation temperature of the exhaust gas becomes higher than that of the normal exhaust gas, and the latent heat recovery means provided in the latter stage of the column that performs this desorption action acts to cool the exhaust gas and easily condense the water vapor contained therein.

【0017】潜熱回収手段から出た排ガスは、水蒸気が
ある程度凝縮し取り除かれるため、約50℃の飽和状態と
なり、この温度でさらに流路の後段に設けた水蒸気吸着
のための塔に導かれる。ここでは、水分濃度が小さくな
った排ガスから50℃レベルでの水蒸気吸着が生じ発熱す
る。この結果、水蒸気の吸着が進むにつれて、吸着塔の
温度が上昇し、ここを通過する排ガスは除湿されながら
加熱される。
The exhaust gas discharged from the latent heat recovery means becomes saturated at about 50 ° C. because water vapor is condensed and removed to some extent, and at this temperature, it is led to a column for adsorbing water vapor, which is provided in the subsequent stage of the flow path. Here, water vapor is adsorbed at the 50 ° C. level from the exhaust gas having a reduced water content to generate heat. As a result, the temperature of the adsorption tower rises as the adsorption of water vapor progresses, and the exhaust gas passing therethrough is heated while being dehumidified.

【0018】このため、吸着塔出口では、排ガスが約12
0℃まで昇温されたドライガスとなる。さらに、この120
℃に再昇温された排ガスと水蒸気凝縮の潜熱により約70
℃となった温水と熱交換することにより、排ガスの顕熱
により100℃に近い温水として熱回収できる。これらの
過程を吸着剤を吸着部と脱着部の間を移動しながら吸・
脱着を行なう方法、もしくは吸着塔の吸着容量の範囲内
で排ガス流路を切り替える方法により、連続的な熱回収
が吸着剤の特性を利用して行なえる。これらの作用は、
吸着剤の代わりに、吸湿剤を用いても同様に行なうこと
ができる。
Therefore, at the outlet of the adsorption tower, the exhaust gas is about 12
The dry gas is heated to 0 ° C. In addition, this 120
Approximately 70 due to the latent heat of exhaust gas and steam condensation reheated to ℃
By exchanging heat with the hot water that reached ℃, the heat can be recovered as hot water close to 100 ℃ due to the sensible heat of the exhaust gas. These processes absorb and absorb the adsorbent while moving between the adsorption and desorption parts.
By the method of desorption or the method of switching the exhaust gas passage within the adsorption capacity of the adsorption tower, continuous heat recovery can be performed by utilizing the characteristics of the adsorbent. These actions are
The same operation can be performed by using a hygroscopic agent instead of the adsorbent.

【0019】以上の作用において、120℃レベルの熱回
収温度を必要としない場合には、反応熱の出る吸着又は
吸湿工程を行なう部分に熱交換器などによる冷却手段を
設けることにより、水蒸気の吸着量を増すことができ、
水蒸気をより効率的に移動することができる。
In the above operation, when a heat recovery temperature of 120 ° C. is not required, water vapor is adsorbed by providing a cooling means such as a heat exchanger in a portion for carrying out the adsorption or moisture absorption step where reaction heat is generated. You can increase the amount,
Water vapor can be moved more efficiently.

【0020】[0020]

【実施例】以下本発明を図面に示した一実施例を用いて
説明する。図1は、本発明の一実施例を示すシステム構
成を排ガスの流れに沿って表わしたものである。排気設
備の煙道1には、排ガス9の分岐手段2、例えばダンパ
を設け、潜熱回収に必要な量の排ガスを熱回収システム
3に分岐、導入する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a system configuration showing an embodiment of the present invention along the flow of exhaust gas. The flue 1 of the exhaust facility is provided with a branching means 2 for the exhaust gas 9, for example, a damper, and branches and introduces the amount of exhaust gas required for latent heat recovery into the heat recovery system 3.

【0021】熱回収システム3は、粒子状の吸着剤4
1、42をそれぞれ充填したA、B二つの吸着塔51、
52と、排ガス9と管路61を流通する冷却用液体との
間の熱交換を行う熱交換器である潜熱回収手段6と、排
ガス9と管路71を流通する冷却用液体との間の熱交換
を行う熱交換器である顕熱回収手段7から構成されてい
る。潜熱回収手段6内で排ガスが冷却されたとき生成さ
れる凝固水は管10から回収水として回収される。これ
らの機器は、図に実線と破線で表わしたように矢印で示
した流路で結ばれている。
The heat recovery system 3 comprises a particulate adsorbent 4
Two adsorption towers 51, A and B, respectively filled with 1, 42,
52 between the exhaust gas 9 and the cooling liquid flowing through the pipe 61, and the latent heat recovery means 6 which is a heat exchanger for exchanging heat between the exhaust gas 9 and the cooling liquid flowing through the pipe 71. The sensible heat recovery means 7 is a heat exchanger for exchanging heat. The coagulated water generated when the exhaust gas is cooled in the latent heat recovery means 6 is recovered from the pipe 10 as recovered water. These devices are connected by a flow path indicated by an arrow as shown by a solid line and a broken line in the figure.

【0022】ここで実線で示した流路は、吸着塔(A)
51が脱着工程、吸着塔(B)52が吸着工程として用
いられる場合の排ガスの流れを示し、破線は、その逆に
吸着塔B52が脱着工程、吸着塔A51が吸着工程とし
て用いられる場合に前の工程と流路が変わる部分を示し
た。
The flow path shown by the solid line is the adsorption tower (A).
51 shows the flow of the exhaust gas when the desorption process is used and the adsorption tower (B) 52 is used as the adsorption process, and the broken line indicates the reverse when the adsorption tower B52 is used as the desorption process and the adsorption tower A51 is used as the adsorption process. The process and the part where the flow path is changed are shown.

【0023】各分岐箇所には、排ガス流路を切り換える
切替弁81、82、83、84、85、86、87、8
8が設けられており、図示していないが、シーケンサを
用いて切り換えタイミングを任意に設定できるようにな
っており、吸着塔51、52に充填する吸着剤の特性や
流れるガス流量により水蒸気の吸・脱着に最適なタイミ
ングで切り換えるようになっている。
Switching valves 81, 82, 83, 84, 85, 86, 87, 8 for switching the exhaust gas passages are provided at the respective branch points.
Although not shown in the figure, the switching timing can be arbitrarily set by using a sequencer, and the adsorption of water vapor can be controlled by the characteristics of the adsorbent filling the adsorption towers 51 and 52 and the flowing gas flow rate. -Switching is done at the optimum timing for attachment / detachment.

【0024】以下、排ガスの流れに沿って本実施例の動
作を説明する。なお、図中小文字のアルファベットa〜
jは、排ガスの流れを説明するためのものである。本実
施例は、排ガスとして、水蒸気を約10〜15%含んだ
液化天然ガスを燃料とする火力発電所から排出される燃
焼排ガスからの潜熱回収を対象としている。
The operation of this embodiment will be described below in accordance with the flow of exhaust gas. In the figure, the lowercase alphabet a-
j is for explaining the flow of the exhaust gas. The present embodiment is intended for the recovery of latent heat from combustion exhaust gas discharged from a thermal power plant that uses liquefied natural gas containing water vapor of about 10 to 15% as the exhaust gas.

【0025】この排ガス9は、図のように、ダンパ2で
煙道1が閉じられると、全排ガス量が潜熱回収の対象と
なる。煙道1から分岐した約150℃の排ガス9は、湿
り度で示すと0.086の水分を含んでおり、地点aか
ら熱回収システム3に導かれる。地点aから熱回収シス
テム3に導入された排ガス9は、地点bに位置する流路
切替弁81を介して脱着工程を行なう吸着塔(A)51
に導かれる。
As shown in the drawing, when the flue 1 is closed by the damper 2, the total amount of the exhaust gas 9 becomes the target of latent heat recovery. The exhaust gas 9 of about 150 ° C. branched from the flue 1 contains moisture of 0.086 in terms of wetness, and is guided to the heat recovery system 3 from the point a. The exhaust gas 9 introduced into the heat recovery system 3 from the point a is an adsorption tower (A) 51 that performs a desorption process via the flow path switching valve 81 located at the point b.
Be led to.

【0026】吸着塔(A)51の出入口には、この吸着
塔51を脱着工程のつぎに吸着工程として使用する場合
に排ガス9の流れを変えるための流路切替弁82が設け
られている。地点cから吸着塔A51に入った排ガス9
は、150℃の温度で吸着塔A51を加熱し、塔内に充
填してある吸着剤41に吸着されていた水蒸気を放出さ
せる。
A flow path switching valve 82 for changing the flow of the exhaust gas 9 when the adsorption tower 51 is used as an adsorption step after the desorption step is provided at the entrance and exit of the adsorption tower (A) 51. Exhaust gas 9 entering the adsorption tower A51 from point c
Heats the adsorption tower A51 at a temperature of 150 ° C. to release the water vapor adsorbed by the adsorbent 41 filled in the tower.

【0027】このため、吸着塔(A)51の出口dでは
徐々に排ガス中の水分濃度(水蒸気濃度)が増加し、最
大時点では湿り度0.116に達する。このときの排ガ
ス温度は、80℃となってdから出てくる。この排ガス
9は、次に潜熱回収手段6の入口地点eに導かれ、内部
では、地点kから管路61を通って入る45℃の冷却水
と熱交換し、排ガス中の過剰な水分が凝縮され、回収水
10として取り出される。
Therefore, the water concentration (water vapor concentration) in the exhaust gas gradually increases at the outlet d of the adsorption tower (A) 51, and the wetness reaches 0.116 at the maximum point. The exhaust gas temperature at this time becomes 80 ° C. and comes out from d. The exhaust gas 9 is then guided to the inlet point e of the latent heat recovery means 6, and internally exchanges heat with the cooling water of 45 ° C. that enters from the point k through the pipe line 61 to condense excess water in the exhaust gas. Then, the recovered water 10 is taken out.

【0028】この結果、排ガス9の凝縮潜熱により冷却
水は温度が高まり、出口では75℃まで昇温される。一
方、含有する水分の一部を凝縮水として失った排ガス
は、潜熱回収手段6の出口地点fでは、排ガス温度50
℃、湿り度0.086となる。この排ガスは更に吸着塔
B52の入口地点gに導かれ、吸着工程に入る。
As a result, the temperature of the cooling water rises due to the latent heat of condensation of the exhaust gas 9 and is raised to 75 ° C. at the outlet. On the other hand, the exhaust gas which has lost a part of the water content as condensed water is exhaust gas temperature 50 at the exit point f of the latent heat recovery means 6.
C, wetness becomes 0.086. This exhaust gas is further guided to the inlet point g of the adsorption tower B52 and enters the adsorption step.

【0029】吸着塔52内では排ガス中に残った水分が
塔内に充填された吸着剤42に吸着されて発熱し、ここ
を通過する排ガスは、水分が徐々に取り除かれると同時
に吸着剤42と反応して加熱される。この結果、吸着塔
52の出口地点hでは、温度120℃、湿り度0.00
56の排ガスとなる。
In the adsorption tower 52, the water remaining in the exhaust gas is adsorbed by the adsorbent 42 filled in the tower to generate heat, and the exhaust gas passing through the adsorbent 42 is simultaneously removed from the adsorbent 42. It reacts and is heated. As a result, at the exit point h of the adsorption tower 52, the temperature is 120 ° C. and the wetness is 0.00
It becomes the exhaust gas of 56.

【0030】この過程で、排ガス9は水分をある程度除
かれた状態となり、しかも水分を除く前の状態に近い高
温となっているため、顕熱回収手段7の入口地点iに導
き、その顕熱を利用する。一方、潜熱回収手段6で75
℃に昇温された冷却水を更に地点mから顕熱回収手段7
1へ導き、再び高温になった排ガス9と熱交換すること
により約100℃の温水が得られる。
In this process, the exhaust gas 9 is in a state where moisture is removed to some extent, and since it has a high temperature close to the state before removing moisture, it is guided to the inlet point i of the sensible heat recovery means 7 and its sensible heat is removed. To use. On the other hand, the latent heat recovery means 6
The sensible heat recovery means 7 for the cooling water heated to ℃ from the point m
By bringing the temperature to 1 and exchanging heat with the exhaust gas 9 having a high temperature again, hot water of about 100 ° C. is obtained.

【0031】この結果、排ガス9は80℃まで顕熱を奪
われ温度が低下するが、含有する水分が少ないため、白
煙を生じることなく煙道1のダンパより後段の位置jに
排出し、従来通りに煙突から拡散排気される。以上の工
程により、吸着塔52の水蒸気吸着容量が飽和するまで
排ガス9を流すことができるが、吸着容量が飽和した段
階で、排ガス9の導入経路を、先の吸着工程と脱着工程
が逆になるように流路切替弁81〜88を動作させ排ガ
スの流れを切り換える。
As a result, the flue gas 9 is deprived of sensible heat up to 80 ° C. and its temperature is lowered, but since it contains a small amount of water, it is discharged to the position j downstream of the damper of the flue 1 without producing white smoke. Diffuse exhaust from the chimney as usual. Through the above steps, the exhaust gas 9 can be made to flow until the water vapor adsorption capacity of the adsorption tower 52 is saturated, but at the stage when the adsorption capacity is saturated, the introduction path of the exhaust gas 9 is reversed from the previous adsorption step and desorption step. The flow path switching valves 81 to 88 are operated so that the flow of the exhaust gas is switched.

【0032】この結果、熱回収システム3内を地点aか
ら地点b、cと流れていた排ガス9は、地点aからb、
hと破線で示す方向に流れが変わり、初めに吸着塔B5
2に導かれる。この吸着塔52では以前の吸着工程で5
0℃から120℃の間の温度分布になっており、この温
度範囲の吸着特性に応じて吸着した水蒸気を含んでお
り、新たにこれより温度の高い150℃の排ガスの導入
により、先の吸着塔A51での脱着工程と同様に吸着し
ていた水分が放出される。
As a result, the exhaust gas 9 flowing from the point a to the points b and c in the heat recovery system 3 is discharged from the points a to b,
The flow changes in the direction indicated by h and the broken line, and first the adsorption tower B5
Guided to 2. In this adsorption tower 52, 5
The temperature distribution is between 0 ° C and 120 ° C, and it contains water vapor adsorbed according to the adsorption characteristics in this temperature range. Adsorbed water is released similarly to the desorption process in the tower A51.

【0033】このようにして水分濃度を増した排ガスは
地点g、e、fの経路で潜熱を回収される。地点d、
c、iの経路では、以前の脱着工程により吸着剤は水分
を除去されているため、排ガス中の水分が新たに吸着剤
に吸収される。このため排ガスの水分が低下するが同時
に吸着熱により温度が上昇する。
The latent heat of the exhaust gas having the increased water content is recovered along the route of points g, e, f. Point d,
In the routes c and i, the water content in the exhaust gas is newly absorbed by the adsorbent because the water content in the adsorbent has been removed by the previous desorption process. For this reason, the water content of the exhaust gas decreases, but at the same time, the temperature rises due to the heat of adsorption.

【0034】この昇温された排ガスと前に潜熱回収手段
6を通過してきた冷却水と熱交換することにより地点n
から有効利用可能な回収熱が得られ、排ガス9は地点j
から煙道に戻される。潜熱および顕熱回収手段71、6
1によって作られた100℃の温水は給湯、吸収式冷凍
機の熱源として再利用される。
By exchanging heat between the heated exhaust gas and the cooling water that has previously passed through the latent heat recovery means 6, the point n
Recovery heat that can be effectively used is obtained from the exhaust gas 9 at the point j.
Returned to the flue. Latent heat and sensible heat recovery means 71, 6
The hot water of 100 ° C produced by No. 1 is reused as a hot water supply and a heat source for the absorption refrigerator.

【0035】以上のように、熱回収システム3に導入す
る排ガスの流路を切り替えながら、吸着、脱着工程を繰
り返し行なうことにより、排ガスの持つ潜熱と顕熱を同
時に回収することができ、給湯や吸収式冷凍機の駆動に
適する100℃レベルの熱を得るこができる。
As described above, by repeating the adsorption and desorption steps while switching the flow path of the exhaust gas to be introduced into the heat recovery system 3, the latent heat and sensible heat of the exhaust gas can be recovered at the same time, and hot water supply and hot water supply can be performed. It is possible to obtain heat of 100 ° C. level suitable for driving the absorption refrigerator.

【0036】図2は、吸着塔方式を採用した潜熱回収シ
ステムの他の実施例を示したもので、前記第1の実施例
との違いは、吸着塔A、B51、52の交換機能を持た
せ、吸着工程時に発生する吸着熱を熱交換器111、1
12によって除くようしたことである。この時の冷却源
として、本実施例では、潜熱回収手段6で得た回収水1
0を使用しているが、別の冷却源を用いてもよい。本実
施例において、潜熱回収の動作原理は、第1の実施例と
同様であるため、以下、本実施例特有の部分について説
明する。
FIG. 2 shows another embodiment of the latent heat recovery system adopting the adsorption tower system. The difference from the first embodiment is that it has a function of exchanging the adsorption towers A, B 51, 52. The heat of adsorption generated during the adsorption process to the heat exchangers 111, 1
This is what is excluded by 12. In this embodiment, as the cooling source at this time, the recovered water 1 obtained by the latent heat recovery means 6 is used.
Although 0 is used, other cooling sources may be used. In this embodiment, the operation principle of latent heat recovery is the same as that of the first embodiment, and therefore only the parts peculiar to this embodiment will be described below.

【0037】この実施例では、水蒸気回収量を多くし回
収潜熱を増加させるために、吸着剤41、42の温度特
性に着目した。すなわち、吸着剤41、42の温度依存
性として、使用温度が高いほど吸着容量が小さくなるた
め、同じ量の吸着剤を用いて水分の吸着容量を増すため
には、吸着剤を低温で使用することが効果的である。
In this embodiment, attention was paid to the temperature characteristics of the adsorbents 41 and 42 in order to increase the amount of water vapor recovery and increase the recovery latent heat. That is, as the temperature dependence of the adsorbents 41 and 42, the higher the operating temperature is, the smaller the adsorption capacity is. Therefore, in order to increase the water adsorption capacity by using the same amount of the adsorbent, the adsorbent is used at a low temperature. Is effective.

【0038】このため、吸着工程の状態にある吸着塔5
1または52へ冷却水をp、q、rの経路又はp、s、
tの経路で供給し冷却する。この結果、冷却機能の無い
場合に比較して多くの水分を吸着し、脱着工程で放出で
きるため、潜熱回収量を増すことができる。
Therefore, the adsorption tower 5 in the state of the adsorption step
Cooling water to 1 or 52, p, q, r paths or p, s,
Supply and cool through the route of t. As a result, a larger amount of water can be adsorbed and released in the desorption process as compared with the case without a cooling function, so that the latent heat recovery amount can be increased.

【0039】しかし、吸着工程後に煙道へ戻される排ガ
ス温度が低くなるため、潜熱回収工程で潜熱を回収した
冷却水の温度を顕熱回収手段で充分高めることに利用出
来ない。このため、本実施例では、顕熱回収手段7を煙
道1の排ガス分岐手段2の後段(下流)に配置し、分岐
手段2を通過する熱回収をおこなわず排出する排ガスの
顕熱を利用し、高温の回収熱を得る構成となっている。
本実施例では、潜熱回収用に分岐する排ガスの使用量が
制限されるが、吸着塔を小型化できる効果がある。
However, since the temperature of the exhaust gas returned to the flue after the adsorption step becomes low, it cannot be used to sufficiently raise the temperature of the cooling water whose latent heat is recovered in the latent heat recovery step by the sensible heat recovery means. For this reason, in this embodiment, the sensible heat recovery means 7 is arranged at the subsequent stage (downstream) of the exhaust gas branching means 2 of the flue 1, and the sensible heat of the exhaust gas discharged without passing through the branching means 2 is used. However, it is configured to obtain high-temperature recovery heat.
In this embodiment, the amount of exhaust gas branched for recovering latent heat is limited, but there is an effect that the adsorption tower can be downsized.

【0040】以上の吸着剤を用いた実施例において、粒
子状吸着剤を充填した吸着塔を例に説明したが、吸着塔
の圧損低減や、吸着剤の反応表面積を増すため、ハニカ
ム型等に形成した吸着剤を用いることができる。
In the examples using the adsorbents described above, the adsorption tower filled with the particulate adsorbent was described as an example, but in order to reduce the pressure loss of the adsorption tower and increase the reaction surface area of the adsorbent, a honeycomb type or the like is used. The adsorbent formed can be used.

【0041】図3は、水蒸気の吸着部20と脱着部21
を吸着剤が移動層で循環される場合の実施例をフロー図
で示したものである。図中の丸で囲まれた数字は、各部
の排ガスの状態を示すために、排ガス入口を0として出
口の4まで順次流路に沿って付けたものである。ここ
で、Tは排ガス温度(℃)、xは湿り度(kg/kg−
drygas)、iはエンタルピー(kcal/kg)、Wは
排ガス中の水分量(t/h)を表わす。
FIG. 3 shows a water vapor adsorption section 20 and a desorption section 21.
FIG. 3 is a flow chart showing an example in which the adsorbent is circulated in the moving bed. The numbers enclosed by circles in the figure are those in which the exhaust gas inlet is set to 0 and the outlet 4 is sequentially attached along the flow path in order to show the state of the exhaust gas at each part. Here, T is the exhaust gas temperature (° C), and x is the wetness (kg / kg-
drygas), i represents the enthalpy (kcal / kg), and W represents the water content (t / h) in the exhaust gas.

【0042】本実施例のシステムフローは、600MW
級の発電所排ガスを対象にした場合であり、吸着剤の吸
着容量10g/100g−剤のゼオライトを使用した場
合の収支を記してある。煙道から分岐した排ガス中に初
め187t/h含まれていた水分は、脱着部21を通過
すると252t/hに増加し、水分回収後入口と同じ1
87t/hになり、これを吸着部20で水分を吸収し脱
着部へ移動するため、吸着部通過後は121t/hまで
減少し煙道に戻される。
The system flow of this embodiment is 600 MW.
This is the case where the exhaust gas of a power station of the class is used as the target, and the balance is shown when the adsorption capacity of the adsorbent is 10 g / 100 g-the zeolite of the agent is used. Moisture initially contained in the exhaust gas branched from the flue at 187 t / h increased to 252 t / h when passing through the desorption section 21, which was the same as that at the inlet after water recovery.
It becomes 87 t / h, which absorbs water in the adsorbing part 20 and moves to the desorbing part. Therefore, after passing through the adsorbing part, it is reduced to 121 t / h and returned to the flue.

【0043】この間、潜熱回収手段6では、45℃の冷
却水を用い、65t/hの水分回収と56Gcal/h
の潜熱が回収され、さらにこの冷却水を顕熱回収手段に
導くことで、24Gcal/hの熱が回収される。この
とき吸着剤の移動量vは、1200t/hであり、反応
部の塔の容積は2000m3/hを要する。この結果、
本実施例では、潜熱と顕熱を合わせて80Gcal/h
を回収し、これは排ガス保有熱の34%になる。また、
付帯効果として同時に41%の水分が回収される。
During this time, the latent heat recovery means 6 uses cooling water of 45 ° C., recovers water of 65 t / h and 56 Gcal / h.
The latent heat of 24 Gcal / h is recovered by guiding the cooling water to the sensible heat recovery means. At this time, the moving amount v of the adsorbent is 1200 t / h, and the column volume of the reaction section requires 2000 m 3 / h. As a result,
In this embodiment, the latent heat and the sensible heat are combined to 80 Gcal / h.
Is recovered, which makes up 34% of the heat retained by the exhaust gas. Also,
As an incidental effect, 41% of water is recovered at the same time.

【0044】図4は、熱回収システム3内の排ガス流路
において、下流に位置する吸着塔の排ガス中の水蒸気を
上流に位置する排ガスに導く手段として、臭化リチウム
等の吸湿剤を用いる方法を示すものである。この手段を
用いることにより、先の吸着剤を用いる場合と同様に、
潜熱回収手段の上流部で水分濃度を高めた排ガスから水
蒸気を凝縮させることにより効率的に潜熱を回収するこ
とができる。
FIG. 4 shows a method of using a hygroscopic agent such as lithium bromide as a means for guiding the water vapor in the exhaust gas of the adsorption tower located downstream in the exhaust gas passage in the heat recovery system 3 to the exhaust gas located upstream. Is shown. By using this means, as in the case of using the previous adsorbent,
The latent heat can be efficiently recovered by condensing the water vapor from the exhaust gas having the increased water concentration in the upstream portion of the latent heat recovery means.

【0045】以下、本実施例の構成と動作について図に
従って説明する。本実施例においては、先に述べた実施
例のような排ガス流路の切り換えは必要なく、連続的に
処理できることが特徴である。システムは、吸湿剤19
と排ガス9を接触させる吸湿用の反応塔12と、再生用
の反応塔13を中心として、これら反応塔間を吸湿剤を
移動させるための吸湿剤の循環手段14を設け、再生用
反応塔13と吸湿用反応塔12の間の排ガス流路に潜熱
回収手段6を、吸湿用反応塔12の後段に顕熱回収手段
7を設けている。
The configuration and operation of this embodiment will be described below with reference to the drawings. The present embodiment is characterized in that the exhaust gas passages need not be switched as in the above-described embodiment, and continuous treatment is possible. The system is a moisture absorbent 19
Centering on the reaction tower 12 for moisture absorption for contacting the exhaust gas 9 with the exhaust gas 9, and the circulation means 14 for the hygroscopic agent for moving the hygroscopic agent between these reaction towers. The latent heat recovery means 6 is provided in the exhaust gas flow path between the moisture absorption reaction tower 12 and the sensible heat recovery means 7 at the subsequent stage of the moisture absorption reaction tower 12.

【0046】排ガス9は、地点a、bの順に煙道1から
熱回収システム3の再生用反応塔13に導かれる。反応
塔13内には同時に、吸湿反応塔12で回収された吸湿
剤19がポンプ141、142により地点q、rの経路
で供給され、吸湿剤19が排ガスと気液接触による直接
伝熱が行なわれる。この結果、150℃の排ガスにより
吸湿剤が加熱され、含んでいた水分が蒸発し、濃縮した
吸湿剤19が地点s、pの経路で吸湿反応塔12に戻さ
れる。
The exhaust gas 9 is led from the flue 1 to the regeneration reaction tower 13 of the heat recovery system 3 in the order of points a and b. At the same time, the hygroscopic agent 19 collected in the hygroscopic reaction column 12 is supplied to the reaction tower 13 by the pumps 141 and 142 at the points q and r, and the hygroscopic agent 19 directly transfers heat by the gas-liquid contact with the exhaust gas. Be done. As a result, the hygroscopic agent is heated by the exhaust gas at 150 ° C., the contained moisture is evaporated, and the concentrated hygroscopic agent 19 is returned to the moisture absorption reaction tower 12 through the route of points s and p.

【0047】一方、排ガス9は、吸湿剤19から蒸発し
た水分を含み水分濃度を増して地点c、dの経路で潜熱
回収手段6に導かれ、図1に示した吸着剤による実施例
と同様に潜熱を回収され、回収水10が得られる。潜熱
回収手段6で水分を減少した排ガスは地点e、fの経路
で吸湿反応塔12に導かれ、再生反応塔13で濃縮され
た吸湿剤と接触し、排ガス中の水分が吸収される。
On the other hand, the exhaust gas 9 contains the water vaporized from the hygroscopic agent 19 to increase the water concentration and is guided to the latent heat recovery means 6 through the route of points c and d, as in the embodiment using the adsorbent shown in FIG. The latent heat is recovered and the recovered water 10 is obtained. The exhaust gas, the water content of which has been reduced by the latent heat recovery means 6, is guided to the moisture absorption reaction tower 12 through the paths of points e and f, and comes into contact with the concentrated hygroscopic agent in the regeneration reaction tower 13 to absorb the water content in the exhaust gas.

【0048】この場合、吸着反応工程と同様に吸収熱が
発生し、これが排ガスに伝わり、排ガスは昇温した状態
で吸湿塔12から顕熱回収手段7に導かれる。顕熱回収
手段7では、潜熱を回収した冷却水が地点k、l、mの
経路で導かれるため、吸着剤を使用した実施例と同様に
高温の回収熱が得られる。
In this case, absorption heat is generated as in the adsorption reaction step, is transferred to the exhaust gas, and the exhaust gas is guided from the moisture absorption tower 12 to the sensible heat recovery means 7 in a state of being heated. In the sensible heat recovery means 7, since the cooling water from which the latent heat has been recovered is guided through the route of the points k, l and m, high temperature recovered heat can be obtained as in the embodiment using the adsorbent.

【0049】本実施例では、水蒸気の移動と反応熱によ
る排ガスの昇温に液体である吸湿剤を利用するため、ポ
ンプなどによる簡単な搬送手段を用いて吸湿剤の循環系
を構成し、本発明の目的を達成できるため、システム構
成が非常に簡単になる。ただし、吸湿剤と排ガスの接触
の方法が熱回収の効率に影響するため、吸湿剤を噴霧状
にして排ガスと接触させることや、反応塔に多数の変流
板を置き、流下する吸湿剤と排ガスの接触を改善する工
夫が必要となる。
In the present embodiment, since the liquid hygroscopic agent is used to move the water vapor and raise the temperature of the exhaust gas due to the heat of reaction, a simple conveying means such as a pump is used to form the hygroscopic agent circulation system. Since the object of the invention can be achieved, the system configuration becomes very simple. However, since the method of contacting the hygroscopic agent and the exhaust gas affects the efficiency of heat recovery, it is necessary to spray the hygroscopic agent into contact with the exhaust gas, or to place a large number of current-changing plates in the reaction tower and to flow down the hygroscopic agent. It is necessary to improve the contact of exhaust gas.

【0050】図5は、排ガス流路の切り換えないで、吸
着剤を循環して用いるためのシステム構成の例を示した
ものである。これは、二重円筒の容器16の外周部に吸
着剤4を設置し、脱着反応塔17と吸着反応塔18の間
で吸着剤がモーター等の駆動源15により回転移動する
構造とした潜熱回収システムである。このような構造に
より、吸湿剤を循環する先の実施例のように吸着剤を扱
うことができるため、煙道1から導いた排ガス9は、流
路の切り換え無しに潜熱と顕熱を回収され煙道1に戻す
ことができる。
FIG. 5 shows an example of a system configuration for circulating and using the adsorbent without switching the exhaust gas passage. This is a structure in which the adsorbent 4 is installed on the outer peripheral portion of the double cylindrical container 16 and the adsorbent is rotationally moved between the desorption reaction tower 17 and the adsorption reaction tower 18 by a drive source 15 such as a motor. System. With such a structure, the adsorbent can be handled as in the previous embodiment in which the hygroscopic agent is circulated, so that the exhaust gas 9 introduced from the flue 1 recovers latent heat and sensible heat without switching the flow path. It can be returned to the flue 1.

【0051】以上の実施例では、煙道から分岐した排ガ
ス流路に、吸着塔や吸湿塔を一段だけ設置した場合を説
明したが、吸着剤や吸湿剤の性能により、複数段の水蒸
気移動手段を設けることも可能である。例えば、図5に
示した実施例を二段で構成した場合の構成を図6に示
す。この場合、顕熱回収も二段にして回収熱の温度レベ
ルを高くすることができる。
In the above embodiments, the case where only one adsorption tower or hygroscopic tower is installed in the exhaust gas passage branched from the flue has been described. It is also possible to provide. For example, FIG. 6 shows a configuration when the embodiment shown in FIG. 5 is configured in two stages. In this case, the temperature level of the recovered heat can be increased by sensible heat recovery in two stages.

【0052】図7は、回収熱を熱源とする吸収冷凍と組
み合わせ、発生した0℃レベルの冷熱を冷蔵倉庫に適用
する場合の実施例を示したものである。本実施例は25
MW火力発電所の排熱回収システムを対象とした一例で
ある。排ガス中の水蒸気移動手段は図6の実施例と同様
に吸着剤を回転移動する構成とし、潜熱回収手段では、
水分のみを回収し、回収水はボイラの給水として使用す
る。顕熱の回収は、吸着部分の流路で2段に行ない90
℃の蒸気として回収し、直接冷熱発生システムの熱源と
して使用する。この結果、熱回収率は30%となり、図
3に示した例より低くなるが、利用価値の高い冷熱を直
接に排熱から作ることができる。
FIG. 7 shows an embodiment in which the generated 0 ° C. level cold heat is applied to a refrigerated warehouse in combination with absorption refrigeration using recovered heat as a heat source. This embodiment has 25
This is an example for an exhaust heat recovery system of a MW thermal power plant. The means for moving water vapor in the exhaust gas is configured to rotate and move the adsorbent as in the embodiment of FIG.
Only water is collected, and the collected water is used as water supply for the boiler. The sensible heat is collected in two stages in the flow path of the adsorption part.
Recovered as steam at ℃ and used directly as a heat source for cold heat generation system. As a result, the heat recovery rate becomes 30%, which is lower than that in the example shown in FIG. 3, but cold heat with a high utility value can be directly produced from waste heat.

【0053】[0053]

【発明の効果】本発明によれば、従来利用しないで排出
していた、工場や発電所から排出される水蒸気を含んだ
排ガスから、給湯や吸収冷凍機の駆動源となる100℃
レベルの回収熱を効率的に得ることができ、エネルギー
を有効に利用できる。
According to the present invention, exhaust gas containing water vapor discharged from a factory or a power plant, which has been conventionally discharged without being used, is heated to 100 ° C. which serves as a drive source for hot water supply or an absorption refrigerator.
A level of recovered heat can be efficiently obtained, and energy can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】吸着剤を用いた潜熱回収システムのシステム構
成図である。
FIG. 1 is a system configuration diagram of a latent heat recovery system using an adsorbent.

【図2】吸着塔に冷却機能を設けた潜熱回収システムも
システム構成図である。
FIG. 2 is also a system configuration diagram of a latent heat recovery system in which an adsorption tower is provided with a cooling function.

【図3】移動層型潜熱回収システムフロー図である。FIG. 3 is a flow chart of a moving bed type latent heat recovery system.

【図4】吸湿剤を用いた潜熱回収システムのシステム構
成図である。
FIG. 4 is a system configuration diagram of a latent heat recovery system using a hygroscopic agent.

【図5】吸着剤移動型潜熱回収システムのシステム構成
図である。
FIG. 5 is a system configuration diagram of an adsorbent transfer type latent heat recovery system.

【図6】吸着剤二段利用型潜熱回収システムのシステム
構成図である。
FIG. 6 is a system configuration diagram of a latent heat recovery system using a two-stage adsorbent.

【図7】冷熱発生型潜熱回収システムの構成図である。FIG. 7 is a configuration diagram of a cold heat generation type latent heat recovery system.

【符号の説明】[Explanation of symbols]

1…煙道、2…排ガス分岐手段、3…熱回収システム、
4…吸着剤、5…吸着塔、6…潜熱回収手段、7…顕熱
回収手段、8…排ガス流路切り替え手段、111…熱交
換器、112…熱交換器、12…吸湿用反応塔、13…
再生用反応塔、19…吸湿剤。
1 ... Flue, 2 ... Exhaust gas branching means, 3 ... Heat recovery system,
4 ... Adsorbent, 5 ... Adsorption tower, 6 ... Latent heat recovery means, 7 ... Sensible heat recovery means, 8 ... Exhaust gas flow path switching means, 111 ... Heat exchanger, 112 ... Heat exchanger, 12 ... Moisture absorption reaction tower, 13 ...
Regeneration reaction tower, 19 ... Hygroscopic agent.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 良吉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小関 康雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 嵐 紀夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 宮寺 博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryokichi Yamada 7-1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Yasuo Ozeki 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Incorporated company Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Norio Arashi 7-1-1, Omika-cho, Hitachi City, Hitachi, Ibaraki Prefecture Incorporated Hitachi Ltd. Hitachi Research Institute (72) Hiroshi Miyadera Mika Oita, Ibaraki Prefecture 7-1-1, Machi, Hitachi Co., Ltd. Hitachi Research Laboratory

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 水蒸気を含む排ガスを水分を吸着した吸
着剤と接触させて前記吸着剤中の水分を放出させ、前記
排ガスの水蒸気濃度を高める脱着工程と、前記脱着工程
を経て水蒸気濃度の高められた排ガスを冷媒によって冷
却し、前記排ガス中の水蒸気を凝縮除去し潜熱を取り出
す凝縮工程と、前記凝縮工程を経た排ガスの残存水分を
吸着剤によって吸着する吸着工程とからなり、前記吸着
工程で水分を吸着した吸着剤を前記脱着工程で使用し、
前記凝縮工程で用いた冷媒を他の装置の熱源として用い
ることを特徴とする排ガスから潜熱を回収する方法。
1. A desorption step for increasing the water vapor concentration of the exhaust gas by contacting an exhaust gas containing water vapor with an adsorbent that adsorbs water to release the water content in the adsorbent, and an increase in the water vapor concentration through the desorption step. The obtained exhaust gas is cooled by a refrigerant, a condensation step of condensing and removing water vapor in the exhaust gas to extract latent heat, and an adsorption step of adsorbing residual moisture of the exhaust gas that has undergone the condensation step with an adsorbent, in the adsorption step. Using an adsorbent that has adsorbed water in the desorption process,
A method for recovering latent heat from exhaust gas, characterized in that the refrigerant used in the condensation step is used as a heat source for another device.
【請求項2】 請求項1において、前記吸着工程で前記
排ガス中の水分と前記吸着剤との反応熱で前記排ガスを
加熱し、前記排ガスによって前記凝縮工程で用いた冷媒
を加熱することを特徴とする排ガスから潜熱を回収する
方法。
2. The method according to claim 1, wherein in the adsorption step, the exhaust gas is heated by the heat of reaction between moisture in the exhaust gas and the adsorbent, and the exhaust gas heats the refrigerant used in the condensation step. A method of recovering latent heat from exhaust gas.
【請求項3】 請求項1または請求項2において、前記
脱着工程で水分を放出した吸着剤を前記吸着工程で用い
ることを特徴とする排ガスから潜熱を回収する方法。
3. The method for recovering latent heat from exhaust gas according to claim 1, wherein the adsorbent that has released water in the desorption step is used in the adsorption step.
【請求項4】 請求項1から請求項3のいずれかにおい
て、前記吸着工程で用いる吸着剤は、ゼオライト、アル
ミナ、活性アルミナおよびシリカゲルを単独ないし複数
種混合したものであることを特徴とする排ガスから潜熱
を回収する方法。
4. The exhaust gas according to claim 1, wherein the adsorbent used in the adsorption step is a mixture of zeolite, alumina, activated alumina and silica gel, singly or in combination of plural kinds. Of recovering latent heat from water.
【請求項5】 水蒸気を含む排ガスを吸着剤と接触させ
て前記吸着剤中の水分を放出させ、前記排ガスの水蒸気
濃度を高める第1の反応塔と、前記排ガスを冷媒によっ
て冷却し前記排ガス中の水蒸気を凝縮除去し潜熱を取り
出す潜熱回収塔と、前記潜熱回収塔を経た排ガスの残存
水分を吸着剤によって吸着する第2の反応塔を備え、か
つ前記第2の反応塔で水分を吸着した吸着剤を前記第1
の反応塔で使用し、前記潜熱回収塔で用いた冷媒を他の
装置の熱源とする装置を備えたことを特徴とする排ガス
から潜熱を回収する装置。
5. A first reaction tower for increasing the water vapor concentration of the exhaust gas by bringing the exhaust gas containing water vapor into contact with the adsorbent to release water in the adsorbent, and cooling the exhaust gas with a refrigerant to cool the exhaust gas. A latent heat recovery tower for condensing and removing water vapor to extract latent heat; and a second reaction tower for adsorbing residual water of the exhaust gas passing through the latent heat recovery tower with an adsorbent, and adsorbing water in the second reaction tower. The first adsorbent
A device for recovering latent heat from exhaust gas, comprising a device which is used in the reaction tower of 1) and uses the refrigerant used in the latent heat recovery tower as a heat source of another device.
【請求項6】 請求項5において、前記第2の反応塔で
前記排ガス中の水分と前記吸着剤との反応熱で前記排ガ
スを加熱し、前記潜熱回収塔で用いた冷媒は前記排ガス
によって加熱されることを特徴とする排ガスから潜熱を
回収する装置。
6. The heat exchanger according to claim 5, wherein the exhaust gas is heated in the second reaction tower by the heat of reaction between the water in the exhaust gas and the adsorbent, and the refrigerant used in the latent heat recovery tower is heated by the exhaust gas. A device for recovering latent heat from exhaust gas.
【請求項7】 請求項5において、前記第1の反応塔で
使用し、水分を放出した吸着剤を前記第2の反応塔で使
用することを特徴とする排ガスから潜熱を回収する装
置。
7. The apparatus for recovering latent heat from exhaust gas according to claim 5, wherein the adsorbent used in the first reaction tower and releasing water is used in the second reaction tower.
【請求項8】 請求項5において、前記第2の反応塔で
用いる吸着剤は、ゼオライト、アルミナ、活性アルミナ
およびシリカゲルを単独ないし複数種混合したものであ
ることを特徴とする排ガスから潜熱を回収する装置。
8. The latent heat is recovered from the exhaust gas according to claim 5, wherein the adsorbent used in the second reaction tower is one or a mixture of zeolite, alumina, activated alumina and silica gel. Device to do.
【請求項9】 水蒸気を含む排ガスの一部または総てを
煙道から分岐させる分岐装置、前記排ガスを吸着剤と接
触させて前記吸着剤中の水分を放出させ、前記排ガスの
水蒸気濃度を高める第1の反応塔と、前記第1の反応塔
を経た排ガスを冷媒によって冷却し、前記排ガス中の水
蒸気を凝縮除去し潜熱を取り出す潜熱回収塔と、前記潜
熱回収塔を経た排ガスの残存水分を吸着剤によって吸着
する第2の反応塔と、前記第1あるいは第2の反応塔の
入口側と煙道との間、前記第1および第2の反応塔の出
口側、前記潜熱回収塔の入口および出口側にそれぞれ配
置された複数の切換弁と、前記第2の反応塔で使用し、
水分を吸着した吸着剤を前記第1の反応塔で使用し、前
記潜熱回収塔で用いた冷媒を他の装置の熱源として用い
る装置を備え、第1の工程では煙道から分岐された排ガ
スを第1の反応塔、潜熱回収装置、第2の反応塔の順に
循環させ、第2の工程では煙道から分岐された排ガスを
第2の反応塔、潜熱回収装置、第1の反応塔の順に循環
させるように前記切換弁を制御し、前記第1、第2の工
程を交互に実行することを特徴とする排ガスから潜熱を
回収する装置。
9. A branching device for branching part or all of exhaust gas containing water vapor from a flue, contacting the exhaust gas with an adsorbent to release water in the adsorbent, and increasing the water vapor concentration of the exhaust gas. A first reaction tower, a latent heat recovery tower that cools the exhaust gas that has passed through the first reaction tower with a refrigerant, condenses and removes water vapor in the exhaust gas to extract latent heat, and a residual water content of the exhaust gas that has passed through the latent heat recovery tower. Between the second reaction tower adsorbed by an adsorbent, the inlet side of the first or second reaction tower and the flue, the outlet side of the first and second reaction towers, the inlet of the latent heat recovery tower And a plurality of switching valves respectively arranged on the outlet side, and used in the second reaction tower,
An adsorbent that adsorbs water is used in the first reaction tower, and a device that uses the refrigerant used in the latent heat recovery tower as a heat source of another device is provided. In the first step, the exhaust gas branched from the flue is used. The first reaction tower, the latent heat recovery device, and the second reaction tower are circulated in this order, and in the second step, the exhaust gas branched from the flue is the second reaction tower, the latent heat recovery device, and the first reaction tower in that order. An apparatus for recovering latent heat from exhaust gas, characterized in that the switching valve is controlled so as to circulate, and the first and second steps are alternately executed.
【請求項10】 請求項9において、前記第2の反応塔
で前記排ガス中の水分と前記吸着剤との反応熱で加熱さ
れた排ガスにより、前記潜熱回収装置で用いた冷媒を加
熱する顕熱回収手段を備えたことを特徴とする排ガスか
ら潜熱を回収する装置。
10. The sensible heat for heating the refrigerant used in the latent heat recovery device by the exhaust gas heated by the heat of reaction between the water in the exhaust gas and the adsorbent in the second reaction tower according to claim 9. An apparatus for recovering latent heat from exhaust gas, characterized by comprising recovery means.
【請求項11】 請求項10において、前記第1および
第2の反応塔内に熱交換器を備え、前記第1および第2
の反応塔のうち吸着工程にある反応塔を冷却することを
特徴とする排ガスから潜熱を回収する装置。
11. The heat exchanger according to claim 10, wherein a heat exchanger is provided in each of the first and second reaction towers.
The apparatus for recovering latent heat from exhaust gas, characterized in that the reaction tower in the adsorption step of the reaction tower is cooled.
【請求項12】 水蒸気を含む排ガスを液状吸湿剤と接
触させることによって前記排ガス中の水蒸気を脱湿、ま
たは吸湿する第1および第2の反応塔と、前記第1の反
応塔を経て水蒸気濃度の高められた排ガスを冷媒によっ
て冷却し、前記排ガス中に含有された水蒸気を凝縮除去
し潜熱を取り出す潜熱回収塔と、前記液状吸湿剤を前記
第1および第2の反応塔に循環させる循環装置と、前記
潜熱回収塔で用いた冷媒を他の装置の熱源として用いる
装置を備え、前記液状吸湿剤は第2の反応塔内で排ガス
の残存水分を吸着し、第1の反応塔で吸着した水分を放
出することを特徴とする排ガスから潜熱を回収する装
置。
12. First and second reaction towers that dehumidify or absorb water vapor in the exhaust gas by bringing the exhaust gas containing water vapor into contact with a liquid hygroscopic agent, and the water vapor concentration via the first reaction tower. Of the exhaust gas whose temperature has been increased by a refrigerant to condense and remove water vapor contained in the exhaust gas to extract latent heat, and a circulation device for circulating the liquid hygroscopic agent to the first and second reaction towers And a device that uses the refrigerant used in the latent heat recovery tower as a heat source for another device, the liquid hygroscopic agent adsorbs the residual water content of the exhaust gas in the second reaction tower and adsorbs it in the first reaction tower. A device for recovering latent heat from exhaust gas, which is characterized by releasing water.
【請求項13】 水蒸気を含む排ガスを吸着剤と接触さ
せて前記吸着剤中の水分を放出させ、前記排ガスの水蒸
気濃度を高める第1の反応塔と、前記第1の反応塔を経
て水蒸気濃度の高められた排ガスを冷媒によって冷却
し、前記排ガス中の水蒸気を凝縮除去し潜熱を取り出す
潜熱回収塔と、前記潜熱回収塔を経た排ガス中の残存水
分を吸着剤によって吸着する第2の反応塔と、吸着剤が
充填された複数の充填塔と、前記複数の充填塔を前記第
1および第2の反応塔間を回転移動可能に支持する回転
移動装置を備え、前記第2の反応塔での水分吸着量が所
定量に達したとき前期充填塔を回転し、前記第2の反応
塔で水分を吸着した吸着剤を前記第1の反応塔で使用し
前記第1の反応塔での水分放出量が所定量に達したとき
前記充填塔を回転し、前記第1の反応塔で用いた水分を
脱着した吸着剤を前記第2の反応塔で使用し、さらに前
記潜熱回収塔で用いた冷媒を他の装置の熱源として用い
る装置を備えたことを特徴とする排ガスから潜熱を回収
する装置。
13. A first reaction tower for increasing the water vapor concentration of the exhaust gas by contacting an exhaust gas containing water vapor with an adsorbent to release the water content in the adsorbent, and a water vapor concentration via the first reaction tower. Of the exhaust gas whose temperature has been increased by a refrigerant to remove latent water by condensing and removing water vapor in the exhaust gas, and a second reaction tower for adsorbing residual water in the exhaust gas passing through the latent heat recovery tower with an adsorbent And a plurality of packed towers filled with an adsorbent, and a rotary moving device that supports the plurality of packed towers so as to be rotatably movable between the first and second reaction towers. When the amount of adsorbed water reaches a predetermined amount, the packed column is rotated, and the adsorbent that has adsorbed the water in the second reaction tower is used in the first reaction tower and the water in the first reaction tower is used. When the discharge amount reaches a predetermined amount, the packed tower is rotated, The adsorbent desorbed water used in the first reaction tower is used in the second reaction tower, and a device using the refrigerant used in the latent heat recovery tower as a heat source of another device is provided. A device to recover latent heat from exhaust gas.
【請求項14】 請求項12または請求項13におい
て、吸着剤として、ゼオライト、アルミナ、活性アルミ
ナ、シリカゲルを単独ないし複数種を混合して用いるこ
とを特徴とする排ガスから潜熱を回収する装置。
14. The apparatus for recovering latent heat from exhaust gas according to claim 12 or 13, wherein zeolite, alumina, activated alumina, or silica gel is used alone or as a mixture of plural kinds thereof as the adsorbent.
【請求項15】 請求項12において、吸湿剤濃度を40
wt%から70wt%の間で使用することを特徴とする排ガスか
ら潜熱を回収する装置。
15. The hygroscopic agent concentration according to claim 12,
A device for recovering latent heat from exhaust gas, characterized by being used between wt% and 70 wt%.
【請求項16】 請求項9または請求項13において、
吸着剤を50℃から150℃の温度範囲で使用することを特
徴とする排ガスから潜熱を回収する方法。
16. The method according to claim 9 or 13,
A method for recovering latent heat from exhaust gas, which comprises using an adsorbent in a temperature range of 50 ° C to 150 ° C.
【請求項17】 請求項5ないし請求項16のいずれか
において、回収熱を7℃以下の冷熱発生装置の駆動熱源
として用いる排ガスから潜熱を回収する装置。
17. The device for recovering latent heat from exhaust gas as claimed in claim 5, wherein the recovered heat is used as a driving heat source for a cold heat generator of 7 ° C. or less.
JP6147494A 1994-06-29 1994-06-29 Method for recovering latent heat from waste gas and device therefor Pending JPH0810550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147494A JPH0810550A (en) 1994-06-29 1994-06-29 Method for recovering latent heat from waste gas and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147494A JPH0810550A (en) 1994-06-29 1994-06-29 Method for recovering latent heat from waste gas and device therefor

Publications (1)

Publication Number Publication Date
JPH0810550A true JPH0810550A (en) 1996-01-16

Family

ID=15431662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147494A Pending JPH0810550A (en) 1994-06-29 1994-06-29 Method for recovering latent heat from waste gas and device therefor

Country Status (1)

Country Link
JP (1) JPH0810550A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170307A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Gas turbine combined cycle plant and power generation method
KR101424702B1 (en) * 2012-04-27 2014-07-31 현대제철 주식회사 Carbon dioxide separation apparatus of oxygen combustion furnace and carbon dioxide separation method thereof
JP2014205914A (en) * 2013-04-12 2014-10-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrolyzer
KR101631272B1 (en) * 2015-08-27 2016-06-24 김건택 Fuel cell system capable of producing high temperature warm water at high efficiency
CN111013319A (en) * 2019-12-24 2020-04-17 浙江大学 Molecular sieve adsorber for air separation purification device and method
CN111013321A (en) * 2019-12-24 2020-04-17 浙江大学 Three-adsorber air separation purification device capable of recovering latent heat and method thereof
CN111495113A (en) * 2020-05-18 2020-08-07 中国华能集团有限公司 Fixed bed type low-temperature flue gas adsorption desulfurization system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170307A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Gas turbine combined cycle plant and power generation method
JP4690885B2 (en) * 2005-12-22 2011-06-01 三菱重工業株式会社 Gas turbine combined cycle plant and power generation method.
KR101424702B1 (en) * 2012-04-27 2014-07-31 현대제철 주식회사 Carbon dioxide separation apparatus of oxygen combustion furnace and carbon dioxide separation method thereof
JP2014205914A (en) * 2013-04-12 2014-10-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrolyzer
KR101631272B1 (en) * 2015-08-27 2016-06-24 김건택 Fuel cell system capable of producing high temperature warm water at high efficiency
WO2017034181A1 (en) * 2015-08-27 2017-03-02 김건택 Fuel cell system capable of producing high temperature water
CN111013319A (en) * 2019-12-24 2020-04-17 浙江大学 Molecular sieve adsorber for air separation purification device and method
CN111013321A (en) * 2019-12-24 2020-04-17 浙江大学 Three-adsorber air separation purification device capable of recovering latent heat and method thereof
CN111495113A (en) * 2020-05-18 2020-08-07 中国华能集团有限公司 Fixed bed type low-temperature flue gas adsorption desulfurization system and method

Similar Documents

Publication Publication Date Title
CN111278529B (en) Gas recovery and concentration device
CN110290850B (en) Gas recovery and concentration device
JP6181835B1 (en) Gas recovery concentrator
US8500886B2 (en) Apparatus for removing carbon dioxide from a gas
KR100266344B1 (en) How to recover volatile organics
JP2001317307A (en) Method of removing carbon dioxide from exhaust gas of gas turbine plant and device for carrying out the method
SU1200858A3 (en) Method of generating and accumulating heat energy
WO2011021637A1 (en) Organic solvent recovery system
US4586940A (en) Process and apparatus for a recovery of heat comprising a heat-recovering absorption of water vapor from gases
JP5573354B2 (en) Organic solvent recovery system
ES2768619T3 (en) Carbon dioxide collection device
CN113813744A (en) Promote CO in coal fired boiler flue gas2System and method for capture economics
JP2003181242A (en) Carbon dioxide removing apparatus integrated with desulfurization device and boiler equipment equipped with carbon dioxide removing apparatus
JPH0810550A (en) Method for recovering latent heat from waste gas and device therefor
JP2004344703A (en) Method and apparatus for treating carbon dioxide
JPH0483509A (en) Continuously adsorbing and reproducing-type carbon dioxide separating and removing apparatus
JPH0691128A (en) Continuous gas separation and recovery device
JP3239094U (en) Near-zero emission flue gas multi-pollutant integrated removal system.
JP4264740B2 (en) Small desiccant air conditioner
JP2009030974A (en) Small desiccant air conditioning system
JP2005172380A (en) Adsorption-type heat pump
JPH09122432A (en) Gas separator using pressure swing adsorption process
JPH10263351A (en) Gas separator
JPS6257366B2 (en)
JPH0788323A (en) Dehumidifying device provided in boiler waste gas treating device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309