JPH10286460A - Adsorbent for forming, and adsorption heat exchanger having integrally formed structure - Google Patents

Adsorbent for forming, and adsorption heat exchanger having integrally formed structure

Info

Publication number
JPH10286460A
JPH10286460A JP11342997A JP11342997A JPH10286460A JP H10286460 A JPH10286460 A JP H10286460A JP 11342997 A JP11342997 A JP 11342997A JP 11342997 A JP11342997 A JP 11342997A JP H10286460 A JPH10286460 A JP H10286460A
Authority
JP
Japan
Prior art keywords
adsorbent
adsorption
heat exchanger
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11342997A
Other languages
Japanese (ja)
Other versions
JP3634114B2 (en
Inventor
Hideji Yanagi
秀治 柳
Seiji Okabayashi
誠治 岡林
Masahiro Ito
雅博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mayekawa Manufacturing Co
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Mizusawa Industrial Chemicals Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP11342997A priority Critical patent/JP3634114B2/en
Publication of JPH10286460A publication Critical patent/JPH10286460A/en
Application granted granted Critical
Publication of JP3634114B2 publication Critical patent/JP3634114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorbent for forming and an integrally structured adsorption heat exchanger using the adsorbent in which the effective heat conductivity of an adsorbent layer is improved, the heat conductivity of a heat transferring member surface forming a passage of hot water or cooling water for adsorption and desorption is enhanced and the adsorption performance of the adsorbent is not damaged. SOLUTION: The integrally structured adsorption heat exchanger 15a formed by dipping is constituted of plural heat transfer tubes 10 made of copper and forming the passage for hot water or cooling water, of plural flat fins 11 made of aluminum, an aluminum alloy, copper, a copper alloy or the like and of the dip formed adsorbent layer 14 formed by dipping to cover the fins and the heat transfer tubes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸着式冷凍機の吸着
剤とそれを収納する吸着熱交換器に関し、特に吸脱着特
性の向上を図った伝熱性バインダーにより一体成形を可
能とした成形用吸着剤と、該吸着剤を備えた一体成形構
造の熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for an adsorption refrigerator and an adsorption heat exchanger for containing the adsorbent, and more particularly to an adsorbent for molding which can be integrally molded with a heat conductive binder with improved adsorption / desorption characteristics. The present invention relates to a heat exchanger having a single-piece structure and an adsorbent.

【0002】[0002]

【従来の技術】吸着式冷凍機は、固体吸着剤例えばシリ
カゲルと冷媒である水との間の可逆反応に伴う発吸熱現
象を利用し、温熱を熱源として冷熱を発生させる冷凍機
で、基本サイクルは再生工程と吸着工程とよりなり、該
工程を二基の固体吸着剤熱交換器(以下吸着熱交換器と
いう)を交互に切り替え作動するようにしたものであ
る。図7には、従来の吸着式冷凍機の概略の構成を示し
てある。
2. Description of the Related Art An adsorption refrigerator is a refrigerator that generates cold heat using heat as a heat source by utilizing a heat generation and absorption phenomenon caused by a reversible reaction between a solid adsorbent such as silica gel and water as a refrigerant. Comprises a regeneration step and an adsorption step, in which the two solid adsorbent heat exchangers (hereinafter referred to as adsorption heat exchangers) are alternately operated. FIG. 7 shows a schematic configuration of a conventional adsorption refrigerator.

【0003】例えば図7に見るように、再生工程を吸着
熱交換器50により行い、吸着工程を吸着熱交換器51
で行う場合は、黒マークの切り換えバルブと蒸気弁を閉
鎖状態とし、白マークの切り換えバルブと蒸気弁を解放
状態とする。この場合、真空容器内の吸着熱交換器50
に再生用温水71を切り換えバルブ61を介して導入加
熱すると、内蔵する吸着剤より脱着した水蒸気は蒸気弁
56を介して凝縮器52に放出される。該凝縮器52で
は前記放出された水蒸気は凝縮用冷却水72により液化
される。凝縮滴下した水は蒸発器53の下部に貯留さ
れ、吸着熱交換器50に内蔵する吸着剤の再生は終了す
る。
For example, as shown in FIG. 7, the regeneration step is performed by an adsorption heat exchanger 50, and the adsorption step is performed by an adsorption heat exchanger 51.
In this case, the switching valve and the steam valve with the black mark are closed, and the switching valve and the steam valve with the white mark are opened. In this case, the adsorption heat exchanger 50 in the vacuum vessel
When the hot water for regeneration 71 is introduced and heated via the switching valve 61, the water vapor desorbed from the built-in adsorbent is discharged to the condenser 52 via the steam valve 56. In the condenser 52, the released steam is liquefied by the condensing cooling water 72. The water condensed and dropped is stored in the lower part of the evaporator 53, and the regeneration of the adsorbent contained in the adsorption heat exchanger 50 ends.

【0004】一方、別の真空容器内の吸着熱交換機51
には吸着用冷却水73が切り換えバルブ63を介して導
入され、内蔵する吸着剤は冷却され吸着可能の状態に移
行する。また、蒸発器53においてポンプ53a、噴霧
器53bを介して発生した水蒸気は蒸気弁57を介して
吸着熱交換器51へ送られ前記吸着可能の状態にある吸
着剤により吸着される。この時、蒸発器53においては
噴霧器53bを介して発生する水蒸気は発生の過程にお
いて被冷却流体60から蒸発潜熱を奪う。その結果冷水
の製造が可能となる。つまり、吸着熱交換器51に内蔵
する吸着剤は吸着工程に置かれ、蒸発器53で被冷却流
体60に冷熱を供給する。
On the other hand, an adsorption heat exchanger 51 in another vacuum vessel
, Cooling water 73 for adsorption is introduced through the switching valve 63, and the built-in adsorbent is cooled and shifts to a state where adsorption is possible. Water vapor generated in the evaporator 53 via the pump 53a and the atomizer 53b is sent to the adsorption heat exchanger 51 via the steam valve 57 and is adsorbed by the adsorbent in the adsorbable state. At this time, in the evaporator 53, the water vapor generated via the sprayer 53b takes away the latent heat of evaporation from the fluid to be cooled 60 in the process of generation. As a result, cold water can be produced. That is, the adsorbent contained in the adsorption heat exchanger 51 is placed in the adsorption step, and the evaporator 53 supplies cold heat to the fluid 60 to be cooled.

【0005】水蒸気の吸着及び脱着量が飽和に近付く
と、切り換えバルブ61が62に、65が67に、また
63が64に、68が66に切り替えられ、その結果、
吸着熱交換器50で水蒸気が吸着され、吸着熱交換器5
1で水蒸気が脱着され、以後上記切り替え操作が繰り返
されることになる。
When the amount of adsorption and desorption of water vapor approaches saturation, the switching valve 61 is switched to 62, 65 to 67, 63 to 64, and 68 to 66. As a result,
Water vapor is adsorbed by the adsorption heat exchanger 50, and the adsorption heat exchanger 5
In step 1, the steam is desorbed, and the switching operation is repeated thereafter.

【0006】上記吸着熱交換器50、51の構成を図8
(A)、(B)に示してある。図8(A)はプレート型
熱伝導部材を持つ熱交換器の模式図が示してある。(特
願平3−83361号) なお、吸着剤には活性炭、アルミナ、活性アルミナ及び
シリカゲルが考えられるが、60〜80℃の排熱を有効
に利用でき且つ入手が比較的容易な点からシリカゲルが
使用されている。図8(A)に見るように、吸着熱交換
器は再生用温水ないし吸着用冷却水の通路を形成する伝
熱部材75の両サイドに例えば粒子状の吸着剤(シリカ
ゲル)76を充填し外側より吸着剤押さえ用の金網79
で被覆したものを10数枚1セットとして使用されてい
る。なお、上記吸着剤充填層の厚さYは熱移動及び物質
移動の点を参酌して決められている。また、上記構造以
外に図8(B)に示すように、前記温水や冷却水の通路
形成する伝熱部材である伝熱菅77と、該伝熱菅に直角
に且つ等間隔に設けた多数枚のフィン78とから形成
し、該フィンの外側よりフィン同志の間隙より伝熱菅7
7の外周を囲むようにして吸着剤76を充填し、外側よ
り金網79等により被覆したものが用いられている。
(特願平4−159308号)
FIG. 8 shows the construction of the adsorption heat exchangers 50 and 51.
(A) and (B). FIG. 8A is a schematic view of a heat exchanger having a plate-type heat conducting member. Activated carbon, alumina, activated alumina and silica gel can be considered as the adsorbent, but silica gel is used because it can effectively utilize exhaust heat of 60 to 80 ° C. and is relatively easy to obtain. Is used. As shown in FIG. 8 (A), the adsorption heat exchanger fills, for example, particulate adsorbent (silica gel) 76 on both sides of a heat transfer member 75 forming a passage for hot water for regeneration or cooling water for adsorption. Wire mesh 79 for holding down the adsorbent
Are used as a set of several dozen. The thickness Y of the adsorbent-filled layer is determined in consideration of heat transfer and mass transfer. In addition to the above structure, as shown in FIG. 8B, a heat transfer tube 77 which is a heat transfer member forming a passage for the hot water or the cooling water, and a plurality of heat transfer tubes provided at right angles to the heat transfer tube and at equal intervals. And a heat transfer tube 7 formed from the outside of the fin through the gap between the fins.
7 is filled with an adsorbent 76 so as to surround the outer periphery of the wire 7 and covered with a wire mesh 79 or the like from the outside.
(Japanese Patent Application No. 4-159308)

【0007】上記いずれの構造の場合も、吸着剤76同
志及び吸着剤76とフィン78ないし伝熱部材75の表
面とは点接触により形成されているため、伝熱部材より
の吸着剤への熱の伝達は熱伝導率の悪い固体間同志、固
体気体間の熱の伝導に頼らざるを得ない状況にある。そ
の結果、吸着熱交換器においては、伝熱性能が悪く、水
蒸気の吸脱着に伴う予熱、給熱が不十分となり吸脱着速
度の低下、吸脱着機能を十分に発揮している吸着剤は限
られたものになり、装置の拡大化をもたらす一因を形成
していた。
In any of the above structures, since the adsorbent 76 and the adsorbent 76 and the fin 78 or the surface of the heat transfer member 75 are formed by point contact, the heat transfer from the heat transfer member to the adsorbent is performed. The transmission of heat must rely on the conduction of heat between solids and solid gases with poor thermal conductivity. As a result, in the adsorption heat exchanger, the heat transfer performance is poor, and the preheating and heat supply due to the adsorption and desorption of water vapor are insufficient, so that the adsorption and desorption speed is reduced, and the adsorbents that fully exhibit the adsorption and desorption functions are limited. And contributed to the expansion of the device.

【0008】これらの問題解決のために、従来より種々
提案がされ、特開平4−143558号公報に提案a
が、特開平8−200876号公報に提案bが、特開平
8−271085号公報に提案cが開示されている。提
案aは、吸着剤と金属促進材とにより混合スラリーを形
成させ、該スラリーと伝熱部材とを成形型に投入し、前
記吸着剤と金属促進材との混合体を伝熱部材に一体焼結
成形する構成としたもので、提案bは、伝熱部材表面に
脱水作用のある接着剤を含有させた粉粒状のシリカゲル
を塗布固着させ、被覆ないし埋め込みにより、伝熱部材
表面とシリカゲルとを一体化させたことを特徴としたも
のであり、提案cは、伝熱部材表面と吸着剤との間に熱
伝導層部を設けたことを特徴としたものである。
To solve these problems, various proposals have conventionally been made, and Japanese Patent Application Laid-Open No. 4-143558 discloses a proposal a.
However, proposal b is disclosed in JP-A-8-200876, and proposal c is disclosed in JP-A-8-27085. Proposal a is that a mixed slurry is formed by the adsorbent and the metal promoter, the slurry and the heat transfer member are charged into a mold, and the mixture of the adsorbent and the metal promoter is integrally fired on the heat transfer member. Proposal b proposes that the heat transfer member surface is coated with powdery silica gel containing an adhesive having a dehydrating effect and fixed, and then coated or embedded to cover the heat transfer member surface with the silica gel. The invention is characterized by being integrated, and the proposal c is characterized by providing a heat conductive layer between the surface of the heat transfer member and the adsorbent.

【0009】上記提案a〜提案cにわたる従来の提案を
見るに、提案aにおいては、吸着剤と金属促進材との混
入体を形成させ、焼結により混合体と伝熱部材との間を
一体化を図っている。この場合、上記金属促進材の混入
により熱伝達率の向上は図れるが、混合体と伝熱部材と
の結合に焼結手段を採用しているため、混合体には緻密
な多結晶体が形成され、冷媒の吸脱着に際しての物質移
動は困難になり、吸脱着は表面に出ている吸着剤のみに
限られ、効率の低下は避けられない。次に提案bにおい
ては、吸着剤と脱水性接着とにより混合体を形成してス
ラリー状とし、該スラリーを伝熱部材に塗布、被覆ない
し埋め込み、乾燥一体化を図ったもので、上記接着剤に
より伝熱部材と接着剤との間、及び接着剤同志の間のの
接触面積は、従来の点接触より拡大されるが接着剤自体
の熱伝導率については何ら考慮されていないため、伝熱
性能の向上に対して大きな期待は無理であり、冷媒の外
部よりの物質移動に対しても配慮されていない。また、
提案cにおいては、伝熱部材の表面に熱伝導層を設け、
該熱伝導層を介して粉粒状の吸着剤を充填するようにし
てあるため、吸着剤と伝熱部材間の熱伝導は従来の点接
触より接触面積を増大させ改善されるが、吸着剤同志の
間の熱伝導については改善されていない。
[0009] Looking at the conventional proposals from the above proposals a to c, in the proposal a, a mixture of the adsorbent and the metal promoter is formed, and the mixture and the heat transfer member are integrated by sintering. It is trying to make it. In this case, the heat transfer coefficient can be improved by mixing the metal promoter, but a dense polycrystalline body is formed in the mixture because a sintering unit is used for bonding the mixture and the heat transfer member. Therefore, mass transfer at the time of adsorption and desorption of the refrigerant becomes difficult, adsorption and desorption are limited to only the adsorbent on the surface, and a decrease in efficiency is inevitable. Next, in Proposal b, a mixture is formed by an adsorbent and a dehydrating adhesive to form a slurry, and the slurry is applied to a heat transfer member, coated or embedded, and dried and integrated. As a result, the contact area between the heat transfer member and the adhesive and between the adhesives is enlarged as compared with the conventional point contact, but the thermal conductivity of the adhesive itself is not considered at all. There is no great expectation for improvement in performance, and no consideration is given to mass transfer of refrigerant from outside. Also,
In proposal c, a heat conductive layer is provided on the surface of the heat transfer member,
Since the particulate adsorbent is filled through the heat conduction layer, the heat conduction between the adsorbent and the heat transfer member can be improved by increasing the contact area as compared with the conventional point contact. There is no improvement in the heat transfer during this time.

【0010】[0010]

【発明が解決しようとする課題】ところで、吸着熱交換
器の伝熱性能Uと、吸着剤層の有効熱伝導率λeff と吸
着剤層厚さSad、伝熱部材面での熱伝達率hw と伝達部
材肉厚Sw 及び熱伝導率λw 、熱媒体(冷媒)の熱伝達
率hext との間には次のような関係式が成立する。 1/U=1/hw+Sw/λw+Sad/λeff+1/hext そこで上式において、吸着剤層の有効熱伝導率λeff
び伝熱部材面での熱伝達率hw の向上を図れば伝熱性能
Uをアップさせることができるわけである。
Incidentally, the heat transfer performance U of the adsorption heat exchanger, the effective thermal conductivity λ eff of the adsorbent layer, the thickness S ad of the adsorbent layer, and the heat transfer coefficient on the heat transfer member surface The following relational expression holds between h w , the transmission member thickness Sw, the heat conductivity λ w , and the heat transfer coefficient h ext of the heat medium (refrigerant). 1 / U = 1 / h w + S w / λ w + S ad / λ eff + 1 / h ext In the above equation, the effective heat conductivity λ eff of the adsorbent layer and the heat transfer coefficient h w on the heat transfer member surface are calculated. If the improvement is achieved, the heat transfer performance U can be improved.

【0011】本発明は上記問題点に鑑みなされたもの
で、上記吸着剤層の有効熱伝導率λeff の向上と、吸脱
着用温水ないし冷却水の通路を形成する伝熱部材面の熱
伝達率の向上を図るとともに、吸着剤の吸着性能を損ね
ることのない成形用吸着剤と、該吸着剤を使用した一体
構造の吸着熱交換器の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an object to improve the effective thermal conductivity λ eff of the adsorbent layer and to improve the heat transfer of the surface of a heat transfer member which forms a passage for hot or cold water for adsorption and desorption. It is an object of the present invention to provide a molding adsorbent that does not impair the adsorption performance of the adsorbent while improving the efficiency of the adsorbent, and an adsorption heat exchanger having an integral structure using the adsorbent.

【0012】[0012]

【課題を解決するための手段】以下本発明の要旨を説明
する。即ち、吸着剤層の有効熱伝導率λeff の向上のた
めに、粉粒状シリカゲル群の各間隙及び伝熱体面との間
の間隙を高熱伝導剤で埋めるべく、グラファイト粉末を
粉粒状シリカゲルに混合して高熱伝導吸着剤を形成す
る。次に伝熱部材面での熱伝達率hw の向上のために、
前記混合した高熱伝導吸着剤を伝熱部材に成形し且つ膨
潤伸張可能の強固な高分子網目の形成により可塑性に富
み且つ強固な成形面の形成を可能とすべく、吸着性のあ
るセルローズ系の有機バインダーを追加混合後水に分散
スラリー状に形成する。さらに、多孔性無機バインダー
の添加により外部からの冷媒の物質移動を容易にしてあ
る。
The gist of the present invention will be described below. That is, in order to improve the effective thermal conductivity λ eff of the adsorbent layer, the graphite powder is mixed with the particulate silica gel so as to fill each gap of the particulate silica gel group and the gap between the heat transfer material surface with the high thermal conductive agent. To form a high thermal conductivity adsorbent. Next, in order to improve the heat transfer coefficient h w on the heat transfer member surface,
The mixed high thermal conductive adsorbent is molded into a heat transfer member and formed into a highly polymerizable and swellable and expandable polymer network to enable the formation of a highly plastic and strong molded surface. After the organic binder is additionally mixed, it is formed into a slurry in water. Further, the mass transfer of the refrigerant from the outside is facilitated by adding a porous inorganic binder.

【0013】上記セルローズ系有機バインダーと多孔性
無機バインダーの配合比は、吸着剤としての吸着性能を
損なうことのないことを前提とし、特にシリカゲルのマ
クロ孔及びメソ孔の閉塞の回避に配慮されねばならな
い。また、低い相対圧のもとにおいても吸着能力を大き
く維持すべく細孔容積及び比表面積の拡大に配慮されね
ばならない。
The compounding ratio of the cellulose-based organic binder and the porous inorganic binder is based on the premise that the adsorbing performance of the adsorbent is not impaired, and in particular, it is necessary to avoid macroblocks and mesopores of silica gel from being blocked. No. Further, in order to maintain a large adsorption capacity even under a low relative pressure, it is necessary to consider the expansion of the pore volume and the specific surface area.

【0014】また、上記配合比に基づく粉粒状品を混合
スラリー状ないしペースト状に分散した溶液に、前記伝
熱部材を浸漬成形ないし、ペースト加工、型成形後、風
乾及び加熱乾燥して、一体成形構造の吸着熱交換器を形
成する。
Further, the heat transfer member is immersed in a solution in which a powdery or granular material based on the above mixing ratio is dispersed in a mixed slurry or paste form, paste-processed, molded, air-dried, and heat-dried to form an integrated body. Form an adsorption heat exchanger with a molded structure.

【0015】そこで、請求項1記載の発明は、吸着式冷
凍機用吸着剤において、シリカゲルとグラファイトと有
機バインダーと無機バインダーとを混合し、水を添加分
散させてスラリー状ないしペースト状に構成した、成形
用吸着剤である。
Therefore, the invention according to claim 1 is the adsorbent for an adsorption type refrigerator, wherein silica gel, graphite, an organic binder and an inorganic binder are mixed, and water is added and dispersed to form a slurry or paste. , A molding adsorbent.

【0016】また、請求項2記載の発明は、伝熱パイプ
と伝熱フィンとを備えた熱交換器において、請求項1記
載のスラリー状成形用吸着剤に浸漬後、風乾、略70℃
前後の乾燥処理により、前記吸着剤に浸漬成形させた、
一体成形構造の吸着熱交換器である。
According to a second aspect of the present invention, there is provided a heat exchanger provided with a heat transfer pipe and a heat transfer fin.
By drying treatment before and after, it was immersed in the adsorbent,
It is an adsorption heat exchanger with an integral molding structure.

【0017】また、請求項3記載の発明は、伝熱パイプ
と伝熱フィンとを備えた熱交換器において、請求項1記
載のペースト状成形用吸着剤によりペースト加工後、風
乾、略70℃前後の型乾燥処理により、型成形した、一
体成形構造の吸着熱交換器である。
According to a third aspect of the present invention, there is provided a heat exchanger provided with a heat transfer pipe and a heat transfer fin. This is an adsorption heat exchanger having an integrally molded structure that has been molded by the preceding and following mold drying processes.

【0018】また、請求項4記載の発明は、請求項1記
載の成形用吸着剤より所定形状に成形乾燥した成形吸着
剤と、該吸着剤を下部に収納し上部に太陽光の照射空間
兼冷媒蒸気の吸脱着空間を形成する断熱容器と、より構
成した太陽光駆動用吸着熱交換器である。
According to a fourth aspect of the present invention, there is provided a molded adsorbent molded and dried into a predetermined shape from the molded adsorbent according to the first aspect, and the adsorbent is accommodated in a lower portion and an upper portion serves as a sunlight irradiation space. An adsorbent heat exchanger for driving solar light, comprising a heat insulating container forming a space for adsorbing and desorbing refrigerant vapor and a solar heat drive.

【0019】[0019]

【作用】請求項1記載のグラファイトの配合によりグラ
ファイトの持つ高熱伝導率により、吸着剤層の有効熱伝
導率の向上を図ることができ、また、セルローズ系有機
バインダーの適量配合により、水蒸気に対する吸着機能
の期待と膨潤伸張可能の高分子網目により強固で且つ可
塑性に富む成形面の強度維持が期待できる。また、多孔
性無機バインダーの適量配合により、冷媒蒸気の吸着剤
層内の物質移動を容易にする効果を期待できる。また、
成形用吸着剤に伝熱体を浸漬ないしペースト加工後の風
乾及び略70℃前後の低温乾燥により、飽和蒸気を維持
しながら乾燥して、成形面へのクラックの発生を防止し
てある。
The high thermal conductivity of graphite makes it possible to improve the effective thermal conductivity of the adsorbent layer, and the admixture of a suitable amount of a cellulose organic binder makes it possible to adsorb water vapor. Expectation of function and swellable polymer network that can be expanded and stretched can be expected to maintain the strength of a strong and plastic molded surface. In addition, an effect of facilitating the mass transfer of the refrigerant vapor in the adsorbent layer can be expected by blending an appropriate amount of the porous inorganic binder. Also,
The heat transfer body is immersed in the forming adsorbent or air-dried after paste processing and low-temperature drying at about 70 ° C. to dry while maintaining saturated steam, thereby preventing cracks on the forming surface.

【0020】また、請求項4記載の発明において、請求
項1記載の成形用吸着剤を使用して太陽光駆動用吸着熱
交換器を構成した場合、含有する熱伝導部材であるグラ
ファイトが黒色であるため、太陽熱の吸収に最適で、高
効率の太陽光駆動の熱交換器を形成できる。
In the invention according to claim 4, when the adsorption heat exchanger for driving sunlight is constituted by using the molding adsorbent according to claim 1, graphite, which is a heat conducting member, is black. Therefore, it is possible to form a highly efficient solar-driven heat exchanger that is optimal for absorbing solar heat.

【0021】[0021]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的な記載が無い限り、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
は、本発明の成形用吸着剤を使用して浸漬成形をして一
体構造とした吸着熱交換器の概略の構成を示す斜視図
で、図2は成形用吸着剤を使用して型成形して一体構造
とした吸着熱交換器の概略の構成を示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples unless otherwise specified. Absent. FIG.
FIG. 2 is a perspective view showing a schematic configuration of an adsorption heat exchanger which is integrally formed by immersion molding using the molding adsorbent of the present invention, and FIG. FIG. 2 is a perspective view showing a schematic configuration of an adsorption heat exchanger having an integral structure.

【0022】図1に見るように、浸漬成形した一体構造
の吸着熱交換器15aは、温水ないし冷却水の通路を形
成する複数の銅からなる伝熱菅10と、該伝熱菅10と
直角に交叉し等間隔且つ平行に設けられた複数のアルミ
ニウム、アルミニウム合金、銅、銅合金等からなる扁平
状のフィン11と、フィン11及び伝熱菅10を覆う浸
漬成形された浸漬成形吸着剤層14とより構成する。
As shown in FIG. 1, the immersion-molded adsorption heat exchanger 15a having an integral structure comprises a plurality of copper heat transfer tubes 10 forming passages for hot water or cooling water, and a right angle with the heat transfer tubes 10. A plurality of flat fins 11 made of aluminum, an aluminum alloy, copper, a copper alloy, etc., provided at equal intervals and in parallel with each other, and a dip-formed sorbent layer covering the fins 11 and the heat transfer tube 10 14 and.

【0023】上記浸漬成形吸着剤層14はスラリー状に
形成された成形用吸着剤よりなり、その調整方法及び加
工条件の一例を下記に示す。42メッシュ以下のシリカ
ゲル粉粒状のもの80.8重量部と、グラファイト微粒子9.
0 重量部と、セルローズ系有機バインダー3.55重量部と
ゼピオライトで粉末状ないし繊維状の無機バインダー6.
63重量部を15分混合し、55.6重量部の水を添加し60
分間分散混合を行いスラリー状溶液を形成する。上記溶
液中に図1に示す伝熱菅10とフィン11とよりなる伝
熱部材を浸漬し、浸漬後2日間大気中に静置風乾を行っ
た後、略70℃で36時間の乾燥工程を経て、図1に示
す浸漬成形吸着剤層14を形成させ一体構造とした吸着
熱交換器15aを構成する。
The immersion-formed adsorbent layer 14 is made of a forming adsorbent formed in a slurry state. An example of a method of adjusting the adsorbent and processing conditions are described below. 80.8 parts by weight of silica gel powder of 42 mesh or less and graphite fine particles 9.
0 parts by weight, 3.55 parts by weight of a cellulose-based organic binder and a powdery or fibrous inorganic binder made of zeolite 6.
Mix 63 parts by weight for 15 minutes, add 55.6 parts by weight of water
The mixture is dispersed and mixed for a minute to form a slurry-like solution. A heat transfer member consisting of the heat transfer tube 10 and the fins 11 shown in FIG. 1 is immersed in the above solution, air-dried for 2 days in the air after the immersion, and a drying process at about 70 ° C. for 36 hours. Thereafter, the immersion-molded adsorbent layer 14 shown in FIG. 1 is formed to constitute an integrated heat exchanger 15a.

【0024】図2には、成形用吸着剤を使用して型成形
して一体構造とした吸着熱交換器15bの概略の構成が
示してある。上記型成形による一体構造の吸着熱交換器
15bは、温水ないし冷却水の通路を形成する複数の銅
よりなる伝熱菅10と、該伝熱菅10に直角に交叉し等
間隔且つ平行に設けられた複数のアルミニウム、アルミ
ニウム合金、銅、銅合金等よりなる扁平状のフィン11
と、該フィンとフィンとの間にペースト加工され型成形
された型成形吸着剤層12と、該型成形吸着剤層12の
中間の前後に形成された溝13とより構成する。
FIG. 2 shows a schematic configuration of an adsorption heat exchanger 15b which is formed integrally by molding using an adsorbent for molding. The adsorption heat exchanger 15b having an integral structure formed by the above-described molding is provided with a plurality of copper heat transfer tubes 10 forming passages of hot water or cooling water, and crossing the heat transfer tubes 10 at right angles and equidistantly and in parallel. Flat fins 11 made of a plurality of aluminum, aluminum alloy, copper, copper alloy, etc.
And a molded adsorbent layer 12 formed by paste processing between the fins, and a groove 13 formed before and after the middle of the molded adsorbent layer 12.

【0025】上記型成形吸着剤層12はペースト状に形
成された成形用吸着剤で構成され、その調整方法及び加
工条件の一例を下記に示す。42メッシュ以下のシリカ
ゲル粉粒状のもの86.2重量部と、グラファイト微粒子4.
35重量部と、セルローズ系有機バインダー4.35重量部
と、ゼピオライトで繊維状の無機バインダー5.08重量部
を15分混合し、39.6重量部の水を添加し60分間分散
混合を行いペースト状に形成する。ついで、上記ペース
ト状吸着剤で図2に示す伝熱菅10とフィン11とより
なる伝熱部材にペースト加工をなし、ついでテフロンと
ステンレスの多孔板で挟み、3日間大気中に静置風乾を
行った後、略70℃で36時間の乾燥工程を経て、図2
に示す型成形吸着剤層12を形成させ一体構造とした吸
着熱交換器15bを構成する。なお、図2における上下
の溝13は、前記多孔板の形状を溝付き形状とし挟持押
圧と同時に形成されるようにしてある。
The molded adsorbent layer 12 is composed of a molding adsorbent formed in the form of a paste. An example of a method for adjusting the adsorbent and processing conditions will be described below. 86.2 parts by weight of silica gel powder having a particle size of 42 mesh or less, and graphite fine particles 4.
35 parts by weight, 4.35 parts by weight of a cellulose-based organic binder, and 5.08 parts by weight of a fibrous inorganic binder with zeolite are mixed for 15 minutes, 39.6 parts by weight of water is added, and the mixture is dispersed and mixed for 60 minutes to form a paste. Then, the heat transfer member composed of the heat transfer tube 10 and the fin 11 shown in FIG. 2 is subjected to paste processing with the above paste-form adsorbent, then sandwiched between Teflon and a stainless steel perforated plate, and allowed to stand in the air for 3 days and air-dried. After performing the drying process at approximately 70 ° C. for 36 hours, FIG.
The adsorbent heat exchanger 15b is formed by forming the molded adsorbent layer 12 shown in FIG. The upper and lower grooves 13 in FIG. 2 are formed at the same time as the pressing force by making the shape of the perforated plate a grooved shape.

【0026】上記浸漬成形吸着剤層や型成形吸着剤層を
形成する成形用吸着剤を構成する混合部材のうち、グラ
ファイトは高熱伝導性部材で、接着剤層の有効熱伝導率
λeff の向上のために使用する。セルローズ系有機バイ
ンダーは、水蒸気に対する吸着機能と、膨潤伸張可能の
高分子網目により強固で且つ可塑性に富む成形面の形成
と強度維持を可能にしている。また、多孔性無機バイン
ダーの適量配合により、冷媒蒸気の吸着剤層内の物質移
動を容易にする効果を期待できる。また、成形吸着剤に
伝熱体を浸漬ないしペースト加工後の風乾及び略70℃
前後の低温乾燥により、飽和蒸気を維持しながら乾燥し
て、成形面へのクラックの発生を防止してある。なお、
上記有機バインダーはシリカゲルの吸着剤としての吸着
性能を損なわないようにし、シリカゲルのマクロ孔やメ
ソ孔の閉塞の回避に配慮して、低い相対圧のもとで大な
る吸着能力を期待すべく細孔容積及び比表面積を大きく
できるよう、配慮してある。
Among the mixed members constituting the forming adsorbent for forming the immersion-formed adsorbent layer and the molded adsorbent layer, graphite is a highly heat-conductive member, and the effective heat conductivity λ eff of the adhesive layer is improved. Use for The cellulosic organic binder has a function of adsorbing water vapor and a swellable and stretchable polymer network to form a strong and highly plastic molded surface and maintain strength. In addition, an effect of facilitating the mass transfer of the refrigerant vapor in the adsorbent layer can be expected by blending an appropriate amount of the porous inorganic binder. In addition, the heat transfer body is immersed in a molded adsorbent or air-dried after paste processing and at about 70 ° C.
By drying at low temperatures before and after, drying is performed while maintaining saturated steam to prevent cracks on the molding surface. In addition,
The organic binder does not impair the adsorption performance of silica gel as an adsorbent, and it is necessary to avoid blocking macropores and mesopores of silica gel. Care has been taken to increase the pore volume and specific surface area.

【0027】上記浸漬成形吸着剤層14、型成形吸着剤
層12を備えた成形品No.1と成形品Bとして、従来
のシリカゲル破砕型とについて、伝熱特性及び吸着特性
の比較測定を行った。その結果、伝熱性能Uは、脱着初
期において成形用吸着剤は62.2W/m2K、破砕シリカゲ
ルは44.8W/m2K、また脱着期間中においては成形用吸
着剤は61.5W/m2K、破砕シリカゲルは25.9W/m2Kで
あった。
The molded article No. having the immersion-molded adsorbent layer 14 and the molded-molded adsorbent layer 12 described above. Comparative measurement of heat transfer characteristics and adsorption characteristics was carried out for No. 1 and molded product B and a conventional crushed silica gel type. As a result, heat transfer performance U is molded adsorbent in the desorption initial 62.2W / m 2 K, molding adsorbent in crushing the silica gel 44.8W / m 2 K, also during the desorption period 61.5W / m 2 K, crushed silica gel was 25.9 W / m 2 K.

【0028】上記結果に示すように高い伝熱性能を得る
事が出来、再生温度の上昇、吸着温度の低下をもたら
し、サイクル冷媒循環量の増加を可能とし、図3、図4
にそれぞれ成形品No.1と破砕シリカゲルについての
吸着特性が示される。また、上記結果により吸着、再生
サイクル時間の短縮が図れる。また、コンパクト化も図
れる。なお、型成形吸着剤層12において溝13を設け
たのは、冷媒の物質移動をより容易にするためであり、
これにより成形品Bにおけるサイクルタイムの削減を可
能にしてある。
As shown in the above results, it is possible to obtain high heat transfer performance, increase the regeneration temperature, decrease the adsorption temperature, and increase the cycle refrigerant circulation amount.
No. of each molded product. 1 and the adsorption properties for crushed silica gel. In addition, the above results can reduce the adsorption and regeneration cycle time. Also, the size can be reduced. The reason why the grooves 13 are provided in the molded adsorbent layer 12 is to make the mass transfer of the refrigerant easier,
Thus, the cycle time of the molded product B can be reduced.

【0029】図5には、本発明の成形用吸着剤を使用し
た太陽光駆動用吸着熱交換器の概略の構成を示す模式図
である。図に見るように、本発明の太陽光駆動用吸着熱
交換器16は、成形吸着剤20と、該吸着剤を収納する
断熱容器21と、該断熱容器の上部に設けた耐圧耐熱密
閉構造にした例えばガラス等の光透過部材25と、前記
耐圧、耐熱、気密構造により形成された太陽光照射空間
兼吸脱着空間22とより構成したもので、図6に示すよ
うに、太陽光23が照射する昼間においては図6(A)
に見るように、太陽光駆動用吸着熱交換器16では吸着
剤は加熱され脱着再生が行われ発生した冷媒蒸気(水蒸
気)24は凝縮器17に導入され凝縮用冷却水により凝
縮が行われる。一方夜間には図6(B)に見るように放
射冷却が行われ、吸着剤は冷却され吸着剤の吸着能力が
発生増大する。ここで、前記凝縮器17を蒸発器として
作動させることにより蒸発器での蒸発が行われ、発生し
た水蒸気24は吸着剤に吸着され、その蒸発器の蒸発過
程において冷熱が生成される。上記機能を持つ太陽光駆
動用吸着熱交換器は環境温度で十分作動することが要求
され、この点、黒色のグラファイトを使用した本発明の
成形用吸着剤を使用した場合はその期待効果は大なるも
のがある。
FIG. 5 is a schematic diagram showing a schematic configuration of an adsorption heat exchanger for driving sunlight using the adsorbent for molding of the present invention. As shown in the figure, the adsorption heat exchanger 16 for driving sunlight of the present invention comprises a molded adsorbent 20, a heat insulating container 21 for containing the adsorbent, and a pressure-resistant heat-resistant sealed structure provided on the upper part of the heat insulating container. For example, as shown in FIG. 6, the light transmitting member 25 is made of glass or the like, and the solar light irradiation space and the adsorption / desorption space 22 formed by the pressure resistance, heat resistance, and airtight structure. Fig. 6 (A) during the daytime
As can be seen from the above, in the solar heat adsorption heat exchanger 16, the adsorbent is heated and desorbed and regenerated, and the generated refrigerant vapor (water vapor) 24 is introduced into the condenser 17 and is condensed by the condensing cooling water. On the other hand, at night, radiant cooling is performed as shown in FIG. 6 (B), and the adsorbent is cooled to increase the adsorbent adsorption capacity. Here, by operating the condenser 17 as an evaporator, evaporation in the evaporator is performed, the generated water vapor 24 is adsorbed by the adsorbent, and cold heat is generated in the evaporation process of the evaporator. The adsorption heat exchanger for solar driving having the above function is required to operate sufficiently at ambient temperature, and in this regard, the expected effect is large when the molding adsorbent of the present invention using black graphite is used. There is something.

【0030】[0030]

【発明の効果】上記成形吸着剤の構成により伝熱性能を
向上させることができ、また本接着剤の使用した吸着熱
交換器の構成により、再生温度の上昇、吸着温度の低下
を招来させることができ、サイクル冷媒循環量の増加を
もたらし、冷凍能力の向上を図ることができる。また、
吸着再生サイクル時間の短縮が可能となり、熱交換器の
コンパクト化を図ることができる。また、太陽光駆動用
吸着熱交換器においても、本発明の成形用吸着剤の使用
により効率のアップを図ることができる。
As described above, the heat transfer performance can be improved by the structure of the molded adsorbent, and the regeneration heat and the adsorption temperature can be lowered by the structure of the adsorption heat exchanger using the present adhesive. As a result, the cycle refrigerant circulation amount is increased, and the refrigeration capacity can be improved. Also,
The adsorption regeneration cycle time can be reduced, and the heat exchanger can be made more compact. In addition, the efficiency of the adsorption heat exchanger for driving sunlight can be improved by using the adsorbent for molding of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形用吸着剤を使用して浸漬成形をし
て一体構造とした吸着熱交換器の概略の構成を示す斜視
図である。
FIG. 1 is a perspective view showing a schematic configuration of an adsorption heat exchanger formed as an integral structure by immersion molding using the molding adsorbent of the present invention.

【図2】本発明の成形用吸着剤を使用して型成形して一
体構造とした吸着熱交換器の概略の構成を示す斜視図で
ある。
FIG. 2 is a perspective view showing a schematic configuration of an adsorption heat exchanger integrally formed by molding using the molding adsorbent of the present invention.

【図3】本発明の成形用吸着剤を使用した場合の吸着熱
交換器の吸着特性を示す図である。
FIG. 3 is a view showing the adsorption characteristics of an adsorption heat exchanger when the molding adsorbent of the present invention is used.

【図4】従来の破砕シリカゲルを使用した吸着熱交換器
の吸着特性を示す図である。
FIG. 4 is a view showing the adsorption characteristics of an adsorption heat exchanger using conventional crushed silica gel.

【図5】本発明の成形用吸着剤を使用した太陽光駆動用
吸着熱交換器の概略の構成を示す図である。
FIG. 5 is a view showing a schematic configuration of an adsorption heat exchanger for driving sunlight using the adsorbent for molding of the present invention.

【図6】太陽光駆動用吸着熱交換器の作動状況を示す該
略図で、(A)は昼間の作動状況を示し、(b)は夜間
の作動状況を示す図である。
FIGS. 6A and 6B are schematic diagrams illustrating an operation state of the solar heat adsorption heat exchanger, in which FIG. 6A illustrates an operation state in daytime and FIG. 6B illustrates an operation state in nighttime.

【図7】従来の吸着式冷凍機の概略の構成を示す図であ
る。
FIG. 7 is a diagram showing a schematic configuration of a conventional adsorption refrigerator.

【図8】従来の吸着熱交換器の概略の構成を示す図で、
(A)はプレート熱伝導タイプを示し、(B)はパイプ
及びフィン熱伝導タイプを示す図である。
FIG. 8 is a diagram showing a schematic configuration of a conventional adsorption heat exchanger.
(A) shows a plate heat conduction type, and (B) shows a pipe and fin heat conduction type.

【符号の説明】[Explanation of symbols]

10 伝熱菅 11 フィン 12 型成形吸着剤層 13 溝 14 浸漬成形吸着剤層 15a、15b 一体構造の吸着熱交換器 16 太陽光駆動用吸着熱交換器 17 凝縮器 20 成形吸着剤 21 断熱容器 22 太陽光照射空間兼吸脱着空間 DESCRIPTION OF SYMBOLS 10 Heat transfer tube 11 Fin 12 Molding adsorbent layer 13 Groove 14 Immersion adsorbing agent layer 15a, 15b Adsorption heat exchanger of integral structure 16 Adsorption heat exchanger for driving solar light 17 Condenser 20 Molding adsorbent 21 Heat insulation container 22 Solar irradiation space and absorption / desorption space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 雅博 東京都中央区日本橋室町四丁目1番21号 水澤化学工業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahiro Ito Mizusawa Chemical Industry Co., Ltd. 4-1-1, Nihonbashi Muromachi, Chuo-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸着式冷凍機用吸着剤において、シリカ
ゲルとグラファイトと有機バインダーと無機バインダー
とを混合し水を 添加し分散させてスラリー状ないしペースト状に構成し
たことを特徴する成形用吸着剤。
1. An adsorbent for an adsorption type refrigerator, wherein silica gel, graphite, an organic binder and an inorganic binder are mixed, water is added and dispersed to form a slurry or paste. .
【請求項2】 伝熱パイプと伝熱フィンとを備えた熱交
換器において、請求項1記載のスラリー状成形用吸着剤
に浸漬風乾後、略70℃前後の乾燥処理により、前記吸
着剤を浸漬成形させたことを特徴とする一体成形構造の
吸着熱交換器。
2. A heat exchanger comprising a heat transfer pipe and heat transfer fins, wherein the adsorbent is immersed in the slurry-form forming adsorbent according to claim 1, air-dried, and then dried at about 70 ° C. to remove the adsorbent. An adsorption heat exchanger having an integrally molded structure characterized by being immersed.
【請求項3】 伝熱パイプと伝熱フィンとを備えた熱交
換器において、請求項1記載のペースト状成形用吸着剤
によりペースト加工風乾後、略70℃前後の型乾燥処理
により、前記吸着剤を型成形したことを特徴とする一体
成形構造の吸着熱交換器。
3. A heat exchanger comprising a heat transfer pipe and heat transfer fins, wherein the paste is air-dried with the adsorbent for forming a paste according to claim 1, and then subjected to a mold drying process at about 70 ° C. to perform the adsorption. An adsorption heat exchanger having an integrally molded structure, characterized in that the agent is molded.
【請求項4】 請求項1記載の成形用吸着剤より所定形
状に成形乾燥した成形吸着剤と、該吸着剤を下部に収納
し上部に太陽光の照射空間兼冷媒蒸気の吸脱着空間を形
成する断熱性部材よりなる容器とより、構成したことを
特徴とする太陽光駆動用吸着熱交換器。
4. A molded adsorbent molded and dried into a predetermined shape from the adsorbent for molding according to claim 1, and the adsorbent is housed in a lower portion to form a solar irradiation space and a refrigerant vapor adsorption / desorption space in an upper portion. An adsorption heat exchanger for driving sunlight, comprising a container made of a heat insulating member.
JP11342997A 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same Expired - Fee Related JP3634114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11342997A JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11342997A JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10286460A true JPH10286460A (en) 1998-10-27
JP3634114B2 JP3634114B2 (en) 2005-03-30

Family

ID=14612013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11342997A Expired - Fee Related JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3634114B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
JP2007132614A (en) * 2005-11-11 2007-05-31 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing process
JP2008111608A (en) * 2006-10-31 2008-05-15 Denso Corp Adsorption module and method of manufacturing adsorption module
JP2008121912A (en) * 2006-11-08 2008-05-29 Denso Corp Adsorption module and manufacturing method of adsorption module
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
WO2009017039A1 (en) 2007-07-27 2009-02-05 Mitsubishi Electric Corporation Heat exchanger, method of producing the heat exchanger
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
JP2010530953A (en) * 2007-06-22 2010-09-16 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Components of a solar adsorption refrigeration system and methods for making such components
JP2010270972A (en) * 2009-05-21 2010-12-02 Daikin Ind Ltd Heat exchanger and method of manufacturing the same
US7997098B2 (en) * 2004-04-28 2011-08-16 Daikin Industries, Ltd. Adsorption heat exchanger with varying adsorbent
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same
WO2011132527A1 (en) 2010-04-22 2011-10-27 三菱樹脂株式会社 Adsorptive member and device using same
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
JP2012083015A (en) * 2010-10-08 2012-04-26 Fuji Silysia Chemical Ltd Adsorption heat pump
JP2012519072A (en) * 2009-03-03 2012-08-23 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Aluminum strip coated with sorbent
JP2014188508A (en) * 2013-03-28 2014-10-06 Jfe Steel Corp Gas separation method
EP2792989A1 (en) 2013-04-15 2014-10-22 Ricoh Company, Ltd. Reaction material formed body and heat storage and release unit
JP2015094026A (en) * 2013-11-14 2015-05-18 株式会社東芝 Oxygen reducing apparatus and refrigerator
WO2015079770A1 (en) * 2013-11-26 2015-06-04 株式会社村田製作所 Heat storage device
CN111692741A (en) * 2019-08-01 2020-09-22 浙江三花智能控制股份有限公司 Heat exchanger, preparation method thereof and heat exchange system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7997098B2 (en) * 2004-04-28 2011-08-16 Daikin Industries, Ltd. Adsorption heat exchanger with varying adsorbent
US7704305B2 (en) 2005-01-21 2010-04-27 Japan Exlan Company Limited Heat exchange module of a sorptive type and a method for the manufacture thereof
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
JP2007132614A (en) * 2005-11-11 2007-05-31 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing process
JP2008111608A (en) * 2006-10-31 2008-05-15 Denso Corp Adsorption module and method of manufacturing adsorption module
JP2008121912A (en) * 2006-11-08 2008-05-29 Denso Corp Adsorption module and manufacturing method of adsorption module
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
JP2010530953A (en) * 2007-06-22 2010-09-16 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Components of a solar adsorption refrigeration system and methods for making such components
US9132412B2 (en) 2007-06-22 2015-09-15 Entegris, Inc. Component for solar adsorption refrigeration system and method of making such component
US8539781B2 (en) 2007-06-22 2013-09-24 Advanced Technology Materials, Inc. Component for solar adsorption refrigeration system and method of making such component
WO2009017039A1 (en) 2007-07-27 2009-02-05 Mitsubishi Electric Corporation Heat exchanger, method of producing the heat exchanger
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
JP2012519072A (en) * 2009-03-03 2012-08-23 ハイドロ アルミニウム ドイチュラント ゲー エム ベー ハー Aluminum strip coated with sorbent
KR101359698B1 (en) * 2009-03-03 2014-02-07 하이드로 알루미늄 도이칠란트 게엠베하 Sorbent coated aluminum band
US10287690B2 (en) 2009-03-03 2019-05-14 Hydro Aluminium Deutschland Gmbh Sorbent-coated aluminium strip
US9297587B2 (en) 2009-05-21 2016-03-29 Daikin Industries, Ltd. Method for manufacturing a heat exchanger
JP2010270972A (en) * 2009-05-21 2010-12-02 Daikin Ind Ltd Heat exchanger and method of manufacturing the same
WO2011132527A1 (en) 2010-04-22 2011-10-27 三菱樹脂株式会社 Adsorptive member and device using same
JP2012083015A (en) * 2010-10-08 2012-04-26 Fuji Silysia Chemical Ltd Adsorption heat pump
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
JP5962917B2 (en) * 2010-10-15 2016-08-03 日本エクスラン工業株式会社 Photothermal conversion regenerated desiccant sheet, desiccant element and desiccant rotor using the sheet, and air conditioning system using the element or rotor
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same
JP2014188508A (en) * 2013-03-28 2014-10-06 Jfe Steel Corp Gas separation method
US9453659B2 (en) 2013-04-15 2016-09-27 Ricoh Company, Ltd. Reaction material formed body and heat storage and release unit
EP2792989A1 (en) 2013-04-15 2014-10-22 Ricoh Company, Ltd. Reaction material formed body and heat storage and release unit
JP2015094026A (en) * 2013-11-14 2015-05-18 株式会社東芝 Oxygen reducing apparatus and refrigerator
WO2015079770A1 (en) * 2013-11-26 2015-06-04 株式会社村田製作所 Heat storage device
CN111692741A (en) * 2019-08-01 2020-09-22 浙江三花智能控制股份有限公司 Heat exchanger, preparation method thereof and heat exchange system
WO2021018125A1 (en) * 2019-08-01 2021-02-04 杭州三花研究院有限公司 Heat exchanger and manufacturing method therefor, and heat exchange system
CN111692741B (en) * 2019-08-01 2021-09-28 浙江三花智能控制股份有限公司 Heat exchanger, preparation method thereof and heat exchange system
US11988464B2 (en) 2019-08-01 2024-05-21 Zhejiang Sanhua Intelligent Controls Co., Ltd. Heat exchanger, method for making heat exchanger, and heat exchange system

Also Published As

Publication number Publication date
JP3634114B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JPH10286460A (en) Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
KR102089349B1 (en) Hybrid adsorber heat exchanging device and method of manufacture
Xu et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent
Mehrabadi et al. New salt hydrate composite for low-grade thermal energy storage
Li et al. A review on development of adsorption cooling—Novel beds and advanced cycles
Srivastava et al. A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems
US5518977A (en) Adsorbent composites for sorption cooling process and apparatus
TWI668396B (en) Adsorption heat exchanger devices
KR101454099B1 (en) Zeolite containing wash coats for adsorber heat exchangers and temperature controlled adsorbers
CN102744036A (en) Activated carbon/silica-gel/cacl2 composite adsorbent material for air-conditioning applications and a method of preparing the same
US20170131007A1 (en) Adsorption heat exchanger devices
Mohapatra et al. Salt in matrix for thermochemical energy storage-A review
Kiplagat et al. Enhancement of heat and mass transfer in solid gas sorption systems
JP2004502128A (en) Adsorption refrigeration equipment
AU2001287661A1 (en) Adsorption refrigerating device
Vasiliev et al. Activated carbon fiber composites for ammonia, methane and hydrogen adsorption
Narayanan et al. Recent advances in adsorption-based heating and cooling systems
JP2013253212A (en) Molded article of chemical heat storage material and method for producing the same, and chemical heat storage apparatus
Prabakaran et al. Current State-of-the-Art in Desiccant Dehumidifiers
Clark et al. Salt hydrate-based composite materials for thermochemical energy storage
Lass-Seyoum et al. Experimental investigation on adsorption and surface characteristics of salt hydrates and hydrophobic porous matrix based composites
Rezk et al. Adsorption refrigeration
US20230332033A1 (en) Composite material for thermochemical energy storage and method of making same
WO1994011457A1 (en) Absorbent units for chemical heat pumps and process for their production
WO2005036073A1 (en) An improved solid absorbent bed and absorbent refrigeration system comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040906

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041221

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041222

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees