JP2014188508A - Gas separation method - Google Patents

Gas separation method Download PDF

Info

Publication number
JP2014188508A
JP2014188508A JP2013069665A JP2013069665A JP2014188508A JP 2014188508 A JP2014188508 A JP 2014188508A JP 2013069665 A JP2013069665 A JP 2013069665A JP 2013069665 A JP2013069665 A JP 2013069665A JP 2014188508 A JP2014188508 A JP 2014188508A
Authority
JP
Japan
Prior art keywords
gas
adsorption
gas separation
adsorbent
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013069665A
Other languages
Japanese (ja)
Other versions
JP5875548B2 (en
Inventor
Takashi Haraoka
たかし 原岡
Yoshinori Takada
吉則 高田
Masakuni Miyake
正訓 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Original Assignee
JFE Steel Corp
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Sumitomo Seika Chemicals Co Ltd filed Critical JFE Steel Corp
Priority to JP2013069665A priority Critical patent/JP5875548B2/en
Publication of JP2014188508A publication Critical patent/JP2014188508A/en
Application granted granted Critical
Publication of JP5875548B2 publication Critical patent/JP5875548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating a target gas composition contained in a mixed gas.SOLUTION: A method for separating a target gas composition from a mixed gas by gas pressure swing adsorption comprises: an adsorption process for bringing a mixed gas into contact with adsorbent layers and adsorbing a target gas composition by the adsorption layers in an adsorption tower 1 having the absorbent layers for adsorbing the target gas composition; and a desorption process for desorbing a desorption gas comprising the target gas composition adsorbed by the adsorbent layer. The adsorption tower 1 has plural adjacent gas separation chambers 14a to 14d, the adjacent gas separation chambers have airtightness and are partitioned by a partition member 12 for conduction of heat between the adjacent gas separation chambers, and further, the tower has the adsorbent layers on both sides of the partition member 12. The adsorption process is carried out in one of the adjacent two gas separation chambers in the adsorption tower 1, the desorption process is simultaneously carried out in the other gas separation chamber, and said adsorption process and desorption process are alternately repeated.

Description

本発明は、混合ガスに含まれる利用対象のガス成分(以下、「目的ガス成分」と称する)を効率的に分離することができる方法に関するものである。   The present invention relates to a method capable of efficiently separating a gas component to be used (hereinafter referred to as “target gas component”) contained in a mixed gas.

複数のガス成分を有する混合ガスから目的ガス成分を分離する場合、混合ガスを吸着剤(数mmφの球形状あるいは数mmφ×数mm長のペレット状であることが多い)が充填された容器(以下、「吸着塔」と称する)に流通させる操作が行われる。その際、例えば混合ガスが成分Aおよび成分Bの二成分からなり、目的ガス成分をAとすると、ガス成分Aを吸着剤に吸着させる場合と、目的ガス成分ではないガス成分Bを吸着剤に吸着させる場合がありうる(以下、吸着剤に吸着させるガス成分を「吸着ガス成分」と称する)。   When a target gas component is separated from a mixed gas having a plurality of gas components, the mixed gas is filled with an adsorbent (often in the form of a sphere of several mmφ or a pellet of several mmφ × several mm length) ( Hereinafter, an operation of circulating the gas to an “adsorption tower” is performed. At that time, for example, when the mixed gas is composed of two components, component A and component B, and the target gas component is A, the gas component A is adsorbed on the adsorbent, and the gas component B that is not the target gas component is used as the adsorbent. In some cases, the gas component is adsorbed by the adsorbent (hereinafter referred to as “adsorbed gas component”).

いずれの場合においても、吸着塔に混合ガスを流通させ続けると、吸着剤は吸着ガス成分で飽和して分離能力を失う。そのため、混合ガスの流通を一旦停止し、吸着剤を新しいものに交換するか、何らかの方法により吸着剤から吸着ガス成分を脱着させて、吸着剤の吸着能力を回復(「再生」とも呼ぶ)させる操作が必要となる。   In either case, if the mixed gas continues to flow through the adsorption tower, the adsorbent is saturated with the adsorbed gas component and loses the separation ability. Therefore, temporarily stop the flow of the mixed gas and replace the adsorbent with a new one, or desorb the adsorbed gas component from the adsorbent by some method to restore the adsorption capacity of the adsorbent (also called “regeneration”). Operation is required.

ここで、吸着ガス成分が利用対象ではないガス成分Bであって、混合ガスに含まれる成分Bの量が利用対象のガス成分Aに比べて相対的に微量(ppmオーダー)である場合には、吸着剤に吸着する量が少ないため、例えば1年以上の長期に亘って吸着剤を使用することが可能である。そのような場合には、吸着剤を交換することにより対処できる。   Here, when the adsorbed gas component is a gas component B that is not a utilization target and the amount of the component B contained in the mixed gas is relatively small (ppm order) as compared with the gas component A that is the utilization target. Since the amount adsorbed on the adsorbent is small, it is possible to use the adsorbent over a long period of, for example, one year or longer. Such a case can be dealt with by replacing the adsorbent.

一方、ガス成分AおよびBの双方ともに数体積%〜数十体積%の濃度を有する場合には、吸着剤に吸着するガス成分の量が双方ともに多いため、吸着剤の交換による再生では、吸着剤の交換を頻繁に行う必要があり、吸着剤のコストも大きくなる。よって、吸着剤の交換とは別の再生操作が必要となる。   On the other hand, when both the gas components A and B have a concentration of several volume% to several tens volume%, the amount of the gas component adsorbed on the adsorbent is both large. It is necessary to frequently change the adsorbent, and the cost of the adsorbent increases. Therefore, a regeneration operation different from the replacement of the adsorbent is required.

そのため、混合ガスから目的ガス成分を分離する際には、吸着剤に吸着ガス成分を吸着させる操作(以下、「吸着工程」と称する)と、吸着剤から吸着ガス成分を脱着させて吸着剤を再生する操作(以下、「脱着工程」と称する)とを繰り返し行う。こうして混合ガスから目的ガス成分を分離する方法として、吸着剤の温度変化で行う温度スイング吸着法(Temperature Swing Adsorption Method,TSA法)、ガスの圧力変化で行う圧力スイング吸着法(Pressure Swing Adsorption Method,PSA法)、圧力および温度をともに変化させるPTSA法(Pressure−Temperature Swing Adsorption Method,PTSA法)、さらには脱着時に減圧するVPSA法(Vacuum Pressure Swing Adsorption Method,VPSA法)がある。   Therefore, when the target gas component is separated from the mixed gas, an operation for adsorbing the adsorbed gas component on the adsorbent (hereinafter referred to as “adsorption step”), the adsorbed gas component is desorbed from the adsorbent, and the adsorbent is removed. The operation of regenerating (hereinafter referred to as “desorption process”) is repeated. As a method for separating the target gas component from the mixed gas in this manner, a temperature swing adsorption method (TSA method) that is performed by changing the temperature of the adsorbent, a pressure swing adsorption method that is performed by changing the pressure of the gas (Pressure Swing Adsorption Method, PSA method), PTSA method (Pressure-Temperature Swing Adsorption Method, PTSA method) for changing both pressure and temperature, and VPSA method (Vacuum Pressure Swing Adsorption Method, VPSA method) for reducing pressure during desorption.

これらの方法のうち、TSA法は吸着剤の加熱と除熱に時間を要するため、除湿や揮発性有機化合物等の微量成分の除去といった、比較的長時間で運転する用途に限定される傾向にある。これに対して、処理対象の混合ガスに含まれる各成分の濃度が数体積%〜数十体積%のオーダーを有する多成分ガスの分離(「バルク分離」とも称される)には、吸着工程と脱着工程を短時間で切り替えることによって、吸着剤使用量の相対的な増大を避けることのできるPSA法やVPSA法が用いられるのが主流である。   Among these methods, the TSA method requires time to heat and remove the adsorbent, and therefore tends to be limited to applications that operate for a relatively long time, such as dehumidification and removal of trace components such as volatile organic compounds. is there. On the other hand, in the separation of multi-component gas (also referred to as “bulk separation”) in which the concentration of each component contained in the mixed gas to be processed is on the order of several volume% to several tens volume%, an adsorption step It is the mainstream to use the PSA method and the VPSA method, which can avoid the relative increase in the amount of adsorbent used by switching the desorption process in a short time.

ところで、より少ない吸着剤を効率的に使用するためには、吸着工程においては、より多くの吸着ガス成分を吸着剤に吸着させるのが望ましく、逆に、脱着工程においては、より多くの吸着ガス成分を吸着剤から脱着させることが望ましい。図1は、PSA法における混合ガスの圧力と吸着剤に吸着する吸着ガス成分の吸着量との関係を示す図である。図1(a)に示すように、吸着剤への吸着ガス成分の吸着量は、吸着塔に導入する混合ガスの圧力が高いほど多くなる傾向があるとともに、吸着量は温度に依存し、吸着剤の温度が上昇するにつれて吸着量は少なくなる傾向にある。   By the way, in order to use less adsorbent efficiently, it is desirable to adsorb more adsorbed gas components to the adsorbent in the adsorption process, and conversely, more adsorbed gas in the desorption process. It is desirable to desorb the components from the adsorbent. FIG. 1 is a diagram showing the relationship between the pressure of a mixed gas and the amount of adsorption of an adsorbed gas component adsorbed on an adsorbent in the PSA method. As shown in FIG. 1 (a), the adsorption amount of the adsorbed gas component to the adsorbent tends to increase as the pressure of the mixed gas introduced into the adsorption tower increases, and the adsorption amount depends on the temperature. The amount of adsorption tends to decrease as the temperature of the agent increases.

例えば、吸着剤の温度が吸着工程および脱着工程の双方においてTである場合、図1(b)に示すように、吸着工程および脱着工程により混合ガスから分離される吸着ガス成分の量Qは、温度Tに対する混合ガスの圧力と吸着量との関係に基づいて、吸着工程における混合ガスの圧力Pと脱着工程における混合ガスの圧力Pとの差で決定される。 For example, when the temperature of the adsorbent is T 2 in both the adsorption step and the desorption step, as shown in FIG. 1B, the amount Q of the adsorbed gas component separated from the mixed gas by the adsorption step and the desorption step is , based on the relationship between the pressure and suction amount of the mixed gas with respect to the temperature T 2, it is determined by the difference between the pressure P D of the mixed gas at a pressure P a and the desorption step of the gas mixture in the adsorption step.

しかしながら、実際のガス分離処理においては、吸着工程において、吸着ガス成分が吸着剤に吸着する際には、吸着エネルギー(以下、「吸着熱」と称する)が放出されるために吸着剤の温度が上昇し(例えばTからTに)、図1(c)に示すように、吸着剤への吸着ガス成分の吸着量が少なくなる方向に働く。 However, in the actual gas separation process, when the adsorbed gas component is adsorbed on the adsorbent in the adsorption process, the adsorption energy (hereinafter referred to as “adsorption heat”) is released, so that the temperature of the adsorbent is reduced. elevated (e.g. from T 2 to T 3), as shown in FIG. 1 (c), it acts in a direction in which the adsorption amount decreases the adsorbed gas component to the adsorbent.

一方、脱着工程において、吸着ガス成分が吸着剤から脱着する際には、吸着熱を吸収するために吸着剤の温度が低下し(例えばTからTに)、図1(c)に示すように、吸着剤からの吸着ガス成分の吸着量は多くなり、脱着量が減る方向に働く。これらの結果、実際のガス分離処理においては、吸着剤に吸脱着させて分離することのできる吸着ガス成分の量Qは、図1(b)に示した、吸着剤の温度が一定であった場合に比べて相対的に少なくなる問題がある。さらに、脱着工程における吸着剤の温度低下は、吸着ガス成分の脱着速度を遅くさせることになり、脱着工程の所要時間が延びてプロセス全体の所要時間も長くなってしまうことも問題となっていた。 On the other hand, when the adsorbed gas component is desorbed from the adsorbent in the desorption step, the temperature of the adsorbent decreases (for example, from T 2 to T 1 ) to absorb the heat of adsorption, as shown in FIG. As described above, the adsorption amount of the adsorbed gas component from the adsorbent increases, and the desorption amount decreases. As a result, in the actual gas separation treatment, the amount Q of the adsorbed gas component that can be separated by adsorbing and desorbing to the adsorbent is the same as the adsorbent temperature shown in FIG. There is a problem of relatively less than the case. Furthermore, a decrease in temperature of the adsorbent in the desorption process slows the desorption speed of the adsorbed gas component, which increases the time required for the desorption process and increases the time required for the entire process. .

このような背景の下、特許文献1には、多数の吸着塔を1つの同一の水槽内に入れて互いに伝熱関係にさせて、吸着工程において発生した熱を脱着工程にある吸着塔に伝熱させることにより、吸着工程と脱着工程における温度変化を低減する技術について記載されている。   Under such a background, Patent Document 1 discloses that a large number of adsorption towers are placed in the same water tank and are in a heat transfer relationship with each other, and heat generated in the adsorption process is transferred to the adsorption tower in the desorption process. It describes a technique for reducing temperature changes in the adsorption process and the desorption process by heating.

特開平7−178308号公報JP 7-178308 A

しかしながら、特許文献1に記載の技術では、吸着工程において発生した熱を、吸着塔等の構造物を介して脱着工程にある吸着塔の吸着剤に伝えているため、伝熱に時間がかかるうえに、吸着剤の性能も向上しない。   However, in the technique described in Patent Document 1, since heat generated in the adsorption process is transmitted to the adsorbent of the adsorption tower in the desorption process via a structure such as an adsorption tower, heat transfer takes time. Furthermore, the performance of the adsorbent is not improved.

このように、従来技術では、混合ガスに含まれる目的ガス成分を依然として効率的に分離することができず、この問題を解決する方途の提案が希求されていた。
そこで、本発明の目的は、混合ガスに含まれる目的ガス成分を効率的に分離することができるガス分離方法を提供することにある。
Thus, in the prior art, the target gas component contained in the mixed gas still cannot be efficiently separated, and a proposal for a way to solve this problem has been desired.
Then, the objective of this invention is providing the gas separation method which can isolate | separate the target gas component contained in mixed gas efficiently.

発明者らは、上記課題を解決する方途について鋭意検討した。実際のガス分離処理においては、上述のように、吸着工程においては吸着剤の温度が低い方が吸着性能が高いにもかかわらず、吸着熱のために吸着剤の温度が上昇し、脱着工程においては吸着剤の温度が高い方が脱着性能が高いにも関わらず、吸着熱を吸収するために吸着剤の温度が低下する。
仮に、吸着工程にある吸着塔において発生した吸着熱を脱着工程にある吸着塔に効率的に伝達させることができれば、吸着工程にある吸着塔に充填された吸着剤の温度を低下させて吸着量を増加させ、脱着工程にある吸着塔に充填された吸着剤の温度を上昇させて、脱着量を増加させることができる。
しかしながら、特許文献1に記載された技術をはじめとして、異なる吸着塔の間で、吸着工程において発生した吸着熱を脱着工程にある吸着塔の吸着剤に速やかに伝達することは、現実的には困難である。
そこで、発明者らは、吸着工程において発生した吸着熱を脱着工程にある吸着塔の吸着剤に与える別の方途について鋭意検討した。その結果、複数の隣接するガス分離室を有し、隣接するガス分離室が気密性を有するとともに隣接するガス分離室間で熱を伝える仕切部材で仕切られ、該仕切部材の両面に目的ガス成分を吸着する吸着剤層を有する吸着塔において、混合ガスを吸着剤層に接触させて目的ガス成分を吸着剤層に吸着させる吸着工程と、吸着剤層に吸着した目的ガス成分からなる脱着ガスを脱着させる脱着工程とからなり、それぞれの工程を、吸着塔における隣接する2つのガス分離室の内、一方のガス分離室において吸着工程を行うと同時に、他方のガス分離室において脱着工程を行い、吸着工程と脱着工程を交互に繰り返すことが有効であることを見出し、本発明を完成させるに到った。
The inventors diligently studied how to solve the above problems. In actual gas separation processing, as described above, in the adsorption process, the adsorbent temperature rises due to the heat of adsorption, even though the lower the adsorbent temperature, the higher the adsorption performance. Although the desorption performance is higher when the temperature of the adsorbent is higher, the temperature of the adsorbent is lowered to absorb the heat of adsorption.
If the heat of adsorption generated in the adsorption tower in the adsorption process can be efficiently transferred to the adsorption tower in the desorption process, the amount of adsorption can be reduced by lowering the temperature of the adsorbent filled in the adsorption tower in the adsorption process. And the temperature of the adsorbent packed in the adsorption tower in the desorption step can be increased to increase the desorption amount.
However, in practice, including the technique described in Patent Document 1, it is practically possible to quickly transfer the heat of adsorption generated in the adsorption process between the different adsorption towers to the adsorbent of the adsorption tower in the desorption process. Have difficulty.
Accordingly, the inventors diligently studied another way of giving the heat of adsorption generated in the adsorption process to the adsorbent of the adsorption tower in the desorption process. As a result, the gas separation chamber has a plurality of adjacent gas separation chambers, the adjacent gas separation chambers are hermetically sealed and partitioned by a partition member that transfers heat between the adjacent gas separation chambers, and target gas components are formed on both surfaces of the partition member. In an adsorption tower having an adsorbent layer that adsorbs the adsorbent layer, an adsorption process in which a mixed gas is brought into contact with the adsorbent layer and the target gas component is adsorbed on the adsorbent layer, and a desorption gas comprising the target gas component adsorbed on the adsorbent layer A desorption step for desorption, and each step is performed in one gas separation chamber of two adjacent gas separation chambers in the adsorption tower, and at the same time, a desorption step is performed in the other gas separation chamber, It has been found that it is effective to alternately repeat the adsorption process and the desorption process, and the present invention has been completed.

すなわち、本発明の要旨構成は以下の通りである。
(1)圧力スイング吸着法により混合ガスから目的ガス成分を分離する方法であって、
複数の隣接するガス分離室を有し、隣接するガス分離室が気密性を有するとともに前記隣接するガス分離室間で熱を伝える仕切部材で仕切られ、該仕切部材の両面に前記目的ガス成分を吸着する吸着剤層を有する吸着塔において、前記混合ガスを前記吸着剤層に接触させて前記目的ガス成分を前記吸着剤層に吸着させる吸着工程と、前記吸着剤層に吸着した目的ガス成分からなる脱着ガスを脱着させる脱着工程とからなり、それぞれの工程を、前記吸着塔における隣接する2つのガス分離室の内、一方のガス分離室において前記吸着工程を行うと同時に、他方のガス分離室において前記脱着工程を行い、前記吸着工程と前記脱着工程を交互に繰り返すことを特徴とするガス分離方法。
That is, the gist of the present invention is as follows.
(1) A method of separating a target gas component from a mixed gas by a pressure swing adsorption method,
It has a plurality of adjacent gas separation chambers, the adjacent gas separation chambers are hermetically sealed and partitioned by a partition member that transfers heat between the adjacent gas separation chambers, and the target gas component is disposed on both surfaces of the partition member. In an adsorption tower having an adsorbent layer to be adsorbed, an adsorption step of bringing the mixed gas into contact with the adsorbent layer and adsorbing the target gas component on the adsorbent layer; and an objective gas component adsorbed on the adsorbent layer A desorption step for desorbing the desorption gas, and performing each adsorption step in one of the two adjacent gas separation chambers in the adsorption tower while simultaneously performing the adsorption step in the other gas separation chamber. The gas separation method according to claim 1, wherein the desorption step is performed and the adsorption step and the desorption step are alternately repeated.

(2)前記脱着工程の脱着速度に合わせて吸着工程で導入する混合ガス流量を定めることを特徴とする前記(1)に記載のガス分離方法。 (2) The gas separation method according to (1), wherein the flow rate of the mixed gas introduced in the adsorption step is determined in accordance with the desorption rate of the desorption step.

(3)ガス分離室の温度変化をモニターして、温度変化が小さくなる様に、吸着工程で導入する混合ガスの流量を制御することを特徴とする前記(1)に記載のガス分離方法。 (3) The gas separation method according to (1), wherein the flow rate of the mixed gas introduced in the adsorption step is controlled so that the temperature change of the gas separation chamber is monitored and the temperature change becomes small.

(4)前記仕切部材が熱伝導率50W・m−1・K−1以上である金属または炭素材料の板であることを特徴とする前記(1)〜(3)のいずれかに記載のガス分離方法。 (4) The gas according to any one of (1) to (3), wherein the partition member is a metal or carbon material plate having a thermal conductivity of 50 W · m −1 · K −1 or more. Separation method.

(5)前記吸着剤層は、前記仕切部材の上に形成された、金属または炭素材料からなる多孔質材の層の表面に吸着剤を担持したことを特徴とする前記(1)〜(4)のいずれかに記載のガス分離方法。 (5) The said adsorbent layer carried the adsorbent on the surface of the layer of the porous material which consists of a metal or a carbon material formed on the said partition member, (1)-(4) characterized by the above-mentioned. The gas separation method according to any one of the above.

(6)前記吸着剤層の厚さが50μm以下であることを特徴とする前記(1)〜(5)のいずれかに記載のガス分離方法。 (6) The gas separation method according to any one of (1) to (5), wherein the adsorbent layer has a thickness of 50 μm or less.

本発明によれば、複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは異なる工程が行われ、また、隣接するガス分離室は高い熱伝導率を有する仕切部材で仕切られるため、吸着工程において発生した吸着熱を脱着工程にある隣接するガス分離室の吸着剤層に速やかに伝達させて、混合ガスに含まれる目的ガス成分を効率的に分離することができる。   According to the present invention, in each of the plurality of gas separation chambers, a step different from the adjacent gas separation chamber among the adsorption step and the desorption step is performed, and the adjacent gas separation chamber has high thermal conductivity. Because it is partitioned by the partition member, the heat of adsorption generated in the adsorption process is quickly transmitted to the adsorbent layer in the adjacent gas separation chamber in the desorption process, thereby efficiently separating the target gas component contained in the mixed gas. Can do.

混合ガスの圧力と吸着ガス成分の吸着剤への吸着量との関係を示す図である。It is a figure which shows the relationship between the pressure of mixed gas, and the adsorption amount to the adsorption agent of an adsorption gas component. (a)本発明に係るガス分離方法に用いる吸着塔の模式図、および(b)この吸着塔におけるガス分離処理の工程表である。(A) The schematic diagram of the adsorption tower used for the gas separation method which concerns on this invention, (b) It is the process table | surface of the gas separation process in this adsorption tower. 本発明に係るガス分離方法に用いる吸着塔の内部を複数のガス分離室に仕切る仕切部材を示す図である。It is a figure which shows the partition member which partitions off the inside of the adsorption tower used for the gas separation method which concerns on this invention into a some gas separation chamber. 本発明に係るガス分離方法に用いる吸着塔の一例を示す図である。It is a figure which shows an example of the adsorption tower used for the gas separation method which concerns on this invention. 本発明に係るガス分離方法に用いる吸着塔における箱部材積層体の構成を説明する図である。It is a figure explaining the structure of the box member laminated body in the adsorption tower used for the gas separation method which concerns on this invention. ガス分離室に支持体を有する箱部材積層体を説明する図である。It is a figure explaining the box member laminated body which has a support body in a gas separation chamber. 本発明に係るガス分離方法に用いる吸着塔の別の例を示す図である。It is a figure which shows another example of the adsorption tower used for the gas separation method which concerns on this invention. (a)プレート積層体の積層構造、および(b)ガスの流通方向を説明する図である。(A) It is a figure explaining the lamination structure of a plate laminated body, and (b) the distribution direction of gas. 本発明に係るガス分離方法に用いるガス分離装置の一例を示す図である。It is a figure which shows an example of the gas separation apparatus used for the gas separation method which concerns on this invention. 本発明に係るガス分離方法に用いるガス分離装置によるガス分離操作を説明する図である。It is a figure explaining gas separation operation by the gas separation apparatus used for the gas separation method concerning the present invention. 本発明に係るガス分離方法に用いるガス分離装置によるガス分離操作を説明する図である。It is a figure explaining gas separation operation by the gas separation apparatus used for the gas separation method concerning the present invention. 本発明に係るガス分離方法に用いるガス分離装置の別の例を示す図である。It is a figure which shows another example of the gas separation apparatus used for the gas separation method which concerns on this invention. 本発明の発明例1に係るガス分離方法における吸着剤の温度変化を示す図である。It is a figure which shows the temperature change of the adsorption agent in the gas separation method which concerns on invention example 1 of this invention. 本発明の発明例2に係るガス分離方法における混合ガス導入流量を示す図である。It is a figure which shows the mixed gas introduction | transduction flow rate in the gas separation method which concerns on the example 2 of this invention. 本発明の発明例2に係るガス分離方法における吸着剤の温度変化を示す図である。It is a figure which shows the temperature change of the adsorption agent in the gas separation method which concerns on the invention example 2 of this invention. 本発明の比較例に係るガス分離方法における吸着剤の温度変化を示す図である。It is a figure which shows the temperature change of the adsorption agent in the gas separation method which concerns on the comparative example of this invention. 隣接するガス分離室間での吸着熱の流れを説明する図である。It is a figure explaining the flow of the adsorption heat between adjacent gas separation chambers.

以下、図面を参照して本発明を詳細に説明する。
図2(a)は、本発明に係るガス分離方法に用いる吸着塔の模式図を示しており、図2(b)はこの吸着塔におけるガス分離処理の工程表を示している。図2(a)に示した吸着塔1は、筐体11と、該筐体11の内部に、少なくとも1つの仕切部材12とを備え、この仕切部材12は、筐体11の内部を複数のガス分離室(図示例では4つのガス分離室14a〜14d)に仕切る。本発明に係る吸着塔1は、図3(a)に示すように、仕切部材12は、該仕切部材12に隣接する2つのガス分離室間で熱を伝え、該仕切部材12の両面に吸着剤層13が形成されている。そして、図2(b)の工程表に示すように、混合ガスを吸着剤層13に接触させて目的ガス成分を吸着剤層13に吸着させる吸着工程と、吸着剤層13に吸着した目的ガス成分からなる脱着ガスを脱着させる脱着工程とを、吸着塔1における隣接する2つのガス分離室の内、一方のガス分離室において前記吸着工程を行うと同時に、他方のガス分離室において前記脱着工程を行い、前記吸着工程と前記脱着工程を交互に繰り返すように構成されている。その結果、吸着塔1は、吸着工程で供給する混合ガスおよび脱着工程で脱着させる、目的ガス成分からなる脱着ガスの2種類のガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有する。このような構成により、一方のガス分離室(例えば14aおよび14c)において吸着工程を行なう際に、隣接するガス分離室(例えば14bおよび14d)では脱着工程を行い、際に吸着工程側において発生した吸着熱を、仕切部材12を通して脱着工程側に伝えることにより、吸着工程側のガス分離室14の温度上昇を抑制するとともに脱着工程側のガス分離室(例えば14bおよび14d)の温度低下を抑制することができる。
なお、図には示されていないが、各ガス分離室14a〜14dに混合ガスを供給し、吸着塔1の内部から吸着剤層13に吸着されなかった成分からなる吸着オフガスを排気する配管や自動弁等が適切に接続されている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 2 (a) shows a schematic diagram of an adsorption tower used in the gas separation method according to the present invention, and FIG. 2 (b) shows a process table of gas separation processing in this adsorption tower. The adsorption tower 1 shown in FIG. 2A includes a housing 11 and at least one partition member 12 inside the housing 11, and the partition member 12 includes a plurality of interiors of the housing 11. The gas is divided into gas separation chambers (four gas separation chambers 14a to 14d in the illustrated example). In the adsorption tower 1 according to the present invention, as shown in FIG. 3A, the partition member 12 transfers heat between two gas separation chambers adjacent to the partition member 12, and is adsorbed on both sides of the partition member 12. An agent layer 13 is formed. Then, as shown in the process chart of FIG. 2B, an adsorption process in which the mixed gas is brought into contact with the adsorbent layer 13 to adsorb the target gas component on the adsorbent layer 13, and the target gas adsorbed on the adsorbent layer 13 A desorption step of desorbing a desorption gas composed of components is performed in one gas separation chamber of two adjacent gas separation chambers in the adsorption tower 1 and at the same time the desorption step in the other gas separation chamber And the adsorption process and the desorption process are alternately repeated. As a result, the adsorption tower 1 is a gas adjacent to the gas separation chamber in which one of the two types of gases, the mixed gas supplied in the adsorption process and the desorption gas composed of the target gas component, which is desorbed in the desorption process, is circulated. The separation chamber has two gas flow paths for allowing the other gas to flow. With such a configuration, when the adsorption process is performed in one gas separation chamber (for example, 14a and 14c), the desorption process is performed in the adjacent gas separation chamber (for example, 14b and 14d), and this occurs on the adsorption process side. By transferring the heat of adsorption to the desorption process side through the partition member 12, the temperature increase of the gas separation chamber 14 on the adsorption process side is suppressed and the temperature decrease of the gas separation chambers (for example, 14b and 14d) on the desorption process side is suppressed. be able to.
Although not shown in the figure, a pipe for supplying a mixed gas to each of the gas separation chambers 14a to 14d and exhausting an adsorption off-gas composed of components not adsorbed by the adsorbent layer 13 from the inside of the adsorption tower 1 Automatic valve etc. are connected properly.

仕切部材12としては、熱伝導性の高い材料からなることが好ましく、その熱伝導率は50W・m-1・K-1以上であることがより好ましい。この仕切部材12としては、例えば金属や炭素材料を用いることができる。 The partition member 12 is preferably made of a material having high thermal conductivity, and the thermal conductivity is more preferably 50 W · m −1 · K −1 or more. As this partition member 12, a metal and a carbon material can be used, for example.

上述のように、仕切部材12の両面には、混合ガスに含まれる目的ガス成分を吸着する吸着剤からなる吸着剤層13が形成されている。この吸着剤層13の形成は、具体的には、仕切部材12の表面に吸着剤を塗布または接着等することにより行うことができる。例えば、仕切部材12の両面に吸着剤を塗布する場合には、吸着剤を微粉化したものをバインダーとともにスラリー化して、塗布後に乾燥および焼成する。また、電気化学的な方法やCVD法により、仕切部材12上に吸着剤を成長させて吸着剤層13を形成することもできる。吸着剤としては、吸着するガス種類に応じて、ゼオライト等の公知の吸着剤を適宜選定すればよい。吸着剤の熱伝導性は通常あまり高くないことから、吸着剤層13の厚みは50μm以下とすることが好ましい。   As described above, the adsorbent layers 13 made of the adsorbent that adsorbs the target gas component contained in the mixed gas are formed on both surfaces of the partition member 12. Specifically, the formation of the adsorbent layer 13 can be performed by applying or adhering an adsorbent to the surface of the partition member 12. For example, when an adsorbent is applied to both surfaces of the partition member 12, a finely divided adsorbent is slurried with a binder, dried and fired after application. Further, the adsorbent layer 13 can be formed by growing an adsorbent on the partition member 12 by an electrochemical method or a CVD method. As the adsorbent, a known adsorbent such as zeolite may be appropriately selected according to the type of gas to be adsorbed. Since the thermal conductivity of the adsorbent is usually not so high, the thickness of the adsorbent layer 13 is preferably 50 μm or less.

さらに、図3(b)に示すように、仕切部材12の表面に多孔質層15を設け、吸着剤を多孔質層15の表面に配置して吸着剤層13を形成することがより好ましい。これにより、図3(c)に示すように、仕切部材12の表面により多くの吸着剤を保持することができる。この多孔質層15は、高表面積かつ高熱伝導性を有する材料からなることが好ましく、仕切部材12と同様に、その熱伝導率は50W・m-1・K-1以上であることがより好ましい。多孔質層15としては、ステンレスやニッケル、銅、アルミニウム等を用いることができる。 Furthermore, as shown in FIG. 3B, it is more preferable that the porous layer 15 is provided on the surface of the partition member 12, and the adsorbent layer 13 is formed by disposing the adsorbent on the surface of the porous layer 15. Thereby, as shown in FIG. 3C, more adsorbent can be held on the surface of the partition member 12. The porous layer 15 is preferably made of a material having a high surface area and high thermal conductivity. Like the partition member 12, the thermal conductivity is more preferably 50 W · m −1 · K −1 or more. . As the porous layer 15, stainless steel, nickel, copper, aluminum, or the like can be used.

本発明においては、複数のガス分離室14a〜14dの各々において、ガス分離処理の吸着工程と脱着工程のうち、隣接するガス分離室において異なる工程が行われるように構成される。そのため、例えばガス分離室14aで吸着工程を行っている場合には、隣接するガス分離室14bでは脱着工程が行われることになる。同様に14cでは吸着工程、14dでは脱着工程が行われる。このように構成することにより、吸着塔1は、吸着工程で供給する混合ガスおよび脱着工程で脱着させる、目的ガス成分からなる脱着ガスの内、一方のガスを流通させるガス分離室に隣接するガス分離室には他方のガスを流通させる、2系統のガス流路を有することになるのである。これにより、吸着工程にあるガス分離室において発生した吸着熱は、熱伝導性の高い仕切部材12を介して、脱着工程にある隣接するガス分離室の吸着剤層13に速やかに伝達することができ、混合ガスから目的ガス成分を効率的に分離することができる。   In this invention, in each of several gas separation chamber 14a-14d, it is comprised so that a different process may be performed in an adjacent gas separation chamber among the adsorption | suction process and desorption process of gas separation processing. Therefore, for example, when the adsorption process is performed in the gas separation chamber 14a, the desorption process is performed in the adjacent gas separation chamber 14b. Similarly, an adsorption process is performed at 14c, and a desorption process is performed at 14d. By comprising in this way, the adsorption tower 1 is gas adjacent to the gas separation chamber which distribute | circulates one gas among the mixed gas supplied by an adsorption process, and the desorption gas which consists of a target gas component desorbed by a desorption process. The separation chamber has two gas flow paths through which the other gas flows. Thereby, the heat of adsorption generated in the gas separation chamber in the adsorption process can be quickly transmitted to the adsorbent layer 13 in the adjacent gas separation chamber in the desorption process via the partition member 12 having high thermal conductivity. The target gas component can be efficiently separated from the mixed gas.

次に、本発明のガス分離方法に用いる吸着塔のより具体的な構造の例を示す。なお、本発明は、ここにおいて説明されるものと同等の機能を有していればよく、特定の形状に限定されない。図4は、本発明に従う吸着塔の一例を示す図である。ここで、図4(a)は吸着塔の上面図を、図4(b)は鳥瞰図を示している。この図に示した吸着塔2は、筐体21の内部に直方体形状の複数の箱部材を積層させた箱部材積層体22を備え、箱部材積層体22に混合ガスを流通させる2本のガス導入管23aおよび23bと、箱部材積層体22から吸着オフガスを排出する2本のガス排出管24aおよび24bとを有する。   Next, an example of a more specific structure of the adsorption tower used in the gas separation method of the present invention will be shown. In addition, this invention should just have a function equivalent to what is demonstrated here, and is not limited to a specific shape. FIG. 4 is a diagram showing an example of an adsorption tower according to the present invention. Here, FIG. 4A shows a top view of the adsorption tower, and FIG. 4B shows a bird's-eye view. The adsorption tower 2 shown in this figure includes a box member laminated body 22 in which a plurality of rectangular parallelepiped box members are laminated inside a housing 21, and two gases that allow a mixed gas to flow through the box member laminated body 22. It has introduction pipes 23 a and 23 b and two gas discharge pipes 24 a and 24 b for discharging the adsorption off-gas from the box member laminate 22.

図5(a)および(b)に箱部材積層体22の形状の例を示す。図5(a)では、箱部材25は上面25a、下面25bおよび対向する1対の側面25dおよび25fが板材で構成され、他の1対の側面25cおよび25eが開口している。図5(b)では、1対の側面25dおよび25fが開口している。箱部材積層体22は、図5(a)および(b)に示すような、直方体形状を有する複数の箱部材25を、図5(c)に示すように、複数の箱部材25の隣接部において、上面25aおよび底面25bが密着するように、図5(a)および(b)の箱部材25を交互に積層させ、さらに図5(d)に示すように、箱部材25の上面25aおよび25bの内部26側の表面に吸着剤を配置して吸着剤層27を形成したものである。ここで、複数の箱部材25の少なくとも上面25aおよび底面25bは熱を伝える部材からなり、接する上面25aおよび底面25bの対が図2に示した仕切部材12をなし、箱部材25の内部26側に吸着剤層27が形成されており、図3における吸着材層13に対応する。   5A and 5B show examples of the shape of the box member laminate 22. In FIG. 5A, the box member 25 has an upper surface 25a, a lower surface 25b, and a pair of opposing side surfaces 25d and 25f made of a plate material, and the other pair of side surfaces 25c and 25e open. In FIG. 5 (b), a pair of side surfaces 25d and 25f are open. The box member laminate 22 includes a plurality of box members 25 having a rectangular parallelepiped shape as shown in FIGS. 5A and 5B, and adjacent portions of the plurality of box members 25 as shown in FIG. 5 (a) and 5 (b) are alternately laminated so that the upper surface 25a and the bottom surface 25b are in close contact with each other, and as shown in FIG. 5 (d), the upper surface 25a and An adsorbent layer 27 is formed by disposing an adsorbent on the surface of the inner side of 25b. Here, at least the upper surface 25a and the bottom surface 25b of the plurality of box members 25 are members that transmit heat, and the pair of the upper surface 25a and the bottom surface 25b in contact with each other forms the partition member 12 shown in FIG. An adsorbent layer 27 is formed on the surface, and corresponds to the adsorbent layer 13 in FIG.

また、4つの側面25c〜25fの内の対向する2つの側面(図5(a)においては25cおよび25e、図5(b)においては25dおよび25f)が開口しており、これらの開口の一方から混合ガスが内部26に導入され、他方から吸着オフガスが排出される。図5(a)に示した構造においては、開口25cから混合ガスが導入され、開口25fから吸着オフガスが排出される。この箱部材積層体22においては、開口の向き(すなわち、混合ガスが流通する向き)が、箱部材積層体22の積層された箱部材25間で交互に異なるように構成する。例えば、図5(d)に示した箱部材積層体22は、10個の箱部材25を積層させたものであるが、内部26aで吸着工程が行われる場合には、内部26bでは脱着工程が行われる。このように、箱部材25の開口の向きが交互に異なれば、吸着側および脱着側となるガス分離室の開口が揃って、流通させるガスをガス導入管23、ガス排出管24にまとめやすい構造となる。しかし、このような積層構造とせずに、開口する側面の向きを全ての箱部材25について同一にし、積層方向に1つおきの箱部材25の内部26においてガス流路が同一になるように箱部材積層体22の外部に適切に配管してもよい。   In addition, two opposing side surfaces (25c and 25e in FIG. 5A and 25d and 25f in FIG. 5B) of the four side surfaces 25c to 25f are open, and one of these openings The mixed gas is introduced into the interior 26, and the adsorption off-gas is discharged from the other side. In the structure shown in FIG. 5A, the mixed gas is introduced from the opening 25c, and the adsorption off-gas is discharged from the opening 25f. The box member laminate 22 is configured such that the opening direction (that is, the direction in which the mixed gas flows) is alternately different between the box members 25 on which the box member laminate 22 is laminated. For example, the box member laminate 22 shown in FIG. 5 (d) is obtained by laminating ten box members 25. When the adsorption process is performed in the interior 26a, the desorption process is performed in the interior 26b. Done. In this way, when the opening directions of the box members 25 are alternately different, the openings of the gas separation chambers on the adsorption side and the desorption side are aligned, and the gas to be circulated can be easily combined into the gas introduction pipe 23 and the gas discharge pipe 24. It becomes. However, without such a laminated structure, the direction of the side surface to be opened is the same for all the box members 25, and the gas flow paths are the same in the interior 26 of every other box member 25 in the lamination direction. You may pipe appropriately on the exterior of the member laminated body 22. FIG.

図4の吸着塔2における複数の箱部材25の各々の内部26は、図2に示した吸着塔1におけるガス分離室14をなす。また、複数の箱部材25の積層方向に隣接する箱部材間で接する上面25aおよび底面25bの内部26側の表面に吸着剤層27が形成されており、上面25aおよび底面25bの対が仕切部材12をなす。ここで、箱部材25の厚さが厚いとガス分離室(箱部材25の内部26)の容積当りの吸着剤量が少なく、ガス分離が非効率となるため、薄い箱部材を多数積層させるのが好ましい。   The interior 26 of each of the plurality of box members 25 in the adsorption tower 2 of FIG. 4 forms a gas separation chamber 14 in the adsorption tower 1 shown in FIG. In addition, an adsorbent layer 27 is formed on the surface on the inner side 26 of the upper surface 25a and the bottom surface 25b that are in contact with each other adjacent to each other in the stacking direction of the plurality of box members 25, and the pair of the upper surface 25a and the bottom surface 25b is a partition member. Twelve. Here, if the thickness of the box member 25 is large, the amount of adsorbent per volume of the gas separation chamber (the inside 26 of the box member 25) is small and gas separation becomes inefficient, so a large number of thin box members are stacked. Is preferred.

このような箱部材積層体22を筐体21の内部に収容し、シール部材28を図4(a)および(c)に示すように配置することにより、ガス導入管23bから混合ガスをガス導入管23b側に面した開口を持つ箱部材25の内部(例えば26a)に導入し、混合ガスに含まれる目的ガス成分を吸着剤層27に吸着させ、ガス排出管24aからガス排出管側に面した開口を持つ箱部材25の内部(例えば26b)の吸着剤層27から吸着したガス成分を脱着させて目的ガス成分を分離することができる。   Such a box member laminate 22 is accommodated in the housing 21 and the sealing member 28 is disposed as shown in FIGS. 4 (a) and 4 (c), thereby introducing a mixed gas from the gas introduction pipe 23b. It is introduced into the inside (for example, 26a) of the box member 25 having an opening facing the pipe 23b side, the target gas component contained in the mixed gas is adsorbed on the adsorbent layer 27, and the gas exhaust pipe 24a faces the gas exhaust pipe side. The target gas component can be separated by desorbing the gas component adsorbed from the adsorbent layer 27 inside the box member 25 having the opening (for example, 26b).

上述のように、箱部材積層体22においては、開口を有する側面の向きが箱部材積層体22の積層方向に隣接する箱部材間で互いに異なるように構成されているため、2本のガス導入管23のうちの一方(例えば、23a)から導入された混合ガスは、積層体22を構成する複数の箱部材25のうち、積層方向の1つおきに箱部材25の内部26に導入され、他方(例えば、23b)から導入された混合ガスは、一方(例えば、23a)から導入されなかった箱部材25の内部26に導入されることになる。   As described above, in the box member laminated body 22, the direction of the side surface having the opening is configured so that the box members adjacent to each other in the stacking direction of the box member laminated body 22 are different from each other. The mixed gas introduced from one of the tubes 23 (for example, 23a) is introduced into the interior 26 of the box member 25 every other one of the plurality of box members 25 constituting the stacked body 22, in the stacking direction. The mixed gas introduced from the other (for example, 23b) is introduced into the interior 26 of the box member 25 that has not been introduced from one (for example, 23a).

このような構成を有することにより、吸着塔2においては、積層方向に隣接する箱部材内において、吸着工程および脱着工程のうち、互いに異なる工程を同時に行うことができるようになり、吸着工程にある箱部材25の内部で発生した吸着熱を、仕切部材を構成する上面25aおよび下面25bを介して、脱着工程にある隣接する箱部材25の上面25aおよび下面25bの内部26側の表面に形成された吸着剤層27に伝達させることができ、目的ガス成分の分離を効率的に行うことができる。   By having such a configuration, in the adsorption tower 2, it becomes possible to simultaneously perform different processes among the adsorption process and the desorption process in the box members adjacent in the stacking direction. The heat of adsorption generated inside the box member 25 is formed on the surface on the inside 26 side of the upper surface 25a and the lower surface 25b of the adjacent box member 25 in the desorption process via the upper surface 25a and the lower surface 25b constituting the partition member. Therefore, the target gas component can be separated efficiently.

この吸着塔2において、吸着工程および脱着工程における内部26の圧力変化による箱部材25の変形を防ぐために、箱部材25の内部26に、箱部材25の上面25aを支持する支持体を設け、箱部材25の内部26における混合ガスの流路を保持するようにすることもできる。この支持体の個数や形状等は、上面25aを支持して混合ガスの流路を保持できるように適切に選択することができる。例えば、図6(a)に示すように、箱部材25の内部26に、波形構造を有する支持体29を波形構造の波の方向を混合ガスの流通方向を横切るように配置し、図6(b)に示した吸着塔2を構成することができる。このように構成することにより、ガスの流通を妨げることなく、箱部材25の変形を防止することができる。また、支持体29を高い熱伝導性を有する材料で構成し、その両面に吸着剤を塗布して吸着剤層を形成したり、あるいは吸着剤が表面に配された多孔質材を貼り付けたりしてもよい。   In the adsorption tower 2, in order to prevent deformation of the box member 25 due to a pressure change in the interior 26 in the adsorption process and the desorption process, a support body that supports the upper surface 25 a of the box member 25 is provided in the interior 26 of the box member 25. The flow path of the mixed gas in the inside 26 of the member 25 can also be held. The number and shape of the supports can be appropriately selected so that the upper surface 25a is supported and the mixed gas flow path can be held. For example, as shown in FIG. 6 (a), a support 29 having a corrugated structure is arranged in the interior 26 of the box member 25 so that the wave direction of the corrugated structure crosses the flow direction of the mixed gas. The adsorption tower 2 shown in b) can be constituted. With this configuration, the deformation of the box member 25 can be prevented without hindering the gas flow. Further, the support 29 is made of a material having high thermal conductivity, and an adsorbent is applied to both sides thereof to form an adsorbent layer, or a porous material having an adsorbent disposed on the surface is attached. May be.

図7は、本発明に従うガス分離方法に用いる吸着塔の別の例を示す図である。この図に示した吸着塔3は、筐体31の内部に、プレート積層体32を備え、吸着塔3の内部に混合ガスを供給する2つのガス導入口33(33aおよび33b)と、吸着塔3の内部から吸着オフガスを排出する2つのガス排出口34(34aおよび34b)とを有する。   FIG. 7 is a view showing another example of the adsorption tower used in the gas separation method according to the present invention. The adsorption tower 3 shown in this figure includes a plate stack 32 inside a housing 31, two gas inlets 33 (33 a and 33 b) for supplying a mixed gas to the inside of the adsorption tower 3, and an adsorption tower 3 has two gas discharge ports 34 (34a and 34b) for discharging the adsorption off-gas from the inside.

筐体31の内部収容されたプレート積層体32は、図7(b)および(c)に示すように、熱伝導性の高い材料からなり、4つの角部にガスを流通させるガス流通孔35a〜35dを有する矩形の仕切プレート35と、4つのガス流通孔35a〜35dのうちの互いに対角に位置する2つを囲む無端の帯状のシール部材36とを積層させたものである。ここで、シール部材36は、隣接する仕切プレートとの間で、図2に示した吸着塔1におけるガス分離室に対応する空間37を区画する。   As shown in FIGS. 7B and 7C, the plate laminate 32 housed inside the housing 31 is made of a material having high thermal conductivity, and gas circulation holes 35a for flowing gas through the four corners. A rectangular partition plate 35 having ˜35d and an endless belt-like seal member 36 that surrounds two of the four gas flow holes 35a to 35d located diagonally to each other are laminated. Here, the seal member 36 divides a space 37 corresponding to the gas separation chamber in the adsorption tower 1 shown in FIG. 2 between the adjacent partition plates.

仕切プレート35は、その両面に吸着剤層38が形成されており、従って、この仕切プレート35は、図2に示した吸着塔1における仕切部材12をなす。   Adsorbent layers 38 are formed on both sides of the partition plate 35. Therefore, the partition plate 35 forms the partition member 12 in the adsorption tower 1 shown in FIG.

シール部材36は、4つのガス流通孔35a〜35dのうちの互いに対角に位置する2つを囲み、該シール部材36を挟む2枚の仕切プレートとの間で、図2に示した吸着塔1のガス分離室14をなす空間37を区画する。ここで、シール部材36により囲まれる2つのガス流通孔の対は、積層方向に隣接するガス分離室間で互いに異なるようにする。例えば、図8(a)の右側の仕切プレート上の右側のシール部材36は、ガス流通孔35aおよび35cを囲むのに対して、図8(a)の左側の仕切プレート上の右側のシール部材36は、ガス流通孔35bおよび35dを囲むようにする。その結果、図8(b)に示すように、隣接する空間37ではガスの流通方向が異なることになる。   The sealing member 36 surrounds two of the four gas flow holes 35a to 35d that are located diagonally to each other, and between the two partition plates sandwiching the sealing member 36, the adsorption tower shown in FIG. A space 37 forming one gas separation chamber 14 is defined. Here, the pair of two gas flow holes surrounded by the seal member 36 is made different between the gas separation chambers adjacent in the stacking direction. For example, the right seal member 36 on the right partition plate in FIG. 8A surrounds the gas flow holes 35a and 35c, whereas the right seal member on the left partition plate in FIG. 8A. 36 surrounds the gas flow holes 35b and 35d. As a result, as shown in FIG. 8B, the gas flow directions are different in the adjacent spaces 37.

このようなプレート積層体32を筐体31の内部に収容し、最上部の仕切プレート35の4つのガス流通孔35aおよび35bにガス導入口33aおよび33bをそれぞれ接続し、ガス流通孔35cおよび35dにガス排出口34aおよび34bをそれぞれ接続することにより、ガス導入口33(例えば、33a)から導入された混合ガスが仕切プレート35のガス流通孔(例えば、35a)を介して空間37に導入され、仕切プレート35の表面に配置された吸着剤層38に混合ガスに含まれる目的ガス成分を吸着させ、吸着オフガスをガス流通孔(例えば、35c)を介してガス排出口34(例えば、34a)から外部に排出し、混合ガスに含まれる目的ガス成分を分離することができる。   Such a plate laminated body 32 is accommodated in the housing 31, and the gas inlets 33a and 33b are connected to the four gas circulation holes 35a and 35b of the uppermost partition plate 35, respectively. By connecting the gas outlets 34a and 34b to the gas outlets 34a and 34b, the mixed gas introduced from the gas inlet 33 (for example, 33a) is introduced into the space 37 through the gas flow holes (for example, 35a) of the partition plate 35. The target gas component contained in the mixed gas is adsorbed to the adsorbent layer 38 disposed on the surface of the partition plate 35, and the adsorption off-gas is supplied to the gas discharge port 34 (for example, 34a) through the gas flow hole (for example, 35c). The target gas component contained in the mixed gas can be separated by discharging to the outside.

より詳細には、プレート積層体32においては、シール部材36により囲まれるガス流通孔の対が積層方向に隣接するガス分離室間で互いに異なるように構成されているため、2つのガス導入口33のうちの一方(例えば、33a)から導入された混合ガスは、仕切プレート35とシール部材36により区画される複数の空間37のうち、積層方向に1つおきの空間37に導入され、他方(例えば、33b)から導入された混合ガスは、一方(例えば、33a)から導入されなかった空間37に導入されることになる。   More specifically, in the plate laminated body 32, the two gas introduction ports 33 are configured such that the pair of gas flow holes surrounded by the seal member 36 are different from each other between the gas separation chambers adjacent in the lamination direction. The mixed gas introduced from one (for example, 33a) is introduced into every other space 37 in the stacking direction among the plurality of spaces 37 partitioned by the partition plate 35 and the seal member 36, and the other ( For example, the mixed gas introduced from 33b) is introduced into the space 37 that was not introduced from one side (for example, 33a).

このような構成を有することにより、吸着塔3においては、積層方向に隣接する箱部材内において、吸着工程および脱着工程のうち、互いに異なる工程を同時に行うことができるようになり、吸着工程にある空間37の内部で発生した吸着熱を、仕切プレート35を介して、脱着工程にある隣接する空間37側の表面に形成された吸着剤層38に伝達させることができ、混合ガスに含まれる目的ガス成分を効率的に分離することができる。   By having such a configuration, in the adsorption tower 3, it becomes possible to simultaneously perform different processes among the adsorption process and the desorption process in the box members adjacent in the stacking direction. The heat of adsorption generated inside the space 37 can be transmitted via the partition plate 35 to the adsorbent layer 38 formed on the surface of the adjacent space 37 in the desorption process, and is included in the mixed gas. Gas components can be separated efficiently.

以上の吸着塔を用いることにより、吸着側の吸着剤の温度上昇および脱着側の温度低下を抑制し、混合ガスから目的ガス成分を効率的に分離することができる。   By using the above adsorption tower, the temperature increase of the adsorption agent on the adsorption side and the temperature decrease on the desorption side can be suppressed, and the target gas component can be efficiently separated from the mixed gas.

続いて、本発明に従うガス分離方法に用いるガス分離装置について説明する。図9は、本発明に係るガス分離装置の一例を示す図である。この装置50は、図4に示した吸着塔2を吸着塔52として備えるガス分離装置であって、混合ガスGを吸着塔52に供給する、ブロアや圧縮ポンプ等の送風手段51と、吸着剤層27に吸着されたガス成分を脱着させて回収する、真空ポンプ等の排気手段53とを備える。また、ガス導入管23aおよび23bから混合ガスGを吸着塔内に導入し、ガス排出管24aおよび24bから、吸着剤層27に吸着されなかったガスである吸着オフガスが排出できるように、配管、自動弁AV1〜AV6および背圧弁BPVが構成されている。 Then, the gas separation apparatus used for the gas separation method according to this invention is demonstrated. FIG. 9 is a diagram showing an example of a gas separation device according to the present invention. The device 50 is a gas separation apparatus having an adsorption tower 2 shown in FIG. 4 as an adsorption tower 52, and supplies the mixed gas G 0 in the adsorption tower 52, an air blowing means 51 such as a blower or compressor pumps, suction And an exhaust means 53 such as a vacuum pump for desorbing and collecting the gas component adsorbed on the agent layer 27. Further, the mixed gas G 0 from the gas inlet pipe 23a and 23b is introduced into the adsorption tower, the gas exhaust pipe 24a and 24b, to allow adsorption offgas exhaust a gas not adsorbed by the adsorbent layer 27, the pipe The automatic valves AV1 to AV6 and the back pressure valve BPV are configured.

この装置50を使用したガスの分離操作について、図10および図11を参照して説明する。まず、図10を参照すると、混合ガスGは、送風手段51によって送風され、自動弁AV1を介して吸着塔52の内部(ガス分離室)26に流通させられる。この時のガスの圧力は自動弁AV3の下流にある背圧弁BPVにより制御され、一定圧以上では吸着剤層27に吸着しなかった非吸着成分ガスが吸着オフガスGとして排出される。 A gas separation operation using the apparatus 50 will be described with reference to FIGS. First, referring to FIG. 10, the mixed gas G 0 is blown by the blowing means 51 is caused to flow through the inside (gas separation chamber) 26 of the adsorption tower 52 through an automatic valve AV1. The pressure at this time of the gas is controlled by a back pressure valve BPV downstream of automatic valve AV3, nonadsorbed component gas at a constant pressure or more was not adsorbed by the adsorbent layer 27 are discharged as an adsorption offgas G 1.

これと同時に、排気手段53によって自動弁AV5を介して吸着剤層27に吸着していたガス成分が脱着されて、目的ガス成分からなる脱着ガスGとして排出される。この時に、吸着工程にあるガス分離室の吸着剤層27の熱が、隣接する箱部材25の上面25aおよび下面25bを介して脱着工程にある隣接するガス分離室にある吸着剤層27に伝達される。 Simultaneously, gas components adsorbed on the adsorbent layer 27 through an automatic valve AV5 is desorbed and discharged as a desorption gas G 2 consisting of target gas component by the exhaust means 53. At this time, the heat of the adsorbent layer 27 in the gas separation chamber in the adsorption process is transferred to the adsorbent layer 27 in the adjacent gas separation chamber in the desorption process through the upper surface 25a and the lower surface 25b of the adjacent box member 25. Is done.

吸着工程にあるガス分離室内の吸着剤層27にガス成分がある程度吸着して性能が低下した時点で、図10から図11へとバルブの開閉を切り替える。図11においては、混合ガスGは、送風手段1によって送風され、自動弁AV4を介して吸着塔52のガス分離室に流通させられる。この時のガスの圧力は自動弁AV3の下流にある背圧弁BPVにより制御され、一定圧以上では吸着剤に吸着しなかった非吸着成分ガスが吸着オフガスGとして排出される。 When the gas component is adsorbed to some extent on the adsorbent layer 27 in the gas separation chamber in the adsorption process and the performance deteriorates, the opening and closing of the valve is switched from FIG. 10 to FIG. In FIG. 11, the mixed gas G 0 is blown by the blowing means 1 and is circulated into the gas separation chamber of the adsorption tower 52 via the automatic valve AV 4. The pressure at this time of the gas is controlled by a back pressure valve BPV downstream of automatic valve AV3, nonadsorbed component gas at a constant pressure or more was not adsorbed by the adsorbent is discharged as an adsorption offgas G 1.

これと同時に、排気手段53によって自動弁AV2を介して吸着剤層27に吸着していたガス成分が脱着されて脱着ガスGとして排出される。この時に、吸着工程にあるガス分離室の吸着熱が、箱部材25の上面25aおよび下面25bを介して脱着工程にある隣接するガス分離室にある吸着剤層27に伝達される。 At the same time, gas components adsorbed on the adsorbent layer 27 are discharged as a desorption gas G 2 are desorbed through the automatic valve AV2 by the exhaust means 53. At this time, the adsorption heat of the gas separation chamber in the adsorption process is transmitted to the adsorbent layer 27 in the adjacent gas separation chamber in the desorption process via the upper surface 25a and the lower surface 25b of the box member 25.

このように、ガス分離装置を構成する複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは互いに異なる工程を同時に行うことができ、吸着工程にあるガス分離室において発生した吸着熱を、仕切部材を介して脱着工程にあるガス分離室の吸着剤層に伝達させて、混合ガスから目的ガス成分を効率的に分離することができる。   In this way, in each of the plurality of gas separation chambers constituting the gas separation device, among the adsorption step and the desorption step, steps different from the adjacent gas separation chambers can be performed simultaneously, and the gas separation in the adsorption step The adsorption heat generated in the chamber can be transmitted to the adsorbent layer of the gas separation chamber in the desorption process through the partition member, so that the target gas component can be efficiently separated from the mixed gas.

また、図10および図11では混合ガスG0を吸着塔52に導入する流量は送風手段51の能力によって決まり、同様に脱着ガスG2の流量は排気手段53の能力で決まる。そのため、吸着工程にあるガス分離室において混合ガスG0に含まれる吸着ガス成分が吸着剤に吸着する量と、脱着工程にあるガス分離室において吸着ガス成分が脱着する量が同じでない場合には、吸着による発熱量と脱着による抜熱量が一致しないために吸着剤の温度が変化してしまう可能性がある。 10 and 11, the flow rate for introducing the mixed gas G 0 into the adsorption tower 52 is determined by the ability of the blowing means 51, and similarly, the flow rate of the desorption gas G 2 is determined by the ability of the exhaust means 53. Therefore, when the amount of the adsorbed gas component contained in the mixed gas G 0 in the gas separation chamber in the adsorption step is not the same as the amount of the adsorbed gas component desorbed in the gas separation chamber in the desorption step. Since the amount of heat generated by adsorption and the amount of heat removed by desorption do not match, the temperature of the adsorbent may change.

温度変化幅が大きくなると、吸着工程にあるガス分離室では、温度が高い時に吸着剤に吸着されずに吸着塔を通り抜ける吸着ガス成分の比率が増加するため、分離効率が低下する。また、脱着工程にあるガス分離室では、温度が低くなった場合に吸着ガス成分の脱着速度が低下して同様に分離効率が低下する。   When the temperature change width is increased, in the gas separation chamber in the adsorption process, the ratio of the adsorbed gas component that passes through the adsorption tower without being adsorbed by the adsorbent when the temperature is high increases, so that the separation efficiency decreases. Further, in the gas separation chamber in the desorption process, when the temperature is lowered, the desorption speed of the adsorbed gas component is decreased and the separation efficiency is similarly decreased.

そこで、吸着工程において吸着塔に導入する原料である混合ガス流量を、隣接するガス分離室での脱着速度に合わせて変化させることができれば、ガス分離室の温度変化をさらに抑制することが可能である。なお、温度変化挙動は吸着剤の性能やガス流量、脱着工程でのガス分離室の圧力などの条件によって変化するため、脱着工程の条件(脱着速度)に合わせて吸着工程で導入する混合ガス流量を定めれば良い。   Therefore, if the flow rate of the mixed gas, which is a raw material introduced into the adsorption tower in the adsorption step, can be changed according to the desorption speed in the adjacent gas separation chamber, it is possible to further suppress the temperature change in the gas separation chamber. is there. The temperature change behavior changes depending on the conditions such as the adsorbent performance, gas flow rate, and pressure in the gas separation chamber in the desorption process, so the mixed gas flow rate introduced in the adsorption process in accordance with the desorption process conditions (desorption speed) Should be determined.

図12は、混合ガスの流量を変化させて上記温度変化を抑制する本発明のガス分離方法に使用する分離装置を示している。この装置60において、混合ガスGは送風手段61によって自動弁AV1あるいはAV4を通って吸着塔62に導入されるが、それぞれの自動弁と吸着塔との間に流量計F1およびF4を設けられている。混合ガスの流量は、自動弁AV1およびAV4の開度によって変更することが可能であるため、プログラムによって、脱着速度が大きい時間は自動弁の開度を大きく設定して混合ガスの流量を大きくし、脱着速度が小さい時間は自動弁の開度を小さく設定して混合ガスの流量を小さくし、混合ガスの流量を時間で変化するように設定すれば吸着工程における温度変化をさらに抑制することが可能である。 FIG. 12 shows a separation apparatus used in the gas separation method of the present invention that suppresses the temperature change by changing the flow rate of the mixed gas. In this apparatus 60, the mixed gas G 0 is introduced into the adsorption tower 62 through the automatic valve AV1 or AV4 by blowing means 61, provided with a flow meter F1 and F4 between the respective automatic valve and the adsorption tower ing. Since the flow rate of the mixed gas can be changed depending on the opening degree of the automatic valves AV1 and AV4, the opening degree of the automatic valve is set to be large and the flow rate of the mixed gas is increased by a program when the desorption speed is high. When the desorption speed is low, the opening of the automatic valve is set to a small value to reduce the flow rate of the mixed gas, and if the flow rate of the mixed gas is set to change with time, the temperature change in the adsorption process can be further suppressed. Is possible.

さらに具体的には、まず、混合ガスの流量を一定とした条件で吸着および脱着工程を実施して温度変動プロファイルを得た後、温度が上昇傾向にある時間帯で流量を抑制し、温度が下降傾向にある時間帯では流量を増加するよう設定して吸着および脱着工程を実施する。それによって温度プロファイルが変化するため、さらに同様な調整を繰り返して温度変動がより安定するよう設定するのが望ましい。   More specifically, first, after performing the adsorption and desorption processes under the condition that the flow rate of the mixed gas is constant to obtain a temperature fluctuation profile, the flow rate is suppressed in a time zone in which the temperature tends to increase, The adsorption and desorption processes are carried out by setting the flow rate to be increased in the time zone that tends to decrease. Since the temperature profile changes accordingly, it is desirable to repeat the same adjustment and set the temperature fluctuation to be more stable.

また、これらの調整が自動的に行われるようにプログラムを組み込むことも可能である。   It is also possible to incorporate a program so that these adjustments are performed automatically.

以下、本発明の実施例について説明し、本発明の効果を示す。なお、以下の実施例により本発明の範囲は限定されない。   Examples of the present invention will be described below to show the effects of the present invention. The scope of the present invention is not limited by the following examples.

(発明例1)
1mmの板厚の金属で成型した箱型のステンレス製容器(内面が縦25cm×横25cm×高さ2cm)、および、ステンレス製粒子と樹脂粒子の混合材を成型焼結して作製した多孔質金属板(縦25cm×横25cm×厚0.7cm、比重:0.7g/cm、表面積/体積比:10000m−1、孔径:200μm)を用意し、金属製容器の上下両面に多孔質金属板を貼り付けた。これを図5(d)に示すように、開口を有する側面、つまりガスの流通方向が互いに直交するように10層積層させた。積層体を、微粉砕Na置換されたY型ゼオライト粉末をバインダーとともに懸濁させた水溶液に浸漬して、積層体を構成する金属製容器の内部(ガス分離室)に塗布し、積層体外面に塗布された吸着剤を除去した後に、200℃で5時間乾燥、300℃で24時間焼成した。ゼオライト塗布前後の積層体の重量変化から、積層体を構成する金属製容器の内部に塗布された吸着剤の量は267gであり、これより計算される平均塗布厚みは47μmであった。
(Invention Example 1)
A box-shaped stainless steel container (inner side is 25 cm long x 25 cm wide x 2 cm high) molded with a metal with a thickness of 1 mm, and a porous material prepared by molding and sintering a mixture of stainless steel particles and resin particles Prepare metal plates (length 25 cm x width 25 cm x thickness 0.7 cm, specific gravity: 0.7 g / cm 3 , surface area / volume ratio: 10000 m −1 , pore diameter: 200 μm), and porous metal on both upper and lower surfaces of a metal container I stuck the board. As shown in FIG. 5 (d), 10 layers were laminated so that the side surfaces having openings, that is, the gas flow directions were orthogonal to each other. The laminate is immersed in an aqueous solution in which finely pulverized Na-substituted Y-type zeolite powder is suspended together with a binder, and is applied to the inside (gas separation chamber) of a metal container constituting the laminate. After removing the applied adsorbent, it was dried at 200 ° C. for 5 hours and calcined at 300 ° C. for 24 hours. From the weight change of the laminate before and after the zeolite application, the amount of the adsorbent applied to the inside of the metal container constituting the laminate was 267 g, and the average coating thickness calculated from this was 47 μm.

上述のように作製したガス分離装置を用いて、混合ガスから二酸化炭素(CO)ガスを分離する処理を行った。その際、混合ガスとしては、CO:22体積%、N:78体積%の組成を有するガスを使用し、複数のガス分離室の各々において、吸着工程および脱着工程のうち、隣接するガス分離室とは異なる工程が行われるようにガスの流れを自動弁で制御して混合ガスからCOガスを分離する処理を行った。また、混合ガスは、7mol/kg−吸着剤/100secで吸着塔内を流通させ、吸着側の圧力は200kPaとなるように背圧弁を調整し、脱着側の圧力は5kPaまで真空ポンプで減圧した。また、吸着剤の温度変化を測定できるように吸着塔容器のガス導入口から熱電対を挿入して吸着剤に接触させて、上記ガス分離操作中の温度変化も測定した。温度変化は周期的な挙動を示した。温度変化を図13に示す。グラフの横軸は工程の開始時間を0secとした。温度は22〜28℃の間で変化し、0〜40sec/100〜140secでは吸着速度が脱着速度より高いため、温度は上昇傾向を示した。一方、40〜70sec/140〜170secでは吸着速度が脱着速度より低いため、温度は下降傾向を示した。70〜100sec/170〜200secでは吸着速度と脱着速度がほぼバランスするが脱着速度は徐々に低下するので、温度は漸減から漸増傾向となった。全体での温度変化幅は6℃であった。真空ポンプの排気側で99体積%濃度のCOガスが72%の回収率で得られた。 Using a gas separation device manufactured as described above, the carbon dioxide from a mixed gas (CO 2) was treated to separate gas. At that time, as the mixed gas, a gas having a composition of CO 2 : 22% by volume and N 2 : 78% by volume is used, and in each of the plurality of gas separation chambers, the adjacent gas among the adsorption process and the desorption process. The process of separating the CO 2 gas from the mixed gas was performed by controlling the gas flow with an automatic valve so that a process different from the separation chamber was performed. The mixed gas was circulated in the adsorption tower at 7 mol / kg-adsorbent / 100 sec, the back pressure valve was adjusted so that the pressure on the adsorption side was 200 kPa, and the pressure on the desorption side was reduced to 5 kPa with a vacuum pump. . Further, the temperature change during the gas separation operation was also measured by inserting a thermocouple from the gas inlet of the adsorption tower vessel so as to be able to measure the temperature change of the adsorbent and contacting the adsorbent. The temperature change showed periodic behavior. The temperature change is shown in FIG. The horizontal axis of the graph represents the process start time of 0 sec. The temperature varied between 22 and 28 ° C., and the adsorption rate was higher than the desorption rate at 0 to 40 sec / 100 to 140 sec. On the other hand, since the adsorption rate was lower than the desorption rate at 40 to 70 sec / 140 to 170 sec, the temperature showed a downward trend. At 70 to 100 sec / 170 to 200 sec, the adsorption rate and the desorption rate are almost balanced, but since the desorption rate gradually decreases, the temperature gradually increased from gradually decreasing. The overall temperature change width was 6 ° C. On the exhaust side of the vacuum pump, 99% by volume CO 2 gas was obtained with a recovery rate of 72%.

(発明例2)
発明例のガス分離装置を使用し、同じ組成の混合ガスを使用し、図14に示すように、混合ガスの吸着塔への導入流量を上記発明例1での一定流量で導入する場合を1として、時間0〜40secまでを流量0.15、40〜70secまでを流量2.3、70〜100secを流量1と変化させた。温度変化を図15に示す。グラフの横軸は吸着工程の開始時間を0secとした。温度は24.5〜25.5℃の間で変化し、温度変化幅は1.0℃であった。99体積%濃度のCOガスが75%の回収率で得られた。
(Invention Example 2)
Using the gas separation apparatus of the invention example, using a mixed gas of the same composition, and introducing the mixed gas into the adsorption tower at the constant flow rate in the invention example 1 as shown in FIG. As described above, the flow rate was changed from 0.15 for the time 0 to 40 seconds, 2.3 for the flow rate 40 to 70 seconds, and 1 for the flow rate 70 to 100 seconds. The temperature change is shown in FIG. On the horizontal axis of the graph, the start time of the adsorption process was 0 sec. The temperature varied between 24.5 and 25.5 ° C, and the temperature change width was 1.0 ° C. CO 2 gas 99 vol% concentration was obtained at 75% recovery.

(比較例)
発明例のガス分離装置を使用し、同じ組成の混合ガスを使用し、全てのガス分離室において同じ工程が行われるようにガスの流れを自動弁で制御して混合ガスからCOガスを分離する処理を行った。その他、原料である混合ガス流通量および吸着、脱着工程における圧力は上記発明例と同じ条件とした。その結果、温度変化を図16に示す。グラフの横軸は吸着工程の開始時間を0secとした。0〜100secは吸着工程にあたり、ガス分離装置には混合ガスは一定流量で導入される。そして、吸着剤に吸着するガスの量も混合ガス中の吸着するガスの比率に応じて吸着剤に吸着するために、吸着熱の発生は吸着工程を通してほぼ一定となり、図16の時間のように直線的に温度が上昇した。一方、100〜200secの脱着工程では、排気手段によってガス分離室内部のガスが排気され、ガス分離室内の圧力が低下するに従って脱着するガスの量も変化する。脱着工程は100〜200secであるが、100〜140secではガス分離室内に残留したガスが排気され、ガス分離室の圧力がある程度低下するまでは脱着するガス量はそれほど多くない。140〜170secでは脱着するガス量が最も多くなり、170〜200secでは脱着するガス量は徐々に減少する。そのため、ガス成分の脱着による吸熱にともなう温度変化は図16の時間100〜200secのような非直線的に温度が下降する傾向を示した。結果として、温度は19〜31℃の間で変化し、温度変化幅は12℃であった。99体積%濃度のCOガスが58%の回収率で得られた。このように、本発明によって温度変化が抑制されることでガスの回収率が向上し、混合ガスから所定のガス成分を効率的に分離できることが分かる。
(Comparative example)
Using the gas separation device of the invention example, using a mixed gas of the same composition, and controlling the gas flow with an automatic valve so that the same process is performed in all gas separation chambers, the CO 2 gas is separated from the mixed gas The process to do. In addition, the flow rate of the mixed gas, which is the raw material, and the pressure in the adsorption and desorption processes were set to the same conditions as in the above invention examples. As a result, the temperature change is shown in FIG. On the horizontal axis of the graph, the start time of the adsorption process was 0 sec. 0 to 100 sec corresponds to the adsorption step, and the mixed gas is introduced into the gas separation device at a constant flow rate. And since the amount of gas adsorbed to the adsorbent is also adsorbed to the adsorbent according to the ratio of the adsorbed gas in the mixed gas, the generation of heat of adsorption becomes almost constant throughout the adsorption process, as shown in the time of FIG. The temperature rose linearly. On the other hand, in the desorption process of 100 to 200 sec, the gas in the gas separation chamber is exhausted by the exhaust means, and the amount of the desorbed gas changes as the pressure in the gas separation chamber decreases. The desorption process is 100 to 200 sec. However, in 100 to 140 sec, the gas remaining in the gas separation chamber is exhausted, and the amount of desorbed gas is not so much until the pressure in the gas separation chamber is reduced to some extent. In 140 to 170 sec, the amount of gas to be desorbed is the largest, and in 170 to 200 sec, the amount of gas to be desorbed gradually decreases. Therefore, the temperature change accompanying the endotherm due to the desorption of the gas component tended to decrease in a non-linear manner such as the time of 100 to 200 sec in FIG. As a result, the temperature changed between 19 and 31 ° C., and the temperature change width was 12 ° C. 99 volume% concentration of CO 2 gas was obtained with a recovery rate of 58%. Thus, it can be seen that the temperature recovery is suppressed by the present invention, whereby the gas recovery rate is improved, and a predetermined gas component can be efficiently separated from the mixed gas.

1,2,3,52,62 吸着塔
11,21,31 筐体
12 仕切部材
13,27,38 吸着剤
14,14a,14b,14c,14d ガス分離室
15 多孔質層
22 箱部材積層体
23,23a,23b ガス導入管
24,24a,24b ガス排出管
25 箱部材
25a 上面
25b 下面
25c,25d,25e,25f 側面
26 内部
28,36 シール部材
29 支持体
32 プレート積層体
33,33a,33b ガス導入口
34,34a,34b ガス排出口
35 仕切プレート
35a,35b,35c,35d ガス流通孔
37 空間
50,60 ガス分離装置
51,61 送風手段
53,63 排気手段
101 吸着ガス分子
混合ガス
吸着オフガス
脱着ガス
AV1,AV2,AV3,AV4,AV5,AV6 自動弁
F1,F4 流量計
BVP 背圧弁
1, 2, 3, 52, 62 Adsorption towers 11, 21, 31 Housing 12 Partition members 13, 27, 38 Adsorbents 14, 14a, 14b, 14c, 14d Gas separation chamber 15 Porous layer 22 Box member laminate 23 , 23a, 23b Gas introduction pipes 24, 24a, 24b Gas discharge pipe 25 Box member 25a Upper surface 25b Lower surface 25c, 25d, 25e, 25f Side surface 26 Inner 28, 36 Seal member 29 Support body 32 Plate laminate 33, 33a, 33b Gas Inlet 34, 34a, 34b Gas outlet 35 Partition plates 35a, 35b, 35c, 35d Gas flow hole 37 Space 50, 60 Gas separators 51, 61 Blowing means 53, 63 Exhaust means 101 Adsorbed gas molecules G 0 Mixed gas G 1 Adsorption off gas G 2 Desorption gas AV1, AV2, AV3, AV4, AV5, AV6 Automatic valve F1, F4 Flow meter B VP back pressure valve

Claims (6)

圧力スイング吸着法により混合ガスから目的ガス成分を分離するに際し、前記混合ガスを前記吸着剤層に接触させて前記目的ガス成分を前記吸着剤層に吸着させる吸着工程と、 前記吸着剤層に吸着した目的ガス成分からなる脱着ガスを脱着させる脱着工程と、を交互に繰り返す方法であって、複数の隣接するガス分離室を有し、隣接するガス分離室が気密性を有するとともに前記隣接するガス分離室間で熱を伝える仕切部材で仕切られ、該仕切部材の両面に前記目的ガス成分を吸着する吸着剤層を有する吸着塔において、前記隣接する2つのガス分離室の内、一方のガス分離室において前記吸着工程を行うと同時に、他方のガス分離室において前記脱着工程を行い、前記仕切部材を通して、吸着工程側から脱着工程側に熱を伝えて吸着工程側の吸着剤層の温度上昇および脱着工程側の吸着剤層の温度低下を抑制することを特徴とするガス分離方法。   When separating the target gas component from the mixed gas by the pressure swing adsorption method, an adsorption step of bringing the mixed gas into contact with the adsorbent layer and adsorbing the target gas component to the adsorbent layer; adsorbing to the adsorbent layer And a desorption step of desorbing a desorption gas composed of a target gas component, wherein the desorption step has a plurality of adjacent gas separation chambers, the adjacent gas separation chambers are airtight and the adjacent gas In an adsorption tower partitioned by a partition member that transfers heat between the separation chambers and having an adsorbent layer that adsorbs the target gas component on both surfaces of the partition member, one of the two adjacent gas separation chambers is separated by gas At the same time as performing the adsorption step in the chamber, the desorption step is performed in the other gas separation chamber, and heat is transferred from the adsorption step side to the desorption step side through the partition member. Gas separation method characterized by suppression of temperature reduction in the temperature rise and the desorption step side of the adsorbent layer of the adsorbent layer. 前記脱着工程の脱着速度に合わせて吸着工程で導入する混合ガス流量を定めることを特徴とする請求項1に記載のガス分離方法。   The gas separation method according to claim 1, wherein a flow rate of the mixed gas introduced in the adsorption step is determined in accordance with a desorption rate in the desorption step. ガス分離室の温度変化をモニターして、温度変化が小さくなる様に、吸着工程で導入する混合ガスの流量を制御することを特徴とする請求項1に記載のガス分離方法。   The gas separation method according to claim 1, wherein the flow rate of the mixed gas introduced in the adsorption step is controlled so that the temperature change becomes small by monitoring the temperature change in the gas separation chamber. 前記仕切部材が熱伝導率50W・m−1・K−1以上である金属または炭素材料の板であることを特徴とする請求項1〜3のいずれかに記載のガス分離方法。 The gas separation method according to claim 1, wherein the partition member is a metal or carbon material plate having a thermal conductivity of 50 W · m −1 · K −1 or more. 前記吸着剤層は、前記仕切部材の上に形成された、金属または炭素材料からなる多孔質材の層の表面に吸着剤を担持したことを特徴とする請求項1〜4のいずれかに記載のガス分離方法。   The said adsorbent layer carry | supported the adsorbent on the surface of the layer of the porous material which consists of a metal or a carbon material and was formed on the said partition member. Gas separation method. 前記吸着剤層の厚さが50μm以下であることを特徴とする請求項1〜5のいずれかに記載のガス分離方法。
The gas separation method according to claim 1, wherein the adsorbent layer has a thickness of 50 μm or less.
JP2013069665A 2013-03-28 2013-03-28 Gas separation method Active JP5875548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013069665A JP5875548B2 (en) 2013-03-28 2013-03-28 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069665A JP5875548B2 (en) 2013-03-28 2013-03-28 Gas separation method

Publications (2)

Publication Number Publication Date
JP2014188508A true JP2014188508A (en) 2014-10-06
JP5875548B2 JP5875548B2 (en) 2016-03-02

Family

ID=51835392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069665A Active JP5875548B2 (en) 2013-03-28 2013-03-28 Gas separation method

Country Status (1)

Country Link
JP (1) JP5875548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107620A (en) * 2014-07-25 2014-10-22 西安交通大学 CO2 purifying structure of solid amine embedded metallic aluminum foam
US11148093B2 (en) 2016-12-05 2021-10-19 Ihi Corporation Gas concentrator

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138060A (en) * 1976-04-19 1977-11-17 Mitsui Toatsu Chem Inc Adsorption apparatus
JPS5419548A (en) * 1977-07-13 1979-02-14 Nichias Corp Regenrating type rotary dehumidifying element
JPS5592122A (en) * 1978-12-28 1980-07-12 Daido Steel Co Ltd Method and apparatus for adsorption
JPS5881422A (en) * 1981-11-11 1983-05-16 Hidenobu Toyotomi Adsorptive separation of air
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS6415115A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Pressure swing type adsorption device
JPH04305217A (en) * 1991-03-30 1992-10-28 Nippon Sanso Kk Gas adsorbing and separating device and method
JPH0584418A (en) * 1991-08-28 1993-04-06 Hitachi Ltd Pretreatment of air separator and equipment therefor
JPH07178308A (en) * 1993-12-24 1995-07-18 Mitsubishi Heavy Ind Ltd Gas separating and recovering device
JPH07301469A (en) * 1994-05-02 1995-11-14 Kobe Steel Ltd Adsorption type refrigerator
JPH08200876A (en) * 1995-01-20 1996-08-06 Mitsubishi Heavy Ind Ltd Adsorbing/desorbing element, integrating method, and adsorbing freezer
JPH10286460A (en) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
JPH1119448A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Air quality activation device
JPH1192110A (en) * 1997-09-12 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Ozone adsorbing-desorbing unit and method for controlling temperature of the same
JP2007245025A (en) * 2006-03-16 2007-09-27 Mitsubishi Chemicals Corp Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
JP2010207750A (en) * 2009-03-11 2010-09-24 Advan Riken:Kk Pressure-swing adsorption type gas generation apparatus
JP2011177638A (en) * 2010-02-27 2011-09-15 Jfe Steel Corp Gas separation method and apparatus using pressure swing adsorption process

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138060A (en) * 1976-04-19 1977-11-17 Mitsui Toatsu Chem Inc Adsorption apparatus
JPS5419548A (en) * 1977-07-13 1979-02-14 Nichias Corp Regenrating type rotary dehumidifying element
JPS5592122A (en) * 1978-12-28 1980-07-12 Daido Steel Co Ltd Method and apparatus for adsorption
JPS5881422A (en) * 1981-11-11 1983-05-16 Hidenobu Toyotomi Adsorptive separation of air
JPS6186935A (en) * 1984-10-05 1986-05-02 Kawasaki Heavy Ind Ltd Reactor and operation of fuel battery by using the same
JPS6415115A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Pressure swing type adsorption device
JPH04305217A (en) * 1991-03-30 1992-10-28 Nippon Sanso Kk Gas adsorbing and separating device and method
JPH0584418A (en) * 1991-08-28 1993-04-06 Hitachi Ltd Pretreatment of air separator and equipment therefor
JPH07178308A (en) * 1993-12-24 1995-07-18 Mitsubishi Heavy Ind Ltd Gas separating and recovering device
JPH07301469A (en) * 1994-05-02 1995-11-14 Kobe Steel Ltd Adsorption type refrigerator
JPH08200876A (en) * 1995-01-20 1996-08-06 Mitsubishi Heavy Ind Ltd Adsorbing/desorbing element, integrating method, and adsorbing freezer
JPH10286460A (en) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
JPH1119448A (en) * 1997-06-30 1999-01-26 Sanyo Electric Co Ltd Air quality activation device
JPH1192110A (en) * 1997-09-12 1999-04-06 Ishikawajima Harima Heavy Ind Co Ltd Ozone adsorbing-desorbing unit and method for controlling temperature of the same
JP2007245025A (en) * 2006-03-16 2007-09-27 Mitsubishi Chemicals Corp Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
JP2010207750A (en) * 2009-03-11 2010-09-24 Advan Riken:Kk Pressure-swing adsorption type gas generation apparatus
JP2011177638A (en) * 2010-02-27 2011-09-15 Jfe Steel Corp Gas separation method and apparatus using pressure swing adsorption process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107620A (en) * 2014-07-25 2014-10-22 西安交通大学 CO2 purifying structure of solid amine embedded metallic aluminum foam
US11148093B2 (en) 2016-12-05 2021-10-19 Ihi Corporation Gas concentrator

Also Published As

Publication number Publication date
JP5875548B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US8852322B2 (en) Gas purification process utilizing engineered small particle adsorbents
US8268043B2 (en) Modular compact adsorption bed
US9011583B2 (en) Article for CO2 capture having heat exchange capability
US8500856B2 (en) Hybrid adsorbent method of capturing carbon dioxide in gas and apparatus for capturing carbon dioxide in gas
JP2014529498A (en) Thermally integrated adsorption / desorption system and method
US10363516B2 (en) Flexible adsorbents for low pressure drop gas separations
JPWO2009069772A1 (en) Ozone concentrator
KR20190075127A (en) Parallel channel contactor and sorbent gas separation method
JP5875548B2 (en) Gas separation method
JP2016043349A (en) Moisture removing monomer, separate-layer temperature controlling moisture removing element, drier, and temperature control method therefor
WO2018105196A1 (en) Gas concentrator
US8226746B2 (en) Indirectly heated temperature controlled adsorber for sorbate recovery
TWI763906B (en) Drying room for gas replacement
EP2752232A1 (en) Gas-adsorbing separation equipment
JP5858948B2 (en) Adsorption tower and gas separator
JP5720658B2 (en) Volatile organic compound processing equipment
JP7306683B2 (en) Dry room for gas replacement
JP2012020226A (en) Device for treating organic solvent-containing gas
TWI771584B (en) Adsorption apparatus and adsorption method
JP2012061438A (en) Continuously dehumidifying apparatus by high surface area type adsorbent
CN218901332U (en) Adsorption equipment for waste gas treatment
JP2011194399A (en) Device for gas separation by pressure swing adsorption
JP2023158373A (en) Oxygen removal device
TWM630863U (en) Adsorption apparatus
CN116371139A (en) Adsorption separation device for air and organic fluoride liquid steam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250