JP2012083015A - Adsorption heat pump - Google Patents

Adsorption heat pump Download PDF

Info

Publication number
JP2012083015A
JP2012083015A JP2010228838A JP2010228838A JP2012083015A JP 2012083015 A JP2012083015 A JP 2012083015A JP 2010228838 A JP2010228838 A JP 2010228838A JP 2010228838 A JP2010228838 A JP 2010228838A JP 2012083015 A JP2012083015 A JP 2012083015A
Authority
JP
Japan
Prior art keywords
evaporator
adsorber
adsorbent
adsorption
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010228838A
Other languages
Japanese (ja)
Other versions
JP5688262B2 (en
Inventor
Mutsuhiro Ito
睦弘 伊藤
Katsunori Miura
克則 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Silysia Chemical Ltd filed Critical Fuji Silysia Chemical Ltd
Priority to JP2010228838A priority Critical patent/JP5688262B2/en
Publication of JP2012083015A publication Critical patent/JP2012083015A/en
Application granted granted Critical
Publication of JP5688262B2 publication Critical patent/JP5688262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PROBLEM TO BE SOLVED: To provide an adsorption heat pump in which the pressure resistance of an adsorber is sufficiently ensured in spite of the easily deformable structure of a container itself of the adsorber.SOLUTION: An adsorption heat pump 1 includes: an adsorber 3 in which an adsorbent 17 is sealed; an evaporator 5 which condenses an adsorption target material when the steam pressure of the adsorption target material reaches saturation steam pressure, and evaporates the liquefied adsorption target material when the steam pressure of the adsorption target material is reduced, meanwhile, piping 7 which is interposed between the adsorber 3 and the evaporator 5 for making an internal space of the adsorber 3 communicates with an internal space of the evaporator 5; and a heat exchange means 9 which takes cold heat out of the evaporator 5 by performing heat exchange by the evaporator 5 when a temperature in the evaporator 5 decreases. The adsorber 3 is constituted to hold the adsorbent 17 with a photo-detection plane 11 by deforming a metal container 13 into tight contact with the adsorbent 17 by receiving atmospheric pressure.

Description

本発明は、吸着ヒートポンプに関する。   The present invention relates to an adsorption heat pump.

従来、太陽光を利用する吸着ヒートポンプシステムは、すでに提案されている(例えば、特許文献1参照。)。このような吸着ヒートポンプシステムでは、吸着器や蒸発器を配管等で結ぶことによって外部空間から隔離された系を構成してあり、その系内において、吸着器に内蔵された吸着剤による吸着・脱着、蒸発器による凝縮・気化などが行われる。   Conventionally, an adsorption heat pump system using sunlight has already been proposed (see, for example, Patent Document 1). In such an adsorption heat pump system, an adsorber and an evaporator are connected by piping or the like to form a system isolated from the external space. Adsorption / desorption by an adsorbent built in the adsorber is performed in the system. Then, condensation and vaporization are performed by an evaporator.

そのため、この種のシステムにおいては、系外から系内に外気が流入しないようにする必要があり、吸着器や蒸発器、それらを結ぶ配管などには、高度な気密性が要求される。また、系内が大気圧よりも低圧になることがあり、それ故、系の内外で圧力差が生じても問題を招かない程度の耐圧性が要求される。   Therefore, in this type of system, it is necessary to prevent outside air from flowing into the system from the outside of the system, and high airtightness is required for the adsorber, the evaporator, the piping connecting them, and the like. Further, the inside of the system may be lower than the atmospheric pressure, and therefore pressure resistance is required so as not to cause a problem even if a pressure difference occurs inside and outside the system.

特開2005−257140号公報JP-A-2005-257140

しかしながら、吸着器の気密性や耐圧性を高めるため、従来は、吸着剤を収容する容器そのものの構造を耐圧構造にする、といった対応を行っていたため、そのような耐圧容器にコストがかかり、吸着ヒートポンプシステムの普及を妨げる要因になっていた。   However, in order to increase the airtightness and pressure resistance of the adsorber, conventionally, the structure of the container itself containing the adsorbent has been changed to a pressure-resistant structure. It was a factor that hindered the spread of heat pump systems.

本発明は、上記問題を解決するためになされたものであり、その目的は、吸着器の容器そのものは変形しやすい構造であるにもかかわらず、吸着器の耐圧性が十分に確保された吸着ヒートポンプを提供することにある。   The present invention has been made in order to solve the above-described problems, and the purpose of the present invention is an adsorption in which the pressure resistance of the adsorber is sufficiently ensured despite the fact that the adsorber container itself is easily deformed. It is to provide a heat pump.

以下、本発明において採用した構成について説明する。
請求項1に記載の吸着ヒートポンプは、吸着対象物質を吸着可能で、加熱された際には吸着済みの前記吸着対象物質を脱着する吸着剤が、内部に封入された吸着器と、前記吸着対象物質の蒸気圧が飽和蒸気圧に達した際に、前記吸着対象物質を凝縮させる一方、前記吸着対象物質の蒸気圧が低下した際には、液化していた前記吸着対象物質を蒸発させる蒸発器と、前記吸着器と前記蒸発器との間に介在して、前記吸着器の内部空間と前記蒸発器の内部空間とを連通させる配管と、前記蒸発器内の温度が低下した際に、前記蒸発器との間で熱交換を行うことにより、前記蒸発器から冷熱を取り出す熱交換手段とを備え、前記吸着器は、一方の面が太陽光を受光する受光面となっていて、日中には、前記受光面側で太陽光を受光することにより、内部にある前記吸着剤を加熱して、前記吸着剤から前記吸着対象物質を脱着させ、当該脱着させた前記吸着対象物質が前記配管を介して前記蒸発器に到達すると前記蒸発器内で前記吸着対象物質が凝縮し、一方、夜間には、前記吸着剤によって前記吸着対象物質を吸着すると、前記蒸発器内で前記吸着対象物質が蒸発して前記蒸発器内の温度が低下し、その際、前記熱交換手段によって前記蒸発器から取り出される冷熱で、冷却対象を冷却可能に構成されており、しかも、前記吸着器は、少なくとも一部が、大気圧を受けて前記吸着剤に密着する形態に変形することにより、前記受光面との間に前記吸着剤を挟み込む構造になっていることを特徴とする。
Hereinafter, the configuration employed in the present invention will be described.
The adsorption heat pump according to claim 1 is capable of adsorbing a substance to be adsorbed, and when adsorbed to adsorb the adsorbent substance that has been adsorbed when heated, an adsorber enclosed therein, and the adsorption object An evaporator that condenses the adsorption target substance when the vapor pressure of the substance reaches a saturated vapor pressure, and evaporates the liquefied adsorption target substance when the vapor pressure of the adsorption target substance decreases. And between the adsorber and the evaporator, a pipe communicating the internal space of the adsorber and the internal space of the evaporator, and when the temperature in the evaporator is reduced, Heat exchange means for taking out cold heat from the evaporator by exchanging heat with the evaporator, and the adsorber has a light receiving surface on one side for receiving sunlight. By receiving sunlight on the light receiving surface side, The adsorbent in the section is heated to desorb the adsorption target substance from the adsorbent, and when the desorbed target substance reaches the evaporator through the pipe, the adsorption is performed in the evaporator. On the other hand, when the target substance is condensed, and at night, when the target substance is adsorbed by the adsorbent, the target substance is evaporated in the evaporator, and the temperature in the evaporator is lowered. The cooling object is configured to be cooled by the cold heat extracted from the evaporator by the heat exchanging means, and at least a part of the adsorber receives atmospheric pressure and is in close contact with the adsorbent. By deforming, the adsorbent is sandwiched between the light receiving surface and the light receiving surface.

請求項2に記載の吸着ヒートポンプは、請求項1に記載の吸着ヒートポンプにおいて、前記吸着器は、前記受光面が透明材料で形成されることにより、太陽光が受光面を透過して前記吸着剤に照射される構造になっていることを特徴とする。   The adsorption heat pump according to claim 2 is the adsorption heat pump according to claim 1, wherein the adsorber has the light receiving surface formed of a transparent material so that sunlight passes through the light receiving surface and the adsorbent. It is characterized in that it has a structure that is irradiated on the surface.

請求項3に記載の吸着ヒートポンプは、請求項2に記載の吸着ヒートポンプにおいて、前記吸着器は、前記受光面が透明なガラス又は透明なプラスチックによって形成されており、しかも、前記吸着剤を挟んで前記受光面とは反対側となる部分が、大気圧を受けて前記吸着剤に密着する形態に変形する金属容器によって構成されていることを特徴とする。   The adsorption heat pump according to claim 3 is the adsorption heat pump according to claim 2, wherein the adsorber has the light receiving surface formed of transparent glass or transparent plastic, and sandwiches the adsorbent. The portion opposite to the light receiving surface is constituted by a metal container that is deformed into a form that receives atmospheric pressure and adheres closely to the adsorbent.

請求項4に記載の吸着ヒートポンプは、請求項1〜請求項3のいずれか一項に記載の吸着ヒートポンプにおいて、前記吸着器は、前記受光面以外の部分が、断熱材によって包囲されていることを特徴とする。   The adsorption heat pump according to claim 4 is the adsorption heat pump according to any one of claims 1 to 3, wherein the adsorber is surrounded by a heat insulating material other than the light receiving surface. It is characterized by.

請求項5に記載の吸着ヒートポンプは、請求項1〜請求項4のいずれか一項に記載の吸着ヒートポンプにおいて、前記吸着剤が、シリカゲルであることを特徴とする。
以下、本発明の構成について、さらに詳しく説明する。
The adsorption heat pump according to claim 5 is the adsorption heat pump according to any one of claims 1 to 4, wherein the adsorbent is silica gel.
Hereinafter, the configuration of the present invention will be described in more detail.

本発明の吸着ヒートポンプにおいて、吸着器は太陽光を受ける場所に設置される。そのため、日中には、太陽光が吸着器に照射され、吸着器の温度が上昇することになる。一方、蒸発器は、吸着器が太陽光を受けて高温になった場合でも、ほぼ常温に維持されるような設置状態とされる。   In the adsorption heat pump of the present invention, the adsorber is installed in a place where sunlight is received. Therefore, during the day, sunlight is irradiated to the adsorber, and the temperature of the adsorber rises. On the other hand, the evaporator is in an installation state that is maintained at substantially normal temperature even when the adsorber receives sunlight and becomes high temperature.

より具体的には、蒸発器は、例えば、日中でも日陰になる場所などに設置される。また、温度が上昇した吸着器からの熱が、熱伝導や対流によって蒸発器へ伝わらないようにするため、例えば、吸着器と蒸発器は十分に離れた場所に設置される。さらに、必要があれば、吸着器と蒸発器との間に放熱を促す手段(例えば、常温の外気との熱交換を行う放熱器)などが設けられていてもよい。   More specifically, the evaporator is installed, for example, in a place that is shaded during the day. Moreover, in order to prevent the heat from the adsorber whose temperature has risen from being transmitted to the evaporator by heat conduction or convection, for example, the adsorber and the evaporator are installed at a sufficiently distant location. Furthermore, if necessary, a means for promoting heat dissipation (for example, a radiator for exchanging heat with ambient air at room temperature) may be provided between the adsorber and the evaporator.

以上のような吸着ヒートポンプにおいて、蒸発器には、常温において液体となり、且つある程度は気化もする吸着対象物質が入れられる。そして、吸着器から配管を経て蒸発器に至る系内は、例えば真空ポンプなどを利用して真空引きが行われ、吸着対象物質以外の気体成分は系外へ除去される。   In the adsorption heat pump as described above, a substance to be adsorbed that is liquid at room temperature and vaporizes to some extent is placed in the evaporator. The inside of the system from the adsorber to the evaporator through the piping is evacuated using, for example, a vacuum pump, and gas components other than the adsorption target substance are removed out of the system.

これに伴い、蒸発器内の吸着対象物質は、系内の蒸気圧に応じて気化することになり、気化した吸着対象物質は、吸着器内で吸着剤に吸着されることになる。また、このような吸着の結果、系内の蒸気圧が低下するので、さらに蒸発器内の吸着対象物質は気化することになり、これらの現象は、系内が平衡状態に至るまで連続的に起こることになる。   Accordingly, the adsorption target substance in the evaporator is vaporized according to the vapor pressure in the system, and the vaporized adsorption target substance is adsorbed by the adsorbent in the adsorber. In addition, as a result of such adsorption, the vapor pressure in the system decreases, so that the substance to be adsorbed in the evaporator further vaporizes, and these phenomena are continuously observed until the system reaches an equilibrium state. Will happen.

そして、この状態(例えば、系内が平衡状態に達した状態)において、日中は吸着器の受光面に太陽光が照射され、これにより吸着剤の温度が上昇する。このとき、請求項2に記載したように、受光面が透明材料で形成されていれば、太陽光は透明な受光面を透過して吸着剤に直接当たるので、太陽光が吸着剤に直接当たらない構造(例えば、吸着剤を封入した不透明な金属容器に太陽光が当たるものなど)に比べ、吸着剤そのものを効率良く加熱することができる。   In this state (for example, the state in which the system has reached an equilibrium state), sunlight is irradiated on the light receiving surface of the adsorber during the daytime, thereby increasing the temperature of the adsorbent. At this time, as described in claim 2, if the light receiving surface is formed of a transparent material, sunlight passes through the transparent light receiving surface and directly hits the adsorbent. The adsorbent itself can be efficiently heated as compared with a structure having no structure (for example, an opaque metal container in which the adsorbent is sealed is exposed to sunlight).

そして、吸着剤が加熱されると、すでに吸着剤に吸着されていた吸着対象物質が吸着剤から脱着され、系内の蒸気圧が上がる。ただし、蒸発器側の温度は、吸着器側よりも温度が低いため、蒸発器内では吸着対象物質が凝縮・液化し、蒸発器内に溜まる。   When the adsorbent is heated, the substance to be adsorbed that has already been adsorbed by the adsorbent is desorbed from the adsorbent, and the vapor pressure in the system increases. However, since the temperature on the evaporator side is lower than that on the adsorber side, the substance to be adsorbed condenses and liquefies in the evaporator and accumulates in the evaporator.

一方、夜間になると、吸着器の受光面に太陽光が照射されなくなり、しかも、吸着剤からは熱放射により放熱が図られ、これに伴って吸着剤の吸着能が回復するため、系内において気化していた吸着対象物質は、吸着器内で吸着剤に吸着されることになる。また、このような吸着に伴い、蒸発器内の吸着対象物質も気化することになり、その結果、蒸発器内では気化熱が奪われて、蒸発器内の温度が低下する。   On the other hand, at night, the light receiving surface of the adsorber is no longer irradiated with sunlight, and heat is released from the adsorbent by heat radiation, and the adsorption capacity of the adsorbent is restored accordingly. The adsorbed substance that has been vaporized is adsorbed by the adsorbent in the adsorber. In addition, with such adsorption, the substance to be adsorbed in the evaporator is also vaporized. As a result, the heat of vaporization is deprived in the evaporator, and the temperature in the evaporator is lowered.

こうして低温化した蒸発器からは、熱交換手段によって冷熱が取り出され、これにより、冷却対象を冷却することができる。具体的には、冷却対象が室内である場合には、熱交換手段によって取り出された冷気を室内に送り込むことで、冷房を行うことができる。   From the evaporator thus lowered in temperature, the cold heat is taken out by the heat exchanging means, whereby the object to be cooled can be cooled. Specifically, when the object to be cooled is indoors, cooling can be performed by sending cool air taken out by the heat exchange means into the room.

さらに、この吸着ヒートポンプにおいて、吸着器は、少なくとも一部が、大気圧を受けて吸着剤に密着する形態に変形することにより、透明材料で形成された受光面との間に吸着剤を挟み込む構造になっている。   Further, in this adsorption heat pump, the adsorber has a structure in which the adsorbent is sandwiched between the light receiving surface formed of a transparent material by being deformed into a form in which at least a part thereof receives atmospheric pressure and is in close contact with the adsorbent. It has become.

このような構造の一例としては、請求項3に記載したように、受光面を透明なガラス又は透明なプラスチックによって形成してあり、吸着剤を挟んで受光面とは反対側となる部分が、大気圧を受けて吸着剤に密着する形態に変形する金属容器によって構成されているものを挙げることができる。   As an example of such a structure, as described in claim 3, the light receiving surface is formed of transparent glass or transparent plastic, and the portion on the opposite side of the light receiving surface with the adsorbent interposed therebetween, There may be mentioned those constituted by a metal container that is deformed into a form that receives atmospheric pressure and adheres closely to the adsorbent.

この場合、金属容器としては、例えば、金属の薄板をプレス加工して、透明なガラス板やプラスチック板と重ねた際に、吸着剤の収容空間が形成されるような形態としたものを利用することができる。金属の薄板としては、厚さ1mm未満程度のものでも十分である。   In this case, as the metal container, for example, a metal container having a shape in which an adsorbent accommodating space is formed when a metal thin plate is pressed and stacked with a transparent glass plate or plastic plate is used. be able to. A thin metal plate having a thickness of less than 1 mm is sufficient.

また、上記のような金属容器の他、さらに薄い金属薄膜とプラスチックフィルムとを積層してなる多層構造のフィルムなどで、大気圧を受けて吸着剤に密着する形態に変形する容器を形成してもよい。   In addition to the metal container as described above, a film having a multilayer structure formed by laminating a thin metal thin film and a plastic film, etc., is formed to form a container that is deformed into a form that receives atmospheric pressure and adheres to the adsorbent. Also good.

以上のような構造を採用すると、吸着剤そのものが、外部からの圧力を受ける耐圧構造物の一部として機能するので、吸着剤を収容する容器自体には過度な耐圧性能が要求されず、大気圧を受けて変形する程度の材料で容器を構成することができる。   If the structure as described above is adopted, the adsorbent itself functions as a part of the pressure-resistant structure that receives pressure from the outside. A container can be comprised with the material of the grade which receives an atmospheric pressure and deform | transforms.

したがって、吸着剤を収容する容器そのものの構造を、内部が減圧しても変形しない程度の耐圧構造にしていた従来技術に比べ、吸着剤を構成する容器にコストがかからなくなり、ひいては吸着ヒートポンプシステム全体の製造コストを抑制することができる。   Therefore, compared with the prior art in which the structure of the container itself that contains the adsorbent is made to have a pressure resistant structure that does not deform even if the inside is depressurized, the container constituting the adsorbent does not cost, and consequently the adsorption heat pump system The entire manufacturing cost can be suppressed.

また、本発明の吸着ヒートポンプにおいて、請求項4に記載のように、吸着器は、受光面以外の部分が、断熱材によって包囲されていると、太陽光を受けたときに吸着器内の温度が効率良く上昇するので、吸着剤を迅速に再生し、吸着能の回復を図ることができる。   In the adsorption heat pump of the present invention, as described in claim 4, the adsorber has a temperature in the adsorber when receiving sunlight when a portion other than the light receiving surface is surrounded by a heat insulating material. As a result, the adsorbent can be regenerated quickly and the adsorption capacity can be recovered.

さらに、本発明の吸着ヒートポンプにおいては、請求項5に記載のように、吸着剤が、シリカゲルであると好ましい。特に、シリカゲルの場合、他の各種吸着剤に比べ、吸着剤粒子の透明度が高いので、請求項2に記載したように、受光面が透明材料で形成されていれば、吸着器内にシリカゲル粒子を充填した場合に、充填層の奥まで太陽光が透過しやすくなり、吸着剤の充填層を効率良く加熱することができる。   Furthermore, in the adsorption heat pump of the present invention, as described in claim 5, the adsorbent is preferably silica gel. In particular, in the case of silica gel, the transparency of the adsorbent particles is higher than that of other various adsorbents. Therefore, as described in claim 2, if the light receiving surface is formed of a transparent material, the silica gel particles in the adsorber. When it is filled, sunlight becomes easy to permeate to the back of the packed bed, and the packed bed of adsorbent can be efficiently heated.

(a)は吸着ヒートポンプの概略構造を示す説明図、(b)は吸着器の縦断面図。(A) is explanatory drawing which shows schematic structure of an adsorption heat pump, (b) is a longitudinal cross-sectional view of an adsorption device. 吸着ヒートポンプの性能試験結果を示すグラフ(その1)。The graph which shows the performance test result of an adsorption heat pump (the 1). 吸着ヒートポンプの性能試験結果を示すグラフ(その2)。The graph which shows the performance test result of an adsorption heat pump (the 2). (a)は吸着器の一部を示す縦断面図、(b)は吸着器の一部を金属容器側から見た外観を示す説明図。(A) is a longitudinal cross-sectional view which shows a part of adsorption machine, (b) is explanatory drawing which shows the external appearance which looked at a part of adsorption machine from the metal container side. (a)はA部を拡大して示す説明図、(b)はA部の変形例を示す説明図、(c)はB部を拡大して示す説明図、(d)はB部の変形例を示す説明図。(A) is explanatory drawing which expands and shows A part, (b) is explanatory drawing which shows the modification of A part, (c) is explanatory drawing which expands and shows B part, (d) is modification of B part Explanatory drawing which shows an example.

次に、本発明の実施形態について、いくつかの具体的な例を挙げて説明する。
〔1〕第一実施形態
以下に説明する吸着ヒートポンプ1は、図1(a)に示すように、吸着器3と、蒸発器5とを備え、これらの内部間が配管7を介して接続された構造になっている。配管7の途中には、三方バルブ7Aが設けられ、この三方バルブ7Aを介して真空引きを行うことができる。また、蒸発器5には、蒸発器5と熱交換を行う熱交換流路9が設けられ、この熱交換流路9に熱交換用媒体を流通させることにより、蒸発器5から冷熱を取り出し可能となっている。
Next, embodiments of the present invention will be described with some specific examples.
[1] First Embodiment The adsorption heat pump 1 described below includes an adsorber 3 and an evaporator 5 as shown in FIG. 1A, and the inside of these is connected via a pipe 7. It has a structure. A three-way valve 7A is provided in the middle of the pipe 7, and evacuation can be performed through the three-way valve 7A. Further, the evaporator 5 is provided with a heat exchange flow path 9 for exchanging heat with the evaporator 5, and by passing a heat exchange medium through the heat exchange flow path 9, cold heat can be taken out from the evaporator 5. It has become.

これらの構成のうち、吸着器3は、図1(b)に示すように、透明な受光面11と、金属容器13と、断熱材15とを備え、受光面11と金属容器13との間に形成される内部空間には、吸着剤17が充填されている。また、配管7の一端は、受光面11と金属容器13との間に形成される内部空間に連通している。配管7の先端にはメッシュ19が設けられており、配管7内に吸着剤17が入り込まないようにされている。   Among these configurations, the adsorber 3 includes a transparent light receiving surface 11, a metal container 13, and a heat insulating material 15, as shown in FIG. 1 (b), and between the light receiving surface 11 and the metal container 13. The adsorbent 17 is filled in the internal space formed in the above. One end of the pipe 7 communicates with an internal space formed between the light receiving surface 11 and the metal container 13. A mesh 19 is provided at the tip of the pipe 7 so that the adsorbent 17 does not enter the pipe 7.

受光面11は、無色透明な板ガラス11A,11Bを2枚重ねて、それらの板ガラス11A,11B間にスペーサ11Cを介装することにより、板ガラス11A,11B間に空間を確保した構造とされている。なお、本実施形態においては、板ガラス11Aは900mm×900mm×3mm、板ガラス11Bは900mm×900mm×5mmのものを利用し、板ガラス11A,11B間の距離は3mmとされている。   The light-receiving surface 11 has a structure in which a space is secured between the plate glasses 11A and 11B by stacking two colorless and transparent plate glasses 11A and 11B and interposing a spacer 11C between the plate glasses 11A and 11B. . In the present embodiment, the plate glass 11A is 900 mm × 900 mm × 3 mm, the plate glass 11B is 900 mm × 900 mm × 5 mm, and the distance between the plate glasses 11A and 11B is 3 mm.

このような透明な部材で吸着器3の受光面11を形成すると、太陽光を吸着器3の内部へと透過させることができ、吸着剤17を太陽光で直接加熱することができる。ただし、吸着器3の受光面11は、金属板のような不透明な部材で構成することもでき、この場合は、受光面11が太陽光で加熱され、その熱が吸着剤17へ伝わることになる。   When the light receiving surface 11 of the adsorber 3 is formed of such a transparent member, sunlight can be transmitted to the inside of the adsorber 3, and the adsorbent 17 can be directly heated by sunlight. However, the light receiving surface 11 of the adsorber 3 can also be configured by an opaque member such as a metal plate. In this case, the light receiving surface 11 is heated by sunlight, and the heat is transmitted to the adsorbent 17. Become.

また、上記のような二重構造(ペアガラス製)の受光面11を用いると、吸着器3の保温性を向上させることができる。ただし、いくらか保温性が低下しても問題がない場合は、単一の板ガラスで受光面を形成してもよい。さらに、二重構造の受光面11を用いる場合、板ガラス11A,11B間の距離については任意に設定すれば構わないが、実用上は、3〜10mm程度の距離が確保されていると好ましい。   Moreover, if the light receiving surface 11 having the above-described double structure (made of pair glass) is used, the heat retaining property of the adsorber 3 can be improved. However, if there is no problem even if the heat retention is somewhat lowered, the light receiving surface may be formed of a single plate glass. Furthermore, when using the light-receiving surface 11 having a double structure, the distance between the plate glasses 11A and 11B may be arbitrarily set. However, it is preferable that a distance of about 3 to 10 mm is secured in practice.

金属容器13は、図4(a)及び同図(b)に示すように、受光面11によって開口面が塞がれる皿状のものである。本実施形態の場合、厚さ0.3mmのステンレス板をプレス加工したもので、受光面11と重なり合う部分は、受光面11と同様900mm×900mmの正方形、プレス加工で形成された凹部の深さは、最大で30mmとなっている。   As shown in FIG. 4A and FIG. 4B, the metal container 13 has a dish shape in which the opening surface is closed by the light receiving surface 11. In the case of this embodiment, a stainless steel plate having a thickness of 0.3 mm is pressed, and the portion overlapping with the light receiving surface 11 is a square of 900 mm × 900 mm like the light receiving surface 11 and the depth of the recess formed by pressing. Is 30 mm at the maximum.

この金属容器13の底面(図4(b)に表れる面)には、プレス加工による折り目13Aが形成されており、これにより、同様の折り目が設けられていないものよりも、柔軟性と強度を向上させてある。また、折り目13Aは、金属容器13の底面側から見て略正方形となる形態になっているが、そのコーナー部分13Bには丸みが付けられて、真空引きの際に受ける力が局所に集中しにくい構造とされている。   The bottom surface of the metal container 13 (the surface shown in FIG. 4 (b)) is formed with a fold 13A by press working, so that flexibility and strength can be improved as compared with a case where a similar fold is not provided. It has been improved. The crease 13A has a substantially square shape when viewed from the bottom surface side of the metal container 13, but the corner portion 13B is rounded so that the force received during evacuation is concentrated locally. It has a difficult structure.

なお、折り目13Aは、金属容器13の底面側から見て略正方形に見えるものに限らず、例えば、略円形に見えるものなどでもよい。また、略正方形、略円形といった、閉じた環状の形態をなす折り目に限らず、十字状の折り目、格子状の折り目、直線状の折り目などでもよい。また、折り目の数についても、ひとつでもふたつ以上でもよい。   Note that the crease 13A is not limited to a shape that looks substantially square when viewed from the bottom surface side of the metal container 13, and may be a shape that looks substantially circular, for example. Further, the fold is not limited to a closed annular shape such as a substantially square or a substantially circular shape, but may be a cross-shaped fold, a lattice-shaped fold, a linear fold, or the like. Also, the number of folds may be one or two or more.

いずれにしても、これらのような折り目を形成しておくと、吸着器3の内部が減圧された際には、金属容器13の底面が平板状になっているものよりも、金属容器13の底面が吸着剤17側へ変形しやすくなり、これにより、金属容器13の吸着剤17に対する密着性を向上させることができる。   In any case, if the folds such as these are formed, when the inside of the adsorber 3 is depressurized, the metal container 13 has a lower bottom than the one in which the bottom surface is flat. The bottom surface is easily deformed toward the adsorbent 17, whereby the adhesion of the metal container 13 to the adsorbent 17 can be improved.

これら受光面11と金属容器13は、両者の周縁部において10mm幅で全周にわたってエポキシ樹脂系接着剤を介して互いに接着され、これにより、配管7以外の部分からは気体が透過することのない気密容器を構成している。   The light receiving surface 11 and the metal container 13 are bonded to each other through an epoxy resin adhesive with a width of 10 mm over the entire circumference at the periphery of the both, so that gas does not permeate from portions other than the pipe 7. It constitutes an airtight container.

断熱材15は、無数の独立気泡を内包する発泡樹脂(発泡フェノール断熱材、35mm厚さ、熱伝導率0.019W/m/k)によって形成されたもので、この断熱材15と受光面11との間に形成される空間内に、上述の金属容器13が収容された構造になっている。   The heat insulating material 15 is formed of a foamed resin (foamed phenol heat insulating material, 35 mm thickness, thermal conductivity 0.019 W / m / k) enclosing innumerable closed cells. The above-described metal container 13 is housed in a space formed between the two.

吸着剤17は、本実施形態においては、平均粒子径3mmのシリカゲル粒子によって構成されている。吸着剤17の粒子径は、吸着器3内に充填された場合でも、吸着対象物質の蒸気がスムーズに流通する程度の隙間ができる程度の粒子径であると好ましく、シリカゲルの場合であれば、平均粒子径20μm〜6mm程度、好ましくは100μm〜3mm程度とされているとよい。   In this embodiment, the adsorbent 17 is composed of silica gel particles having an average particle diameter of 3 mm. The particle size of the adsorbent 17 is preferably a particle size that allows a gap that allows the vapor of the substance to be adsorbed to flow smoothly even when packed in the adsorber 3, and in the case of silica gel, The average particle diameter is about 20 μm to 6 mm, preferably about 100 μm to 3 mm.

シリカゲルの場合、他の各種吸着剤に比べ、粒子の透明度が高いので、受光面11を透過した太陽光は、シリカゲル粒子の充填層のより奥まで透過しやすく、これにより、吸着剤17の充填層を効率良く加熱することができる。   In the case of silica gel, since the transparency of the particles is higher than other various adsorbents, the sunlight transmitted through the light receiving surface 11 is easily transmitted deeper into the packed layer of silica gel particles. The layer can be heated efficiently.

以上のように構成された吸着ヒートポンプ1において、吸着器3は太陽光を受ける場所(例えば、屋根の上、庭、家屋の南側など)に設置される。また、蒸発器5は、ほぼ常温に維持されるような場所(例えば、屋根裏、地下、家屋の北側など)に設置される。   In the adsorption heat pump 1 configured as described above, the adsorber 3 is installed in a place that receives sunlight (for example, on the roof, in the garden, on the south side of the house, etc.). Moreover, the evaporator 5 is installed in places (for example, an attic, a basement, the north side of a house, etc.) where it is maintained at substantially normal temperature.

また、吸着器3の温度が上昇した際に、吸着器3からの熱が熱伝導や対流によって蒸発器5へ伝わらないようにする必要がある。通常は、配管7が日陰に配設され、その配管7において放熱が行われるのであれば、それだけで十分であるが、必要があれば、配管7の途中に熱交換器を設けて、空冷又は水冷を行うようにしてもよい。   Moreover, when the temperature of the adsorber 3 rises, it is necessary to prevent the heat from the adsorber 3 from being transferred to the evaporator 5 by heat conduction or convection. Normally, if the pipe 7 is provided in the shade and heat is dissipated in the pipe 7, it is sufficient. However, if necessary, a heat exchanger is provided in the middle of the pipe 7, and air cooling or Water cooling may be performed.

さらに、蒸発器5には、常温において液体となり、且つある程度は気化もする吸着対象物質が入れられる。本実施形態の場合、吸着対象物質としては、水を利用するように構成してあるが、水以外の物質であってもよく、例えば、アルコール、アンモニア、その他常温で液体となる各種炭化水素類などを利用することができる。   Furthermore, the adsorption object substance which becomes a liquid at normal temperature and vaporizes to some extent is put in the evaporator 5. In the case of the present embodiment, the adsorption target substance is configured to use water, but may be a substance other than water, for example, alcohol, ammonia, and other various hydrocarbons that are liquid at room temperature. Etc. can be used.

そして、図示しない真空ポンプなどが、三方バルブ7Aを介して配管7に接続されて真空引きが行われ、これにより、吸着器3から配管7を経て蒸発器5に至る系内から、吸着対象物質以外の気体成分が除去される。   Then, a vacuum pump or the like (not shown) is connected to the pipe 7 via the three-way valve 7A and evacuation is performed. As a result, the substance to be adsorbed from the system from the adsorber 3 to the evaporator 5 via the pipe 7 Gas components other than are removed.

真空引きが行われると、金属容器13は、大気圧を受けて吸着剤17に密着する形態に変形し、受光面11との間に吸着剤17を挟み込む。これにより、吸着剤17そのものが、外部からの圧力を受ける耐圧構造物の一部として機能する状態になるので、金属容器13自体には過度な耐圧性能が要求されず、大気圧を受けて変形する程度の材料で金属容器13を構成してあっても、何ら問題なく運用することができる。   When evacuation is performed, the metal container 13 is deformed into a form in which it is in close contact with the adsorbent 17 under the atmospheric pressure, and the adsorbent 17 is sandwiched between the light receiving surface 11. As a result, the adsorbent 17 itself functions as a part of a pressure-resistant structure that receives pressure from the outside, so that the metal container 13 itself is not required to have excessive pressure resistance, and is deformed by receiving atmospheric pressure. Even if the metal container 13 is made of such a material, it can be operated without any problem.

さて、真空引きが行われると、蒸発器5内の吸着対象物質は、系内の蒸気圧に応じて気化することになり、気化した吸着対象物質は、吸着器3内で吸着剤17に吸着されることになる。また、このような吸着の結果、系内の蒸気圧が低下するので、さらに蒸発器5内の吸着対象物質は気化することになり、これらの現象は、系内が平衡状態に至るまで連続的に起こることになる。   When evacuation is performed, the adsorption target substance in the evaporator 5 is vaporized according to the vapor pressure in the system, and the vaporized adsorption target substance is adsorbed by the adsorbent 17 in the adsorber 3. Will be. Further, as a result of such adsorption, the vapor pressure in the system is lowered, so that the substance to be adsorbed in the evaporator 5 is further vaporized, and these phenomena continue until the system reaches an equilibrium state. Will happen.

この状態において、日中には吸着器3の受光面に太陽光が照射され、これにより吸着剤17の温度が上昇する。本実施形態においては、実験的に確認したところ、吸着器3内の温度は最大で100℃を上回る高温にまで達することがあった。   In this state, sunlight is irradiated to the light receiving surface of the adsorber 3 during the daytime, and thereby the temperature of the adsorbent 17 rises. In the present embodiment, when experimentally confirmed, the temperature in the adsorber 3 sometimes reached a high temperature exceeding 100 ° C. at the maximum.

そして、このような高温になる吸着器3内で吸着剤17が加熱されると、吸着対象物質が吸着剤17から脱着され、系内の蒸気圧が上がる。ただし、蒸発器5側の温度は、吸着器3側よりも温度が低く、本実施形態の場合、30℃前後の温度域にあるため、吸着器3側から吸着対象物質(本実施形態の場合は水蒸気)が流入すると、蒸発器5内では吸着対象物質が凝縮・液化し、蒸発器5内に溜まる。   When the adsorbent 17 is heated in the adsorber 3 having such a high temperature, the substance to be adsorbed is desorbed from the adsorbent 17 and the vapor pressure in the system increases. However, the temperature on the evaporator 5 side is lower than that on the adsorber 3 side, and in the case of this embodiment, it is in the temperature range of about 30 ° C., so the substance to be adsorbed (in the case of this embodiment) from the adsorber 3 side. When water vapor flows in, the substance to be adsorbed condenses and liquefies in the evaporator 5 and accumulates in the evaporator 5.

一方、夜間になると、吸着器3の受光面に太陽光が照射されなくなり、しかも、吸着剤17からは熱放射により放熱が図られ、これに伴って吸着剤17の吸着能が回復するため、系内において気化していた吸着対象物質は、吸着器3内で吸着剤17に吸着されることになる。また、このような吸着に伴い、蒸発器5内の吸着対象物質も気化することになり、その結果、蒸発器5内では気化熱が奪われて、蒸発器5内の温度が低下し、本実施形態の場合、蒸発器5内の温度は氷点下となる温度域にまで到達する。   On the other hand, at night, the light receiving surface of the adsorber 3 is no longer irradiated with sunlight, and further, the adsorbent 17 is dissipated by heat radiation, and the adsorbing capacity of the adsorbent 17 is restored accordingly. The adsorption target substance vaporized in the system is adsorbed by the adsorbent 17 in the adsorber 3. In addition, with such adsorption, the adsorption target substance in the evaporator 5 is also vaporized. As a result, the heat of vaporization is deprived in the evaporator 5, and the temperature in the evaporator 5 is lowered. In the case of the embodiment, the temperature in the evaporator 5 reaches a temperature range below freezing point.

したがって、熱交換流路9に熱交換用媒体を流通させることにより、低温化した蒸発器5から冷熱を取り出すことができ、これにより、室内の冷房を行うなど、冷却対象を冷却することができる。   Therefore, by circulating the heat exchange medium through the heat exchange flow path 9, it is possible to take out the cold heat from the evaporator 5 which has been lowered in temperature, thereby cooling the object to be cooled, such as cooling the room. .

〔2〕第二実施形態
上記第一実施形態と同様の吸着ヒートポンプ1を構成し、その性能試験を行った。ただし、この第二実施形態において、吸着器3としては、受光面(ガラス)が23cm角(厚さは2.5cm)のものを利用した。また、吸着器3を加熱する熱源としては、投光器(500W)を使用し、投光器熱源と受光面(ガラス)の距離は20cmとした。
[2] Second Embodiment An adsorption heat pump 1 similar to that of the first embodiment was constructed, and the performance test was performed. However, in the second embodiment, as the adsorber 3, a light receiving surface (glass) having a 23 cm square (thickness is 2.5 cm) is used. In addition, a projector (500 W) was used as a heat source for heating the adsorber 3, and the distance between the projector heat source and the light receiving surface (glass) was 20 cm.

そして、日中に相当する時間帯を模して、投光器から吸着器3の受光面に対して光を照射し、夜間に相当する時間帯を模して、投光器を消灯し、48時間にわたって吸着ヒートポンプ1各部の温度を測定した。その結果を、図2に示す。   Then, illuminate the light receiving surface of the adsorber 3 from the projector, imitating the time zone corresponding to the daytime, and turn off the projector, imitating the time zone corresponding to nighttime, for 48 hours. The temperature of each part of the heat pump 1 was measured. The result is shown in FIG.

図2のグラフにおいて、「表面」は吸着器3内部の表面側で測定した温度、「裏面」は吸着器3内部の裏面側で測定した温度、「連結管」は吸着器3と蒸発器5を結ぶ配管7内で測定した温度、「外気」は吸着ヒートポンプ1の周囲の温度、「蒸発器」は蒸発器5内部の温度を、それぞれ表している。   In the graph of FIG. 2, “surface” is the temperature measured on the surface side inside the adsorber 3, “back surface” is the temperature measured on the back side inside the adsorber 3, and “connection pipe” is the adsorber 3 and the evaporator 5. , “Outside air” represents the temperature around the adsorption heat pump 1, and “evaporator” represents the temperature inside the evaporator 5.

このグラフから明らかなように、日中に相当する時間帯(投光器を点灯した時間帯)には、吸着器3内部の温度は表面側及び裏面側双方とも急激に上昇し、特に表面側温度については、最大で100℃を超える温度域にまで到達した。このとき、蒸発器5内の温度も最大となった(図2中の時刻t1)。   As is clear from this graph, the temperature inside the adsorber 3 rises abruptly on both the front side and the back side during the time period corresponding to the daytime (the time period when the projector is turned on). Reached a temperature range exceeding 100 ° C. at the maximum. At this time, the temperature in the evaporator 5 also became maximum (time t1 in FIG. 2).

一方、この時点で投光器を消灯したところ、その後、吸着器3内部の温度は急激に低下した。このとき、蒸発器5内の温度も低下し、図2中の時刻t2の時点で、蒸発器5内の温度は氷点下に至ることとなった。つまり、夜間に相当する時間帯(投光器を点灯した時間帯)には、蒸発器5内の温度がきわめて低い温度になる。   On the other hand, when the projector was turned off at this point, the temperature inside the adsorber 3 dropped rapidly thereafter. At this time, the temperature in the evaporator 5 also decreased, and the temperature in the evaporator 5 reached below freezing point at time t2 in FIG. That is, the temperature in the evaporator 5 is extremely low during the time corresponding to the night (the time when the projector is lit).

したがって、熱交換流路9等を利用して蒸発器5内の冷熱を取り出せば、夜間の冷房などに利用することができる。
〔3〕第三実施形態
上記第一実施形態、第二実施形態と同様の吸着ヒートポンプ1を構成し、その性能試験を行った。ただし、この第三実施形態において、吸着器3としては、31×54×2.5cmのものを利用した。また、金属容器13としては、銅板をプレス加工したものを利用し、受光面11をなすガラスと金属容器13をなす銅板は、エポキシ接着剤で接着した。
Therefore, if the cold heat in the evaporator 5 is taken out using the heat exchange channel 9 or the like, it can be used for cooling at night.
[3] Third Embodiment An adsorption heat pump 1 similar to that in the first embodiment and the second embodiment was constructed, and the performance test was performed. However, in this third embodiment, as the adsorber 3, a 31 × 54 × 2.5 cm one was used. Moreover, as the metal container 13, what pressed the copper plate was utilized, and the glass which makes the light-receiving surface 11, and the copper plate which makes the metal container 13 were adhere | attached with the epoxy adhesive agent.

さらに、吸着器3の内部には、墨汁を混合したシリカゾルをゲル化させて得た球状の半透過黒色シリカ(粒子径5−10mesh)を充填した(充填量:2.85kg)。このような着色シリカを使用することにより、太陽光の吸収・発熱を促すことができる。蒸発器5としては容積3リットルのガラス瓶を利用し、その蒸発器5に1リットルの水を充填した。   Furthermore, the inside of the adsorber 3 was filled with spherical semi-transmissive black silica (particle size 5-10 mesh) obtained by gelling silica sol mixed with ink (filling amount: 2.85 kg). By using such colored silica, absorption and heat generation of sunlight can be promoted. As the evaporator 5, a glass bottle having a volume of 3 liters was used, and the evaporator 5 was filled with 1 liter of water.

以上のように構成された吸着ヒートポンプ1のうち、吸着器3を太陽光の当たる場所に設置して、48時間にわたって吸着ヒートポンプ1各部の温度を測定した。その結果を、図3に示す。   Among the adsorption heat pumps 1 configured as described above, the adsorber 3 was installed in a place exposed to sunlight, and the temperature of each part of the adsorption heat pump 1 was measured over 48 hours. The result is shown in FIG.

図3のグラフにおいて、「吸着器裏」は吸着器3内部の裏面側で測定した温度、「吸着器表」は吸着器3内部の表面側で測定した温度、「蒸発器」は蒸発器5内部の温度、「連結管」は吸着器3と蒸発器5を結ぶ配管7内で測定した温度、「外気温」は吸着ヒートポンプ1の周囲の温度を、それぞれ表している。   In the graph of FIG. 3, “adsorber back” is the temperature measured on the back side inside the adsorber 3, “adsorber table” is the temperature measured on the surface inside the adsorber 3, and “evaporator” is the evaporator 5. The internal temperature, “connecting pipe” represents the temperature measured in the pipe 7 connecting the adsorber 3 and the evaporator 5, and “outside air temperature” represents the temperature around the adsorption heat pump 1.

このグラフから明らかなように、日中には、吸着器3内部の温度は表面側及び裏面側双方とも上昇し、表面側温度については、最大で80℃を超える温度域にまで到達した。このとき、蒸発器5内の温度も最大となった(図3中の時刻t3)。この時点で、蒸発器5内の水量は980mlあった。   As is apparent from this graph, during the day, the temperature inside the adsorber 3 rose on both the front side and the back side, and the maximum temperature on the front side reached a temperature range exceeding 80 ° C. At this time, the temperature in the evaporator 5 also became maximum (time t3 in FIG. 3). At this time, the amount of water in the evaporator 5 was 980 ml.

その後、日没の時刻に向かって各部の温度は下降傾向となった。このとき、蒸発器5内の温度も低下し、図3中の時刻t4の時点で、10℃近くまで低下した。この時点で、蒸発器5内の水量は820mlあった。このことから、蒸発器5では、160mlの水が蒸発し、その蒸発に伴って蒸発器5内の温度が低下したことがわかる。   Thereafter, the temperature of each part tended to decrease toward the sunset time. At this time, the temperature in the evaporator 5 also decreased and decreased to nearly 10 ° C. at time t4 in FIG. At this time, the amount of water in the evaporator 5 was 820 ml. From this, it can be seen that 160 ml of water evaporated in the evaporator 5, and the temperature in the evaporator 5 decreased with the evaporation.

〔4〕その他の実施形態
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[4] Other Embodiments Although the embodiment of the present invention has been described above, the present invention is not limited to the specific embodiment described above, and can be implemented in various other forms.

例えば、上記実施形態では、吸着剤17を封入する容器(受光面11及び金属容器13)として、特定形状・特定寸法のものを例示したが、このような容器の具体的形態は任意であり、他の形態となっていてもよい。   For example, in the above embodiment, the container (the light receiving surface 11 and the metal container 13) that encloses the adsorbent 17 is exemplified by a specific shape and a specific size, but the specific form of such a container is arbitrary, Other forms may be used.

一例を挙げれば、吸着剤17の充填層の厚さは、上記実施形態では30mmとしてあったが、これは1〜10cm程度であればよく、好ましくは2〜5cm程度としてあるとよい。また、受光面の面積に関しては特に制限はないが、実用上は0.1〜10m2程度であると好ましく、少なくとも気体不透過で、耐熱性に関しては100〜150℃程度の温度に耐える耐熱性素材を利用してあると好ましい。 As an example, the thickness of the packed bed of the adsorbent 17 is 30 mm in the above embodiment, but this may be about 1 to 10 cm, and preferably about 2 to 5 cm. The area of the light-receiving surface is not particularly limited, but is practically preferably about 0.1 to 10 m 2 , at least gas impervious, and with respect to heat resistance, heat resistance that can withstand temperatures of about 100 to 150 ° C. It is preferable to use a material.

また、上記実施形態では、金属容器13として、ステンレス板で形成したものを例示したが、銅板、アルミニウム板などの他の金属素材で形成した容器や、プラスチックフィルムなどで形成した容器を利用してもよい。   Moreover, although the thing formed with the stainless steel plate was illustrated as the metal container 13 in the said embodiment, the container formed with other metal raw materials, such as a copper plate and an aluminum plate, and the container formed with the plastic film etc. are utilized. Also good.

また、吸着器3内での伝熱を促進するため、太陽光受光面側(受光面11側)と裏面側(金属容器13側)との間を、高伝熱性架橋材(例えば、金属部品)で架橋した構造としてもよい。このような高伝熱性架橋材を設ければ、迅速且つ均一に吸着器3内を加熱することができる。   Further, in order to promote heat transfer in the adsorber 3, a highly heat-conductive cross-linking material (for example, a metal component) is formed between the sunlight receiving surface side (light receiving surface 11 side) and the back surface side (metal container 13 side). ). If such a highly heat-conductive crosslinking material is provided, the inside of the adsorber 3 can be heated quickly and uniformly.

また、上記実施形態では、吸着剤17としてシリカゲルを用いる例を示したが、シリカゲル以外の吸着剤を用いてもよく、例えば、シリカライト、ゼオライト、活性炭、リン酸アルミニウム、MCM(Mobil社)、FSM(株式会社豊田中研)などの粒状吸着剤も使用可能である。   Moreover, in the said embodiment, although the example which uses a silica gel as the adsorption agent 17 was shown, you may use adsorption agents other than a silica gel, for example, a silicalite, a zeolite, activated carbon, an aluminum phosphate, MCM (Mobil company), Particulate adsorbents such as FSM (Toyota Chuken) can also be used.

また、上記実施形態のように、太陽光の受光面が透明体で構成される場合、受光面近くでは透明な吸着剤をそのまま使用することで、充填層の深層まで太陽光を透過させることができるが、受光面から遠い深層においては、太陽光を吸収する吸着剤を配置してもよい。   In addition, when the sunlight receiving surface is formed of a transparent body as in the above embodiment, sunlight can be transmitted to the deep layer of the packed bed by using a transparent adsorbent as it is near the light receiving surface. However, an adsorbent that absorbs sunlight may be disposed in a deep layer far from the light receiving surface.

このような太陽光を吸収する吸着剤としては、例えば、吸光性の高い活性炭、黒鉛、その他濃色の顔料等といった有色粉体で吸着剤粒子の表面をコーティングしたもの、あるいは、そのような有色粉体を吸着剤粒子の内部に一様に分散させたものなどを挙げることができる。   Examples of such adsorbents that absorb sunlight include those in which the surface of adsorbent particles is coated with colored powders such as activated carbon, graphite, and other dark pigments having high light absorption, or such colored materials. An example is one in which the powder is uniformly dispersed inside the adsorbent particles.

さらに、上記実施形態では、金属容器13の形状を、図5(a)に拡大して示すような形態としてあったが、この部分に、図5(b)に示すようなベローズ構造21を設けることにより、真空引きした際に、より柔軟に金属容器13が変形し、吸着剤17に密着する構造としてもよい。   Furthermore, in the said embodiment, although the shape of the metal container 13 was made into the form which expands and shows to Fig.5 (a), the bellows structure 21 as shown in FIG.5 (b) is provided in this part. Thus, when vacuuming, the metal container 13 may be deformed more flexibly and be in close contact with the adsorbent 17.

また、上記実施形態では、金属容器13において、凹部のコーナー部分13Bの形状を、図5(c)に拡大して示すように、円弧を描く形態としてあったが、図5(d)に示すように、多角形を描く形態としてあってもよく、これでも局所に力が集中するのを緩和することができる。   Moreover, in the said embodiment, although the shape of the corner part 13B of a recessed part was made into the form which draws a circular arc as shown in FIG.5 (c) in the metal container 13, it shows to FIG.5 (d). Thus, it may be in the form of drawing a polygon, and this can alleviate the concentration of force locally.

1・・・吸着ヒートポンプ、3・・・吸着器、5・・・蒸発器、7・・・配管、7A・・・三方バルブ、9・・・熱交換流路、11・・・ガラス板、13・・・金属容器、13A・・・折り目、13B・・・コーナー部分、15・・・断熱材、17・・・吸着剤、21・・・ベローズ構造。   DESCRIPTION OF SYMBOLS 1 ... Adsorption heat pump, 3 ... Adsorber, 5 ... Evaporator, 7 ... Piping, 7A ... Three-way valve, 9 ... Heat exchange flow path, 11 ... Glass plate, DESCRIPTION OF SYMBOLS 13 ... Metal container, 13A ... Fold, 13B ... Corner part, 15 ... Heat insulating material, 17 ... Adsorbent, 21 ... Bellows structure.

Claims (5)

吸着対象物質を吸着可能で、加熱された際には吸着済みの前記吸着対象物質を脱着する吸着剤が、内部に封入された吸着器と、
前記吸着対象物質の蒸気圧が飽和蒸気圧に達した際に、前記吸着対象物質を凝縮させる一方、前記吸着対象物質の蒸気圧が低下した際には、液化していた前記吸着対象物質を蒸発させる蒸発器と、
前記吸着器と前記蒸発器との間に介在して、前記吸着器の内部空間と前記蒸発器の内部空間とを連通させる配管と、
前記蒸発器内の温度が低下した際に、前記蒸発器との間で熱交換を行うことにより、前記蒸発器から冷熱を取り出す熱交換手段と
を備え、
前記吸着器は、一方の面が太陽光を受光する受光面となっていて、日中には、前記受光面側で太陽光を受光することにより、内部にある前記吸着剤を加熱して、前記吸着剤から前記吸着対象物質を脱着させ、当該脱着させた前記吸着対象物質が前記配管を介して前記蒸発器に到達すると前記蒸発器内で前記吸着対象物質が凝縮し、一方、夜間には、前記吸着剤によって前記吸着対象物質を吸着すると、前記蒸発器内で前記吸着対象物質が蒸発して前記蒸発器内の温度が低下し、その際、前記熱交換手段によって前記蒸発器から取り出される冷熱で、冷却対象を冷却可能に構成されており、しかも、
前記吸着器は、少なくとも一部が、大気圧を受けて前記吸着剤に密着する形態に変形することにより、前記受光面との間に前記吸着剤を挟み込む構造になっている
ことを特徴とする吸着ヒートポンプ。
An adsorber in which an adsorbent capable of adsorbing an adsorption target substance and desorbing the adsorbed target substance adsorbed when heated is enclosed inside;
When the vapor pressure of the adsorption target substance reaches the saturated vapor pressure, the adsorption target substance is condensed, while when the vapor pressure of the adsorption target substance decreases, the liquefied adsorption target substance is evaporated. An evaporator to
A pipe that is interposed between the adsorber and the evaporator and communicates the internal space of the adsorber and the internal space of the evaporator;
A heat exchanging means for taking out cold from the evaporator by exchanging heat with the evaporator when the temperature in the evaporator decreases;
The adsorber has a light receiving surface that receives sunlight on one side, and during the day, by receiving sunlight on the light receiving surface side, the adsorbent inside is heated, The adsorption target substance is desorbed from the adsorbent, and when the desorbed adsorption target substance reaches the evaporator via the pipe, the adsorption target substance is condensed in the evaporator, while at night When the adsorption target substance is adsorbed by the adsorbent, the adsorption target substance evaporates in the evaporator to lower the temperature in the evaporator, and at that time, is taken out from the evaporator by the heat exchange means It is configured to be able to cool the object to be cooled with cold heat,
The adsorber has a structure in which at least a part is deformed into a form in which the adsorbent is brought into close contact with the adsorbent by receiving atmospheric pressure so that the adsorbent is sandwiched between the adsorbent and the light receiving surface. Adsorption heat pump.
前記吸着器は、前記受光面が透明材料で形成されることにより、太陽光が受光面を透過して前記吸着剤に照射される構造になっている
ことを特徴とする請求項1に記載の吸着ヒートポンプ。
The adsorber has a structure in which the light receiving surface is formed of a transparent material, so that sunlight passes through the light receiving surface and is irradiated onto the adsorbent. Adsorption heat pump.
前記吸着器は、前記受光面が透明なガラス又は透明なプラスチックによって形成されており、しかも、前記吸着剤を挟んで前記受光面とは反対側となる部分が、前記受光面よりも変形しやすい構造とされた金属容器によって構成され、前記吸着器内が減圧された際には、前記金属容器が大気圧によって加圧されることで、前記吸着剤に密着する形態に変形する
ことを特徴とする請求項2に記載の吸着ヒートポンプ。
In the adsorber, the light receiving surface is formed of transparent glass or transparent plastic, and the portion opposite to the light receiving surface with the adsorbent interposed therebetween is more easily deformed than the light receiving surface. It is constituted by a metal container having a structure, and when the inside of the adsorber is depressurized, the metal container is pressurized by atmospheric pressure, and is deformed into a form in close contact with the adsorbent. The adsorption heat pump according to claim 2.
前記吸着器は、前記受光面以外の部分が、断熱材によって包囲されている
ことを特徴とする請求項1〜請求項3のいずれか一項に記載の吸着ヒートポンプ。
The adsorption heat pump according to any one of claims 1 to 3, wherein a portion other than the light receiving surface of the adsorber is surrounded by a heat insulating material.
前記吸着剤が、シリカゲル又は顔料を含む着色シリカゲルである
ことを特徴とする請求項1〜請求項4のいずれか一項に記載の吸着ヒートポンプ。
The adsorption heat pump according to any one of claims 1 to 4, wherein the adsorbent is silica gel or colored silica gel containing a pigment.
JP2010228838A 2010-10-08 2010-10-08 Adsorption heat pump Active JP5688262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228838A JP5688262B2 (en) 2010-10-08 2010-10-08 Adsorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228838A JP5688262B2 (en) 2010-10-08 2010-10-08 Adsorption heat pump

Publications (2)

Publication Number Publication Date
JP2012083015A true JP2012083015A (en) 2012-04-26
JP5688262B2 JP5688262B2 (en) 2015-03-25

Family

ID=46242073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228838A Active JP5688262B2 (en) 2010-10-08 2010-10-08 Adsorption heat pump

Country Status (1)

Country Link
JP (1) JP5688262B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088980A (en) * 2012-10-29 2014-05-15 Ricoh Co Ltd Heat storing and releasing unit
JP2015111033A (en) * 2013-11-01 2015-06-18 富士シリシア化学株式会社 Adsorber and adsorption heat pump
JP2022080676A (en) * 2020-11-18 2022-05-30 株式会社豊田中央研究所 Sunlight utilizing adsorption type heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231149A (en) * 1987-03-18 1988-09-27 株式会社日立製作所 Adsorption type refrigeration cycle
US4974419A (en) * 1988-03-17 1990-12-04 Liquid Co2 Engineering Inc. Apparatus and method for simultaneously heating and cooling separate zones
JPH03160298A (en) * 1989-11-20 1991-07-10 Matsushita Electric Works Ltd Heat accumulation board and its production method
JPH10286460A (en) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
JPH1123097A (en) * 1997-06-30 1999-01-26 Fuji Silysia Chem Ltd Adsorption/description module and adsorption heat pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231149A (en) * 1987-03-18 1988-09-27 株式会社日立製作所 Adsorption type refrigeration cycle
US4974419A (en) * 1988-03-17 1990-12-04 Liquid Co2 Engineering Inc. Apparatus and method for simultaneously heating and cooling separate zones
JPH03160298A (en) * 1989-11-20 1991-07-10 Matsushita Electric Works Ltd Heat accumulation board and its production method
JPH10286460A (en) * 1997-04-15 1998-10-27 Mayekawa Mfg Co Ltd Adsorbent for forming, and adsorption heat exchanger having integrally formed structure
JPH1123097A (en) * 1997-06-30 1999-01-26 Fuji Silysia Chem Ltd Adsorption/description module and adsorption heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088980A (en) * 2012-10-29 2014-05-15 Ricoh Co Ltd Heat storing and releasing unit
JP2015111033A (en) * 2013-11-01 2015-06-18 富士シリシア化学株式会社 Adsorber and adsorption heat pump
JP2022080676A (en) * 2020-11-18 2022-05-30 株式会社豊田中央研究所 Sunlight utilizing adsorption type heat pump

Also Published As

Publication number Publication date
JP5688262B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
US10683644B2 (en) Sorption-based atmospheric water harvesting device
Xu et al. Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt
Yan et al. Ultrahigh-energy-density sorption thermal battery enabled by graphene aerogel-based composite sorbents for thermal energy harvesting from air
RU2010104608A (en) SOLAR ENERGY HEAT COLLECTOR FOR HEAT AND / OR COOLING
Deng et al. Hygroscopic Porous Polymer for Sorption‐Based Atmospheric Water Harvesting
US20130291574A1 (en) Cooling Systems and Related Methods
JP5688262B2 (en) Adsorption heat pump
US8640489B2 (en) Heat pump
JP2019132583A (en) Heat exchanger
JP2016084833A (en) Vacuum heat insulating material and heat insulating box
WO2015079772A1 (en) Electronic device
CN201090961Y (en) Heat converter and temperature regulating vessel having the same
WO2014089422A1 (en) Monolithically integrated bi-directional heat pump
WO2012091057A1 (en) Adsorption heat pump
JP2015014326A (en) Heat insulation member and cold/hot storage box
US20200370821A1 (en) Radiant cooler based on direct absorption and latent heat transfer, methods of forming and operating the same
CN210980470U (en) Adsorption type refrigeration device
JPS6287762A (en) Cooler collecting solar heat
JP5315893B2 (en) Adsorption heat pump
JP2023053753A (en) Adsorber and adsorptive heat pump
JP2021196129A (en) Adsorption type heat pump system and cold heat generation method
JP2022080676A (en) Sunlight utilizing adsorption type heat pump
JP2014213240A (en) Gas absorption device and vacuum insulation material
CA3177348A1 (en) Sorption heat transformer and thermal storage
JP2018146162A (en) Heat storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5688262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250