JP3634114B2 - Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same - Google Patents

Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same Download PDF

Info

Publication number
JP3634114B2
JP3634114B2 JP11342997A JP11342997A JP3634114B2 JP 3634114 B2 JP3634114 B2 JP 3634114B2 JP 11342997 A JP11342997 A JP 11342997A JP 11342997 A JP11342997 A JP 11342997A JP 3634114 B2 JP3634114 B2 JP 3634114B2
Authority
JP
Japan
Prior art keywords
adsorbent
heat transfer
adsorption
heat exchanger
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11342997A
Other languages
Japanese (ja)
Other versions
JPH10286460A (en
Inventor
秀治 柳
誠治 岡林
雅博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mayekawa Manufacturing Co
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Mizusawa Industrial Chemicals Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP11342997A priority Critical patent/JP3634114B2/en
Publication of JPH10286460A publication Critical patent/JPH10286460A/en
Application granted granted Critical
Publication of JP3634114B2 publication Critical patent/JP3634114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は吸着式冷凍機の吸着剤とそれを収納する吸着熱交換器に関し、特に吸脱着特性の向上を図った伝熱性バインダーにより一体成形を可能とした成形用吸着剤と、該吸着剤を備えた一体成形構造の熱交換器に関する。
【0002】
【従来の技術】
吸着式冷凍機は、固体吸着剤例えばシリカゲルと冷媒である水との間の可逆反応に伴う発吸熱現象を利用し、温熱を熱源として冷熱を発生させる冷凍機で、基本サイクルは再生工程と吸着工程とよりなり、該工程を二基の固体吸着剤熱交換器(以下吸着熱交換器という)を交互に切り替え作動するようにしたものである。図7には、従来の吸着式冷凍機の概略の構成を示してある。
【0003】
例えば図7に見るように、再生工程を吸着熱交換器50により行い、吸着工程を吸着熱交換器51で行う場合は、黒マークの切り換えバルブと蒸気弁を閉鎖状態とし、白マークの切り換えバルブと蒸気弁を解放状態とする。
この場合、真空容器内の吸着熱交換器50に再生用温水71を切り換えバルブ61を介して導入加熱すると、内蔵する吸着剤より脱着した水蒸気は蒸気弁56を介して凝縮器52に放出される。該凝縮器52では前記放出された水蒸気は凝縮用冷却水72により液化される。凝縮滴下した水は蒸発器53の下部に貯留され、吸着熱交換器50に内蔵する吸着剤の再生は終了する。
【0004】
一方、別の真空容器内の吸着熱交換機51には吸着用冷却水73が切り換えバルブ63を介して導入され、内蔵する吸着剤は冷却され吸着可能の状態に移行する。また、蒸発器53においてポンプ53a、噴霧器53bを介して発生した水蒸気は蒸気弁57を介して吸着熱交換器51へ送られ前記吸着可能の状態にある吸着剤により吸着される。この時、蒸発器53においては噴霧器53bを介して発生する水蒸気は発生の過程において被冷却流体60から蒸発潜熱を奪う。その結果冷水の製造が可能となる。
つまり、吸着熱交換器51に内蔵する吸着剤は吸着工程に置かれ、蒸発器53で被冷却流体60に冷熱を供給する。
【0005】
水蒸気の吸着及び脱着量が飽和に近付くと、切り換えバルブ61が62に、65が67に、また63が64に、68が66に切り替えられ、その結果、吸着熱交換器50で水蒸気が吸着され、吸着熱交換器51で水蒸気が脱着され、以後上記切り替え操作が繰り返されることになる。
【0006】
上記吸着熱交換器50、51の構成を図8(A)、(B)に示してある。図8(A)はプレート型熱伝導部材を持つ熱交換器の模式図が示してある。(特願平3−83361号)
なお、吸着剤には活性炭、アルミナ、活性アルミナ及びシリカゲルが考えられるが、60〜80℃の排熱を有効に利用でき且つ入手が比較的容易な点からシリカゲルが使用されている。
図8(A)に見るように、吸着熱交換器は再生用温水ないし吸着用冷却水の通路を形成する伝熱部材75の両サイドに例えば粒子状の吸着剤(シリカゲル)76を充填し外側より吸着剤押さえ用の金網79で被覆したものを10数枚1セットとして使用されている。
なお、上記吸着剤充填層の厚さYは熱移動及び物質移動の点を参酌して決められている。
また、上記構造以外に図8(B)に示すように、前記温水や冷却水の通路形成する伝熱部材である伝熱菅77と、該伝熱菅に直角に且つ等間隔に設けた多数枚のフィン78とから形成し、該フィンの外側よりフィン同志の間隙より伝熱菅77の外周を囲むようにして吸着剤76を充填し、外側より金網79等により被覆したものが用いられている。(特願平4−159308号)
【0007】
上記いずれの構造の場合も、吸着剤76同志及び吸着剤76とフィン78ないし伝熱部材75の表面とは点接触により形成されているため、伝熱部材よりの吸着剤への熱の伝達は熱伝導率の悪い固体間同志、固体気体間の熱の伝導に頼らざるを得ない状況にある。
その結果、吸着熱交換器においては、伝熱性能が悪く、水蒸気の吸脱着に伴う予熱、給熱が不十分となり吸脱着速度の低下、吸脱着機能を十分に発揮している吸着剤は限られたものになり、装置の拡大化をもたらす一因を形成していた。
【0008】
これらの問題解決のために、従来より種々提案がされ、特開平4−143558号公報に提案aが、特開平8−200876号公報に提案bが、特開平8−271085号公報に提案cが開示されている。
提案aは、吸着剤と金属促進材とにより混合スラリーを形成させ、該スラリーと伝熱部材とを成形型に投入し、前記吸着剤と金属促進材との混合体を伝熱部材に一体焼結成形する構成としたもので、
提案bは、伝熱部材表面に脱水作用のある接着剤を含有させた粉粒状のシリカゲルを塗布固着させ、被覆ないし埋め込みにより、伝熱部材表面とシリカゲルとを一体化させたことを特徴としたものであり、
提案cは、伝熱部材表面と吸着剤との間に熱伝導層部を設けたことを特徴としたものである。
【0009】
上記提案a〜提案cにわたる従来の提案を見るに、
提案aにおいては、吸着剤と金属促進材との混入体を形成させ、焼結により混合体と伝熱部材との間を一体化を図っている。この場合、上記金属促進材の混入により熱伝達率の向上は図れるが、混合体と伝熱部材との結合に焼結手段を採用しているため、混合体には緻密な多結晶体が形成され、冷媒の吸脱着に際しての物質移動は困難になり、吸脱着は表面に出ている吸着剤のみに限られ、効率の低下は避けられない。
次に提案bにおいては、吸着剤と脱水性接着とにより混合体を形成してスラリー状とし、該スラリーを伝熱部材に塗布、被覆ないし埋め込み、乾燥一体化を図ったもので、上記接着剤により伝熱部材と接着剤との間、及び接着剤同志の間のの接触面積は、従来の点接触より拡大されるが接着剤自体の熱伝導率については何ら考慮されていないため、伝熱性能の向上に対して大きな期待は無理であり、冷媒の外部よりの物質移動に対しても配慮されていない。
また、提案cにおいては、伝熱部材の表面に熱伝導層を設け、該熱伝導層を介して粉粒状の吸着剤を充填するようにしてあるため、吸着剤と伝熱部材間の熱伝導は従来の点接触より接触面積を増大させ改善されるが、吸着剤同志の間の熱伝導については改善されていない。
【0010】
【発明が解決しようとする課題】
ところで、吸着熱交換器の伝熱性能Uと、吸着剤層の有効熱伝導率λeffと吸着剤層厚さSad、伝熱部材面での熱伝達率hw と伝達部材肉厚Sw 及び熱伝導率λw 、熱媒体(冷媒)の熱伝達率hext との間には次のような関係式が成立する。
1/U=1/hw+Sw/λw+Sad/λeff+1/hext
そこで上式において、吸着剤層の有効熱伝導率λeff及び伝熱部材面での熱伝達率hw の向上を図れば伝熱性能Uをアップさせることができるわけである。
【0011】
本発明は上記問題点に鑑みなされたもので、
上記吸着剤層の有効熱伝導率λeffの向上と、吸脱着用温水ないし冷却水の通路を形成する伝熱部材面の熱伝達率の向上を図るとともに、吸着剤の吸着性能を損ねることのない成形用吸着剤と、該吸着剤を使用した一体構造の吸着熱交換器の提供を目的とする。
【0012】
【課題を解決するための手段】
以下本発明の要旨を説明する。
即ち、吸着剤層の有効熱伝導率λeffの向上のために、粉粒状シリカゲル群の各間隙及び伝熱体面との間の間隙を高熱伝導剤で埋めるべく、グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成する。
次に伝熱部材面での熱伝達率hwの向上のために、前記混合した高熱伝導吸着剤を伝熱部材に成形し且つ膨潤伸張可能の強固な高分子網目の形成により可塑性に富み且つ強固な成形面の形成を可能とすべく、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散スラリー状に形成する。
さらに、多孔性無機バインダーの添加により外部からの冷媒の物質移動を容易にしてある。
【0013】
上記セルローズ系有機バインダーと多孔性無機バインダーの配合比は、吸着剤としての吸着性能を損なうことのないことを前提とし、特にシリカゲルのマクロ孔及びメソ孔の閉塞の回避に配慮されねばならない。
また、低い相対圧のもとにおいても吸着能力を大きく維持すべく細孔容積及び比表面積の拡大に配慮されねばならない。
【0014】
また、上記配合比に基づく粉粒状品を混合スラリー状ないしペースト状に分散した溶液に、前記伝熱部材を浸漬成形ないし、ペースト加工、型成形後、風乾及び加熱乾燥して、一体成形構造の吸着熱交換器を形成する。
【0015】
そこで、請求項1記載の発明は、
吸着式冷凍機用吸着剤の製造方法において、グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりスラリー状若しくはペースト状に構成したものを風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、乾燥してなることを特徴する成形用吸着剤の製造方法にある
【0016】
また、請求項2記載の発明は、グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりスラリー状に形成した成形用吸着剤を伝熱パイプと伝熱フィンに、浸漬したものを、風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、前記吸着剤を浸漬成形させたことを特徴とする一体成形構造の吸着熱交換器の製造方法である。
【0017】
また、請求項3記載の発明は、グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりペースト状に形成した吸着剤を伝熱パイプと伝熱フィンにペースト状に充填加工をした後、その充填加工部を溝を設けた多孔板で挟んだ状態で風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、前記吸着剤を浸漬成形させたことを特徴とする一体成形構造の吸着熱交換器の製造方法である。
【0018】
また、請求項4記載の発明は、温水ないし冷却水の通路を形成する複数の伝熱菅と、該伝熱菅に直角に交叉し等間隔且つ平行に設けられた複数の扁平状のフィンと、該フィンとフィンとの間にペースト加工され型成形された型成形吸着剤層と、該型成形吸着剤層の中間に形成された溝とより構成され、前記型成形吸着剤層がシリカゲルグラファイトとセルローズ系の有機バインダーと多孔性無機バインダーにより構成されていることを特徴する吸着熱交換器である
【0019】
【作用】
請求項1記載のグラファイトの配合によりグラファイトの持つ高熱伝導率により、吸着剤層の有効熱伝導率の向上を図ることができ、
また、セルローズ系有機バインダーの適量配合により、水蒸気に対する吸着機能の期待と膨潤伸張可能の高分子網目により強固で且つ可塑性に富む成形面の強度維持が期待できる。
また、多孔性無機バインダーの適量配合により、冷媒蒸気の吸着剤層内の物質移動を容易にする効果を期待できる。
また、成形用吸着剤に伝熱体を浸漬ないしペースト加工後の風乾及び略70℃前後の低温乾燥により、飽和蒸気を維持しながら乾燥して、成形面へのクラックの発生を防止してある。
【0020】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は、本発明の成形用吸着剤を使用して浸漬成形をして一体構造とした吸着熱交換器の概略の構成を示す斜視図で、図2は成形用吸着剤を使用して型成形して一体構造とした吸着熱交換器の概略の構成を示す斜視図である。
【0021】
図1に見るように、浸漬成形した一体構造の吸着熱交換器15aは、温水ないし冷却水の通路を形成する複数の銅からなる伝熱菅10と、該伝熱菅10と直角に交叉し等間隔且つ平行に設けられた複数のアルミニウム、アルミニウム合金、銅、銅合金等からなる扁平状のフィン11と、フィン11及び伝熱菅10を覆う浸漬成形された浸漬成形吸着剤層14とより構成する。
【0022】
上記浸漬成形吸着剤層14はスラリー状に形成された成形用吸着剤よりなり、その調整方法及び加工条件の一例を下記に示す。
42メッシュ以下のシリカゲル粉粒状のもの80.8重量部と、グラファイト微粒子9.0 重量部と、セルローズ系有機バインダー3.55重量部とゼピオライトで粉末状ないし繊維状の無機バインダー6.63重量部を15分混合し、55.6重量部の水を添加し60分間分散混合を行いスラリー状溶液を形成する。
上記溶液中に図1に示す伝熱菅10とフィン11とよりなる伝熱部材を浸漬し、浸漬後2日間大気中に静置風乾を行った後、略70℃で36時間の乾燥工程を経て、図1に示す浸漬成形吸着剤層14を形成させ一体構造とした吸着熱交換器15aを構成する。
【0023】
図2には、成形用吸着剤を使用して型成形して一体構造とした吸着熱交換器15bの概略の構成が示してある。
上記型成形による一体構造の吸着熱交換器15bは、温水ないし冷却水の通路を形成する複数の銅よりなる伝熱菅10と、該伝熱菅10に直角に交叉し等間隔且つ平行に設けられた複数のアルミニウム、アルミニウム合金、銅、銅合金等よりなる扁平状のフィン11と、該フィンとフィンとの間にペースト加工され型成形された型成形吸着剤層12と、該型成形吸着剤層12の中間の前後に形成された溝13とより構成する。
【0024】
上記型成形吸着剤層12はペースト状に形成された成形用吸着剤で構成され、その調整方法及び加工条件の一例を下記に示す。
42メッシュ以下のシリカゲル粉粒状のもの86.2重量部と、グラファイト微粒子4.35重量部と、セルローズ系有機バインダー4.35重量部と、ゼピオライトで繊維状の無機バインダー5.08重量部を15分混合し、39.6重量部の水を添加し60分間分散混合を行いペースト状に形成する。
ついで、上記ペースト状吸着剤で図2に示す伝熱菅10とフィン11とよりなる伝熱部材にペースト加工をなし、ついでテフロンとステンレスの多孔板で挟み、3日間大気中に静置風乾を行った後、略70℃で36時間の乾燥工程を経て、図2に示す型成形吸着剤層12を形成させ一体構造とした吸着熱交換器15bを構成する。
なお、図2における上下の溝13は、前記多孔板の形状を溝付き形状とし挟持押圧と同時に形成されるようにしてある。
【0025】
上記浸漬成形吸着剤層や型成形吸着剤層を形成する成形用吸着剤を構成する混合部材のうち、
グラファイトは高熱伝導性部材で、接着剤層の有効熱伝導率λeffの向上のために使用する。
セルローズ系有機バインダーは、水蒸気に対する吸着機能と、膨潤伸張可能の高分子網目により強固で且つ可塑性に富む成形面の形成と強度維持を可能にしている。
また、多孔性無機バインダーの適量配合により、冷媒蒸気の吸着剤層内の物質移動を容易にする効果を期待できる。
また、成形吸着剤に伝熱体を浸漬ないしペースト加工後の風乾及び略70℃前後の低温乾燥により、飽和蒸気を維持しながら乾燥して、成形面へのクラックの発生を防止してある。
なお、上記有機バインダーはシリカゲルの吸着剤としての吸着性能を損なわないようにし、シリカゲルのマクロ孔やメソ孔の閉塞の回避に配慮して、低い相対圧のもとで大なる吸着能力を期待すべく細孔容積及び比表面積を大きくできるよう、配慮してある。
【0026】
上記浸漬成形吸着剤層14、型成形吸着剤層12を備えた成形品No.1と成形品Bとして、従来のシリカゲル破砕型とについて、伝熱特性及び吸着特性の比較測定を行った。
その結果、伝熱性能Uは、脱着初期において成形用吸着剤は62.2W/m2K、破砕シリカゲルは44.8W/m2K、また脱着期間中においては成形用吸着剤は61.5W/m2K、破砕シリカゲルは25.9W/m2Kであった。
【0027】
上記結果に示すように高い伝熱性能を得る事が出来、再生温度の上昇、吸着温度の低下をもたらし、サイクル冷媒循環量の増加を可能とし、図3、図4にそれぞれ成形品No.1と破砕シリカゲルについての吸着特性が示される。
また、上記結果により吸着、再生サイクル時間の短縮が図れる。また、コンパクト化も図れる。
なお、型成形吸着剤層12において溝13を設けたのは、冷媒の物質移動をより容易にするためであり、これにより成形品Bにおけるサイクルタイムの削減を可能にしてある。
【0028】
図5には、本発明の成形用吸着剤を使用した太陽光駆動用吸着熱交換器の概略の構成を示す模式図である。
図に見るように、本発明の太陽光駆動用吸着熱交換器16は、成形吸着剤20と、該吸着剤を収納する断熱容器21と、該断熱容器の上部に設けた耐圧耐熱密閉構造にした例えばガラス等の光透過部材25と、前記耐圧、耐熱、気密構造により形成された太陽光照射空間兼吸脱着空間22とより構成したもので、図6に示すように、太陽光23が照射する昼間においては図6(A)に見るように、太陽光駆動用吸着熱交換器16では吸着剤は加熱され脱着再生が行われ発生した冷媒蒸気(水蒸気)24は凝縮器17に導入され凝縮用冷却水により凝縮が行われる。
一方夜間には図6(B)に見るように放射冷却が行われ、吸着剤は冷却され吸着剤の吸着能力が発生増大する。ここで、前記凝縮器17を蒸発器として作動させることにより蒸発器での蒸発が行われ、発生した水蒸気24は吸着剤に吸着され、その蒸発器の蒸発過程において冷熱が生成される。
上記機能を持つ太陽光駆動用吸着熱交換器は環境温度で十分作動することが要求され、この点、黒色のグラファイトを使用した本発明の成形用吸着剤を使用した場合はその期待効果は大なるものがある。
【0029】
【発明の効果】
上記成形吸着剤の構成により伝熱性能を向上させることができ、また本接着剤の使用した吸着熱交換器の構成により、再生温度の上昇、吸着温度の低下を招来させることができ、サイクル冷媒循環量の増加をもたらし、冷凍能力の向上を図ることができる。
また、吸着再生サイクル時間の短縮が可能となり、熱交換器のコンパクト化を図ることができる。
また、太陽光駆動用吸着熱交換器においても、本発明の成形用吸着剤の使用により効率のアップを図ることができる。
【図面の簡単な説明】
【図1】本発明の成形用吸着剤を使用して浸漬成形をして一体構造とした吸着熱交換器の概略の構成を示す斜視図である。
【図2】本発明の成形用吸着剤を使用して型成形して一体構造とした吸着熱交換器の概略の構成を示す斜視図である。
【図3】本発明の成形用吸着剤を使用した場合の吸着熱交換器の吸着特性を示す図である。
【図4】従来の破砕シリカゲルを使用した吸着熱交換器の吸着特性を示す図である。
【図5】本発明の成形用吸着剤を使用した太陽光駆動用吸着熱交換器の概略の構成を示す図である。
【図6】太陽光駆動用吸着熱交換器の作動状況を示す該略図で、(A)は昼間の作動状況を示し、(b)は夜間の作動状況を示す図である。
【図7】従来の吸着式冷凍機の概略の構成を示す図である。
【図8】従来の吸着熱交換器の概略の構成を示す図で、(A)はプレート熱伝導タイプを示し、(B)はパイプ及びフィン熱伝導タイプを示す図である。
【符号の説明】
10 伝熱菅
11 フィン
12 型成形吸着剤層
13 溝
14 浸漬成形吸着剤層
15a、15b 一体構造の吸着熱交換器
16 太陽光駆動用吸着熱交換器
17 凝縮器
20 成形吸着剤
21 断熱容器
22 太陽光照射空間兼吸脱着空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent for an adsorption refrigerator and an adsorption heat exchanger for storing the adsorbent, and in particular, an adsorbent for molding that can be integrally formed with a heat transfer binder with improved adsorption / desorption characteristics, and the adsorbent The present invention relates to a heat exchanger having an integrally formed structure.
[0002]
[Prior art]
An adsorption refrigerator is a refrigerator that generates heat using a heat source as a heat source, utilizing the endothermic phenomenon associated with a reversible reaction between a solid adsorbent, such as silica gel, and water as a refrigerant. The process consists of two solid adsorbent heat exchangers (hereinafter referred to as adsorption heat exchangers). FIG. 7 shows a schematic configuration of a conventional adsorption refrigerator.
[0003]
For example, as shown in FIG. 7, when the regeneration process is performed by the adsorption heat exchanger 50 and the adsorption process is performed by the adsorption heat exchanger 51, the black mark switching valve and the steam valve are closed and the white mark switching valve is closed. And open the steam valve.
In this case, when the regeneration warm water 71 is introduced and heated via the switching valve 61 to the adsorption heat exchanger 50 in the vacuum vessel, the water vapor desorbed from the built-in adsorbent is released to the condenser 52 via the steam valve 56. . In the condenser 52, the discharged water vapor is liquefied by the cooling water 72 for condensation. The condensed and dripped water is stored in the lower part of the evaporator 53, and the regeneration of the adsorbent incorporated in the adsorption heat exchanger 50 is completed.
[0004]
On the other hand, the adsorption cooling water 73 is introduced into the adsorption heat exchanger 51 in another vacuum vessel via the switching valve 63, and the adsorbent contained therein is cooled and shifts to an adsorbable state. Further, water vapor generated in the evaporator 53 via the pump 53a and the sprayer 53b is sent to the adsorption heat exchanger 51 via the steam valve 57 and is adsorbed by the adsorbent in the adsorbable state. At this time, in the evaporator 53, the water vapor generated through the sprayer 53b takes the latent heat of evaporation from the fluid 60 to be cooled in the process of generation. As a result, cold water can be produced.
That is, the adsorbent built in the adsorption heat exchanger 51 is placed in the adsorption process, and the evaporator 53 supplies cold heat to the fluid 60 to be cooled.
[0005]
When the water vapor adsorption and desorption amount approaches saturation, the switching valve 61 is switched to 62, 65 is switched to 67, 63 is switched to 64, and 68 is switched to 66. As a result, the adsorption heat exchanger 50 adsorbs water vapor. The water vapor is desorbed by the adsorption heat exchanger 51, and the switching operation is repeated thereafter.
[0006]
The structure of the adsorption heat exchangers 50 and 51 is shown in FIGS. 8 (A) and 8 (B). FIG. 8A shows a schematic diagram of a heat exchanger having a plate-type heat conducting member. (Japanese Patent Application No. 3-83361)
As the adsorbent, activated carbon, alumina, activated alumina, and silica gel are conceivable, but silica gel is used because exhaust heat at 60 to 80 ° C. can be used effectively and is relatively easy to obtain.
As shown in FIG. 8 (A), the adsorption heat exchanger is filled with, for example, particulate adsorbent (silica gel) 76 on both sides of a heat transfer member 75 that forms a passage of warm water for regeneration or cooling water for adsorption. What is covered with a wire mesh 79 for pressing the adsorbent is used as a set of 10 or more sheets.
The thickness Y of the adsorbent packed bed is determined in consideration of heat transfer and mass transfer.
In addition to the above structure, as shown in FIG. 8 (B), a heat transfer rod 77 which is a heat transfer member for forming the passage of the hot water and the cooling water, and a number of them provided at right angles and at equal intervals to the heat transfer rod. It is formed of a plurality of fins 78, and is filled with an adsorbent 76 so as to surround the outer periphery of the heat transfer rod 77 from the outside of the fins through a gap between the fins, and is covered with a metal mesh 79 or the like from the outside. (Japanese Patent Application No. 4-159308)
[0007]
In any of the above structures, since the adsorbents 76 and the adsorbent 76 and the surface of the fin 78 or the heat transfer member 75 are formed by point contact, the heat transfer from the heat transfer member to the adsorbent is It is in a situation where there is no choice but to rely on conduction between solids with poor thermal conductivity and conduction of heat between solid gases.
As a result, in the adsorption heat exchanger, the heat transfer performance is poor, the preheating and heat supply accompanying the adsorption and desorption of water vapor is insufficient, the adsorption / desorption rate is lowered, and the adsorbent that fully exhibits the adsorption / desorption function is limited. And formed a factor that led to the expansion of the device.
[0008]
In order to solve these problems, various proposals have been made conventionally. Proposal a in Japanese Patent Laid-Open No. 4-143558, Proposal b in Japanese Patent Laid-Open No. 8-200586, Proposal c in Japanese Patent Laid-Open No. 8-270855. It is disclosed.
In the proposal a, a mixed slurry is formed by an adsorbent and a metal promoter, the slurry and the heat transfer member are put into a mold, and the mixture of the adsorbent and the metal promoter is integrally fired on the heat transfer member. It is configured to form and
Proposal b is characterized in that the surface of the heat transfer member and the silica gel are integrated by coating or embedding by applying and fixing powdery silica gel containing a dehydrating adhesive on the surface of the heat transfer member. Is,
Proposal c is characterized in that a heat conductive layer portion is provided between the heat transfer member surface and the adsorbent.
[0009]
To see the conventional proposals ranging from the above proposal a to proposal c,
In proposal a, a mixture of adsorbent and metal promoter is formed, and the mixture and the heat transfer member are integrated by sintering. In this case, the heat transfer coefficient can be improved by mixing the metal promoter, but a dense polycrystalline body is formed in the mixture because the sintering means is used to bond the mixture and the heat transfer member. Therefore, mass transfer during adsorption / desorption of the refrigerant becomes difficult, and adsorption / desorption is limited only to the adsorbent on the surface, and a reduction in efficiency is inevitable.
Next, in Proposal b, a mixture is formed by adsorbent and dehydrating adhesion to form a slurry, and the slurry is applied to a heat transfer member, coated or embedded, and dried and integrated. Therefore, the contact area between the heat transfer member and the adhesive, and between the adhesives is expanded compared to the conventional point contact, but no consideration is given to the thermal conductivity of the adhesive itself. There is no great expectation for improvement in performance, and no consideration is given to mass transfer from outside the refrigerant.
In Proposal c, a heat conduction layer is provided on the surface of the heat transfer member, and the particulate adsorbent is filled through the heat conduction layer, so that heat conduction between the adsorbent and the heat transfer member is performed. Is improved by increasing the contact area compared to the conventional point contact, but the heat transfer between the adsorbents is not improved.
[0010]
[Problems to be solved by the invention]
By the way, the heat transfer performance U of the adsorption heat exchanger, the effective thermal conductivity λ eff of the adsorbent layer, the adsorbent layer thickness S ad , the heat transfer coefficient h w on the heat transfer member surface, and the transfer member thickness S w The following relational expression holds between the heat conductivity λ w and the heat transfer coefficient h ext of the heat medium (refrigerant).
1 / U = 1 / h w + S w / λ w + S ad / λ eff + 1 / h ext
Therefore, in the above equation, the heat transfer performance U can be improved by improving the effective heat conductivity λ eff of the adsorbent layer and the heat transfer coefficient h w on the surface of the heat transfer member.
[0011]
The present invention has been made in view of the above problems,
While improving the effective thermal conductivity λ eff of the adsorbent layer and improving the heat transfer coefficient of the heat transfer member surface that forms the passage of hot water or cooling water for adsorption / desorption, the adsorbent adsorption performance may be impaired. It is an object of the present invention to provide an adsorption heat exchanger having a single structure using the adsorbent for molding without using the adsorbent and the adsorbent.
[0012]
[Means for Solving the Problems]
The gist of the present invention will be described below.
That is, in order to improve the effective thermal conductivity λ eff of the adsorbent layer, graphite powder is mixed with granular silica gel in order to fill each gap of the granular silica gel group and the gap between the heat transfer surfaces with a high thermal conductive agent. Thus, a high heat conduction adsorbent is formed.
Then in order to improve the heat transfer rate h w in the heat transfer member surface, and rich in plasticity due to the formation of solid polymeric network of possible molded and swell stretching high thermal conductivity adsorbent the mixture to the heat transfer member In order to make it possible to form a strong molding surface, an adsorbent cellulose organic binder is additionally mixed and then formed into a dispersed slurry in water.
Furthermore, the addition of the porous inorganic binder facilitates the mass transfer of the refrigerant from the outside.
[0013]
The blending ratio of the cellulose organic binder to the porous inorganic binder is based on the premise that the adsorption performance as an adsorbent is not impaired, and in particular, consideration must be given to avoiding the blocking of macropores and mesopores of silica gel.
In addition, the pore volume and the specific surface area must be increased in order to maintain a large adsorption capacity even under a low relative pressure.
[0014]
In addition, the heat transfer member is dip-molded in a solution obtained by dispersing a powdered granular product based on the above blend ratio into a mixed slurry or paste, or after paste processing, mold forming, air drying and heat drying, An adsorption heat exchanger is formed.
[0015]
Therefore, the invention of claim 1
In the method for producing an adsorbent for adsorption type refrigerator, after mixing graphite powder with granular silica gel to form a high thermal conductivity adsorbent, an adsorbent cellulose organic binder is additionally mixed and then dispersed in water, Further, the production of an adsorbent for molding characterized in that a slurry or paste formed by adding a porous inorganic binder is dried by low-temperature drying at about 70 ° C. while maintaining air drying and saturated steam. Is in the way .
[0016]
The invention according to claim 2 is characterized in that graphite powder is mixed with granular silica gel to form a high thermal conductive adsorbent, adsorbent cellulose organic binder is additionally mixed and then dispersed in water, The adsorbent for molding formed into a slurry by adding a porous inorganic binder is immersed in a heat transfer pipe and heat transfer fin, and dried by low temperature drying at about 70 ° C. while maintaining air drying and saturated steam. It is a manufacturing method of the adsorption heat exchanger of the integral molding structure characterized by making the agent dip-molding.
[0017]
Further, in the invention of claim 3, after the graphite powder is mixed with the granular silica gel to form a high thermal conductive adsorbent, an adsorbent cellulose organic binder is additionally mixed and dispersed in water, After the adsorbent formed in the paste form by the addition of the porous inorganic binder is filled into the heat transfer pipe and the heat transfer fin in the paste form, it is air-dried in a state where the filling processed part is sandwiched between the porous plates provided with grooves. A method for producing an adsorption heat exchanger having an integrally formed structure, wherein the adsorbent is subjected to immersion molding by low-temperature drying at about 70 ° C. while maintaining saturated steam .
[0018]
According to a fourth aspect of the present invention, there are provided a plurality of heat transfer rods forming passages for hot water or cooling water, and a plurality of flat fins that intersect at right angles to the heat transfer rods and are provided at equal intervals and in parallel. A mold forming adsorbent layer formed by paste processing between the fins and a mold, and a groove formed in the middle of the mold forming adsorbent layer, wherein the mold adsorbent layer is formed of silica gel . It is an adsorption heat exchanger characterized by comprising graphite, a cellulose organic binder, and a porous inorganic binder .
[0019]
[Action]
The effective thermal conductivity of the adsorbent layer can be improved due to the high thermal conductivity of the graphite by blending the graphite according to claim 1,
In addition, by blending an appropriate amount of cellulose organic binder, it is possible to expect the adsorption function for water vapor and to maintain the strength of the molding surface that is strong and has high plasticity due to the polymer network capable of swelling and stretching.
Moreover, the effect of facilitating mass transfer of the refrigerant vapor in the adsorbent layer can be expected by blending an appropriate amount of the porous inorganic binder.
In addition, by immersing the heat transfer material in the adsorbent for molding or by air-drying after paste processing and by low-temperature drying at about 70 ° C., drying is performed while maintaining saturated steam, thereby preventing cracks on the molding surface. .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
FIG. 1 is a perspective view showing a schematic configuration of an adsorption heat exchanger formed by dip molding using the molding adsorbent of the present invention, and FIG. 2 is a mold using the molding adsorbent. It is a perspective view which shows the general | schematic structure of the adsorption heat exchanger shape | molded and made into the integral structure.
[0021]
As shown in FIG. 1, the adsorption heat exchanger 15 a having an integral structure formed by immersion includes a heat transfer rod 10 made of a plurality of copper forming a passage for hot water or cooling water, and a cross at right angles to the heat transfer rod 10. A plurality of flat fins 11 made of a plurality of aluminum, aluminum alloy, copper, copper alloy and the like provided at equal intervals and in parallel, and a dip-molded dip-molded adsorbent layer 14 covering the fins 11 and the heat transfer rod 10 Constitute.
[0022]
The immersion molding adsorbent layer 14 is made of a molding adsorbent formed in the form of a slurry, and an example of the adjustment method and processing conditions are shown below.
80.8 parts by weight of silica gel powder of 42 mesh or less, 9.0 parts by weight of graphite fine particles, 3.55 parts by weight of cellulose organic binder and 6.63 parts by weight of powdery or fibrous inorganic binder with zepiolite are mixed for 15 minutes, 55.6 weights Part of water is added and dispersed and mixed for 60 minutes to form a slurry solution.
1 is immersed in the above-mentioned solution and air-dried by standing in the atmosphere for 2 days after the immersion, followed by a drying process at approximately 70 ° C. for 36 hours. As a result, the adsorption heat exchanger 15a having an integral structure is formed by forming the immersion molded adsorbent layer 14 shown in FIG.
[0023]
FIG. 2 shows a schematic configuration of an adsorption heat exchanger 15b that is molded by using a molding adsorbent to form an integral structure.
The integrally formed adsorption heat exchanger 15b by molding is provided with a plurality of copper heat transfer rods 10 forming a passage of hot water or cooling water, and intersecting the heat transfer rods 10 at right angles and at equal intervals and in parallel. A plurality of flattened fins 11 made of a plurality of aluminum, aluminum alloy, copper, copper alloy, and the like, a mold adsorbent layer 12 paste-molded between the fins, and the mold adsorption The groove 13 is formed before and after the middle of the agent layer 12.
[0024]
The mold forming adsorbent layer 12 is composed of a forming adsorbent formed in a paste form, and an example of the adjustment method and processing conditions are shown below.
86.2 parts by weight of silica gel powder having a mesh size of 42 mesh or less, 4.35 parts by weight of graphite fine particles, 4.35 parts by weight of cellulose organic binder, and 5.08 parts by weight of inorganic inorganic binder of zepiolite are mixed for 15 minutes to obtain 39.6 parts by weight. Water is added and dispersed and mixed for 60 minutes to form a paste.
Next, paste processing is performed on the heat transfer member composed of the heat transfer rod 10 and the fins 11 shown in FIG. 2 with the above-mentioned paste-like adsorbent, and then sandwiched between Teflon and stainless steel perforated plates and left to stand in the atmosphere for 3 days. After performing the drying process at approximately 70 ° C. for 36 hours, the adsorption heat exchanger 15b having the integral structure is formed by forming the molded adsorbent layer 12 shown in FIG.
In addition, the upper and lower grooves 13 in FIG. 2 are formed at the same time as the sandwiching press with the perforated plate having a grooved shape.
[0025]
Among the mixing members constituting the molding adsorbent that forms the immersion molding adsorbent layer and mold molding adsorbent layer,
Graphite is a high thermal conductivity member and is used to improve the effective thermal conductivity λ eff of the adhesive layer.
The cellulose organic binder makes it possible to form a strong and plastically shaped molding surface and maintain its strength by adsorbing water vapor and a polymer network capable of swelling and stretching.
Moreover, the effect of facilitating mass transfer of the refrigerant vapor in the adsorbent layer can be expected by blending an appropriate amount of the porous inorganic binder.
Further, the heat transfer body is dipped in the molding adsorbent or dried by air drying after paste processing and low-temperature drying at about 70 ° C., and drying is performed while maintaining saturated steam, thereby preventing cracks on the molding surface.
Note that the organic binder does not impair the adsorption performance of the silica gel as an adsorbent, and is expected to have a large adsorption capacity under a low relative pressure in consideration of avoidance of clogging of silica gel macropores and mesopores. Consideration is given to increase the pore volume and specific surface area as much as possible.
[0026]
Molded product No. 1 provided with the above-mentioned immersion molded adsorbent layer 14 and mold molded adsorbent layer 12. Comparative measurement of heat transfer characteristics and adsorption characteristics was performed on the conventional silica gel crushing mold 1 and the molded product B.
As a result, heat transfer performance U is molded adsorbent in the desorption initial 62.2W / m 2 K, molding adsorbent in crushing the silica gel 44.8W / m 2 K, also during the desorption period 61.5W / m 2 K and crushed silica gel were 25.9 W / m 2 K.
[0027]
As shown in the above results, high heat transfer performance can be obtained, the regeneration temperature is increased, the adsorption temperature is decreased, and the cycle refrigerant circulation rate can be increased. Adsorption characteristics for 1 and crushed silica gel are shown.
Further, the adsorption and regeneration cycle time can be shortened based on the above result. In addition, downsizing can be achieved.
The reason why the groove 13 is provided in the molded adsorbent layer 12 is to facilitate the mass transfer of the refrigerant, thereby enabling the cycle time of the molded product B to be reduced.
[0028]
FIG. 5 is a schematic diagram showing a schematic configuration of a solar-driven adsorption heat exchanger using the molding adsorbent of the present invention.
As shown in the figure, the solar-powered adsorption heat exchanger 16 of the present invention has a molded adsorbent 20, a heat insulating container 21 for storing the adsorbent, and a pressure-resistant heat-resistant sealed structure provided at the top of the heat insulating container. The light transmissive member 25 such as glass, and the sunlight irradiation space / adsorption / desorption space 22 formed by the pressure resistance, heat resistance, and airtight structure, as shown in FIG. In the daytime, as shown in FIG. 6 (A), in the solar heat-driven adsorption heat exchanger 16, the adsorbent is heated and desorbed and regenerated, and the generated refrigerant vapor (water vapor) 24 is introduced into the condenser 17 and condensed. Condensation takes place with the cooling water.
On the other hand, as shown in FIG. 6B, radiation cooling is performed at night, and the adsorbent is cooled to increase the adsorption capacity of the adsorbent. Here, by operating the condenser 17 as an evaporator, evaporation in the evaporator is performed, and the generated water vapor 24 is adsorbed by the adsorbent, and cold heat is generated in the evaporation process of the evaporator.
The solar-driven adsorption heat exchanger having the above functions is required to operate sufficiently at ambient temperature. In this regard, when the molding adsorbent of the present invention using black graphite is used, the expected effect is large. There is something to be.
[0029]
【The invention's effect】
The heat transfer performance can be improved by the structure of the above-mentioned molded adsorbent, and the structure of the adsorption heat exchanger using this adhesive can increase the regeneration temperature and decrease the adsorption temperature. Increases the amount of circulation and improves refrigeration capacity.
Further, the adsorption regeneration cycle time can be shortened, and the heat exchanger can be made compact.
Also in the solar-driven adsorption heat exchanger, the efficiency can be increased by using the molding adsorbent of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of an adsorption heat exchanger formed by dip molding using an adsorbent for molding according to the present invention to form an integral structure.
FIG. 2 is a perspective view showing a schematic configuration of an adsorption heat exchanger that is molded by using the molding adsorbent of the present invention to form an integral structure.
FIG. 3 is a graph showing the adsorption characteristics of an adsorption heat exchanger when the molding adsorbent of the present invention is used.
FIG. 4 is a diagram showing the adsorption characteristics of an adsorption heat exchanger using conventional crushed silica gel.
FIG. 5 is a diagram showing a schematic configuration of a solar-powered adsorption heat exchanger using the molding adsorbent of the present invention.
FIGS. 6A and 6B are schematic diagrams showing an operating state of an adsorption heat exchanger for driving solar light, where FIG. 6A shows an operating state in the daytime, and FIG. 6B shows an operating state in the nighttime.
FIG. 7 is a diagram showing a schematic configuration of a conventional adsorption refrigerator.
8A and 8B are diagrams showing a schematic configuration of a conventional adsorption heat exchanger, in which FIG. 8A shows a plate heat conduction type, and FIG. 8B shows a pipe and fin heat conduction type.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Heat transfer rod 11 Fin 12 Mold shaping | molding adsorbent layer 13 Groove 14 Immersion shaping | molding adsorption agent layers 15a and 15b Adsorption heat exchanger 16 of a monolithic structure Adsorption heat exchanger 17 for solar drive 17 Condenser 20 Molding adsorption agent 21 Thermal insulation container 22 Sunlight irradiation space and adsorption / desorption space

Claims (4)

吸着式冷凍機用吸着剤の製造方法において、グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりスラリー状若しくはペースト状に構成したものを風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、乾燥してなることを特徴する成形用吸着剤の製造方法In the method for producing an adsorbent for adsorption type refrigerator, after mixing graphite powder with granular silica gel to form a high thermal conductivity adsorbent, an adsorbent cellulose organic binder is additionally mixed and then dispersed in water, Further, the production of an adsorbent for molding characterized in that a slurry or paste formed by adding a porous inorganic binder is dried by low-temperature drying at about 70 ° C. while maintaining air drying and saturated steam. Way . グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりスラリー状に形成した成形用吸着剤を伝熱パイプと伝熱フィンに浸漬したものを、風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、前記吸着剤を浸漬成形させたことを特徴とする一体成形構造の吸着熱交換器の製造方法 After mixing graphite powder with powdered silica gel to form a high thermal conductivity adsorbent, an adsorbent cellulose organic binder is added and dispersed in water, and then added into a slurry by adding a porous inorganic binder. The adsorbent formed by dipping the adsorbent for molding formed in a heat transfer pipe and a heat transfer fin by low temperature drying at about 70 ° C. while maintaining air drying and saturated steam. A method for manufacturing an adsorption heat exchanger having an integrally formed structure. グラファイト粉末を粉粒状シリカゲルに混合して高熱伝導吸着剤を形成した後、吸着性のあるセルローズ系の有機バインダーを追加混合後水に分散形成し、さらに、多孔性無機バインダーの添加によりペースト状に形成した吸着剤を伝熱パイプと伝熱フィンにペースト状に充填加工をした後、その充填加工部を溝を設けた多孔板で挟んだ状態で風乾及び飽和蒸気を維持しながら略70℃前後の低温乾燥により、前記吸着剤を浸漬成形させたことを特徴とする一体成形構造の吸着熱交換器の製造方法 After mixing graphite powder with powdered silica gel to form a high thermal conductivity adsorbent, an adsorbent cellulose organic binder is added and dispersed in water, and then added into a paste by adding a porous inorganic binder. After filling the formed adsorbent into a heat transfer pipe and heat transfer fin in a paste form, the air-dried and saturated steam is maintained at about 70 ° C. with the filled portion sandwiched between perforated plates provided with grooves. A method for producing an adsorption heat exchanger having an integrally formed structure, wherein the adsorbent is immersed and molded by low-temperature drying . 温水ないし冷却水の通路を形成する複数の伝熱菅と、該伝熱菅に直角に交叉し等間隔且つ平行に設けられた複数の扁平状のフィンと、該フィンとフィンとの間にペースト加工され型成形された型成形吸着剤層と、該型成形吸着剤層の中間に形成された溝とより構成され、前記型成形吸着剤層がシリカゲルとグラファイトとセルローズ系の有機バインダーと多孔性無機バインダーにより構成されていることを特徴する吸着熱交換器 A plurality of heat transfer rods forming a passage of hot water or cooling water, a plurality of flat fins that intersect perpendicularly to the heat transfer rods and are provided at equal intervals and in parallel, and a paste between the fins A molded adsorbent layer that has been processed and molded, and a groove formed in the middle of the molded adsorbent layer, the mold adsorbent layer being silica gel, graphite, cellulose organic binder, and porosity An adsorption heat exchanger comprising an inorganic binder .
JP11342997A 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same Expired - Fee Related JP3634114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11342997A JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11342997A JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10286460A JPH10286460A (en) 1998-10-27
JP3634114B2 true JP3634114B2 (en) 2005-03-30

Family

ID=14612013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11342997A Expired - Fee Related JP3634114B2 (en) 1997-04-15 1997-04-15 Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3634114B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767611B2 (en) * 2004-04-28 2006-04-19 ダイキン工業株式会社 Adsorption heat exchanger
JP4975970B2 (en) 2005-01-21 2012-07-11 日本エクスラン工業株式会社 Sorptive heat exchange module and method for producing the same
JP2006329560A (en) * 2005-05-27 2006-12-07 Mayekawa Mfg Co Ltd Adsorption type refrigerator and its manufacturing method
JP4840685B2 (en) * 2005-11-11 2011-12-21 日本エクスラン工業株式会社 Sorptive heat exchange module and method for producing the same
JP4821563B2 (en) * 2006-10-31 2011-11-24 株式会社デンソー Adsorption module and method of manufacturing adsorption module
JP4830799B2 (en) * 2006-11-08 2011-12-07 株式会社デンソー Adsorption module
JP2008281281A (en) * 2007-05-11 2008-11-20 Japan Exlan Co Ltd Sorption module and its manufacturing method
EP2174076A4 (en) 2007-06-22 2011-04-13 Advanced Tech Materials Component for solar adsorption refrigeration system and method of making such component
US20100282455A1 (en) 2007-07-27 2010-11-11 Mitsubishi Electric Corporation Heat exchanger and manufacturing method of the same
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
DE102009003560B4 (en) 2009-03-03 2015-01-22 Hydro Aluminium Deutschland Gmbh Process for producing a sorbent coated aluminum strip, sorbent coated aluminum strip and its use
JP4748252B2 (en) * 2009-05-21 2011-08-17 ダイキン工業株式会社 Heat exchanger and manufacturing method thereof
CN102858432B (en) 2010-04-22 2016-08-03 三菱树脂株式会社 Absorbent member and the device of this absorbent member of use
JP5688262B2 (en) * 2010-10-08 2015-03-25 富士シリシア化学株式会社 Adsorption heat pump
WO2012050084A1 (en) * 2010-10-15 2012-04-19 日本エクスラン工業株式会社 Recycled photothermal conversion desiccant sheet, and desiccant element and desiccant rotor using sheet, and air-conditioning system using element or rotor
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same
JP5875548B2 (en) * 2013-03-28 2016-03-02 Jfeスチール株式会社 Gas separation method
JP2014224668A (en) 2013-04-15 2014-12-04 株式会社リコー Reactive material molded body and heat accumulating-radiating unit
JP6203006B2 (en) * 2013-11-14 2017-09-27 東芝ライフスタイル株式会社 Oxygen reduction device and refrigerator
WO2015079770A1 (en) * 2013-11-26 2015-06-04 株式会社村田製作所 Heat storage device
CN111692741B (en) * 2019-08-01 2021-09-28 浙江三花智能控制股份有限公司 Heat exchanger, preparation method thereof and heat exchange system

Also Published As

Publication number Publication date
JPH10286460A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
JP3634114B2 (en) Method of manufacturing adsorbent for molding, adsorption heat exchanger with integral molding structure using the same, and method of manufacturing the same
KR102089349B1 (en) Hybrid adsorber heat exchanging device and method of manufacture
Xu et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent
US5388637A (en) Activated carbon absorbent with integral heat transfer device
US6155073A (en) Heat transfer materials
CN102585776A (en) Three-dimensional graphene/phase change energy storage composite material and preparation method thereof
Asim et al. Key factors of desiccant-based cooling systems: Materials
CN102744036A (en) Activated carbon/silica-gel/cacl2 composite adsorbent material for air-conditioning applications and a method of preparing the same
Kiplagat et al. Enhancement of heat and mass transfer in solid gas sorption systems
Bonaccorsi et al. Synthesis of SAPO-34/graphite composites for low temperature heat adsorption pumps
AU2001287661B2 (en) Adsorption refrigerating device
AU2001287661A1 (en) Adsorption refrigerating device
CN111978922B (en) Hydrated salt-based medium-low temperature chemical heat storage material and preparation method thereof
JP2550768B2 (en) Adsorption heat exchanger
Narayanan et al. Recent advances in adsorption-based heating and cooling systems
US4712606A (en) Solar energy storage cell
US4597434A (en) Solar energy storage cell
DE19800395A1 (en) Apparatus for adsorption of water and other fluids in air conditioners
US20230332033A1 (en) Composite material for thermochemical energy storage and method of making same
CN1116105C (en) Lump zeolite adsorbent with excellent heat conductivity and adsorptivity
JPH07504360A (en) Adsorbent block for chemical heat pump and its manufacturing method
WO2005036073A1 (en) An improved solid absorbent bed and absorbent refrigeration system comprising the same
Rezk et al. Adsorption refrigeration
CN118019581A (en) Adsorber and method for producing an adsorber
Kian Jon et al. Adsorbent-Coated Heat and Mass Exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees