JP2017024963A - Active carbon for liquid phase and manufacturing method therefor - Google Patents

Active carbon for liquid phase and manufacturing method therefor Download PDF

Info

Publication number
JP2017024963A
JP2017024963A JP2015148492A JP2015148492A JP2017024963A JP 2017024963 A JP2017024963 A JP 2017024963A JP 2015148492 A JP2015148492 A JP 2015148492A JP 2015148492 A JP2015148492 A JP 2015148492A JP 2017024963 A JP2017024963 A JP 2017024963A
Authority
JP
Japan
Prior art keywords
activated carbon
liquid phase
raw material
phase according
methylene blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015148492A
Other languages
Japanese (ja)
Inventor
孝 廣瀬
Takashi Hirose
孝 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aomori Prefectural Industrial Technology Research Center
Original Assignee
Aomori Prefectural Industrial Technology Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aomori Prefectural Industrial Technology Research Center filed Critical Aomori Prefectural Industrial Technology Research Center
Priority to JP2015148492A priority Critical patent/JP2017024963A/en
Publication of JP2017024963A publication Critical patent/JP2017024963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance active carbon which is capable of being used for purifying water quality and uses apple pruning branch or the like and a manufacturing method therefor.SOLUTION: There is provided active carbon having a constitution having mesopore volume with 4.2 to 20 nm of 0.1 cm/g or more, high in methylene blue adsorptivity and having specific surface area of 1000 m/g or more. There is provided active carbon for liquid phase obtained by carbonizing and gas activating a raw material without adding chemicals for activation at a specific temperature under specific atmosphere.SELECTED DRAWING: Figure 3

Description

本発明は液相用活性炭およびその製造方法に係り、特に、活性炭の用途として水質浄化をターゲットとし、特にメチレンブルー吸着特性の高い、高機能な活性炭およびその製造方法に関するものである。   The present invention relates to a liquid-phase activated carbon and a method for producing the same, and particularly to a highly functional activated carbon having a high methylene blue adsorption characteristic and a method for producing the same, targeting water purification as an application of the activated carbon.

これまで出願人は、リンゴ剪定枝等の樹木枝からの活性炭製造について研究を重ね、成果を発表してきた(後掲特許文献1〜3)。新しくは、空気賦活で調製した活性炭の細孔構造に関して灰分析や細孔物性、顕微鏡観察より評価し、同条件にて調製したスギ活性炭と比較検討した結果、リンゴ剪定枝活性炭の灰分はスギ活性炭と比較して高く、4〜20nmの範囲の孔が多く生成されていることが分かった。これは、含有しているカルシウム等の微量金属が触媒的に賦活に対して作用し、上述した範囲の細孔の生成を促進したためと考えられた。   So far, the applicant has repeatedly studied on the production of activated carbon from tree branches such as apple pruned branches and published the results (Patent Documents 1 to 3 below). Newly, the pore structure of activated carbon prepared by air activation was evaluated by ash analysis, physical properties of the pores and microscopic observation, and compared with cedar activated carbon prepared under the same conditions. It was found that a large number of pores in the range of 4 to 20 nm were generated. This was thought to be because trace metals such as calcium contained acted catalytically on activation and promoted the formation of pores in the above-described range.

吸着剤は、粒子の内部に多数の空隙(細孔)をもつ物質(多孔体)であり、細孔はその直径によって分類されている。国際純正・応用化学連合(IUPAC)は直径50nm以上をマクロ孔、2〜50nmをメソ孔、2nm以下をミクロ孔と定めている。また吸着質分子径等を考慮して、ガス吸着等気相用活性炭の場合はミクロ孔に集中し、脱色等液相用活性炭の場合はメソ孔が多く分布しているのが特徴となっている。   The adsorbent is a substance (porous body) having a large number of voids (pores) inside the particles, and the pores are classified by their diameters. The International Pure and Applied Chemistry Union (IUPAC) defines a diameter of 50 nm or more as a macropore, 2-50 nm as a mesopore, and 2 nm or less as a micropore. In addition, considering the adsorbate molecular diameter and the like, the activated carbon for gas phase such as gas adsorption is concentrated in the micropores, and the activated carbon for liquid phase such as decolorization has many mesopores distributed. Yes.

さて、東日本大震災に伴う原子力発電所の事故によって環境中に放射性物質が放出され、浄水や水道水中からは放射性ヨウ素やセシウムが検出されたが、この低減を目的に浄水処理プロセスでの対策の一手段として、粉末活性炭処理等が行われるようになった。一方、青森県内の浄水場において近年臭気物質が発生し、その除去を目的として活性炭が用いられている。今後、このような活性炭を用いた水質浄化の要請・市場は、さらに拡大すると予測される。   Now, radioactive materials were released into the environment due to an accident at a nuclear power plant following the Great East Japan Earthquake, and radioactive iodine and cesium were detected in purified water and tap water. As a means, powdered activated carbon treatment and the like have come to be performed. On the other hand, odorous substances have recently been generated at water purification plants in Aomori Prefecture, and activated carbon is used for the purpose of removing them. In the future, the demand and market for water purification using such activated carbon is expected to expand further.

活性炭とその利用に関する技術的提案等は従来、相当多数がなされているが、たとえば後掲特許文献4には、空気浄化、放射性物質吸着、ヨウ素トラップ、メタン吸蔵、水素吸蔵、浄水製造、溶剤回収、脱色、水処理、ガスマスクでの用途などの目的で細孔径2.0nm超50.0nm未満の細孔(メソ孔)の全細孔容積中の容積比率が40%以上である活性炭が開示されている。また特許文献5には、比表面積が800〜4000m/gで、細孔幅2.0nm以上50nm未満のメソ孔容積Vmが、0.1〜0.5cm/gであることを特徴とする活性炭が開示されている。また非特許文献1には、ガス吸着等気相用活性炭の場合はミクロ孔に集中し、脱色等液相用活性炭の場合はメソ孔に分布している特徴のあることが記載されている。 There have been a considerable number of technical proposals regarding activated carbon and its use. For example, Patent Document 4 listed below discloses air purification, radioactive substance adsorption, iodine trap, methane occlusion, hydrogen occlusion, purified water production, and solvent recovery. , Activated carbon having a volume ratio of 40% or more in the total pore volume of pores (mesopores) having a pore diameter of more than 2.0 nm and less than 50.0 nm for purposes such as decolorization, water treatment and gas masking Has been. Patent Document 5 is characterized in that the specific surface area is 800 to 4000 m 2 / g, and the mesopore volume Vm having a pore width of 2.0 nm or more and less than 50 nm is 0.1 to 0.5 cm 3 / g. An activated carbon is disclosed. Further, Non-Patent Document 1 describes that in the case of activated carbon for gas phase such as gas adsorption, it is concentrated in the micropores, and in the case of activated carbon for liquid phase such as decolorization, it is distributed in mesopores.

特開2011−177656号公報「樹木枝由来吸着性材料およびその製造方法」Japanese Patent Application Laid-Open No. 2011-177656 “Adsorbent material derived from tree branches and method for producing the same” 特開2013−173633号公報「活性炭およびその製造方法」JP 2013-173633 A1 "Activated carbon and manufacturing method thereof" 特開2014−047087号公報「担持活性炭の製造方法、担持活性炭、およびそれを用いたフィルタ」JP 2014-047087 A "Method for producing supported activated carbon, supported activated carbon, and filter using the same" 特開2013−249234号公報「活性炭とその製造方法」JP 2013-249234 A "Activated carbon and its manufacturing method" 2011−93774号公報「活性炭及びその製造方法、並びにそれを用いた液体の精製方法、及び燃料電池システム」2011-93774 "Activated carbon and its manufacturing method, liquid purification method using the same, and fuel cell system"

真田雄三、鈴木基之、藤元 薫:新版活性炭 基礎と応用、第8版、講談社サイエンティフィック、p21(1997)Yuzo Sanada, Motoyuki Suzuki, Satoshi Fujimoto: New Edition Activated Carbon Fundamentals and Applications, 8th Edition, Kodansha Scientific, p21 (1997)

水質浄化等の液相で用いる活性炭は上述した通り、メソ孔が多く分布しているのが特徴であるが、このような活性炭は塩化亜鉛やリン酸等を用いた薬品賦活にて調製されるのが一般的である。しかし、この方法は、
1)生産設備のほとんどが耐食性材料や耐食性処理を必要とするため、設備投資が高く、製造原価に影響する
2)製造プロセスが煩雑で、生産規模の拡大や生産の自動化が難しい
等の問題点を有している。
As described above, activated carbon used in the liquid phase such as water purification is characterized by the fact that many mesopores are distributed. Such activated carbon is prepared by chemical activation using zinc chloride, phosphoric acid or the like. It is common. But this method
1) Almost all production facilities require corrosion-resistant materials and corrosion-resistant treatments, so capital investment is high and affects production costs 2) Problems such as complicated production processes, difficulty in expanding production scale and automating production have.

このような従来技術の問題、および、活性炭による水質浄化技術の需要が高まっている社会的背景に鑑みると、廃棄物であるリンゴ剪定枝等の樹木枝を原料とした、メソ孔が多く分布している活性炭の製造を、より設備投資を抑えて製造原価低減可能に行える技術が求められている。また、より簡易な製造プロセスによって生産規模の拡大や生産の自動化を容易化できる製造技術が求められている。かかる技術の提供によって、資源の有効活用、産業振興・活性化に寄与することができる。   In view of the problems of the prior art and the social background in which the demand for water purification technology using activated carbon is increasing, there are many mesopores distributed using tree branches such as apple pruned branches as waste. There is a need for a technology that enables the production of activated carbon to reduce manufacturing costs while reducing capital investment. There is also a need for a manufacturing technique that can facilitate the expansion of production scale and automation of production by a simpler manufacturing process. By providing such technology, it is possible to contribute to the effective use of resources and the promotion and activation of industries.

また、活性炭としての吸着特性を高めるためには、用途に応じて、つまり個々の吸着質に対して細孔分布を特化させた活性炭とすることが、望ましい。この点、上記各先行技術文献には、活性炭の用途や個別の吸着質における有効なメソ孔の範囲等が開示されておらず、また、メチレンブルー吸着特性をメルクマールとする細孔範囲限定という着眼も示されていない。   Further, in order to enhance the adsorption characteristics as activated carbon, it is desirable to use activated carbon with a specific pore distribution for each adsorbate, depending on the application. In this regard, each of the above prior art documents does not disclose the use of activated carbon, the range of effective mesopores in individual adsorbates, etc., and the focus is on limiting the pore range with methylene blue adsorption characteristics as Merckmar. Not shown.

そこで本発明が解決しようとする課題は、かかる従来技術の状況を踏まえ、リンゴ剪定枝を原料とする活性炭、またはその他の原料による活性炭の用途として水質浄化をターゲットとし、薬品賦活を用いることなく、特にメチレンブルー吸着特性の高い、高機能な活性炭およびその製造方法を提供することである。   Therefore, the problem to be solved by the present invention is based on the state of the prior art, targeting water purification as an application of activated carbon made from apple pruned branches, or activated carbon from other raw materials, without using chemical activation, In particular, it is to provide a highly functional activated carbon having a high methylene blue adsorption property and a method for producing the same.

本願発明者は、リンゴ剪定枝活性炭の用途として水質浄化をターゲットとして上記課題について検討した。すなわち、リンゴ剪定枝等の樹木枝を原料とし、ガス賦活によってメソ孔が多く分布している活性炭を製造できることを確認した。併せて、リンゴ剪定枝活性炭および市販品の基本物性や日本水道協会規格「水道用活性炭」中の項目の一つであるメチレンブルーの吸着に関与する細孔分布範囲、およびその吸着量を測定、比較検討し、その結果、基準値を越えるための賦活条件を見出した。そして、かかる成果を基礎として本発明を完成するに至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下の通りである。   The inventor of the present application has studied the above-mentioned problem with water purification as a target for the use of apple pruned activated carbon. That is, it was confirmed that activated carbon in which many mesopores were distributed by gas activation using tree branches such as apple pruned branches as a raw material. In addition, we measured and compared the basic physical properties of apple pruned activated carbon and commercial products, the pore distribution range involved in the adsorption of methylene blue, which is one of the items in the Japan Water Works Association standard "activated carbon for water supply", and the amount of adsorption As a result, the activation condition for exceeding the standard value was found. And based on this result, it came to complete this invention. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

〔1〕 4.2nm以上20nm以下のメソ孔容積0.1cm/g以上であり、メチレンブルー吸着性能が高いことを特徴とする、液相用活性炭。
〔1b〕 4.2722nm以上20nm以下のメソ孔容積0.1cm/g以上であり、メチレンブルー吸着性能が高いことを特徴とする、液相用活性炭。
〔2〕 比表面積1000m/g以上であることを特徴とする、〔1〕または〔1b〕に記載の液相用活性炭。
〔3〕 薬品添加することなく、原料を炭素化およびガス賦活することにより得られることを特徴とする、〔1〕ないし〔2〕のいずれかに記載の液相用活性炭。
〔4〕 樹木枝を原料とすることを特徴とする、〔1〕ないし〔3〕のいずれかに記載の液相用活性炭。
[1] A mesoporous volume of 4.2 to 20 nm and a mesopore volume of 0.1 cm 3 / g or more, and a liquid phase activated carbon characterized by high methylene blue adsorption performance.
[1b] is at 4.2722nm than 20nm following mesopore volume 0.1 cm 3 / g or more, and wherein the methylene blue adsorption performance is high, the liquid-phase activated carbon.
[2] The liquid phase activated carbon according to [1] or [1b], wherein the specific surface area is 1000 m 2 / g or more.
[3] The liquid phase activated carbon according to any one of [1] to [2], which is obtained by carbonizing and gas activating a raw material without adding a chemical.
[4] The liquid phase activated carbon according to any one of [1] to [3], wherein a tree branch is used as a raw material.

〔5〕 リンゴ剪定枝を原料とすることを特徴とする、〔1〕ないし〔3〕のいずれかに記載の液相用活性炭。
〔6〕 原料を炭素化およびガス賦活することにより、薬品添加することなく4.2nmnm以上20nm以下のメソ孔容積0.1cm/g以上のメチレンブルー吸着性能が高い活性炭を得ることを特徴とする、液相用活性炭製造方法。
〔6b〕 原料を炭素化およびガス賦活することにより、薬品添加することなく4.2722nmnm以上20nm以下のメソ孔容積0.1cm/g以上のメチレンブルー吸着性能が高い活性炭を得ることを特徴とする、液相用活性炭製造方法。
〔7〕 前記炭素化およびガス賦活が単一の処理によりなされることを特徴とする、〔6〕または〔6b〕に記載の液相用活性炭製造方法。
[5] The liquid phase activated carbon according to any one of [1] to [3], wherein the pruned apple branch is used as a raw material.
[6] It is characterized in that activated carbon with high methylene blue adsorption performance with a mesopore volume of 0.1 cm 3 / g or more of 4.2 nm nm or more and 20 nm or less is obtained by carbonization and gas activation of the raw material without adding chemicals. , Liquid phase activated carbon production method.
[6b] It is characterized in that activated carbon with high methylene blue adsorption performance with a mesopore volume of at least 0.1 cm 3 / g of 4.2722 nm nm or more and 20 nm or less is obtained by carbonizing and activating the raw material without adding chemicals. , Liquid phase activated carbon production method.
[7] The method for producing activated carbon for liquid phase according to [6] or [6b], wherein the carbonization and gas activation are performed by a single treatment.

〔8〕 前記処理は、炭化賦活炉中に投入した原料を窒素ガス流通状態で加熱する処理であり、最高到達温度に達した時点で加熱した水を窒素ガスに含ませて所定時間以上流通させる処理であることを特徴とする、〔7〕に記載の液相用活性炭製造方法。
〔9〕 前記最高到達温度は800℃以上であることを特徴とする、〔8〕に記載の液相用活性炭製造方法。
〔10〕 前記所定時間は90分間以上であることを特徴とする、〔7〕または〔9〕に記載の液相用活性炭製造方法。
〔11〕 前記原料はリンゴ剪定枝であることを特徴とする、〔6〕ないし〔10〕のいずれかに記載の液相用活性炭製造方法。
[8] The treatment is a treatment in which the raw material charged in the carbonization activation furnace is heated in a nitrogen gas circulation state, and the water heated when the maximum temperature is reached is included in the nitrogen gas and allowed to flow for a predetermined time or more. The method for producing activated carbon for liquid phase according to [7], wherein the method is a treatment.
[9] The method for producing activated carbon for liquid phase according to [8], wherein the maximum temperature reached is 800 ° C. or higher.
[10] The method for producing activated carbon for liquid phase according to [7] or [9], wherein the predetermined time is 90 minutes or more.
[11] The method for producing activated carbon for liquid phase according to any one of [6] to [10], wherein the raw material is a pruned apple branch.

本発明の液相用活性炭およびその製造方法は上述のように構成されるため、これによれば、薬品賦活を用いることなく、2.4〜20nmのメソ孔を多く有し、特にメチレンブルー吸着特性を高めた、高機能な液相用活性炭を提供することができる。また、メソ孔が多く分布している液相用活性炭を、低コスト、かつより簡易な製造プロセスによって得ることができ、生産規模の拡大や生産の自動化を容易化することができる。   Since the liquid phase activated carbon and the method for producing the same of the present invention are configured as described above, according to this, there are many mesopores of 2.4 to 20 nm without using chemical activation, and in particular, methylene blue adsorption characteristics. It is possible to provide a high-performance activated carbon for liquid phase that has improved Moreover, the activated carbon for liquid phase in which many mesopores are distributed can be obtained by a low-cost and simpler manufacturing process, and the expansion of production scale and automation of production can be facilitated.

また、2.4〜20nmの孔がメチレンブルー吸着を高めることを見出せたことにより、リンゴ剪定枝のみならず、他の素材を原料とした活性炭およびその製造に用いることもできる。また、リンゴ剪定枝等の樹木枝を原料として用いる本発明では、廃棄物であるリンゴ剪定枝等樹木枝を原料とすることができ、製造原価を低減できるのみならず、廃棄物削減に寄与することもできる。   Moreover, since it discovered that the hole of 2.4-20 nm raises methylene blue adsorption | suction, it can use not only for a pruning branch of an apple but the activated carbon which used other raw materials as a raw material, and its manufacture. Further, in the present invention using tree branches such as apple pruned branches as raw materials, tree branches such as apple pruned branches as waste can be used as raw materials, which not only can reduce manufacturing costs but also contribute to waste reduction. You can also.

各活性炭の細孔分布を示したグラフである。It is the graph which showed the pore distribution of each activated carbon. 図1の要部を拡大したグラフである。It is the graph which expanded the principal part of FIG. 各活性炭のメチレンブルー吸着性能を示したグラフである。It is the graph which showed the methylene blue adsorption | suction performance of each activated carbon.

以下、本発明をより詳細に説明する。
本発明の液相用活性炭は、4.2nm以上20nm以下のメソ孔容積0.1cm/g以上であり、メチレンブルー吸着性能が高いことを、主たる構成とする。かかる数値範囲は、実施例に後述する研究過程において明らかにしたものであり、具体的には、用いた細孔分布測定装置において設定可能な細孔間隔に基づく。より正確には、最下限の設定点4.2722nm、次の設定点4.8532nmであり、これらのいずれか以上20nm以下のメソ孔容積0.1cm/g以上の液相用活性炭である。
Hereinafter, the present invention will be described in more detail.
The liquid phase activated carbon of the present invention has a mesopore volume of 0.1 cm 3 / g or more of 4.2 nm or more and 20 nm or less and a high configuration of methylene blue adsorption performance. Such a numerical range has been clarified in the research process described later in the examples, and specifically, is based on a pore interval that can be set in the pore distribution measuring apparatus used. More precisely, the lower limit set point is 4.2722 nm, the next set point is 4.8532 nm, and the liquid phase activated carbon has a mesopore volume of 0.1 cm 3 / g or more of any of these and 20 nm or less.

また本発明の液相用活性炭は、比表面積1000m/g以上であり、薬品添加つまり薬品賦活することなく、原料を炭素化およびガス賦活することによって得られるものである。また、原料としてはリンゴ剪定枝等の樹木枝を好適に用いることができるが、本発明はこれには限定されず、上記特性のメソ孔を得られるものであればいかなるものでも原料とすることができる。 Further, the activated carbon for liquid phase of the present invention has a specific surface area of 1000 m 2 / g or more, and is obtained by carbonization and gas activation of raw materials without adding chemicals, that is, chemical activation. Moreover, tree branches such as apple pruned branches can be suitably used as the raw material, but the present invention is not limited to this, and any material can be used as long as it can obtain mesopores with the above characteristics. Can do.

本発明の液相用活性炭製造方法は、原料を炭素化およびガス賦活することにより、薬品添加することなく4.2nmnm以上20nm以下のメソ孔容積0.1cm/g以上のメチレンブルー吸着性能が高い活性炭を得るものであるが、この炭素化およびガス賦活は単一の処理によりなされるものとすることができる。なお、原料は限定されず、リンゴ剪定枝等の樹木枝を用いられることも、上述の通りである。 The liquid phase activated carbon production method of the present invention has high methylene blue adsorption performance of 4.2 to 20 nm mesopore volume of 0.1 cm 3 / g or more without adding chemicals by carbonizing and activating the raw material. Activated carbon is obtained, and this carbonization and gas activation can be performed by a single treatment. The raw material is not limited, and tree branches such as apple pruned branches can also be used as described above.

炭素化およびガス賦活処理は、炭化賦活炉中に投入した原料を窒素ガス流通状態で加熱する処理であり、最高到達温度に達した時点で加熱した水を窒素ガスに含ませて所定時間以上流通させる処理である。最高到達温度は800℃以上とし、また所定時間は90分間以上とすることで、良好な結果を得ることができる。   Carbonization and gas activation treatment is a treatment in which the raw material charged in the carbonization activation furnace is heated in a nitrogen gas circulation state, and when heated to the maximum temperature, the heated water is included in the nitrogen gas and distributed for a predetermined time or more. It is a process to make. A satisfactory result can be obtained by setting the maximum temperature to 800 ° C. or more and setting the predetermined time to 90 minutes or more.

以下、本発明をリンゴ剪定枝由来活性炭に係る実施例により説明するが、本発明がこれに限定されるものではない。なお、本発明完成に至る研究経過の概要説明をもって、実施例とする。
1.テーマ
リンゴ剪定枝由来活性炭のメチレンブルー吸着に関する研究
リンゴ剪定枝活性炭の用途として水質浄化をターゲットとし、リンゴ剪定枝活性炭および市販品の基本物性や日本水道協会規格「水道用活性炭」中の項目の一つであるメチレンブルー吸着量を測定、比較検討した。
Hereinafter, although the present invention will be described with reference to an example of activated carbon derived from apple pruned branches, the present invention is not limited thereto. In addition, it is set as an Example with the summary description of the research progress leading to completion of this invention.
1. Study on adsorption of methylene blue on activated carbon derived from apple pruned branches Targeting water purification as an application of apple pruned activated carbon, basic physical properties of apple pruned activated carbon and commercial products and one of the items in the Japan Water Works Association standard "activated carbon for water supply" The amount of methylene blue adsorbed was measured and compared.

2.実験方法
2.1 活性炭の調製
原料として、リンゴ剪定枝を原料とした炭(社会福祉法人桐の里社製、青森炭)をハンマーにて粉砕し、0.3〜2mmのふるいにかけたもの(以下:A0)を用いた。賦活は、活性炭賦活試験装置(タナカテック社製、RK−S20)を用いて、A0を105℃、24時間乾燥後、6Lキルン容器に100g投入した。
2. Experimental Method 2.1 Charcoal made from pruned apples as raw material for activated carbon (social welfare corporation, Kiri no Sato Co., Ltd., Aomori Charcoal) was crushed with a hammer and passed through a 0.3-2 mm sieve ( The following: A0) was used. Activation was performed using an activated carbon activation test apparatus (manufactured by Tanaka Tech Co., Ltd., RK-S20). After drying A0 at 105 ° C. for 24 hours, 100 g was charged into a 6 L kiln container.

キルン容器回転速度2.2rpm、窒素ガス流通量1L/minとして、炭素化およびガス賦活処理を行った。ガス賦活は、キルン容器内が最高到達温度1000℃に達した時点で、水1.67mL/minを130℃で加熱して窒素ガスに含ませながら流通させ、90分、または120分保持することにより行った。このようにして、各条件4回サンプルを調製した(以下、ガス賦活90分:A2、ガス賦活120分:A3)。   Carbonization and gas activation treatment were performed at a kiln container rotational speed of 2.2 rpm and a nitrogen gas flow rate of 1 L / min. In gas activation, when the inside of the kiln container reaches the maximum temperature of 1000 ° C., heat 1.67 mL / min of water at 130 ° C. and allow it to flow while being included in nitrogen gas, and hold for 90 minutes or 120 minutes. It went by. In this way, samples were prepared four times for each condition (hereinafter, gas activation 90 minutes: A2, gas activation 120 minutes: A3).

なお、リンゴ剪定枝活性炭の収率Y(%)は、賦活前の試料の質量:Ws(g)および賦活後の試料の質量:Wc(g)から以下の〔1〕式より得、その平均値とした。
Y=Wc/Ws×100 ・・・〔1〕
また、比較として、市販活性炭(以下:S1)を用いた。これはミルサー(岩谷産業社製)を用いて粉末化し、試験に用いた。
The yield Y (%) of the apple pruned activated carbon was obtained from the following equation [1] from the mass of the sample before activation: Ws (g) and the mass of the sample after activation: Wc (g), and the average Value.
Y = Wc / Ws × 100 [1]
For comparison, commercially available activated carbon (hereinafter referred to as S1) was used. This was pulverized using Milcer (manufactured by Iwatani Corporation) and used for the test.

2.2 活性炭の物性評価
粉末化した活性炭の粒子径は、レーザー回折散乱式粒度分布測定装置(堀場製作所社製、LA−300)を用いて測定し、メジアン径:Mps(μm)を算出した。また、活性炭の比表面積および細孔容積は、比表面積/細孔分布測定装置(日本ベル社製、BELSORP−mini)を用いて250℃、5時間脱気後に−196℃での窒素吸脱着等温線を測定し、BET法により、比表面積:S(m/g)、t−プロット法により、外部表面積:So(m/g)、MP法により、マイクロ孔容積:VtN(cm/g)、BJH法により、メソ孔容積:ViN(cm/g)を算出した。またMP−プロット法により、マイクロ孔分布、BJHプロット法により、メソ孔分布を算出した。
2.2 Physical property evaluation of activated carbon The particle diameter of powdered activated carbon was measured using a laser diffraction / scattering particle size distribution measuring device (LA-300, manufactured by Horiba, Ltd.), and the median diameter: Mps (μm) was calculated. . Further, the specific surface area and pore volume of the activated carbon were determined by isothermal adsorption / desorption of nitrogen at −196 ° C. after degassing at 250 ° C. for 5 hours using a specific surface area / pore distribution measuring device (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). A line is measured, specific surface area: S (m 2 / g) by BET method, external surface area: So (m 2 / g) by t-plot method, micropore volume: VtN (cm 3 / g) The mesopore volume: ViN (cm 3 / g) was calculated by the BJH method. Further, the micropore distribution was calculated by the MP-plot method, and the mesopore distribution was calculated by the BJH plot method.

2.3 メチレンブルーの吸着性能
メチレンブルー吸着量の測定は、JISK1474(活性炭試験方法)に準じて行った。吸着量は3回の試験の平均より、それぞれの試料1gに対するメチレンブルー吸着性能を算出した。
2.3 Adsorption performance of methylene blue The amount of methylene blue adsorbed was measured according to JISK1474 (activated carbon test method). The amount of adsorption was calculated from the average of three tests for the methylene blue adsorption performance for 1 g of each sample.

3. 結果および考察
3.1 活性炭の基本物性
図1は、各活性炭の細孔分布を示したグラフ、図2は図1の要部を拡大したグラフである。上述のとおり活性炭A2は賦活時間90分、活性炭A3は同120分で調製したものである。活性炭A2と市販品S1を比較すると、2.1nmでは市販品S1の方が活性炭A2よりも高い値であったが、2.4nmではその値が逆転し、それ以降はその関係を維持し、20nmの辺りで全ての活性炭がほぼ同等の値となった。
3. Results and Discussion 3.1 Basic Physical Properties of Activated Carbon FIG. 1 is a graph showing the pore distribution of each activated carbon, and FIG. 2 is an enlarged graph of the main part of FIG. As described above, activated carbon A2 was prepared with an activation time of 90 minutes, and activated carbon A3 with 120 minutes. When the activated carbon A2 and the commercial product S1 were compared, the commercial product S1 had a higher value than the activated carbon A2 at 2.1 nm, but the value was reversed at 2.4 nm, and thereafter the relationship was maintained. All the activated carbons had almost the same value around 20 nm.

3.2 活性炭の吸着性能
図3は、各活性炭のメチレンブルー吸着性能を示したグラフである。メチレンブルー吸着性能は、市販品S1よりも活性炭A2、A3の方が高かった。このように吸着性能が高くなった理由は、メチレンブルーの吸着に関わる細孔が多いからであり、したがって、2.4〜20nmの細孔の多さが、メチレンブルー吸着性能を高くすることが明らかとなった。
3.2 Adsorption performance of activated carbon FIG. 3 is a graph showing the methylene blue adsorption performance of each activated carbon. The activated carbon A2 and A3 were higher in methylene blue adsorption performance than the commercial product S1. The reason why the adsorption performance is improved is that there are many pores related to the adsorption of methylene blue. Therefore, it is clear that the large number of pores of 2.4 to 20 nm increases the adsorption performance of methylene blue. became.

また、公益財団法人日本水道協会(JWWA)の規格である「水道用粉末活性炭」において、実際の現場等で利用可能な粉末活性炭のメチレンブルー吸着量は150ml/gとされている。図3において、賦活時間90分の活性炭A2ではこの値を下回ったが、同120分の活性炭A3では大きく上回った。このことから、賦活時間90分から120分の間に、メチレンブルー吸着性能の最適賦活時間があることが明らかとなった。   In addition, in the “powder activated carbon for water supply” which is a standard of the Japan Water Works Association (JWWA), the methylene blue adsorption amount of powder activated carbon that can be used in actual sites is 150 ml / g. In FIG. 3, the activated carbon A2 with an activation time of 90 minutes was below this value, but the activated carbon A3 with the activation time of 120 minutes was much higher. From this, it became clear that there is an optimal activation time for methylene blue adsorption performance between the activation time of 90 minutes and 120 minutes.

4.まとめ
(1) メソ孔容積の大きい活性炭が、メチレンブルー吸着性能が高くなることが明らかとなった。
(2) 2nmから2.4nmの間にメチレンブルー吸着に対して影響している細孔があることが明らかとなった。
(3) 特に賦活時間120分のリンゴ剪定枝活性炭のメチレンブルー吸着性能が、水道用粉末活性炭の基準を越えた値を示した。
4). Summary (1) It was revealed that activated carbon having a large mesopore volume has high methylene blue adsorption performance.
(2) It was revealed that there are pores affecting methylene blue adsorption between 2 nm and 2.4 nm.
(3) Especially, the methylene blue adsorption performance of apple pruned activated carbon with an activation time of 120 minutes showed a value exceeding the standard of powdered activated carbon for water supply.

本発明の液相用活性炭およびその製造方法によれば、薬品賦活を用いることなく、2.4〜20nmのメソ孔を多く有し、特にメチレンブルー吸着特性を高めた、高機能な液相用活性炭を提供することができる。また、メソ孔が多く分布している液相用活性炭を、低コスト、かつより簡易な製造プロセスによって得ることができる。したがって、活性炭・吸着材製造や水処理技術に関わる全分野、その他関連する全分野において、産業上利用性が高い発明である。























According to the activated carbon for liquid phase and the method for producing the same of the present invention, a highly functional activated carbon for liquid phase having many mesopores of 2.4 to 20 nm and particularly improved methylene blue adsorption characteristics without using chemical activation Can be provided. Moreover, the activated carbon for liquid phases in which many mesopores are distributed can be obtained by a low-cost and simpler manufacturing process. Therefore, it is an invention with high industrial applicability in all fields related to activated carbon / adsorbent production and water treatment technology and all other related fields.























Claims (11)

4.2nm以上20nm以下のメソ孔容積0.1cm/g以上であり、メチレンブルー吸着性能が高いことを特徴とする、液相用活性炭。 A liquid phase activated carbon having a mesopore volume of 0.1 cm 3 / g of 4.2 nm to 20 nm and a high methylene blue adsorption performance. 比表面積1000m/g以上であることを特徴とする、請求項1に記載の液相用活性炭。 2. The activated carbon for liquid phase according to claim 1, wherein the specific surface area is 1000 m 2 / g or more. 薬品添加することなく、原料を炭素化およびガス賦活することにより得られることを特徴とする、請求項1または2に記載の液相用活性炭。 3. The activated carbon for liquid phase according to claim 1, which is obtained by carbonizing and activating a raw material without adding chemicals. 4. 樹木枝を原料とすることを特徴とする、〔1〕ないし〔3〕のいずれかに記載の液相用活性炭。 The activated carbon for liquid phase according to any one of [1] to [3], wherein a tree branch is used as a raw material. リンゴ剪定枝を原料とすることを特徴とする、請求項1ないし3のいずれかに記載の液相用活性炭。 The activated carbon for liquid phase according to any one of claims 1 to 3, wherein a pruned apple branch is used as a raw material. 原料を炭素化およびガス賦活することにより、薬品添加することなく4.2nmnm以上20nm以下のメソ孔容積0.1cm/g以上のメチレンブルー吸着性能が高い活性炭を得ることを特徴とする、液相用活性炭製造方法。 By carbonizing the raw material and activating the gas, it is possible to obtain activated carbon having a high methylene blue adsorption performance with a mesopore volume of 0.1 cm 3 / g or more of 4.2 nm nm or more and 20 nm or less without adding chemicals. Activated carbon manufacturing method. 前記炭素化およびガス賦活が単一の処理によりなされることを特徴とする、請求項6に記載の液相用活性炭製造方法。 The method for producing activated carbon for liquid phase according to claim 6, wherein the carbonization and gas activation are performed by a single treatment. 前記処理は、炭化賦活炉中に投入した原料を窒素ガス流通状態で加熱する処理であり、最高到達温度に達した時点で加熱した水を窒素ガスに含ませて所定時間以上流通させる処理であることを特徴とする、請求項7に記載の液相用活性炭製造方法。 The treatment is a treatment in which the raw material charged in the carbonization activation furnace is heated in a nitrogen gas circulation state, and is a treatment in which the heated water is included in the nitrogen gas when the maximum temperature is reached and is circulated for a predetermined time or more. The method for producing activated carbon for liquid phase according to claim 7, wherein: 前記最高到達温度は800℃以上であることを特徴とする、請求項8に記載の液相用活性炭製造方法。 The method for producing activated carbon for liquid phase according to claim 8, wherein the maximum temperature reached is 800 ° C or higher. 前記所定時間は90分間以上であることを特徴とする、請求項8または9に記載の液相用活性炭製造方法。 The method for producing activated carbon for liquid phase according to claim 8 or 9, wherein the predetermined time is 90 minutes or more. 前記原料はリンゴ剪定枝であることを特徴とする、請求項6ないし10のいずれかに記載の液相用活性炭製造方法。

The method for producing activated carbon for liquid phase according to any one of claims 6 to 10, wherein the raw material is a pruned apple branch.

JP2015148492A 2015-07-28 2015-07-28 Active carbon for liquid phase and manufacturing method therefor Pending JP2017024963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148492A JP2017024963A (en) 2015-07-28 2015-07-28 Active carbon for liquid phase and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148492A JP2017024963A (en) 2015-07-28 2015-07-28 Active carbon for liquid phase and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2017024963A true JP2017024963A (en) 2017-02-02

Family

ID=57949415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148492A Pending JP2017024963A (en) 2015-07-28 2015-07-28 Active carbon for liquid phase and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017024963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124037A (en) * 2021-03-29 2022-09-30 内蒙古浦瑞芬环保科技有限公司 High-sugar honey briquette crushed charcoal and method for producing high-sugar honey briquette crushed charcoal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840713A (en) * 1994-05-26 1996-02-13 Tousou Sangyo Kk Activated carbon, its production and water treatment using the activated carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840713A (en) * 1994-05-26 1996-02-13 Tousou Sangyo Kk Activated carbon, its production and water treatment using the activated carbon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廣瀬孝 ほか: "リンゴ剪定枝由来活性炭のメチレンブルー吸着に関する研究", 第65回日本木材学会大会研究発表要旨集, JPN6019008955, 16 March 2015 (2015-03-16), pages 17 - 08, ISSN: 0004126226 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124037A (en) * 2021-03-29 2022-09-30 内蒙古浦瑞芬环保科技有限公司 High-sugar honey briquette crushed charcoal and method for producing high-sugar honey briquette crushed charcoal
CN115124037B (en) * 2021-03-29 2023-09-22 内蒙古浦瑞芬环保科技有限公司 Broken carbon prepared by high molasses briquettes and method for producing broken carbon prepared by high molasses briquettes

Similar Documents

Publication Publication Date Title
Ji et al. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism
Chen et al. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation
CN107108232B (en) Activated carbon, hydrothermal carbon and preparation method thereof
Sekirifa et al. Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide
Bazan et al. Thermal analysis of activated carbon obtained from residue after supercritical extraction of hops
Lupul et al. Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry
EP3095514B1 (en) Method of preparation of activated carbon from fungi
Yuan et al. Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions
Rahman et al. Waste palm shell converted to high efficient activated carbon by chemical activation method and its adsorption capacity tested by water filtration
Mohtashami et al. Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol
Akpa et al. Adsorption of benzene on activated carbon from agricultural waste materials
Zheng et al. Study of the modification mechanism of heavy metal ions adsorbed by biomass-activated carbon doped with a solid nitrogen source
Shrestha et al. Removal of Ni (II) from aqueous solution by adsorption onto activated carbon prepared from Lapsi (Choerospondias axillaris) seed stone
JP2017128497A (en) Porous carbon material and method for manufacturing same, and filter, sheet, and catalyst carrier
JP5863532B2 (en) Activated carbon and manufacturing method thereof
Joshi Optimization of Conditions for the Preparation of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone Using ZnCl 2.
JP2017024963A (en) Active carbon for liquid phase and manufacturing method therefor
Gutierrez et al. Sustainable sorbent materials obtained from orange peel as an alternative for water treatment
Sogbochi et al. Evaluation of adsorption capacity of methylene blue in aqueous medium by two adsorbents: The raw hull of lophira lanceolata and its activated carbon
Borhan et al. Biosorption of heavy metal ions, oil and grease from industrial waste water by banana peel
Zaini et al. Bio-polishing sludge adsorbents for dye removal
JP5935039B2 (en) Activated carbon production method
Wang et al. Textural characteristics of coconut shell-based activated carbons with steam activation
Jabbar et al. Comparative study for adsorption of acidic and basic dyes on activated carbon prepared from date stone by different activation agent
Ganvir et al. Preparation of adsorbent from karanja oil seed cake and its characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191003