JP5573404B2 - Method for producing activated carbon for electric double layer capacitor electrode - Google Patents

Method for producing activated carbon for electric double layer capacitor electrode Download PDF

Info

Publication number
JP5573404B2
JP5573404B2 JP2010141275A JP2010141275A JP5573404B2 JP 5573404 B2 JP5573404 B2 JP 5573404B2 JP 2010141275 A JP2010141275 A JP 2010141275A JP 2010141275 A JP2010141275 A JP 2010141275A JP 5573404 B2 JP5573404 B2 JP 5573404B2
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
layer capacitor
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010141275A
Other languages
Japanese (ja)
Other versions
JP2012009474A (en
Inventor
卓朗 大信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2010141275A priority Critical patent/JP5573404B2/en
Publication of JP2012009474A publication Critical patent/JP2012009474A/en
Application granted granted Critical
Publication of JP5573404B2 publication Critical patent/JP5573404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電気二重層キャパシタ電極用活性炭の製造方法に関する。   The present invention relates to a method for producing activated carbon for an electric double layer capacitor electrode.

電気二重層キャパシタ(以下、EDLCと称する)は、大電流充放電が可能で、長寿命かつ高温安定性に優れるため、例えばハイブリッド自動車等の蓄電デバイスとして理想的な特性を有している。ところが、これまでのEDLCはエネルギー密度が不充分であることが唯一の欠点となっていた。   An electric double layer capacitor (hereinafter referred to as EDLC) is capable of charging / discharging a large current, has a long life and excellent high-temperature stability, and therefore has ideal characteristics as a power storage device such as a hybrid vehicle. However, the conventional EDLC has the only drawback that the energy density is insufficient.

現在、EDLCの分極性電極材料としては、ヤシ殼、コークス、フェノール樹脂等を水蒸気や二酸化炭素等によって賦活した高比表面積を有する活性炭が使われている。しかしながら、これらの原料から高い静電容量を有する高比表面積の活性炭を得るために賦活度を上げていくと、電極材料の嵩密度が低くなりEDLCのエネルギー密度を高くできないという問題があった。   At present, activated carbon having a high specific surface area obtained by activating coconut straw, coke, phenol resin, etc. with water vapor or carbon dioxide is used as a polarizable electrode material of EDLC. However, when the activation degree is increased in order to obtain activated carbon with a high specific surface area having a high capacitance from these raw materials, there is a problem that the bulk density of the electrode material decreases and the energy density of the EDLC cannot be increased.

そのため、電極材料の嵩密度をコークスやメソカーボンマイクロビーズ、あるいはメソフェーズピッチ系炭素繊維等の易黒鉛化性炭素からアルカリ金属化合物を用いた賦活(以下、アルカリ賦活)によって高い静電容量の活性炭を得る方法が提案されている(例えば、特許文献1参照。)。   Therefore, activated carbon with a high capacitance can be obtained by activating the bulk density of the electrode material from an easily graphitizable carbon such as coke, mesocarbon microbead, or mesophase pitch-based carbon fiber using an alkali metal compound (hereinafter referred to as alkali activation). An obtaining method has been proposed (see, for example, Patent Document 1).

また、さらに静電容量を向上させる目的で、メソフェーズピッチ系不融化炭素繊維をアルカリ賦活して、高い静電容量の活性炭を得る方法が提案されている(例えば、特許文献2参照。)。   Further, for the purpose of further improving the capacitance, a method has been proposed in which mesophase pitch-based infusible carbon fibers are alkali-activated to obtain activated carbon having a high capacitance (for example, see Patent Document 2).

しかし、アルカリ賦活の効果の大きい薬剤として、例えば、水酸化カリウムや水酸化ナトリウム等のアルカリ金属水酸化物が挙げられるが、これらの薬剤を用いた場合、薬剤自体が高価なことに加え、アルカリ塩の腐食性から、装置に高価な材料を使わざるを得ず、また加熱により反応性の高いアルカリ金属あるいはアルカリ金属酸化物が生成し、安全性を考慮した場合、設備費が高くなり、安全で安価な活性炭製造法とは言えない。   However, examples of the agent having a large alkali activation effect include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide. When these agents are used, the agent itself is expensive, Due to the corrosive nature of the salt, expensive materials must be used for the equipment, and when heated, highly reactive alkali metals or alkali metal oxides are produced. It is not a cheap and cheap activated carbon production method.

また、易黒鉛化性炭素を原料に炭酸カリウム等のアルカリ賦活の効果の小さい薬剤を用いた場合、賦活が十分に進行せず、比表面積の小さな活性炭しか得ることができず、EDLCのエネルギー密度を高くできない(例えば、特許文献7〜8参照。)。   In addition, when using a graphitizable carbon as a raw material and a chemical having a small alkali activation effect such as potassium carbonate, activation does not proceed sufficiently, and only activated carbon with a small specific surface area can be obtained, and the energy density of EDLC Cannot be increased (for example, see Patent Documents 7 to 8).

これに対して、賦活を行わずに多孔質炭素材料を得る方法としてポリビニルアルコール、ポリスチレン等の有機質樹脂や石炭系コークス、石油系コークス等の易黒鉛化性炭素前駆体を酸化マグネシウム等のアルカリ土類金属化合物と混合、熱処理し、アルカリ土類金属化合物の表面に炭素化物を析出させ、次いで酸洗浄することでアルカリ土類金属化合物を除去する方法が提案されている(例えば、特許文献3〜5参照)。   On the other hand, as a method for obtaining a porous carbon material without activation, an organic resin such as polyvinyl alcohol and polystyrene, an easily graphitizable carbon precursor such as coal-based coke, and petroleum-based coke are mixed with alkaline earth such as magnesium oxide. A method of removing an alkaline earth metal compound by mixing and heat-treating with an alkaline metal compound, precipitating a carbonized product on the surface of the alkaline earth metal compound, and then washing with an acid has been proposed (for example, Patent Documents 3 to 3). 5).

しかしながら、原料に有機樹脂類を原料にした場合には、炭化歩留が低く、得られる多孔質炭素材料は高価なものになる。また、この方法で高い静電容量を得ようとすると高比表面積の多孔質炭素材料を得ねばならず、EDLCのエネルギー密度を高くできない。   However, when an organic resin is used as a raw material, the carbonization yield is low, and the resulting porous carbon material is expensive. Further, if a high capacitance is to be obtained by this method, a porous carbon material having a high specific surface area must be obtained, and the energy density of EDLC cannot be increased.

なお、特許文献6には、活性炭原料にアルカリ土類金属化合物を添加し熱処理した後、アルカリ賦活によりEDLCの分極性電極材料を製造する方法が提案されている。   Patent Document 6 proposes a method of manufacturing an EDLC polarizable electrode material by alkali activation after an alkaline earth metal compound is added to an activated carbon raw material and heat-treated.

特開2002−93667号公報Japanese Patent Laid-Open No. 2002-93667 特開平11−222732号公報JP-A-11-222732 特開平10−335189号公報Japanese Patent Laid-Open No. 10-335189 特開2006−62954号公報JP 2006-62954 A 特開2008−21833号公報JP 2008-21833 A 特開2004−175660号公報JP 2004-175660 A 特開2008−257883号公報JP 2008-257883 A 特開2006−278588号公報JP 2006-278588 A

EDLC用分極性電極に用いる炭素材料を製造する従来技術は、上記のように、いずれも物性面や生産技術で特有の課題をかかえるものである。特に、水酸化カリウム等のアルカリ金属水酸化物を用いたアルカリ賦活は、工業的に安価かつ安全に製造できない問題があった。   As described above, all of the conventional techniques for producing a carbon material used for an EDLC polarizable electrode have specific problems in terms of physical properties and production technology. In particular, alkali activation using an alkali metal hydroxide such as potassium hydroxide has a problem that it cannot be produced industrially inexpensively and safely.

本発明は、上記の課題に鑑みてなされたものであり、アルカリ金属水酸化物を用いたアルカリ賦活を行わずに、高い静電容量の活性炭を提供することを目的とする。   This invention is made | formed in view of said subject, and it aims at providing activated carbon with a high electrostatic capacitance, without performing alkali activation using an alkali metal hydroxide.

本発明は上記課題を解決するため鋭意研究した結果なされたものであり、以下の各項の発明からなる。
1. つぎの工程(a)〜(d)を含む電気二重層キャパシタ電極用活性炭の製造方法。
(a)原料ピッチを湿式酸化処理する工程、
(b)工程(a)で得られる湿式酸化処理物をアルカリ土類金属化合物の存在下で熱処理することによって炭素化処理する工程、
(c)工程(b)で得られる炭素化処理物を酸洗浄する工程、
(d)工程(c)で得られる洗浄処理物にアルカリ金属炭酸塩を添加し、熱処理することによって賦活処理する工程。
2. 前記原料ピッチが、縮合多環炭化水素をフッ化水素及び三フッ化ホウ素の共存下で重合させて得られるものである第1項記載の電気二重層キャパシタ電極用活性炭の製造方法。
3. 前記工程(a)において、硝酸及び硫酸から選択される少なくとも1種を用いて湿式酸化処理する第1項又は第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
4. 前記工程(b)において、アルカリ土類金属化合物の添加量が、アルカリ土類金属元素基準で、前記湿式酸化処理物100重量部に対し、40〜800重量部である第1項〜第3項のいずれかに記載の電気二重層キャパシタ電極用活性炭の製造方法。
5. 前記工程(b)において、アルカリ土類金属化合物が、マグネシウム化合物、カルシウム化合物及びバリウム化合物から選択される少なくとも1種である第1項〜第4項のいずれかに記載の電気二重層キャパシタ電極用活性炭の製造方法。
6. 前記工程(d)において、アルカリ金属炭酸塩の添加量が、前記洗浄処理物100重量部に対し、100〜1000重量部である第1項〜第5項のいずれかに記載の電気二重層キャパシタ電極用活性炭の製造方法。
7. 第1項〜第6項のいずれかに記載の方法によって得られる電気二重層キャパシタ電極用活性炭。
8. 第7項記載の活性炭を用いた電気二重層キャパシタ電極。
The present invention has been made as a result of intensive studies in order to solve the above problems, and comprises the inventions of the following items.
1. The manufacturing method of the activated carbon for electric double layer capacitor electrodes including the following process (a)-(d).
(A) a step of wet-oxidizing the raw material pitch;
(B) a step of carbonizing by subjecting the wet oxidation product obtained in step (a) to a heat treatment in the presence of an alkaline earth metal compound;
(C) a step of acid cleaning the carbonized product obtained in step (b),
(D) A step of adding an alkali metal carbonate to the washed product obtained in the step (c) and subjecting it to heat treatment by heat treatment.
2. The method for producing activated carbon for an electric double layer capacitor electrode according to claim 1, wherein the raw material pitch is obtained by polymerizing a condensed polycyclic hydrocarbon in the presence of hydrogen fluoride and boron trifluoride.
3. 3. The method for producing activated carbon for an electric double layer capacitor electrode according to claim 1 or 2, wherein in the step (a), wet oxidation is performed using at least one selected from nitric acid and sulfuric acid.
4). In the step (b), the addition amount of the alkaline earth metal compound is 40 to 800 parts by weight with respect to 100 parts by weight of the wet oxidation product on the basis of the alkaline earth metal element. The manufacturing method of the activated carbon for electric double layer capacitor electrodes in any one of.
5. The electric double layer capacitor electrode according to any one of Items 1 to 4, wherein in the step (b), the alkaline earth metal compound is at least one selected from a magnesium compound, a calcium compound and a barium compound. A method for producing activated carbon.
6). The electric double layer capacitor according to any one of Items 1 to 5, wherein, in the step (d), an addition amount of the alkali metal carbonate is 100 to 1000 parts by weight with respect to 100 parts by weight of the washed product. A method for producing activated carbon for electrodes.
7). Activated carbon for electric double layer capacitor electrodes obtained by the method according to any one of Items 1 to 6.
8). An electric double layer capacitor electrode using the activated carbon according to Item 7.

本発明によれば、アルカリ金属水酸化物を用いたアルカリ賦活を行うことなく、電極密度が高く、単位体積当たりの静電容量が高いEDLC電極用活性炭を安全に製造することができるので、工業的意義はきわめて大きい。   According to the present invention, it is possible to safely produce activated carbon for EDLC electrodes with high electrode density and high capacitance per unit volume without performing alkali activation using an alkali metal hydroxide. Significant significance.

本発明は、アルカリ金属水酸化物を用いたアルカリ賦活を行わず、単位体積当りで高静電容量の活性炭に関するものであり、高静電容量の活性炭及び安全に活性炭の製造方法を提供するものである。   The present invention relates to activated carbon having a high capacitance per unit volume without performing alkali activation using an alkali metal hydroxide, and provides a method for producing activated carbon having a high capacitance and a safe activated carbon. It is.

本発明に用いる原料ピッチとしては、石油系ピッチ、石炭系ピッチ又は合成系ピッチが好ましい。この中でもさらに好ましいものとしては、特許第2931593号公報、特許第2621253号公報、特許第2526585号公報又は特開2000−319664号公報に示されるように、ナフタレン、メチルナフタレン、アントラセン、フェナントレン、アセナフテン、アセナフチレン、ピレン等の縮合多環炭化水素を超強酸触媒のフッ化水素・三フッ化ホウ素の存在下で重合させて得られる合成系ピッチが挙げられる。これらは他のピッチ類と異なり、化学純度が高く、性状を自由に制御可能であることから特に好適に用いられる。   The raw material pitch used in the present invention is preferably petroleum pitch, coal pitch or synthetic pitch. Among these, more preferable examples include naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, as disclosed in Japanese Patent No. 2931593, Japanese Patent No. 26212253, Japanese Patent No. 2526585, or Japanese Patent Application Laid-Open No. 2000-319664. Examples thereof include synthetic pitches obtained by polymerizing condensed polycyclic hydrocarbons such as acenaphthylene and pyrene in the presence of hydrogen fluoride / boron trifluoride as super strong acid catalysts. Unlike other pitches, these are particularly preferably used because they have high chemical purity and the properties can be freely controlled.

本発明は、下記工程(a)〜(d)を含むEDLC電極用活性炭の製造方法である。   This invention is a manufacturing method of the activated carbon for EDLC electrodes containing the following process (a)-(d).

(a)湿式酸化処理工程
原料ピッチに対して硝酸及び硫酸から選択される少なくとも1種類の酸化剤を用いて適当な湿式酸化処理を行うことが、高静電容量化には必要である。「湿式酸化」とは、原料ピッチを液体の酸化剤により酸化する処理を意味し、酸素含有ガス等の酸化性ガスを酸化剤とする酸化処理とは異なる。なお、空気のみを用いる酸化処理を「空気酸化」と呼ぶ。
(A) Wet oxidation treatment step It is necessary to increase the capacitance by performing an appropriate wet oxidation treatment on the raw material pitch using at least one kind of oxidizing agent selected from nitric acid and sulfuric acid. “Wet oxidation” means a process of oxidizing a raw material pitch with a liquid oxidant, and is different from an oxidation process using an oxidizing gas such as an oxygen-containing gas as an oxidant. The oxidation treatment using only air is called “air oxidation”.

湿式酸化処理を行う雰囲気は特に限定されないが、空気中で行う場合は、空気酸化が起こらない温度で行う必要がある。好ましくは、窒素やアルゴン等の不活性ガス雰囲気である。湿式酸化処理条件は、使用する酸化剤、濃度、原料ピッチの種類等に応じて選択でき、湿式酸化処理温度は、通常、0〜300℃、好ましくは20℃〜200℃である。酸化の程度は、原料ピッチの基準酸素濃度(湿式酸化処理前の原料ピッチが含有する酸素濃度)に対して、湿式酸化処理後のピッチの酸素濃度の差で決められ、通常1〜30%、より好ましくは1〜25%、さらに好ましくは1〜20%である。   The atmosphere in which the wet oxidation treatment is performed is not particularly limited, but when it is performed in air, it must be performed at a temperature at which air oxidation does not occur. An inert gas atmosphere such as nitrogen or argon is preferable. The wet oxidation treatment conditions can be selected according to the oxidizing agent used, the concentration, the type of raw material pitch, and the like, and the wet oxidation treatment temperature is usually 0 to 300 ° C., preferably 20 ° C. to 200 ° C. The degree of oxidation is determined by the difference in the oxygen concentration of the pitch after the wet oxidation treatment with respect to the reference oxygen concentration of the raw material pitch (the oxygen concentration contained in the raw material pitch before the wet oxidation treatment), usually 1 to 30%, More preferably, it is 1-25%, More preferably, it is 1-20%.

このようにして得られた湿式酸化処理物は、水洗して酸化剤を除去し、十分に乾燥する。洗浄及びそれ以後の工程については、従来の方法を用いることができる。   The wet-oxidized product thus obtained is washed with water to remove the oxidizing agent and sufficiently dried. Conventional methods can be used for the cleaning and the subsequent steps.

(b)炭素化処理工程
工程(a)で製造した湿式酸化処理物は、アルカリ土類金属化合物を添加し、熱処理することにより炭素化処理する。アルカリ土類金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム及びラジウムからなる群から選ばれる少なくとも一種のアルカリ土類金属元素を含む化合物であればよく、アルカリ土類金属の酸化物、水酸化物、塩化物、臭化物、ヨウ化物、フッ化物、リン酸塩、炭酸塩、硫化物、硫酸塩、硝酸塩等の無機塩又は酢酸塩、酪酸塩、クエン酸塩、グルコン酸塩等の有機酸塩を用いることができる。より好ましくは、マグネシウム化合物、カルシウム化合物及びバリウム化合物であり、さらに好ましくは、マグネシウム、カルシウム及びバリウムの水酸化物及び有機酸塩である。
(B) Carbonization treatment step The wet oxidation treatment product produced in the step (a) is carbonized by adding an alkaline earth metal compound and heat-treating it. The alkaline earth metal compound may be a compound containing at least one alkaline earth metal element selected from the group consisting of beryllium, magnesium, calcium, strontium, barium and radium, and may be an oxide of alkaline earth metal, water Inorganic salts such as oxides, chlorides, bromides, iodides, fluorides, phosphates, carbonates, sulfides, sulfates and nitrates, or organic acids such as acetates, butyrate, citrates and gluconates A salt can be used. More preferred are magnesium compounds, calcium compounds and barium compounds, and more preferred are hydroxides and organic acid salts of magnesium, calcium and barium.

工程(a)で製造した湿式酸化処理物及びアルカリ土類金属化合物の形状は限定される物ではないが、より均一に混合するために、細かい粒子となっていることが好ましい。その粒子径は1mm以下が好ましく、より好ましくは0.5mm以下、さらに好ましくは0.1mm以下である。また、より均一に混合するために、アルカリ土類金属化合物を可溶な溶媒に溶かした溶液と工程(a)で製造した湿式酸化処理物と混合後、溶媒を除去してもよい。   The wet-oxidized product and the alkaline earth metal compound produced in step (a) are not limited in shape, but are preferably fine particles in order to mix more uniformly. The particle diameter is preferably 1 mm or less, more preferably 0.5 mm or less, and still more preferably 0.1 mm or less. Moreover, in order to mix more uniformly, you may remove a solvent after mixing with the solution which melt | dissolved the alkaline-earth metal compound in the soluble solvent, and the wet oxidation processed material manufactured at the process (a).

アルカリ土類金属化合物の使用量は、アルカリ土類金属元素の重量基準で、工程(a)で製造した湿式酸化処理物100重量部に対し40〜800重量部、より好ましくは40〜600重量部、さらに好ましくは40〜400重量部である。例えば、アルカリ土類金属化合物として水酸化マグネシウムを選んだ場合、マグネシウムの原子量が24.31、水酸化マグネシウムの分子量が58.32であることから、工程(a)で製造した湿式酸化処理物100重量部に対し、水酸化マグネシウム240重量部(=58.32/24.31×100)を用いると、マグネシウム元素基準で100重量部となる。   The amount of the alkaline earth metal compound used is 40 to 800 parts by weight, more preferably 40 to 600 parts by weight, based on the weight of the alkaline earth metal element, with respect to 100 parts by weight of the wet-oxidized product produced in step (a). More preferably, it is 40 to 400 parts by weight. For example, when magnesium hydroxide is selected as the alkaline earth metal compound, the atomic weight of magnesium is 24.31, and the molecular weight of magnesium hydroxide is 58.32. Therefore, the wet oxidation product 100 manufactured in step (a) is used. When 240 parts by weight of magnesium hydroxide (= 58.32 / 24.31 × 100) is used with respect to parts by weight, the amount is 100 parts by weight based on the magnesium element.

工程(a)で製造した湿式酸化処理物にアルカリ金土類金属化合物を添加した後、熱処理することにより炭素化処理する。この炭素化処理工程は1200℃程度まで加熱する一般的な方法でもよいが、該湿式酸化処理物の炭素化開始温度付近で一度温度を保持した後、好ましくは400〜1000℃、より好ましくは600〜800℃で1〜20時間、より好ましくは1〜12時間保持する。   After adding an alkaline gold earth metal compound to the wet oxidation treatment product produced in the step (a), the carbonization treatment is performed by heat treatment. This carbonization treatment step may be a general method of heating to about 1200 ° C., but after maintaining the temperature once in the vicinity of the carbonization start temperature of the wet oxidation treatment product, preferably 400 to 1000 ° C., more preferably 600 Hold at ˜800 ° C. for 1 to 20 hours, more preferably 1 to 12 hours.

また、炭素化処理は、窒素やアルゴン等の不活性ガス雰囲気下で行われるが、炭素化処理を行う装置としては、公知の装置を用いることができ、均一な混合物を不活性雰囲気下で所定温度に加熱できればよい。工業的にはロータリーキルンやトンネルキルン等で行うのが経済的で生産性が高い。   The carbonization treatment is performed in an inert gas atmosphere such as nitrogen or argon. However, as a device for performing the carbonization treatment, a known device can be used, and a uniform mixture is predetermined in an inert atmosphere. What is necessary is just to be able to heat to temperature. Industrially, it is economical and highly productive to use a rotary kiln or tunnel kiln.

(c)洗浄処理工程
工程(b)で得られた炭素化処理物には、炭素化処理により分解しなかったアルカリ土類金属化合物及び/又は炭素化処理により生成したアルカリ土類金属化合物が含まれている。これらのアルカリ土類金属化合物を除去するために洗浄を行う(これらのアルカリ土類金属化合物を、まとめてアルカリ土類金属化合物類という)。アルカリ土類金属化合物類を除去しない場合、後工程のアルカリ金属炭酸塩を薬剤に用いた賦活処理において、炭素化処理物の濃度が小さくなり賦活の効果を下げる。逆に十分に賦活させようとすると賦活に用いる薬剤のアルカリ金属炭酸塩の使用量が多くなりコスト上昇の要因となる。
(C) Cleaning treatment step The carbonized product obtained in step (b) contains an alkaline earth metal compound that has not been decomposed by the carbonization treatment and / or an alkaline earth metal compound produced by the carbonization treatment. It is. Washing is performed to remove these alkaline earth metal compounds (these alkaline earth metal compounds are collectively referred to as alkaline earth metal compounds). When alkaline earth metal compounds are not removed, in the activation process using an alkali metal carbonate in the subsequent step as a chemical, the concentration of the carbonized product is reduced and the activation effect is lowered. On the other hand, if it is attempted to activate sufficiently, the amount of alkali metal carbonate used as an agent increases, which causes an increase in cost.

洗浄に用いられる酸としては、アルカリ土類金属化合物類を溶解する酸であれば特に限定されないが、例えばベリリウム化合物及びマグネシウム化合物を用いた場合は、硫酸、硝酸、塩酸等が使用できる。カルシウム化合物、ストロンチウム化合物及びバリウム化合物では、塩酸を用いるのが好ましい。また、例えば酢酸マグネシウムに対する酢酸等、原料となるアルカリ土類金属化合物に対応する酸を使用することもできる。この場合、原料となるアルカリ土類金属化合物が生成し、再利用することで省コスト化を図ることができる。工程(b)で得られた炭素化処理物は、原料となるアルカリ土類金属化合物に対応する酸で洗浄した後、さらに硫酸、硝酸、塩酸等の酸で洗浄しても良い。工程(b)で得られた炭素化処理物は、酸で洗浄した後、水洗して酸を除去する。   The acid used for washing is not particularly limited as long as it is an acid that dissolves alkaline earth metal compounds. For example, when a beryllium compound and a magnesium compound are used, sulfuric acid, nitric acid, hydrochloric acid, and the like can be used. Hydrochloric acid is preferably used for calcium compounds, strontium compounds and barium compounds. Further, for example, an acid corresponding to the alkaline earth metal compound as a raw material such as acetic acid for magnesium acetate can be used. In this case, an alkaline earth metal compound as a raw material is generated and reused, so that cost can be reduced. The carbonized product obtained in the step (b) may be washed with an acid corresponding to the alkaline earth metal compound used as a raw material, and further washed with an acid such as sulfuric acid, nitric acid, hydrochloric acid or the like. The carbonized product obtained in the step (b) is washed with an acid and then washed with water to remove the acid.

炭素化処理物を酸洗浄することによって炭素化処理物からアルカリ土類金属化合物類を除去した洗浄処理物は、比較的大きな比表面積を持つ多孔質炭素材料となる。しかし、この多孔質炭素材料は細孔分布がブロードで、EDLC用分極性電極として最適な細孔が少なく、EDLC用分極性電極として使用したときの静電容量は小さい。   The washed product obtained by removing the alkaline earth metal compounds from the carbonized product by acid cleaning of the carbonized product becomes a porous carbon material having a relatively large specific surface area. However, this porous carbon material has a broad pore distribution, and there are few optimal pores as a polarizable electrode for EDLC, and its electrostatic capacity is small when used as a polarizable electrode for EDLC.

該洗浄処理物は、つぎの賦活処理工程前に粉砕処理されることが好ましい。粉砕方法は、特に限定するものではなく、例えば、衝撃式粉砕機、ボールミル、ローラーミル、ジェットミル等が使用できる。所望の粒度を得るために分級機を組合せて用いてもよい。粉砕処理の際には、平均粒子径で、通常は1〜50μm、好ましくは5〜40μm、さらに好ましくは5〜30μmになるように粒度調整される。   The washed product is preferably pulverized before the next activation treatment step. The pulverization method is not particularly limited, and for example, an impact pulverizer, a ball mill, a roller mill, a jet mill or the like can be used. A classifier may be used in combination to obtain the desired particle size. In the pulverization treatment, the particle size is adjusted so that the average particle size is usually 1 to 50 μm, preferably 5 to 40 μm, and more preferably 5 to 30 μm.

(d)賦活処理工程
工程(c)で得られた洗浄処理物は、アルカリ金属炭酸塩を添加し、熱処理することにより賦活処理する。アルカリ金属炭酸塩の形状は限定されるものではないが、より均一に混合するため、細かい粒子となっていることが好ましい。その粒子径は1mm以下が好ましく、より好ましくは0.5mm以下、さらに好ましくは0.1mm以下である。また、より均一に混合するために、アルカリ金属炭酸塩水溶液として工程(c)で得られた洗浄処理物と混合後、水分を除去しても良い。
(D) Activation treatment step The washed product obtained in the step (c) is activated by adding an alkali metal carbonate and heat-treating it. The shape of the alkali metal carbonate is not limited, but is preferably fine particles in order to mix more uniformly. The particle diameter is preferably 1 mm or less, more preferably 0.5 mm or less, and still more preferably 0.1 mm or less. Moreover, in order to mix more uniformly, you may remove a water | moisture content after mixing with the washing | cleaning processed material obtained at the process (c) as alkali metal carbonate aqueous solution.

アルカリ金属炭酸塩としては、例えば炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウムを使用できる。より好ましくは炭酸ナトリウム、炭酸カリウムである。この理由としては、炭酸ナトリウム、炭酸カリウムが安価であり、また溶融温度が高いためである。これらの1種類あるいは2種類以上混合して使用しても良い。   As the alkali metal carbonate, for example, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate can be used. More preferred are sodium carbonate and potassium carbonate. This is because sodium carbonate and potassium carbonate are inexpensive and have a high melting temperature. You may use these 1 type or in mixture of 2 or more types.

アルカリ金属炭酸塩は一般的に吸湿性であり、吸湿した水分量に応じて薬剤の使用量を変える必要がある。アルカリ金属炭酸塩の使用量は、乾燥したアルカリ金属炭酸塩の重量基準で、工程(c)で得られた洗浄処理物100重量部に対し100〜1000重量部、より好ましくは200〜800重量部である。   Alkali metal carbonates are generally hygroscopic and it is necessary to change the amount of drug used according to the amount of moisture absorbed. The amount of alkali metal carbonate used is 100 to 1000 parts by weight, more preferably 200 to 800 parts by weight, based on the weight of the dried alkali metal carbonate, with respect to 100 parts by weight of the washed product obtained in step (c). It is.

工程(c)で得られた洗浄処理物にアルカリ金属炭酸塩を添加した後に行う熱処理は、不活性ガス雰囲気下500〜1000℃、より好ましくは600〜900℃、さらに好ましくは600〜800℃で、0.5〜20時間、より好ましくは1〜12時間、さらに好ましくは1〜6時間である。熱処理温度が低すぎると、賦活が進行せず適当な細孔を持つ活性炭が得られない。一方、熱処理温度が高すぎるとアルカリ金属炭酸塩が溶融し、装置を傷める原因となる。   The heat treatment performed after adding the alkali metal carbonate to the washed product obtained in the step (c) is 500 to 1000 ° C., more preferably 600 to 900 ° C., more preferably 600 to 800 ° C. in an inert gas atmosphere. 0.5 to 20 hours, more preferably 1 to 12 hours, still more preferably 1 to 6 hours. If the heat treatment temperature is too low, activation does not proceed and activated carbon having appropriate pores cannot be obtained. On the other hand, if the heat treatment temperature is too high, the alkali metal carbonate melts, causing damage to the apparatus.

熱処理の温度が高い場合、工程(c)で得られた洗浄処理物によりアルカリ金属炭酸塩が還元され、アルカリ金属又はアルカリ金属酸化物が生成する恐れがある。そのため流通ガスには、不活性ガスと炭酸ガスとの混合ガスを用いてもよいが、炭酸ガスの濃度が高いと、工程(c)で得られた洗浄処理物と炭酸ガスが反応し、活性炭の収率が低下するばかりか、体積当たりの静電容量が低下する。賦活処理に炭酸ガスと不活性ガスの混合ガスを用いる場合、炭酸ガス濃度は、20体積%未満、好ましくは10体積%以下、さらに好ましくは5体積%以下である。   When the temperature of the heat treatment is high, the alkali metal carbonate may be reduced by the washed product obtained in the step (c), and an alkali metal or an alkali metal oxide may be generated. For this reason, a mixed gas of an inert gas and carbon dioxide gas may be used as the circulation gas. However, if the concentration of carbon dioxide gas is high, the cleaning product obtained in step (c) reacts with carbon dioxide gas, and activated carbon. In addition to a decrease in yield, the capacitance per volume decreases. When using the mixed gas of a carbon dioxide gas and an inert gas for an activation process, a carbon dioxide gas density | concentration is less than 20 volume%, Preferably it is 10 volume% or less, More preferably, it is 5 volume% or less.

賦活処理を行う装置は、特に限定するものではなく、炭素化処理工程で使用したものと同様の装置を使用することができ、例えばロータリーキルンやトンネルキルンを使用できる。   The apparatus which performs an activation process is not specifically limited, The apparatus similar to what was used at the carbonization process process can be used, for example, a rotary kiln and a tunnel kiln can be used.

このようにして得られた賦活処理物は、常温に冷却した後、例えば、蒸留水及び/又は塩酸水溶液により洗浄して賦活用の薬剤を除去し、十分に乾燥し、活性炭を得ることができる。洗浄及びそれ以後の工程については、水酸化カリウムを添加して賦活する際の洗浄方法と同様の方法(例えば、特開2004−315243号公報、特開2005−136397号公報)を用いることができる。   The activated product thus obtained can be cooled to room temperature, and then washed with distilled water and / or hydrochloric acid aqueous solution to remove the activated chemical and dried sufficiently to obtain activated carbon. . For the cleaning and the subsequent steps, the same method as the cleaning method when activated by adding potassium hydroxide (for example, JP-A-2004-315243, JP-A-2005-13697) can be used. .

以上のような工程を経て製造された活性炭は、賦活処理工程時の熱収縮によるマクロ孔の収縮と共にアルカリ金属炭酸塩による賦活によりミクロ孔が形成され、EDLC分極性電極用の活性炭として好適であり、ヤシガラ炭等の活性炭を用いた場合に比べて、静電容量の点でさらに性能を一段と高めた、特に体積当たりの静電容量の高いEDLCを得ることができる。また、水酸化カリウム等のアルカリ金属水酸化物を用いないことから、安全に製造することができる。本願発明により製造される活性炭は、EDLC分極性電極のほか、リチウムイオンキャパシタの正極にも用いることができる。
また、EDLC分極性電極やリチウムイオンキャパシタの正極は公知の方法を用いて作製することができる(例えば、特開2005−136397号公報、
特開2006−286921号公報)。
Activated carbon produced through the above steps is suitable as activated carbon for EDLC polarizable electrodes because micropores are formed by activation with alkali metal carbonate along with macropore shrinkage due to heat shrinkage during the activation treatment step. Compared with the case where activated carbon such as coconut husk charcoal is used, an EDLC having a particularly high electrostatic capacity per volume can be obtained, which further enhances the performance in terms of electrostatic capacity. Further, since an alkali metal hydroxide such as potassium hydroxide is not used, it can be produced safely. The activated carbon produced by the present invention can be used not only for EDLC polarizable electrodes but also for positive electrodes of lithium ion capacitors.
Moreover, the positive electrode of an EDLC polarizable electrode or a lithium ion capacitor can be manufactured using a well-known method (for example, Unexamined-Japanese-Patent No. 2005-136397,
JP, 2006-286921, A).

次に、実施例により本発明を更に具体的に説明する。但し、本発明は以下の実施例により制限されるものではない。
実施例における各種測定は以下の方法で行った。
(BET比表面積測定)
カンタクローム社製QUADRASORB SIを用いて、活性炭のBET比表面積を測定した。
(分極性電極の製造法及び測定法)
活性炭:導電性助剤(カーボンブラック):結着剤(テフロン(登録商標))を重量比80:10:10で混合、混錬、圧延してシート状とし、2cmの有効電極面積に打ち抜き、厚さ150μmの電極を作製した。電極評価はアルミ製2極式セルを用い、一対の電極の間に紙製セパレータを挟みセルに収容した。電解液は日本カーリット(株)製のKKE−14DEを用いた。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples.
Various measurements in the examples were performed by the following methods.
(BET specific surface area measurement)
The BET specific surface area of activated carbon was measured using QUADRASORB SI manufactured by Cantachrome.
(Production method and measurement method of polarizable electrode)
Activated carbon: Conductive auxiliary agent (carbon black): Binder (Teflon (registered trademark)) is mixed, kneaded and rolled at a weight ratio of 80:10:10 to form a sheet, and punched into an effective electrode area of 2 cm 2 An electrode having a thickness of 150 μm was produced. For electrode evaluation, an aluminum bipolar cell was used, and a paper separator was sandwiched between a pair of electrodes and accommodated in the cell. The electrolyte used was KKE-14DE manufactured by Nippon Carlit Co., Ltd.

充放電試験は北斗電工(株)製(HJ0210msM8A)充放電装置を用い、アルゴンガス雰囲気中、室温下、100mA/gの定電流で電圧2.7Vまで充電し、さらに2.7Vで2時間充電を行った後、100mA/gの定電流で0Vまで放電し、放電された電気量から静電容量を算出した。静電容量は正負極両極中の炭素重量(活性炭及びカーボンブラック)を基準とし、下式に従って算出した。また、体積当たりの静電容量Cv(F/cc)は重量当たりの静電容量Cw(F/g)に電極の密度を乗ずることにより算出した。
(式)静電容量Cw(F/g)=放電電気量(AH/g)×3600/2.7
The charge / discharge test uses a charge / discharge device manufactured by Hokuto Denko Co., Ltd. (HJ0210msM8A), and is charged to a voltage of 2.7 V at a constant current of 100 mA / g in an argon gas atmosphere at room temperature, and further charged at 2.7 V for 2 hours. Then, the battery was discharged to 0 V with a constant current of 100 mA / g, and the electrostatic capacity was calculated from the discharged electricity. The capacitance was calculated according to the following formula based on the carbon weight (activated carbon and carbon black) in both the positive and negative electrodes. The capacitance Cv (F / cc) per volume was calculated by multiplying the capacitance Cw (F / g) per weight by the electrode density.
(Formula) Capacitance Cw (F / g) = Discharge Electricity (AH / g) × 3600 / 2.7

実施例1
[活性炭の調製]
(a)湿式酸化処理
フッ化水素及び三フッ化ホウ素の共存下でナフタレンを重合して原料ピッチ(メトラー法軟化点:280℃)を合成した。ミルで粉砕した該原料ピッチ10gを500mLのセパラブルフラスコに、30%硝酸200mLと共に仕込んだ。湿式酸化処理は、パドル式の撹拌羽根を用い200rpmの回転数で撹拌しながら、窒素ガス流通下、ヒーター温度120℃で5時間の酸化処理を行った。得られた湿式酸化処理物を希アンモニア水で洗浄した後、pH値が約7となるまで蒸留水により洗浄した。洗浄後、乾燥することにより湿式酸化処理物を得た。
(b)炭素化処理
得られた湿式酸化処理物7gと水酸化マグネシウム28g(マグネシウム元素基準で該湿式酸化処理物との重量比1.7)をミキサーで混合し、ニッケル製のルツボに入れ、加熱炉内に入れた。加熱炉内を窒素ガスで置換して不活性雰囲気とした後、窒素ガスを毎分2L流通させながら、毎分5℃の昇温速度で400℃に加熱し、1時間保持した。その後、毎分5℃の昇温速度で600℃に加熱し、2時間保持した。その後、室温まで放冷し、加熱炉から炭素化処理物を取り出した。マグネシウム化合物類を含む炭素化物の収量は26.5gで、収率は76%であった。
(c)洗浄処理
得られた炭素化処理物からマグネシウム化合物類を除去するため、1mol/Lの塩酸水溶液で繰り返し酸洗浄した。この酸洗浄の後、pH値が約7になるまで蒸留水で洗浄、乾燥し洗浄処理物を得た。該洗浄処理物の収量は5.8gであった。
(d)賦活処理
カッターミルで平均粒径9μmに粉砕した洗浄処理物2gとミルで粉砕した炭酸カリウム8g(該洗浄処理物との重量比4)をミキサーで混合し、ニッケル製のルツボに入れ、加熱炉内に入れた。加熱炉内を窒素ガスで置換して不活性雰囲気とした後、窒素ガスを毎分2L流通下、毎分5℃の昇温速度で800℃に加熱し、3時間保持した。加熱終了後、室温まで放冷し、加熱炉から賦活処理物を取り出した。
該賦活処理物は含まれるカリウム化合物を除去するため、0.2mol/Lの塩酸水溶液で繰り返し洗浄した。酸洗浄後、pH値が約7になるまで蒸留水で洗浄し、80℃で予備乾燥後、150℃で減圧乾燥し活性炭を得た。
この活性炭の比表面積は、167m/gであった。該活性炭を電極評価したところ、重量当たり静電容量29.0F/g、体積当たり静電容量30.0F/cc、電極密度1.04g/ccと優れた値を示した。
Example 1
[Preparation of activated carbon]
(A) Wet oxidation treatment Naphthalene was polymerized in the presence of hydrogen fluoride and boron trifluoride to synthesize raw material pitch (Mettler method softening point: 280 ° C.). 10 g of the raw material pitch pulverized by a mill was charged into a 500 mL separable flask together with 200 mL of 30% nitric acid. The wet oxidation treatment was performed at a heater temperature of 120 ° C. for 5 hours under a nitrogen gas flow while stirring at a rotation speed of 200 rpm using a paddle type stirring blade. The obtained wet oxidation-treated product was washed with dilute ammonia water, and then washed with distilled water until the pH value became about 7. After washing, drying was performed to obtain a wet oxidation treatment product.
(B) Carbonization treatment 7 g of the wet oxidation product obtained and 28 g of magnesium hydroxide (weight ratio of the wet oxidation treatment product based on magnesium element of 1.7) were mixed with a mixer, and placed in a nickel crucible. Placed in a heating furnace. After the inside of the heating furnace was replaced with nitrogen gas to make an inert atmosphere, it was heated to 400 ° C. at a temperature rising rate of 5 ° C. per minute and kept for 1 hour while flowing 2 L of nitrogen gas per minute. Then, it heated at 600 degreeC with the temperature increase rate of 5 degree-C / min, and hold | maintained for 2 hours. Then, it stood to cool to room temperature and took out the carbonization processed material from the heating furnace. The yield of the carbonized product containing magnesium compounds was 26.5 g, and the yield was 76%.
(C) Washing treatment In order to remove magnesium compounds from the obtained carbonized product, acid washing was repeated with a 1 mol / L aqueous hydrochloric acid solution. After this acid washing, the product was washed with distilled water until the pH value was about 7, and dried to obtain a washed product. The yield of the washed product was 5.8 g.
(D) 2 g of the washed product pulverized to an average particle size of 9 μm by the activation treatment cutter mill and 8 g of potassium carbonate pulverized by the mill (weight ratio of 4 to the washed product) are mixed with a mixer and put in a nickel crucible. And placed in a heating furnace. After replacing the inside of the heating furnace with nitrogen gas to make an inert atmosphere, the nitrogen gas was heated to 800 ° C. at a temperature rising rate of 5 ° C. per minute under a flow of 2 L per minute, and held for 3 hours. After the heating, the product was allowed to cool to room temperature, and the activation treatment product was taken out from the heating furnace.
The activated product was repeatedly washed with a 0.2 mol / L hydrochloric acid aqueous solution in order to remove the contained potassium compound. After the acid washing, it was washed with distilled water until the pH value was about 7, preliminarily dried at 80 ° C., and dried under reduced pressure at 150 ° C. to obtain activated carbon.
The specific surface area of this activated carbon was 167 m 2 / g. When the activated carbon was evaluated for an electrode, it showed excellent values of an electrostatic capacity per weight of 29.0 F / g, an electrostatic capacity per volume of 30.0 F / cc, and an electrode density of 1.04 g / cc.

実施例2
炭素化処理の温度を800℃にした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、243m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量30.1F/g、体積当たり静電容量30.2F/cc、電極密度1.00g/ccと優れた値を示した。
Example 2
It carried out similarly to Example 1 except having made the temperature of carbonization process into 800 degreeC.
The specific surface area of the obtained activated carbon was 243 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, it showed excellent values such as a capacitance per weight of 30.1 F / g, a capacitance per volume of 30.2 F / cc, and an electrode density of 1.00 g / cc. .

実施例3
炭素化処理における水酸化マグネシウム量を7g(マグネシウム元素基準で該湿式酸化処理物との重量比0.4)とした以外は、実施例1と同様に行った。
活性炭の比表面積は、183m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量31.4F/g、体積当たり静電容量31.6F/cc、電極密度1.00g/ccと優れた値を示した。
Example 3
The same operation as in Example 1 was performed except that the amount of magnesium hydroxide in the carbonization treatment was changed to 7 g (weight ratio with the wet oxidation treatment product based on the magnesium element).
The specific surface area of the activated carbon was 183 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, it showed excellent values such as a capacitance per weight of 31.4 F / g, a capacitance per volume of 31.6 F / cc, and an electrode density of 1.00 g / cc. .

実施例4
炭素化処理における水酸化マグネシウム量を14g(マグネシウム元素基準で該湿式酸化処理物との重量比0.8)とした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は121m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量32.4F/g、体積当たり静電容量32.8F/cc、電極密度1.01g/ccと優れた値を示した。
Example 4
The same operation as in Example 1 was performed except that the amount of magnesium hydroxide in the carbonization treatment was 14 g (weight ratio with the wet oxidation treatment product based on the magnesium element was 0.8).
The specific surface area of the obtained activated carbon was 121 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, it showed excellent values such as a capacitance per weight of 32.4 F / g, a capacitance per volume of 32.8 F / cc, and an electrode density of 1.01 g / cc. .

実施例5
炭素化処理における水酸化マグネシウム量を32g(マグネシウム元素基準で該湿式酸化処理物との重量比3.3)とした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は78m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量32.6F/g、体積当たり静電容量32.9F/cc、電極密度1.01g/ccと優れた値を示した。
Example 5
The same operation as in Example 1 was performed except that the amount of magnesium hydroxide in the carbonization treatment was 32 g (weight ratio with the wet oxidation treatment product based on magnesium element was 3.3).
The specific surface area of the obtained activated carbon was 78 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, it showed excellent values such as a capacitance per weight of 32.6 F / g, a capacitance per volume of 32.9 F / cc, and an electrode density of 1.01 g / cc. .

実施例6
賦活処理における炭酸カリウム量を4g(該洗浄処理物との重量比2)にした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、122m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量25.3F/g、体積当たり静電容量25.8F/cc、電極密度1.02g/ccと優れた値を示した。
Example 6
The same operation as in Example 1 was performed except that the amount of potassium carbonate in the activation treatment was changed to 4 g (weight ratio 2 with the washed product).
The specific surface area of the obtained activated carbon was 122 m 2 / g. The activated carbon was evaluated in the same manner as in Example 1. As a result, the capacitance per weight was 25.3 F / g, the capacitance per volume was 25.8 F / cc, and the electrode density was 1.02 g / cc. .

実施例7
賦活処理における炭酸カリウム量を16g(該洗浄処理物との重量比8)にした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、133m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量27.0F/g、体積当たり静電容量27.8F/cc、電極密度1.03g/ccと優れた値を示した。
Example 7
The same procedure as in Example 1 was performed except that the amount of potassium carbonate in the activation treatment was changed to 16 g (weight ratio to the washed product).
The specific surface area of the obtained activated carbon was 133 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, it showed excellent values such as a capacitance per weight of 27.0 F / g, a capacitance per volume of 27.8 F / cc, and an electrode density of 1.03 g / cc. .

実施例8
炭素化処理における水酸化マグネシウムの代わりに酢酸マグネシウム4水和物を用い、マグネシウム元素基準で該湿式酸化処理物との重量比を2倍にした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、233m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量27.9F/g、体積当たり静電容量28.8F/cc、電極密度1.04g/ccと優れた値を示した。
Example 8
The same procedure as in Example 1 was conducted except that magnesium acetate tetrahydrate was used instead of magnesium hydroxide in the carbonization treatment, and the weight ratio with the wet oxidation treatment product was doubled on a magnesium element basis.
The specific surface area of the obtained activated carbon was 233 m 2 / g. The activated carbon was subjected to electrode evaluation in the same manner as in Example 1. As a result, the capacitance per weight was 27.9 F / g, the capacitance per volume was 28.8 F / cc, and the electrode density was 1.04 g / cc. .

実施例9
賦活処理における流通ガスを体積比で窒素ガス:炭酸ガス=95:5の混合ガスを毎分2L流通した以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、332m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量25.2F/g、体積当たり静電容量24.7F/cc、電極密度0.98g/ccと優れた値を示した。
Example 9
The same procedure as in Example 1 was performed except that 2 L of a mixed gas of nitrogen gas: carbon dioxide gas = 95: 5 was circulated per minute in the flow rate in the activation treatment.
The specific surface area of the obtained activated carbon was 332 m 2 / g. The activated carbon was evaluated in the same manner as in Example 1. As a result, the capacitance per weight was 25.2 F / g, the capacitance per volume was 24.7 F / cc, and the electrode density was 0.98 g / cc. .

実施例10
炭素化処理物における水酸化マグネシウムの代わりに水酸化カルシウムを用い、実施例1と同様に行った。
得られた活性炭の比表面積は、327m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たりの静電容量33.6F/g、体積当たりの静電容量32.9F/cc、電極密度0.98g/ccと優れた値を示した。
Example 10
The same procedure as in Example 1 was carried out using calcium hydroxide instead of magnesium hydroxide in the carbonized product.
The specific surface area of the obtained activated carbon was 327 m 2 / g. The activated carbon was evaluated in the same manner as in Example 1. As a result, the capacitance per weight was 33.6 F / g, the capacitance per volume was 32.9 F / cc, and the electrode density was 0.98 g / cc. Indicated.

実施例11
炭素化処理物における水酸化マグネシウムの代わりに水酸化バリウム8水和物を用い、実施例1と同様に行った。
得られた活性炭の比表面積は、1023m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たりの静電容量34.7F/g、体積当たりの静電容量27.1F/cc、電極密度0.78g/ccと優れた値を示した。
Example 11
The same procedure as in Example 1 was performed using barium hydroxide octahydrate instead of magnesium hydroxide in the carbonized product.
The specific surface area of the obtained activated carbon was 1023 m 2 / g. The activated carbon was evaluated in the same manner as in Example 1. As a result, the capacitance per weight was 34.7 F / g, the capacitance per volume was 27.1 F / cc, and the electrode density was 0.78 g / cc. Indicated.

比較例1
湿式酸化処理を行わない以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、838m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量28.0F/g、体積当たり静電容量19.9F/cc、電極密度0.72g/ccであった。
Comparative Example 1
The same procedure as in Example 1 was performed except that the wet oxidation treatment was not performed.
The specific surface area of the obtained activated carbon was 838 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, the capacitance per weight was 28.0 F / g, the capacitance per volume was 19.9 F / cc, and the electrode density was 0.72 g / cc.

比較例2
実施例1に用いた粉砕した原料ピッチ10gを空気を流通させながら380℃で酸素架橋による粘度上昇により撹拌できなくなるまで混練撹拌し、空気酸化処理物を得た。湿式酸化処理物の代わりに該空気酸化処理物を用いる以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、689m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量33.1F/g、体積当たり静電容量23.1F/cc、電極密度0.70g/ccであった。
Comparative Example 2
10 g of the pulverized raw material pitch used in Example 1 was kneaded and stirred at 380 ° C. while increasing the viscosity due to oxygen crosslinking while air was circulated to obtain an air-oxidized product. It carried out like Example 1 except using this air oxidation treatment thing instead of a wet oxidation treatment thing.
The specific surface area of the obtained activated carbon was 689 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, the capacitance per weight was 33.1 F / g, the capacitance per volume was 23.1 F / cc, and the electrode density was 0.70 g / cc.

比較例3
実施例1に用いた粉砕した原料ピッチ5gを窒素ガス流通下、小型管状炉で700℃、2時間加熱し、炭素化処理した。実施例1と同様に該炭素化処理物を粉砕、炭酸カリウムを用いた賦活処理を行った後、洗浄して活性炭を得た。
得られた活性炭の比表面積は、9m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量25.6F/g、体積当たり静電容量17.0F/cc、電極密度1.09g/ccであった。
Comparative Example 3
5 g of the pulverized raw material pitch used in Example 1 was heated in a small tubular furnace at 700 ° C. for 2 hours under a nitrogen gas flow, and carbonized. In the same manner as in Example 1, the carbonized product was pulverized and subjected to activation treatment using potassium carbonate, and then washed to obtain activated carbon.
The specific surface area of the obtained activated carbon was 9 m 2 / g. When the activated carbon was subjected to electrode evaluation in the same manner as in Example 1, the capacitance per weight was 25.6 F / g, the capacitance per volume was 17.0 F / cc, and the electrode density was 1.09 g / cc.

比較例4
洗浄処理を行わない以外は、実施例1と同様に行った。賦活処理における賦活用薬剤の量は、マグネシウム化合物類を含む炭素化物8.6g(マグネシウム化合物類を含まない炭素化物2gに相当する。)に対し炭酸カリウム8gを用いた。
得られた活性炭の比表面積は、32m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量15.1F/g、体積当たり静電容量17.0F/cc、電極密度1.12g/ccであった。
Comparative Example 4
The same procedure as in Example 1 was performed except that the washing treatment was not performed. In the activation treatment, 8 g of potassium carbonate was used for 8.6 g of carbonized product containing magnesium compounds (corresponding to 2 g of carbonized product not containing magnesium compounds).
The specific surface area of the obtained activated carbon was 32 m 2 / g. When the activated carbon was evaluated for electrodes in the same manner as in Example 1, the capacitance per weight was 15.1 F / g, the capacitance per volume was 17.0 F / cc, and the electrode density was 1.12 g / cc.

比較例5
賦活処理における炭酸カリウム量を1g(該洗浄処理物との重量比0.5)にした以外は、実施例1と同様に行った。
得られた活性炭の比表面積は、36m/gであった。該活性炭を実施例1と同様に電極評価したところ、重量当たり静電容量3.3F/g、体積当たり静電容量4.0F/cc、電極密度1.21g/ccであった。
Comparative Example 5
The same operation as in Example 1 was performed except that the amount of potassium carbonate in the activation treatment was changed to 1 g (weight ratio with respect to the washed product).
The specific surface area of the obtained activated carbon was 36 m 2 / g. When the activated carbon was evaluated for electrodes in the same manner as in Example 1, the capacitance per weight was 3.3 F / g, the capacitance per volume was 4.0 F / cc, and the electrode density was 1.21 g / cc.

比較例6
実施例1で得られた洗浄処理物を用いて、賦活処理を行わずに分極性電極を作製した以外は、実施例1と同様に行った。
該洗浄処理物の比表面積は、39m/gであった。該洗浄処理物を実施例1と同様に電極評価したところ、重量当たり静電容量3.2F/g、体積当たり静電容量3.3F/cc、電極密度1.03g/ccであった。
Comparative Example 6
The same procedure as in Example 1 was performed, except that a polarizable electrode was produced without performing the activation treatment using the washed product obtained in Example 1.
The specific surface area of the washed product was 39 m 2 / g. When the electrode of the washed product was evaluated in the same manner as in Example 1, the capacitance per weight was 3.2 F / g, the capacitance per volume was 3.3 F / cc, and the electrode density was 1.03 g / cc.

比較例7
実施例9の賦活処理における流通ガスを体積比で窒素ガス:炭酸ガス=80:20にした以外は、実施例9と同様に行ったところ、炭酸ガスと洗浄処理物との反応が起こり賦活処理後、活性炭が得られなかった。
Comparative Example 7
Except that the flow gas in the activation treatment of Example 9 was changed to nitrogen gas: carbon dioxide gas = 80: 20 by volume ratio, the reaction was performed between the carbon dioxide gas and the washed product, and the activation treatment was performed. Later, no activated carbon was obtained.

実施例1〜11及び比較例1〜7における処理条件を表1にまとめて示す。また比表面積及び電気化学特性の評価結果をまとめて表2に示す。 The processing conditions in Examples 1 to 11 and Comparative Examples 1 to 7 are summarized in Table 1. Table 2 summarizes the evaluation results of specific surface area and electrochemical characteristics.

Figure 0005573404
Figure 0005573404

Figure 0005573404
Figure 0005573404

Claims (7)

つぎの工程(a)〜(d)を含む電気二重層キャパシタ電極用活性炭の製造方法。
(a)原料ピッチを湿式酸化処理する工程、
(b)工程(a)で得られる湿式酸化処理物をアルカリ土類金属化合物の存在下で熱処理することによって炭素化処理する工程、
(c)工程(b)で得られる炭素化処理物を酸洗浄する工程、
(d)工程(c)で得られる洗浄処理物にアルカリ金属炭酸塩を該洗浄処理物100重量部に対し、100〜1000重量部添加し、炭酸ガス濃度20体積%未満の不活性ガス流通下で熱処理することによって賦活処理する工程。
The manufacturing method of the activated carbon for electric double layer capacitor electrodes including the following process (a)-(d).
(A) a step of wet-oxidizing the raw material pitch;
(B) a step of carbonizing by subjecting the wet oxidation product obtained in step (a) to a heat treatment in the presence of an alkaline earth metal compound;
(C) a step of acid cleaning the carbonized product obtained in step (b),
(D) 100 to 1000 parts by weight of an alkali metal carbonate is added to 100 parts by weight of the cleaning processed product obtained in the step (c), and under an inert gas flow having a carbon dioxide gas concentration of less than 20% by volume. The process of activating by heat-treating.
前記原料ピッチが、縮合多環炭化水素をフッ化水素及び三フッ化ホウ素の共存下で重合させて得られるものである請求項1記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 1, wherein the raw material pitch is obtained by polymerizing a condensed polycyclic hydrocarbon in the presence of hydrogen fluoride and boron trifluoride. 前記工程(a)において、硝酸及び硫酸から選択される少なくとも1種を用いて湿式酸化処理する請求項1又は2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 1 or 2, wherein in the step (a), wet oxidation is performed using at least one selected from nitric acid and sulfuric acid. 前記工程(b)において、アルカリ土類金属化合物の添加量が、アルカリ土類金属元素基準で、前記湿式酸化処理物100重量部に対し、40〜800重量部である請求項1〜3のいずれかに記載の電気二重層キャパシタ電極用活性炭の製造方法。   The said process (b) WHEREIN: The addition amount of an alkaline-earth metal compound is 40-800 weight part with respect to 100 weight part of the said wet oxidation processed materials on the basis of an alkaline-earth metal element. A method for producing activated carbon for an electric double layer capacitor electrode according to claim 1. 前記工程(b)において、アルカリ土類金属化合物が、マグネシウム化合物、カルシウム化合物及びバリウム化合物から選択される少なくとも1種である請求項1〜4のいずれかに記載の電気二重層キャパシタ電極用活性炭の製造方法。   In the step (b), the alkaline earth metal compound is at least one selected from a magnesium compound, a calcium compound and a barium compound. The activated carbon for an electric double layer capacitor electrode according to any one of claims 1 to 4. Production method. 請求項1〜のいずれかに記載の方法によって得られる電気二重層キャパシタ電極用活性炭。 Electric double layer capacitor electrode activated carbon obtainable by the process according to any one of claims 1-5. 請求項記載の活性炭を用いた電気二重層キャパシタ電極。 An electric double layer capacitor electrode using the activated carbon according to claim 6 .
JP2010141275A 2010-06-22 2010-06-22 Method for producing activated carbon for electric double layer capacitor electrode Expired - Fee Related JP5573404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141275A JP5573404B2 (en) 2010-06-22 2010-06-22 Method for producing activated carbon for electric double layer capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141275A JP5573404B2 (en) 2010-06-22 2010-06-22 Method for producing activated carbon for electric double layer capacitor electrode

Publications (2)

Publication Number Publication Date
JP2012009474A JP2012009474A (en) 2012-01-12
JP5573404B2 true JP5573404B2 (en) 2014-08-20

Family

ID=45539738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141275A Expired - Fee Related JP5573404B2 (en) 2010-06-22 2010-06-22 Method for producing activated carbon for electric double layer capacitor electrode

Country Status (1)

Country Link
JP (1) JP5573404B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517607B2 (en) * 2015-07-02 2019-05-22 株式会社神戸製鋼所 Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
KR102062258B1 (en) * 2017-11-30 2020-01-06 주식회사 성창오토텍 Activated carbon with excellent adsorption performance
CN109970059A (en) * 2017-12-27 2019-07-05 中国科学院上海硅酸盐研究所 A kind of double layer capacitor absorbent charcoal material and its activating treatment method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539434B2 (en) * 1993-12-09 2004-07-07 三菱瓦斯化学株式会社 Manufacturing method of high performance carbon material
JPH09328308A (en) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp Activated carbon, its production and capacitor using the same
JP2004182508A (en) * 2002-12-02 2004-07-02 Mitsubishi Gas Chem Co Inc Method of producing carbon material for electric double layer capacitor electrode
JP2008021833A (en) * 2006-07-13 2008-01-31 Nippon Steel Chem Co Ltd Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor

Also Published As

Publication number Publication date
JP2012009474A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
CN113135568B (en) Nitrogen-doped porous carbon material and preparation method and application thereof
JP4877441B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
JP2008222551A (en) Method for manufacturing activated carbon
JP2002083748A (en) Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP4576374B2 (en) Activated carbon, its production method and its use
JP2004175660A (en) Activated carbon, method of manufacturing the same and polarizable electrode
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JP2002093667A (en) Carbon material for electric double-layer capacitor electrode
JP2001180923A (en) Activated carbon, its producing method, electrode made of the same, and electrical double layer capacitor using the electrode
JP2008195559A (en) Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2014203530A (en) Carbonaceous negative electrode material for sodium secondary battery and method for producing the same
JP3611412B2 (en) Mesophase pitch activated carbon fiber, process for producing the same, and electric double layer capacitor using the same
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
JP4072947B2 (en) Process for producing activated carbon fiber and electric double layer capacitor using the same
JP2005347517A (en) Method of manufacturing activated charcoal for electric double layer capacitor electrode
JP2004182507A (en) Carbon porous body for capacitor electrode and its manufacturing method
JP2009253255A (en) Method for manufacturing active electrode material for electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

LAPS Cancellation because of no payment of annual fees