JP2008195559A - Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon - Google Patents

Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon Download PDF

Info

Publication number
JP2008195559A
JP2008195559A JP2007030740A JP2007030740A JP2008195559A JP 2008195559 A JP2008195559 A JP 2008195559A JP 2007030740 A JP2007030740 A JP 2007030740A JP 2007030740 A JP2007030740 A JP 2007030740A JP 2008195559 A JP2008195559 A JP 2008195559A
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
layer capacitor
less
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007030740A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Watanabe
史宜 渡邉
Takuro Oshida
卓朗 大信田
Yasushi Miki
泰 三樹
Koichi Sugano
公一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2007030740A priority Critical patent/JP2008195559A/en
Publication of JP2008195559A publication Critical patent/JP2008195559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon for electric double-layer capacitor electrodes, which has high and excellent electrostatic capacity per unit volume and a long service life and to provide a method for producing the activated carbon for electric double-layer capacitor electrodes. <P>SOLUTION: The activated carbon for electric double-layer capacitor electrodes satisfies the following conditions (a) to (c). The condition (a) is that the nitrogen content is ≤1 wt.%. The condition (b) is that the pore volume of pores having ≤7 Å size is ≤15 cc/g when measured by a DFT method using carbon dioxide adsorption and the ratio of the pore volume of pores having ≤7 Å size to the total pore volume is ≥40%. The condition (c) is that the amount of surface functional groups is ≤0.5 meq/g. The method for producing the activated carbon for electric double-layer capacitor electrodes comprises the steps of: heat-treating pitch or easy-to-graphitize coke at 600-800°C to obtain a carbonized material; nitriding the carbonized material to obtain a nitrided material; and activating the nitrided material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ電極用活性炭及びその製造方法に関する。   The present invention relates to activated carbon for electric double layer capacitor electrodes and a method for producing the same.

電気二重層キャパシタ(以下、EDLCと称する)は、大電流充放電が可能で、長寿命かつ高温安定性に優れるため、例えばハイブリッド自動車などの蓄電デバイスとして理想的な特性を有している。ところが、これまでのEDLCはエネルギー密度が不充分であることが唯一の欠点となっていた。   An electric double layer capacitor (hereinafter referred to as EDLC) is capable of charging / discharging a large current, has a long life and is excellent in high-temperature stability, and therefore has ideal characteristics as a power storage device such as a hybrid vehicle. However, the conventional EDLC has the only drawback that the energy density is insufficient.

現在、EDLCの分極性電極材料としては、ヤシ殼、コークス、フェノール樹脂等を水蒸気や二酸化炭素等によって賦活した高比表面積を有する活性炭が使われている。しかしながら、これらの原料から高い静電容量を有する高比表面積の活性炭を得るために賦活度を上げていくと、電極材料の嵩密度が低くなりEDLCのエネルギー密度を高くできないという問題があった。   At present, activated carbon having a high specific surface area obtained by activating coconut straw, coke, phenol resin, etc. with water vapor or carbon dioxide is used as a polarizable electrode material of EDLC. However, when the activation degree is increased in order to obtain activated carbon with a high specific surface area having a high capacitance from these raw materials, there is a problem that the bulk density of the electrode material decreases and the energy density of the EDLC cannot be increased.

最近、コークスやメソカーボンマイクロビーズ、あるいはメソフェーズピッチ系炭素繊維などの易黒鉛化性炭素からアルカリ金属化合物を用いた賦活(以下、アルカリ賦活と称する)によって高い静電容量の活性炭を得る方法が提案されている(例えば、特許文献1〜3参照)。   Recently, a method has been proposed for obtaining activated carbon with a high capacitance from easily graphitizable carbon such as coke, mesocarbon microbeads, or mesophase pitch-based carbon fiber by activation using an alkali metal compound (hereinafter referred to as alkali activation). (For example, see Patent Documents 1 to 3).

また、特定の原料ピッチを熱処理、賦活処理することで優れたEDLC用活性炭が得られることが開示されており(例えば、特許文献4、5参照)、アルカリ賦活に供する出発原料および処理条件の選択が高い静電容量の活性炭を得るために重要であることが明らかになりつつある。   Further, it is disclosed that an excellent activated carbon for EDLC can be obtained by subjecting a specific raw material pitch to heat treatment and activation treatment (see, for example, Patent Documents 4 and 5), and selection of starting materials and treatment conditions for alkali activation. It is becoming clear that it is important to obtain activated carbon with high capacitance.

アルカリ賦活原料としてよく用いられるコークスは安価な原料であるが、原料あるいは熱処理条件の制約を受け、金属分や硫黄分などの不純物も多く、高性能な材料が得られない。また、メソカーボンマイクロビーズも製造法の制約を受け、収率が低いため非常に高価である。メソフェーズピッチ系炭素繊維の場合は、紡糸・不融化工程を経るために原料ピッチの性状の制約を受けること、繊維状であるため電極を作製する際に充填密度が粒状に較べて上がらず、結果として単位体積当たりの静電容量が低くなるという問題があり、活性炭粒子形状が単位体積あたり容量を向上させるために非常に重要であることを示している。   Coke, which is often used as an alkali activation raw material, is an inexpensive raw material, but due to restrictions on the raw material or heat treatment conditions, there are many impurities such as metal and sulfur, and a high-performance material cannot be obtained. In addition, mesocarbon microbeads are also very expensive due to limitations of the production method and low yield. In the case of mesophase pitch-based carbon fiber, there is a restriction on the properties of the raw material pitch due to the spinning and infusibilization process, and the packing density does not increase compared to the granular shape when producing an electrode because it is fibrous. As described above, there is a problem that the electrostatic capacity per unit volume is lowered, and the activated carbon particle shape is very important for improving the capacity per unit volume.

また、易黒鉛化性炭素原料であるピッチを液相炭化することで得られた塊状のコークスやニードルコークスに対して仮焼、粉砕、賦活処理を施す場合、活性炭内部に、異方性組織に沿った亀裂が生じる。これは静電容量に関与しない無駄な空隙となり、単位体積当たりの静電容量を低下させる要因となる。このような例として、水銀圧入法により求めた細孔径0.1〜10μmに相当するクラックの細孔容積が0.15〜0.40cc/gとなる活性炭原料が開示されている(特許文献6参照)。この場合、原料炭素にすでにこのような無駄な空隙を有し、かつアルカリ賦活を施すことでこれらの空隙はさらに拡大することから、結果として電気二重層キャパシタ用電極としては充分な電極密度を確保することは難しい。   In addition, when calcining, pulverizing, and activating the bulk coke and needle coke obtained by liquid-phase carbonization of pitch, which is a graphitizable carbon raw material, the activated carbon has an anisotropic structure. Along the crack. This becomes a useless void that is not involved in the capacitance, and causes a decrease in the capacitance per unit volume. As such an example, an activated carbon raw material in which the pore volume of a crack corresponding to a pore diameter of 0.1 to 10 μm determined by a mercury intrusion method is 0.15 to 0.40 cc / g is disclosed (Patent Document 6). reference). In this case, the raw carbon already has such useless voids, and these voids are further expanded by applying alkali activation. As a result, sufficient electrode density is secured as an electrode for an electric double layer capacitor. Difficult to do.

EDLC用電極として、高い静電容量を得るためには、高い単位重量あたりの静電容量と、高い電極密度が必要である。通常、高い静電容量を得るためには細孔構造の大きな活性炭が必要であるが、その場合、電極密度が低くなってしまう。また、高い電極密度を得ようとする場合、活性炭原料炭素の焼成温度を高くして、真密度を向上させることや、賦活による細孔構造の発達を少なくすることが行われるが、単位重量あたりの静電容量が低くなってしまう。   In order to obtain a high capacitance as an electrode for EDLC, a high capacitance per unit weight and a high electrode density are required. Usually, activated carbon having a large pore structure is required to obtain a high capacitance, but in this case, the electrode density is lowered. In addition, when trying to obtain a high electrode density, the firing temperature of the activated carbon raw material carbon is increased to improve the true density and to reduce the development of the pore structure due to activation. The capacitance of the will be low.

EDLCの特徴として、いわゆる二次電池と比較して長寿命であることが挙げられる。一般にアルカリ賦活により得られた活性炭は、ガス賦活による活性炭よりも官能基量が多く、寿命の点で不利であるといわれている。アルカリ賦活活性炭の繰り返し使用における静電容量の低下を抑える方法として、活性炭を熱処理する方法が開示されている(特許文献7、8参照)。   A characteristic of EDLC is that it has a longer life than a so-called secondary battery. In general, activated carbon obtained by alkali activation has more functional groups than activated gas by gas activation, and is said to be disadvantageous in terms of life. As a method for suppressing a decrease in capacitance in repeated use of alkali-activated activated carbon, a method of heat-treating activated carbon has been disclosed (see Patent Documents 7 and 8).

特許文献7には活性炭を還元性ガス雰囲気中500〜900℃で熱処理する方法、特許文献8においては活性炭を遷移金属触媒の存在下、還元性ガス雰囲気中200〜850℃で熱処理する方法を記載しているが、この方法では静電容量の低下を抑えることは可能であるが、静電容量自体の向上には繋がらないという問題があった。   Patent Document 7 describes a method of heat-treating activated carbon at 500 to 900 ° C. in a reducing gas atmosphere, and Patent Document 8 describes a method of heat-treating activated carbon at 200 to 850 ° C. in a reducing gas atmosphere in the presence of a transition metal catalyst. However, this method can suppress a decrease in capacitance, but has a problem that it does not lead to improvement in capacitance itself.

また、特許文献9には、コークスを、アンモニアガスを含む雰囲気中550〜1000℃で熱処理したのちに賦活することで静電容量を高める方法が開示されている。
特許第2548546号公報 特許第2634658号公報 特許第3149504号公報 特開2002−93667号公報 特開2001−180923号公報 特開2003−51430号公報 特開2002−25867号公報 特開2002−362912号公報 特開2006−12938号公報
Patent Document 9 discloses a method for increasing the capacitance by activating coke after heat treatment at 550 to 1000 ° C. in an atmosphere containing ammonia gas.
Japanese Patent No. 2548546 Japanese Patent No. 2634658 Japanese Patent No. 3149504 Japanese Patent Laid-Open No. 2002-93667 JP 2001-180923 A JP 2003-51430 A JP 2002-25867 A JP 2002-362912 A JP 2006-12938 A

本発明の目的は、従来技術における上記のような課題を解決し、単位体積当たりの静電容量が高い優れ、かつ長寿命を有するEDLC電極用活性炭及びその製造方法を提供することにある。   An object of the present invention is to solve the above-described problems in the prior art, and to provide an activated carbon for an EDLC electrode having a high electrostatic capacity per unit volume and having a long life, and a method for producing the same.

本発明者らは、EDLC電極用活性炭の出発原料、処理方法、条件等を詳細に検討した結果、賦活処理前の炭素化物調製条件と特定の条件下での熱処理によって、EDLC電極、単位体積当りの静電容量が高い高性能のEDLC電極用活性炭が製造できることを見いだし本発明に到達した。即ち、本発明は以下のとおりである。
(1) つぎの条件(a)〜(c)を満たす電気二重層キャパシタ電極用活性炭。
(a)窒素含有量が1wt%以下、
(b)二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.15cc/g以下であり、かつ全細孔容積に対する7Å以下の細孔容積の割合が40%以上、
(c)表面官能基量が0.5meq/g以下。
(2) ピッチ又は易黒鉛化性コークスを600℃以上800℃以下の温度で熱処理することによって得られる炭素化物に、窒化処理を施し窒素化物とした後、賦活処理する電気二重層キャパシタ電極用活性炭の製造方法。
(3) 前記活性炭と前記窒素化物との窒素含有量の差が1.0wt%以上である第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
(4) 前記炭素化物のH/C原子比が0.40以下又は前記炭素化物の真密度が1.42g/cc以上である第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
(5) 前記窒素化物のH/C原子比が0.150以上、かつN/C原子比が0.016以上である第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
(6) 前記窒化処理を行うための反応器が、炭素化物及び窒素性ガスと500℃以上で接触する部分に金属材質を実質的に含まない第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
(7) 前記ピッチが縮合多環炭化水素をフッ化水素・三フッ化ホウ素の存在下で重合させて得られるピッチである第2項記載の電気二重層キャパシタ電極用活性炭の製造方法。
As a result of detailed examination of starting materials, processing methods, conditions, and the like of activated carbon for EDLC electrodes, the present inventors have found that the EDLC electrode per unit volume by carbonized preparation conditions before activation treatment and heat treatment under specific conditions. The inventors have found that a high-performance activated carbon for EDLC electrodes having a high electrostatic capacity can be produced, and reached the present invention. That is, the present invention is as follows.
(1) Activated carbon for electric double layer capacitor electrodes that satisfies the following conditions (a) to (c).
(A) The nitrogen content is 1 wt% or less,
(B) The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption is 0.15 cc / g or less, and the ratio of the pore volume of 7 mm or less to the total pore volume is 40% or more,
(C) The amount of surface functional groups is 0.5 meq / g or less.
(2) Activated carbon activated carbon that is activated by nitriding a carbonized product obtained by heat-treating pitch or graphitizable coke at a temperature of 600 ° C. or higher and 800 ° C. or lower to form a nitrided product. Manufacturing method.
(3) The method for producing activated carbon for an electric double layer capacitor electrode according to the second item, wherein the difference in nitrogen content between the activated carbon and the nitride is 1.0 wt% or more.
(4) The method for producing activated carbon for an electric double layer capacitor electrode as described in the second item, wherein the H / C atomic ratio of the carbonized product is 0.40 or less or the true density of the carbonized product is 1.42 g / cc or more.
(5) The method for producing activated carbon for an electric double layer capacitor electrode as described in the second item, wherein the nitride has an H / C atomic ratio of 0.150 or more and an N / C atomic ratio of 0.016 or more.
(6) The activated carbon for an electric double layer capacitor electrode according to the second item, wherein the reactor for performing the nitriding treatment does not substantially contain a metal material in a portion in contact with the carbonized material and the nitrogenous gas at 500 ° C. or higher. Production method.
(7) The method for producing activated carbon for an electric double layer capacitor electrode according to Item 2, wherein the pitch is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon in the presence of hydrogen fluoride / boron trifluoride.

本発明によれば、電極密度が極めて高く、単位体積当たりの静電容量が高く、さらには静電容量劣化の少ない長寿命なEDLC電極用活性炭を製造することができるので、工業的意義はきわめて大きい。本材料を用いることによってエネルギー密度が高く長寿命であるEDLCが実現でき、ハイブリッド自動車、UPS等の電源として非常に有用となる。   According to the present invention, it is possible to produce activated carbon for EDLC electrodes having a very high electrode density, a high capacitance per unit volume, and a small life of electrostatic capacitance. large. By using this material, an EDLC having a high energy density and a long life can be realized, which is very useful as a power source for hybrid vehicles, UPSs and the like.

本発明は単位体積当りで高静電容量が得られ、静電容量劣化の少ない活性炭に関するものであり、高い単位重量当りの静電容量及び高い電極密度を同時に満たす活性炭及びその製造方法を提供するものである   The present invention relates to an activated carbon that has a high capacitance per unit volume and has little capacitance deterioration, and provides an activated carbon that simultaneously satisfies a high capacitance per unit weight and a high electrode density, and a method for producing the same. Is a thing

本発明に用いる炭素化物原料としては、易黒鉛化性炭素前駆体が好ましく、石油系ピッチ、石炭系ピッチ又は合成系ピッチ並びにこれらを出発原料としたコークスが高静電容量電極を得るためには好ましい。この中でもさらに好ましいものとしては、特許第2931593号公報、特許第2621253号公報、特許第2526585号公報又は特開2000−319664号公報に示されるように、ナフタレン、メチルナフタレン、アントラセン、フェナントレン、アセナフテン、アセナフチレン、ピレン等の縮合多環炭化水素を超強酸触媒のフッ化水素・三フッ化ホウ素の存在下で重合させて得られる合成系ピッチが挙げられる。これらは他のピッチ類と異なり、化学純度が高く、性状を自由に制御可能であることから特に好適に用いられる。   As the carbonized material used in the present invention, an easily graphitizable carbon precursor is preferable, and in order to obtain a high-capacitance electrode by using petroleum-based pitch, coal-based pitch or synthetic pitch and coke using these as starting materials. preferable. Among these, more preferable examples include naphthalene, methylnaphthalene, anthracene, phenanthrene, acenaphthene, as disclosed in Japanese Patent No. 2931593, Japanese Patent No. 26212253, Japanese Patent No. 2526585, or Japanese Patent Application Laid-Open No. 2000-319664. Examples thereof include synthetic pitches obtained by polymerizing condensed polycyclic hydrocarbons such as acenaphthylene and pyrene in the presence of hydrogen fluoride / boron trifluoride as super strong acid catalysts. Unlike other pitches, these are particularly preferably used because they have high chemical purity and the properties can be freely controlled.

ここでいうところの易黒鉛化性炭素前駆体は炭素化して得られる炭素化物を2800℃での高温で黒鉛化を施した際のXRDによる黒鉛構造の基づく回折ピークを測定することで容易に判定できる。この場合の黒鉛化における保持時間は特に限定されないが、通常10分程度黒鉛化温度で保持される。易黒鉛化性炭素前駆体から出発した黒鉛化物は、学振法(日本学術振興会炭素材料第117委員会が制定)に基づいて解析した場合の002回折ピークよりもとめられるLc値が100nm以上の大きな値を示す。ただし、求めたLcの値が100nmを超える場合、その絶対値の信頼性が低くなり、この様な場合は通常>100nmの大きさを持つLcとして表現する。易黒鉛化性でない樹脂等から出発した難黒鉛化成炭素前駆体を用いた場合、賦活されやすいことから電極密度が大幅に低下してしまう。   The graphitizable carbon precursor here is easily determined by measuring the diffraction peak based on the graphite structure by XRD when the carbonized product obtained by carbonization is graphitized at a high temperature of 2800 ° C. it can. The holding time in graphitization in this case is not particularly limited, but is usually held at the graphitizing temperature for about 10 minutes. The graphitized material starting from the graphitizable carbon precursor has an Lc value of 100 nm or more obtained from the 002 diffraction peak when analyzed based on the Japan Society for the Promotion of Science (established by the Japan Society for the Promotion of Science Carbon Material 117 Committee). Indicates a large value. However, when the calculated value of Lc exceeds 100 nm, the reliability of the absolute value is lowered, and in such a case, it is expressed as Lc having a size of typically> 100 nm. When a non-graphitizable carbon precursor that starts from a non-graphitizable resin or the like is used, the electrode density is greatly reduced because it is easily activated.

炭素化物に対して適当な窒素含有量を与えることが高静電容量化には必要であるが、そのためには、窒化処理に用いる炭素化物を選択することで、高い静電容量が得られる。それは、窒化処理に用いる炭素化物が不活性雰囲気下600℃以上800℃以下で熱処理されたものであり、好ましくは600℃以上750℃以下、より好ましくは600℃以上725℃以下である。また、それらの元素分析によるH/C原子比が0.40以下又は真密度が1.42g/cc以上であることが好ましく、より好ましくはH/C原子比が0.38以下又は真密度1.425以上、さらに好ましくはH/C原子比が0.36以下又は真密度1.43以上である。熱処理温度が低いことによりH/Cが0.40より高く、真密度が1.42g/ccより小さい場合、窒化処理を施し、賦活した後の活性炭によるEDLC用電極の密度低下が激しく、高い静電容量が得られない。   It is necessary to give an appropriate nitrogen content to the carbonized material in order to increase the capacitance. For this purpose, a high capacitance can be obtained by selecting the carbonized material used for the nitriding treatment. That is, the carbonized material used for nitriding is heat-treated at 600 ° C. to 800 ° C. in an inert atmosphere, preferably 600 ° C. to 750 ° C., more preferably 600 ° C. to 725 ° C. Further, the H / C atomic ratio by elemental analysis is preferably 0.40 or less or the true density is preferably 1.42 g / cc or more, more preferably the H / C atomic ratio is 0.38 or less or the true density is 1. .425 or more, more preferably H / C atomic ratio is 0.36 or less or true density is 1.43 or more. When H / C is higher than 0.40 and the true density is lower than 1.42 g / cc due to the low heat treatment temperature, the density of the EDLC electrode due to activated carbon after nitriding and activation is severe, and high static The electric capacity cannot be obtained.

上記炭素化物を窒化処理することで窒素化物が得られるが、高静電容量の活性炭を得るためには、特定の窒素化物を賦活処理することで得られる。窒素化物としては、H/C原子比が0.150以上、かつN/C原子比が0.016以上、好ましくは、H/C原子比が0.152以上、かつN/C原子比が0.016以上、より好ましくは、H/C原子比が0.155以上、かつN/C原子比が0.017以上である。いずれの値も、賦活による細孔の形成と相関し、これらの値が低すぎる場合は、賦活による細孔構造の形成が阻害されてしまい、静電容量を発現しない。   Nitrides can be obtained by nitriding the above-mentioned carbonides, but in order to obtain activated carbon having a high capacitance, it can be obtained by activating a specific nitride. As the nitride, the H / C atomic ratio is 0.150 or more and the N / C atomic ratio is 0.016 or more, preferably the H / C atomic ratio is 0.152 or more and the N / C atomic ratio is 0. .016 or more, more preferably, the H / C atomic ratio is 0.155 or more and the N / C atomic ratio is 0.017 or more. Any value correlates with the formation of pores due to activation, and when these values are too low, the formation of pore structures due to activation is hindered and the capacitance is not expressed.

炭素化物の窒化処理は、特に限定されないが窒素含有性ガスを含有する雰囲気下で熱処理する方法(ここでいうところの窒素含有性ガスは、炭素に対して不活性である窒素ガスは含まない)、窒素プラズマによる方法、含窒素有機物との共炭化などが挙げられる。   The nitriding treatment of the carbonized material is not particularly limited, but is a method in which heat treatment is performed in an atmosphere containing a nitrogen-containing gas (the nitrogen-containing gas here does not include nitrogen gas that is inert to carbon). And a method using nitrogen plasma, co-carbonization with a nitrogen-containing organic substance, and the like.

炭素化物の窒素含有性ガス雰囲気下での熱処理温度に関しては、高すぎても低すぎても窒素の導入量が少なくなってしまい、静電容量が向上しない。高すぎる熱処理温度は炭素網面が発達しすぎてしまい、賦活による細孔構造の形成が阻害されてしまう。 Regarding the heat treatment temperature of the carbonized product in a nitrogen-containing gas atmosphere, the amount of nitrogen introduced is reduced if the temperature is too high or too low, and the capacitance is not improved. If the heat treatment temperature is too high, the carbon network surface develops too much and the formation of the pore structure by activation is inhibited.

その熱処理温度は600〜1000℃が好ましく、より好ましくは600〜950℃、さらに好ましくは600〜850℃である。熱処理時間は0.1〜10時間が好ましく、より好ましくは0.1〜8時間、さらに好ましくは0.1〜6時間である。また、窒素含有性ガスの中でも、炭素との反応性からアンモニアが好ましい。該窒素含有性ガスは窒素やアルゴンなどの不活性ガスで希釈してもよく、その濃度は0.1〜100vol%が好ましく、より好ましくは0.5〜100vol%、さらに好ましくは1〜100vol%である。   The heat treatment temperature is preferably 600 to 1000 ° C, more preferably 600 to 950 ° C, and further preferably 600 to 850 ° C. The heat treatment time is preferably 0.1 to 10 hours, more preferably 0.1 to 8 hours, and further preferably 0.1 to 6 hours. Of the nitrogen-containing gases, ammonia is preferable because of its reactivity with carbon. The nitrogen-containing gas may be diluted with an inert gas such as nitrogen or argon, and its concentration is preferably 0.1 to 100 vol%, more preferably 0.5 to 100 vol%, and still more preferably 1 to 100 vol%. It is.

窒素含有性ガスとの熱処理の際の炭素化物の形状は限定されるものではないが、より窒素含有性ガスと接触し窒素のより多い導入を行うためには、細かい粒子となっていることが望ましい。その粒子径は10mm以下が好ましく、より好ましくは7mm以下、さらに好ましくは5mm以下である。 The shape of the carbonized product during the heat treatment with the nitrogen-containing gas is not limited, but in order to contact more nitrogen-containing gas and introduce more nitrogen, it must be fine particles desirable. The particle diameter is preferably 10 mm or less, more preferably 7 mm or less, and still more preferably 5 mm or less.

また、窒素含有性ガスとの熱処理において、炭素化物を入れる容器材質は、窒素含有性ガスの分解を起こさない非金属容器であることが望ましい。特に、窒素含有性ガス及び炭素化物と500℃以上で接触する部分に金属材質を実質的に含まないことが必要である。   Further, in the heat treatment with the nitrogen-containing gas, the container material into which the carbonized product is put is preferably a non-metallic container that does not cause decomposition of the nitrogen-containing gas. In particular, it is necessary that the metal material is not substantially contained in the portion that comes into contact with the nitrogen-containing gas and the carbonized material at 500 ° C. or higher.

窒素含有性ガスとの熱処理に用いる熱処理炉は、特に限定されないが、静置型炉、ロータリーキルン炉、プッシャー炉、ローラーハース炉等があるが、窒素含有性ガス及び炭素化物と500℃以上で接触する部分に金属材質を実質的に含まなければいずれの熱処理炉を用いてもかまわない。 The heat treatment furnace used for the heat treatment with the nitrogen-containing gas is not particularly limited, and there are a stationary furnace, a rotary kiln furnace, a pusher furnace, a roller hearth furnace, etc., but the nitrogen-containing gas and the carbonized product are contacted at 500 ° C. or higher. Any heat treatment furnace may be used as long as the portion does not substantially contain a metal material.

このような熱処理により得られた窒素化物は、粉砕後に賦活処理を行うが、より高い静電容量を得るためには薬品賦活が好ましく、さらに好ましくは水酸化アルカリ金属によるアルカリ賦活が好ましい。その賦活処理の際には、粉状の窒素化物が用いられるが、窒素化物の粉砕方法としてボールミル、ローラーミル、高速回転ミル、媒体攪拌ミル、ジェットミル等があるが、いずれの粉砕機を用いても良く、所望の粒度を得るために複数の粉砕機、分級機を組み合わせて用いてもよい。 The nitride obtained by such heat treatment is activated after pulverization, but chemical activation is preferred to obtain higher capacitance, and alkali activation with an alkali metal hydroxide is more preferred. In the activation treatment, powdered nitrides are used, but there are ball mills, roller mills, high-speed rotation mills, medium stirring mills, jet mills, etc. as methods for pulverizing the nitrides. In order to obtain a desired particle size, a plurality of pulverizers and classifiers may be used in combination.

得られる窒素化物粒子の粒径について特に制限はないが、EDLC用電極は通常50から500μm、厚い場合であっても500μm以下であることから、当然それ以下の粒径である必要がある。また、ハンドリングの観点から、粒径の下限は100nm以上であること好ましい。従って、EDLC用活性炭原料としての窒素化物粒子として推奨される粒径は、100nm以上500μm以下、好ましくは200nm以上200μm以下、さらに好ましくは500nm以上100μm以下である。   Although there is no particular limitation on the particle size of the obtained nitride particles, the electrode for EDLC is usually 50 to 500 μm, and even when it is thick, it is 500 μm or less. From the viewpoint of handling, the lower limit of the particle size is preferably 100 nm or more. Therefore, the recommended particle size of the nitride particles as the activated carbon raw material for EDLC is 100 nm to 500 μm, preferably 200 nm to 200 μm, and more preferably 500 nm to 100 μm.

高静電容量を得るためのアルカリ賦活に用いられる賦活剤としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、塩化カリウム等のアルカリ金属化合物が用いられるが、中でも水酸化ナトリウム、水酸化カリウム、又はこれらの組み合わせが好ましい。   As an activator used for alkali activation to obtain a high capacitance, alkali metal compounds such as lithium hydroxide, sodium hydroxide, potassium hydroxide, potassium carbonate, potassium chloride are used. Among them, sodium hydroxide, Potassium hydroxide or a combination thereof is preferred.

アルカリ賦活の方法や装置は特に限定されないが、1重量部の窒素化物に対して1〜6重量部のアルカリ金属化合物を添加し、これらを均一に混合して容器に充填する。混合の方法は、窒素化物粒子とアルカリ金属化合物が均一な接触をしていれば、その方法は限られないが、アルカリ金属化合物を粉砕後、ミキサー等で混合する方法、アルカリ金属化合物の水溶液を窒素化物粒子に添加する方法等がある。   Although the alkali activation method and apparatus are not particularly limited, 1 to 6 parts by weight of an alkali metal compound is added to 1 part by weight of a nitride, and these are uniformly mixed and filled into a container. The method of mixing is not limited as long as the nitride particles and the alkali metal compound are in uniform contact, but the method of mixing the alkali metal compound with a mixer after pulverizing the alkali metal compound, There is a method of adding to the nitride particles.

窒素化物とアルカリ金属化合物の混合物は、窒素ガスやアルゴンガスなどの不活性気体雰囲気下の加熱炉中で、室温から400〜1000℃まで昇温加熱して0.5〜20時間保持される。反応温度は、400℃より低いと反応が進行し難く賦活度が上がらず、1000℃より高いとアルカリ金属の析出、飛散等による反応装置の侵食の問題が激しく起こるため、好ましくは、500〜900℃の温度、より好ましくは600〜800℃の温度で、1〜5時間賦活処理する。賦活処理によって得られる活性炭は、塩酸で中和洗浄後、水で中性になるまで洗浄を行う。   The mixture of the nitride and the alkali metal compound is heated from room temperature to 400 to 1000 ° C. in a heating furnace under an inert gas atmosphere such as nitrogen gas or argon gas and held for 0.5 to 20 hours. When the reaction temperature is lower than 400 ° C., the reaction hardly proceeds and the activation degree does not increase. When the reaction temperature is higher than 1000 ° C., the problem of erosion of the reactor due to precipitation or scattering of alkali metal occurs severely. The activation treatment is performed at a temperature of ° C, more preferably at a temperature of 600 to 800 ° C for 1 to 5 hours. The activated carbon obtained by the activation treatment is neutralized with hydrochloric acid and then washed with water until neutral.

単位重量当りの静電容量および高い電極密度を達成するためには、静電容量の発現には関与するが、電極密度の低下を招くような比較的大きな細孔の割合が少ないことが重要である。   In order to achieve a capacitance per unit weight and a high electrode density, it is important that there is a small proportion of relatively large pores that are involved in the development of the capacitance but that cause a decrease in the electrode density. is there.

このような細孔を測定するためには、ガス吸着による測定法が良く用いられる。ガス吸着測定に用いるガスとしては窒素、アルゴン、ヘリウム、二酸化炭素等があるが、この中でも二酸化炭素の吸着測定が適している。二酸化炭素の吸着測定は273Kのガス吸着測定としては高い温度で行われるため吸着ガスの拡散が早い特徴を有し、すなわち短時間での測定が可能である。また、二酸化炭素は飽和蒸気圧が高く(26200torr)、ガス吸着の測定結果において非常に小さな相対圧領域(P/P)の測定が可能である。ガス吸着における低い相対圧領域の測定は、細孔径の非常に小さな領域となり、二酸化炭素の273Kでの測定は3.5〜15Åの細孔を測定できる。窒素ガスを吸着ガスとして用いた場合、小さな相対圧領域を測定するためには、超高真空にすることが必要であり、そのためには、ターボ分子ポンプ等の設備が必要となる。 In order to measure such pores, a measurement method by gas adsorption is often used. Gases used for gas adsorption measurement include nitrogen, argon, helium, carbon dioxide, etc. Among them, carbon dioxide adsorption measurement is suitable. Since the adsorption measurement of carbon dioxide is performed at a high temperature as the gas adsorption measurement of 273K, it has a feature that the diffusion of the adsorbed gas is fast, that is, the measurement can be performed in a short time. Carbon dioxide has a high saturated vapor pressure (26200 torr), and a very small relative pressure region (P / P 0 ) can be measured in the gas adsorption measurement result. The measurement of the low relative pressure region in gas adsorption results in a very small pore diameter region, and the measurement of carbon dioxide at 273K can measure pores of 3.5 to 15 mm. When nitrogen gas is used as an adsorbed gas, an ultrahigh vacuum is required to measure a small relative pressure region, and for that purpose, equipment such as a turbo molecular pump is required.

細孔の解析には、DFT法(密度汎関数理論Density Functional Theory)を用いることができる。ガス吸着による細孔の解析理論はDR法やBJH法などの古典的かつ巨視的な理論や、HK法やSF法などの半経験的な手法があるが、ミクロ孔だけでなく、狭いメソ孔に対しても吸着ガスの充填に関して現実的でないことが多く、このことは細孔径を過小評価することになる。それらと比較してDFT法は分子レベルの狭い細孔における細孔径分析に対してかなり正確なものと考えられている。   For analysis of the pores, a DFT method (density functional theory) can be used. There are classical and macroscopic theories such as DR and BJH methods, and semi-empirical methods such as the HK and SF methods, but there are not only micropores but also narrow mesopores. In many cases, however, the filling of the adsorbed gas is not practical, which underestimates the pore size. Compared to them, the DFT method is considered to be quite accurate for pore size analysis in narrow pores at the molecular level.

高密度かつ単位体積あたりの静電容量の高いEDLC用電極を得るには、7Å以下の細孔が大きく関与している。この7Å以下の細孔が多い場合、単位重量あたりの静電容量は大きくなるが、単純に多すぎる場合や、その全細孔容積に対する割合が小さい場合すなわち7Å以上の細孔が多い場合には、電極密度が小さくなり、結果として単位体積あたりの静電容量が低くなってしまう。このことから、7Å以下の細孔容積が0.15cc/g以下であり、かつ全細孔容積に対する7Å以下の細孔容積の割合が40%以上であることが好ましく、より好ましくは7Å以下の細孔容積が0.14cc/g以下であり、かつ全細孔容積に対する7Å以下の細孔容積の割合が45%以上、さらに好ましくは7Å以下の細孔容積が0.13cc/g以下であり、かつ全細孔容積に対する7Å以下の細孔容積の割合が50%以上である。   In order to obtain an EDLC electrode having a high density and a high capacitance per unit volume, pores of 7 mm or less are greatly involved. If there are many pores of 7 mm or less, the capacitance per unit weight increases, but if it is simply too many, or if the ratio to the total pore volume is small, that is, if there are many pores of 7 mm or more, As a result, the electrode density decreases, and as a result, the capacitance per unit volume decreases. From this, the pore volume of 7 mm or less is preferably 0.15 cc / g or less, and the ratio of the pore volume of 7 mm or less to the total pore volume is preferably 40% or more, more preferably 7% or less. The pore volume is 0.14 cc / g or less, and the ratio of the pore volume of 7 mm or less to the total pore volume is 45% or more, more preferably, the pore volume of 7 mm or less is 0.13 cc / g or less. The ratio of the pore volume of 7 mm or less to the total pore volume is 50% or more.

また、本発明によって得られる活性炭は、従来の活性炭とは異なる細孔構造であることから、その細孔表面に存在する官能基量が少ない特徴を有する。その結果、従来の活性炭と比較して、静電容量劣化の少ない長寿命を有する活性炭を得ることができる。   Moreover, since the activated carbon obtained by the present invention has a pore structure different from that of the conventional activated carbon, it has a feature that the amount of functional groups present on the pore surface is small. As a result, it is possible to obtain an activated carbon having a long life with less capacitance deterioration as compared with conventional activated carbon.

酸素官能基は、通常有機系電解液を用いたEDLCで用いられる2V以上の電圧領域において分解を起こし、EDLCの長期的な性能を劣化させる要因の一つと考えられており、即ち、長寿命であるEDLC用活性炭としては、表面官能基量が少ないことがより好ましい。ここで言うところの表面官能基とは、カルボキシル基、キノン基、ヒドロキシル基、カルボキシル基であり、それぞれをBoehmの方法の基づいた塩酸での滴定法により求めることができる。ナトリウムエトキシドを用いることで、上記官能基の全量を求めることができるが、長寿命を有する活性炭の表面官能基量は、0.5meq/g以下であることが好ましく、より好ましくは0.4meq/g以下、さらに好ましくは0.3meq/g以下である。   The oxygen functional group is considered to be one of the factors that cause degradation in the long-term performance of EDLC by causing decomposition in a voltage region of 2 V or higher, which is usually used in EDLC using an organic electrolyte solution. It is more preferable that the activated carbon for EDLC has a small amount of surface functional groups. The surface functional groups mentioned here are a carboxyl group, a quinone group, a hydroxyl group, and a carboxyl group, and each can be determined by a titration method with hydrochloric acid based on the Boehm method. The total amount of the functional groups can be determined by using sodium ethoxide, but the surface functional group amount of the activated carbon having a long life is preferably 0.5 meq / g or less, more preferably 0.4 meq. / G or less, more preferably 0.3 meq / g or less.

高い静電容量を発現する活性炭の特異な細孔構造は、活性炭を調製するまでの変化する含有窒素によってもたらされる。即ち、活性炭原料中の窒素が、賦活処理されることで減少し、細孔構造を形成する。従って、得られる活性炭中の窒素含有量は、1wt%以下であることが好ましく、より好ましくは0.7wt%以下、さらに好ましくは0.5wt%以下である。   The unique pore structure of activated carbon that develops high capacitance is brought about by the changing nitrogen content until the activated carbon is prepared. That is, nitrogen in the activated carbon raw material is reduced by the activation treatment and forms a pore structure. Therefore, the nitrogen content in the obtained activated carbon is preferably 1 wt% or less, more preferably 0.7 wt% or less, and still more preferably 0.5 wt% or less.

さらには、活性炭とその窒素化物との窒素含有量の差がある値よりも大きい場合に高い単位体積あたり静電容量を与え、その値が1.0wt%以上であることが好ましく、より好ましくは1.2wt%、さらに好ましくは1.5wt%以上である。 Furthermore, when the difference in nitrogen content between the activated carbon and its nitride is larger than a certain value, a high capacitance per unit volume is given, and the value is preferably 1.0 wt% or more, more preferably 1.2 wt%, more preferably 1.5 wt% or more.

次に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。
実施例における各種測定は以下の方法で行った。
(1)炭素化物、窒素化物の元素分析
測定対象炭素化物又は窒素化物約800μgを、柳本製作所製ヤナコCHNコーダーを用いて測定し、C、H、Nの含有量を求めた。
(2)真密度
炭素化物2gを50mlピクノメーターに入れ、1−ブタノール25mlを入れた後に30分間アスピレーターで減圧脱気した後に、1−ブタノールを追加し、30℃恒温槽で30分保持した後に重量測定し、真密度を求めた。
(3)粒子径
粒子径の測定はSYMPATEC社製乾式レーザー粒度分布測定装置HEROSを用いて行った。
(4)官能基測定
活性炭1gをナトリウムエトキシド0.1Nのエタノール溶液25mlにいれ、10分間超音波分散させた後に、3時間攪拌した。さらに20時間静置した後に30分間攪拌し、活性炭をろ過した液を0.1N塩酸で滴定し表面官能基量を求めた。このとき、大気中の炭酸ガスの影響を除くため、活性炭を入れない同ナトリウムエトキシド0.1Nのエタノール溶液25mlをブランクとして用いた。
(5)二酸化炭素ガス吸着測定
カンタクロム社製QUADRASORB SIを用いて、活性炭0.2gについて0℃でのガス吸着等温線を得た。得られた吸着等温線をDFT法を用いて解析することで細孔容積を求めた。
(6)分極性電極の製造法及び測定法
活性炭:導電性フィラー(デンカブラック):結着剤(テフロン(登録商標))の重量比80:10:10で混合し電極を作製した。電極評価はアルミ製2極式セルを用い、一対の電極の間に紙製セパレータを挟みセルに収容した。電解液はトリエチルメチルアンモニウムテトラフルオロボレート((CCHNBF)を1.8mol/L溶解したプロピレンカーボネートを用いた。
アルゴンガス雰囲気中、室温下、100mA/gの定電流で電圧2.7Vまで充電し、さらに2.7Vで2時間充電を行った後、100mA/gの定電流で0Vまで放電し、放電された電気量から静電容量を算出した。静電容量は正負極両極中の炭素重量(活性炭およびアセチレンブラック)を基準とし、下式に従って算出した。また、体積当たりの静電容量Cv(F/cc)は重量当たりの静電容量Cw(F/g)に電極の密度を乗ずることにより算出した。
(式)静電容量Cw(F/g)=放電電気量(AH/g)×3600/2.7
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited at all by these Examples.
Various measurements in the examples were performed by the following methods.
(1) Elemental analysis of carbonized product and nitrogenated product About 800 μg of carbonized product or nitrogenated product to be measured was measured using a Yanako CHN coder manufactured by Yanagimoto Seisakusho, and the contents of C, H, and N were determined.
(2) True density 2 g of carbonized product was put into a 50 ml pycnometer, 25 ml of 1-butanol was added, and after degassing under reduced pressure with an aspirator for 30 minutes, 1-butanol was added, and after being kept in a thermostat at 30 ° C. for 30 minutes The true density was determined by weighing.
(3) Particle size The particle size was measured using a dry laser particle size distribution measuring device HEROS manufactured by SYMPATEC.
(4) Functional group measurement 1 g of activated carbon was placed in 25 ml of an ethanol solution of sodium ethoxide 0.1N and ultrasonically dispersed for 10 minutes, followed by stirring for 3 hours. Furthermore, after standing still for 20 hours, it stirred for 30 minutes and the liquid which filtered activated carbon was titrated with 0.1N hydrochloric acid, and the amount of surface functional groups was calculated | required. At this time, in order to remove the influence of carbon dioxide gas in the atmosphere, 25 ml of an ethanol solution of 0.1N sodium ethoxide containing no activated carbon was used as a blank.
(5) Carbon dioxide gas adsorption measurement A gas adsorption isotherm at 0 ° C was obtained for 0.2 g of activated carbon using QUADRASORB SI manufactured by Cantachrome. By analyzing the obtained adsorption isotherm using the DFT method, the pore volume was determined.
(6) Polarizing electrode production method and measurement method An electrode was prepared by mixing in a weight ratio of 80:10:10 of activated carbon: conductive filler (Denka black): binder (Teflon (registered trademark)). For electrode evaluation, an aluminum bipolar cell was used, and a paper separator was sandwiched between a pair of electrodes and accommodated in the cell. As the electrolyte, propylene carbonate in which 1.8 mol / L of triethylmethylammonium tetrafluoroborate ((C 2 H 5 ) 3 CH 3 NBF 4 ) was dissolved was used.
Charged to a voltage of 2.7 V at a constant current of 100 mA / g in an argon gas atmosphere at room temperature, further charged for 2 hours at 2.7 V, then discharged to 0 V at a constant current of 100 mA / g. The capacitance was calculated from the amount of electricity. The capacitance was calculated according to the following formula based on the weight of carbon in the positive and negative electrodes (activated carbon and acetylene black). The capacitance Cv (F / cc) per volume was calculated by multiplying the capacitance Cw (F / g) per weight by the electrode density.
(Formula) Capacitance Cw (F / g) = Discharge Electricity (AH / g) × 3600 / 2.7

実施例1
フッ化水素・三フッ化ホウ素の共存下、ナフタレンを重合させてピッチ(メトラー法による軟化点:283℃、炭素化物の光学異方性:100%、黒鉛化物のLc値:>100nm)を合成した。
次に、高さ400mm、底面400mm×400mmのステンレス製角型容器の中に、該ピッチ1000gを仕込み、縦型炉中、窒素雰囲気下730℃まで昇温して、この温度で1時間保持して炭素化物を得た。該炭素化物のH/Cは0.309であり、真密度は1.49g/ccであった。
該炭素化物を32μm以下に粉砕した。該炭素化物粉5gをアルミナ容器に入れ、アンモニア/窒素(30/70vol%)混合ガス雰囲気下、750℃、4時間保持することによって窒化処理した。この窒素化物の窒素含有量は4.8wt%であった。この窒素化物のH/C原子比、N/C原子比はそれぞれ0.169、0.0449であった。
1重量部の該窒素化物の粉末と1.8重量部の95%水酸化カリウムとを均一に混合し、窒素雰囲気下5℃/分で750℃まで昇温し、この温度で3時間保持した。室温まで冷却したのちメタノール−水混合液中に投入し、濾液が中性になるまで0.1mol/L塩酸水溶液による酸洗浄、濾過、水洗を繰り返した。二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.12cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は56%であった。
該活性炭の官能基測定による表面官能基量は0.20meq/gであった。
該活性炭の窒素含有量は0.5wt%であり、窒素化物との窒素含有量の差は4.3wt%であった。
該活性炭から得られた分極性電極は、重量当り静電容量39.3F/g、体積当り静電容量41.6F/cc、電極密度1.06g/ccと優れた値を示した。
また、70℃、2.7Vでの静電容量維持率を測定したところ、100h後の静電容量維持率は92.2%であった。結果を表1にまとめた。
Example 1
In the presence of hydrogen fluoride and boron trifluoride, naphthalene is polymerized to synthesize pitch (softening point by Mettler method: 283 ° C, optical anisotropy of carbonized product: 100%, Lc value of graphitized product:> 100 nm) did.
Next, 1000 g of the pitch is placed in a stainless steel square container having a height of 400 mm and a bottom surface of 400 mm × 400 mm, heated in a vertical furnace to 730 ° C. in a nitrogen atmosphere, and held at this temperature for 1 hour. To obtain a carbonized product. The carbonized product had an H / C of 0.309 and a true density of 1.49 g / cc.
The carbonized product was pulverized to 32 μm or less. 5 g of the carbonized powder was put in an alumina container, and nitriding was carried out by holding at 750 ° C. for 4 hours in an ammonia / nitrogen (30/70 vol%) mixed gas atmosphere. The nitrogen content of this nitride was 4.8 wt%. The H / C atomic ratio and N / C atomic ratio of this nitride were 0.169 and 0.0449, respectively.
1 part by weight of the nitride powder and 1.8 parts by weight of 95% potassium hydroxide were uniformly mixed, heated to 750 ° C. at 5 ° C./min under a nitrogen atmosphere, and maintained at this temperature for 3 hours. . After cooling to room temperature, the mixture was poured into a methanol-water mixture, and acid washing with 0.1 mol / L hydrochloric acid aqueous solution, filtration, and water washing were repeated until the filtrate became neutral. The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption was 0.12 cc / g, and the ratio of the pore volume of 7 mm or less to the total pore volume was 56%.
The surface functional group amount of the activated carbon measured by the functional group was 0.20 meq / g.
The activated carbon had a nitrogen content of 0.5 wt%, and the difference in nitrogen content with the nitride was 4.3 wt%.
The polarizable electrode obtained from the activated carbon exhibited excellent values of a capacitance per weight of 39.3 F / g, a capacitance per volume of 41.6 F / cc, and an electrode density of 1.06 g / cc.
Moreover, when the electrostatic capacitance maintenance factor in 70 degreeC and 2.7V was measured, the electrostatic capacitance maintenance factor after 100 hours was 92.2%. The results are summarized in Table 1.

実施例2
アンモニアによる窒化処理に用いる炭素化物として、実施例1に用いた合成ピッチを、ジルコニアボールを81kg入れたロータリーキルン(内容積0.15m)に連続的に供給し、685℃で1時間保持して熱処理したものを用いた。該炭素化物のH/Cは0.295であり、真密度は1.50g/ccであった。
窒化処理した後に32μm以下に粉砕した以外、実施例1と同様にして活性炭を得た。該活性炭の表面官能基量は0.20meq/gであった。窒素化物の窒素含有量は2.8wt%であり、活性炭の窒素含有量は0.4wt%であった。該窒素化物のH/C原子比、N/C原子比はそれぞれ0.164、0.0252であった。該活性炭の窒素含有量は0.4wt%であり、窒素化物と該活性炭の窒素含有量差は2.4wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積は0.10cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は62%であった。
重量当り静電容量37.3F/g、体積当り静電容量37.3F/cc、電極密度1.00g/ccと優れた値を示した。70℃、2.7V、100h後の静電容量維持率は91.5%であった。結果を表1にまとめた。
Example 2
As a carbonized material used for nitriding treatment with ammonia, the synthetic pitch used in Example 1 was continuously supplied to a rotary kiln (internal volume 0.15 m 3 ) containing 81 kg of zirconia balls, and held at 685 ° C. for 1 hour. A heat-treated product was used. The carbonized product had an H / C of 0.295 and a true density of 1.50 g / cc.
Activated carbon was obtained in the same manner as in Example 1 except that the nitriding treatment was followed by grinding to 32 μm or less. The surface functional group amount of the activated carbon was 0.20 meq / g. The nitrogen content of the nitride was 2.8 wt%, and the nitrogen content of the activated carbon was 0.4 wt%. The H / C atomic ratio and N / C atomic ratio of the nitride were 0.164 and 0.0252, respectively. The nitrogen content of the activated carbon was 0.4 wt%, and the nitrogen content difference between the nitride and the activated carbon was 2.4 wt%.
The pore volume of 7 cm or less by the DFT method using carbon dioxide adsorption was 0.10 cc / g, and the ratio of the pore volume of 7 cm or less to the total pore volume was 62%.
The capacitance per weight was 37.3 F / g, the capacitance per volume was 37.3 F / cc, and the electrode density was 1.00 g / cc. The capacitance maintenance ratio after 70 ° C., 2.7 V, and 100 hours was 91.5%. The results are summarized in Table 1.

実施例3
ロータリーキルンでの熱処理温度を625℃とした以外、実施例2と同様にして活性炭を得た。該活性炭の表面官能基量は0.30meq/gであった。
炭素化物のH/C原子比は0.360であり、真密度は1.43g/ccであった。窒素化物のH/C原子比、N/C原子比はそれぞれ0.169、0.0173であった。活性炭の窒素含有量は0.5wt%であり、窒素化物と該活性炭の窒素含有量の差は1.5wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.09cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は69%であった。
重量当り静電容量36.8F/g、体積当り静電容量36.8F/cc、電極密度1.00g/ccと優れた値を示した。結果を表1にまとめた。
Example 3
Activated carbon was obtained in the same manner as in Example 2 except that the heat treatment temperature in the rotary kiln was changed to 625 ° C. The surface functional group amount of the activated carbon was 0.30 meq / g.
The H / C atomic ratio of the carbonized product was 0.360, and the true density was 1.43 g / cc. The H / C atomic ratio and N / C atomic ratio of the nitride were 0.169 and 0.0173, respectively. The nitrogen content of the activated carbon was 0.5 wt%, and the difference between the nitrogen content of the nitride and the activated carbon was 1.5 wt%.
The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption was 0.09 cc / g, and the ratio of the pore volume of 7 mm or less to the total pore volume was 69%.
The capacitance per weight was 36.8 F / g, the capacitance per volume was 36.8 F / cc, and the electrode density was 1.00 g / cc. The results are summarized in Table 1.

実施例4
ロータリーキルンでの熱処理温度を705℃とした以外、実施例2と同様にして活性炭を得た。該活性炭の表面官能基量は0.25meq/gであった。
炭素化物のH/C原子比は0.259であり、真密度は1.55g/ccであった。窒素化物のH/C原子比、N/C原子比はそれぞれ0.159、0.0270であった。該活性炭の窒素含有量は0.4wt%であり、窒素化物と該活性炭の窒素含有量の差は2.6wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.09cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は58%であった。
重量当り静電容量36.4F/g、体積当り静電容量35.4F/cc、電極密度0.97g/ccと優れた値を示した。結果を表1にまとめた。
Example 4
Activated carbon was obtained in the same manner as in Example 2 except that the heat treatment temperature in the rotary kiln was changed to 705 ° C. The surface functional group amount of the activated carbon was 0.25 meq / g.
The H / C atomic ratio of the carbonized product was 0.259, and the true density was 1.55 g / cc. The H / C atomic ratio and N / C atomic ratio of the nitride were 0.159 and 0.0270, respectively. The nitrogen content of the activated carbon was 0.4 wt%, and the difference between the nitrogen content of the nitride and the activated carbon was 2.6 wt%.
The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption was 0.09 cc / g, and the ratio of the pore volume of 7 mm or less to the total pore volume was 58%.
The capacitance per weight was 36.4 F / g, the capacitance per volume was 35.4 F / cc, and the electrode density was 0.97 g / cc. The results are summarized in Table 1.

実施例5
ロータリーキルンでの熱処理温度を725℃とした以外、実施例2と同様にして活性炭を得た。該活性炭の表面官能基量は0.22meq/gであった。
炭素化物のH/C原子比は0.239であり、真密度は1.57g/ccであった。窒素化物のH/C原子比、N/C原子比はそれぞれは0.171、0.0304であった。該活性炭の窒素含有量は0.5wt%であり、窒素化物と該活性炭の窒素含有量の差は2.6wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.10cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は59%であった。
重量当り静電容量37.9F/g、体積当り静電容量36.2F/cc、電極密度0.96g/ccと優れた値を示した。結果を表1にまとめた。
Example 5
Activated carbon was obtained in the same manner as in Example 2 except that the heat treatment temperature in the rotary kiln was changed to 725 ° C. The surface functional group amount of the activated carbon was 0.22 meq / g.
The H / C atomic ratio of the carbonized product was 0.239, and the true density was 1.57 g / cc. The H / C atomic ratio and N / C atomic ratio of the nitride were 0.171 and 0.0304, respectively. The nitrogen content of the activated carbon was 0.5 wt%, and the difference between the nitrogen content of the nitride and the activated carbon was 2.6 wt%.
The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption was 0.10 cc / g, and the ratio of the pore volume of 7 mm or less to the total pore volume was 59%.
The capacitance per weight was 37.9 F / g, the capacitance per volume was 36.2 F / cc, and the electrode density was 0.96 g / cc. The results are summarized in Table 1.

実施例6
炭素化物の粉砕を窒化処理の前に行った以外は、実施例2と同様にして活性炭を得た。該活性炭の表面官能基量は0.33meq/gであった。窒素化物のH/C原子比、N/C原子比はそれぞれ0.158、0.0486であった。該活性炭の窒素含有量は0.5wt%であり、窒素化物と該活性炭の窒素含有量の差は4.7wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.11cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は63%であった。
重量当り静電容量39.5F/g、体積当り静電容量36.1F/cc、電極密度0.92g/ccと優れた値を示した。結果を表1にまとめた。
Example 6
Activated carbon was obtained in the same manner as in Example 2 except that the carbonized material was pulverized before nitriding. The surface functional group amount of the activated carbon was 0.33 meq / g. The H / C atomic ratio and N / C atomic ratio of the nitride were 0.158 and 0.0486, respectively. The activated carbon had a nitrogen content of 0.5 wt%, and the difference in nitrogen content between the nitride and the activated carbon was 4.7 wt%.
The pore volume of 7 cm or less by the DFT method using carbon dioxide adsorption was 0.11 cc / g, and the ratio of the pore volume of 7 cm or less to the total pore volume was 63%.
The capacitance per weight was 39.5 F / g, the capacitance per volume was 36.1 F / cc, and the electrode density was 0.92 g / cc. The results are summarized in Table 1.

実施例7
実施例2で用いたのと同じ炭素化物1kgを炭素容器に入れ、アンモニア100vol%雰囲気下、820℃、4時間保持することによって窒化処理し、以後実施例1と同様にして活性炭を得た。該活性炭の表面官能基量は0.10meq/gであった。窒化処理後の窒素含有量は4.7wt%であり、賦活後の活性炭の窒素含有量は0.3wt%であった。この窒素化物のH/C原子比、N/C原子比はそれぞれ0.164、0.0252であった。窒素化物と該活性炭の窒素含有量の差は4.4wt%であった。
二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.095cc/gであり、全細孔容積に対する7Å以下の細孔容積の割合は55%であった。
重量当り静電容量38.6F/g、体積当り静電容量36.7F/cc、電極密度0.95g/ccと優れた値を示した。結果を表1にまとめた。70℃、2.7V、100h後の静電容量維持率は94.0%であった。結果を表1にまとめた。
Example 7
1 kg of the same carbonized product as used in Example 2 was placed in a carbon container and subjected to nitriding treatment by holding at 820 ° C. for 4 hours in an atmosphere of 100 vol% ammonia. Thereafter, activated carbon was obtained in the same manner as in Example 1. The surface functional group amount of the activated carbon was 0.10 meq / g. The nitrogen content after nitriding was 4.7 wt%, and the activated carbon after activation was 0.3 wt%. The H / C atomic ratio and N / C atomic ratio of this nitride were 0.164 and 0.0252, respectively. The difference in nitrogen content between the nitride and the activated carbon was 4.4 wt%.
The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption was 0.095 cc / g, and the ratio of the pore volume of 7 mm or less to the total pore volume was 55%.
The capacitance per weight was 38.6 F / g, the capacitance per volume was 36.7 F / cc, and the electrode density was 0.95 g / cc. The results are summarized in Table 1. The capacitance retention rate after 70 ° C., 2.7 V, and 100 hours was 94.0%. The results are summarized in Table 1.

Figure 2008195559
Figure 2008195559

Claims (7)

つぎの条件(a)〜(c)を満たす電気二重層キャパシタ電極用活性炭。
(a)窒素含有量が1wt%以下、
(b)二酸化炭素吸着を用いたDFT法による7Å以下の細孔容積が0.15cc/g以下であり、かつ全細孔容積に対する7Å以下の細孔容積の割合が40%以上、
(c)表面官能基量が0.5meq/g以下。
An activated carbon for an electric double layer capacitor electrode that satisfies the following conditions (a) to (c).
(A) The nitrogen content is 1 wt% or less,
(B) The pore volume of 7 mm or less by the DFT method using carbon dioxide adsorption is 0.15 cc / g or less, and the ratio of the pore volume of 7 mm or less to the total pore volume is 40% or more,
(C) The amount of surface functional groups is 0.5 meq / g or less.
ピッチ又は易黒鉛化性コークスを600℃以上800℃以下の温度で熱処理することによって得られる炭素化物に、窒化処理を施し窒素化物とした後、賦活処理する電気二重層キャパシタ電極用活性炭の製造方法。   A method for producing activated carbon for an electric double layer capacitor electrode, in which a carbonized product obtained by heat-treating pitch or graphitizable coke at a temperature of 600 ° C. or higher and 800 ° C. or lower is subjected to nitriding treatment to form a nitride, and then activation treatment is performed. . 前記活性炭と前記窒素化物との窒素含有量の差が1.0wt%以上である請求項2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the difference in nitrogen content between the activated carbon and the nitride is 1.0 wt% or more. 前記炭素化物のH/C原子比が0.40以下又は前記炭素化物の真密度が1.42g/cc以上である請求項2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing an activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the H / C atomic ratio of the carbonized product is 0.40 or less or the true density of the carbonized product is 1.42 g / cc or more. 前記窒素化物のH/C原子比が0.150以上、かつN/C原子比が0.016以上である請求項2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing an activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the H / C atomic ratio of the nitride is 0.150 or more and the N / C atomic ratio is 0.016 or more. 前記窒化処理を行うための反応器が、炭素化物及び窒素含有性ガスと500℃以上で接触する部分に金属材質を実質的に含まない請求項2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the reactor for performing the nitriding treatment does not substantially contain a metal material in a portion in contact with the carbonized material and the nitrogen-containing gas at 500 ° C or higher. . 前記ピッチが縮合多環炭化水素をフッ化水素・三フッ化ホウ素の存在下で重合させて得られるピッチである請求項2記載の電気二重層キャパシタ電極用活性炭の製造方法。   The method for producing activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the pitch is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon in the presence of hydrogen fluoride / boron trifluoride.
JP2007030740A 2007-02-09 2007-02-09 Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon Pending JP2008195559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030740A JP2008195559A (en) 2007-02-09 2007-02-09 Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030740A JP2008195559A (en) 2007-02-09 2007-02-09 Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon

Publications (1)

Publication Number Publication Date
JP2008195559A true JP2008195559A (en) 2008-08-28

Family

ID=39754854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030740A Pending JP2008195559A (en) 2007-02-09 2007-02-09 Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon

Country Status (1)

Country Link
JP (1) JP2008195559A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269764A (en) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd Alkali activated carbon and its manufacturing method
JP2010135647A (en) * 2008-12-05 2010-06-17 Meidensha Corp Electrode for electric double layer capacitor, method of manufacturing same, and electrode for electric double layer capacitor using same
JP2012512129A (en) * 2008-12-15 2012-05-31 コーニング インコーポレイテッド Activated carbon material for high energy density ultracapacitor
JP2013065765A (en) * 2011-09-20 2013-04-11 Asahi Kasei Corp Nonaqueous lithium type storage device
WO2016147976A1 (en) * 2015-03-16 2016-09-22 日立化成株式会社 Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
CN107010624A (en) * 2017-04-24 2017-08-04 安徽大学 Nitrogen and boron doped porous carbon for supercapacitor electrode and preparation method thereof
WO2021131910A1 (en) * 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, manufacturing method therefor, and electrode material for electrical double layer capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167927A (en) * 1977-03-22 1985-08-31 Toyobo Co Ltd Production of nitrogen-containing active carbon fiber
JPS60263420A (en) * 1984-06-12 1985-12-26 松下電器産業株式会社 Energy storing device
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same
JP2005142439A (en) * 2003-11-07 2005-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2006012938A (en) * 2004-06-23 2006-01-12 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167927A (en) * 1977-03-22 1985-08-31 Toyobo Co Ltd Production of nitrogen-containing active carbon fiber
JPS60263420A (en) * 1984-06-12 1985-12-26 松下電器産業株式会社 Energy storing device
JP2004067498A (en) * 2002-06-13 2004-03-04 Kashima Oil Co Ltd Activated carbon and electrical double layer capacitor using the same
JP2005142439A (en) * 2003-11-07 2005-06-02 Honda Motor Co Ltd Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
JP2006012938A (en) * 2004-06-23 2006-01-12 Mitsubishi Gas Chem Co Inc Carbon material for electric double-layer capacitor electrode and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269764A (en) * 2008-04-10 2009-11-19 Kansai Coke & Chem Co Ltd Alkali activated carbon and its manufacturing method
JP2010135647A (en) * 2008-12-05 2010-06-17 Meidensha Corp Electrode for electric double layer capacitor, method of manufacturing same, and electrode for electric double layer capacitor using same
JP2012512129A (en) * 2008-12-15 2012-05-31 コーニング インコーポレイテッド Activated carbon material for high energy density ultracapacitor
KR101729790B1 (en) 2008-12-15 2017-04-24 코닝 인코포레이티드 Activated carbon materials for high energy density ultracapacitors
JP2013065765A (en) * 2011-09-20 2013-04-11 Asahi Kasei Corp Nonaqueous lithium type storage device
WO2016147976A1 (en) * 2015-03-16 2016-09-22 日立化成株式会社 Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
JPWO2016147976A1 (en) * 2015-03-16 2017-12-14 日立化成株式会社 Lithium ion battery, negative electrode for lithium ion battery, battery module, automobile and power storage device
US10270084B2 (en) 2015-03-16 2019-04-23 Hitachi Chemical Company, Ltd. Lithium ion battery, negative electrode for lithium ion battery, battery module automobile, and power storage device
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
CN107010624A (en) * 2017-04-24 2017-08-04 安徽大学 Nitrogen and boron doped porous carbon for supercapacitor electrode and preparation method thereof
WO2021131910A1 (en) * 2019-12-25 2021-07-01 株式会社クラレ Carbonaceous material, manufacturing method therefor, and electrode material for electrical double layer capacitor
JP7545418B2 (en) 2019-12-25 2024-09-04 株式会社クラレ Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor

Similar Documents

Publication Publication Date Title
Zhao et al. Partially reduced holey graphene oxide as high performance anode for sodium‐ion batteries
Yuan et al. Facile preparation of N-and O-doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors
JP2008195559A (en) Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon
Zhuang et al. Two-dimensional sandwich-type, graphene-based conjugated microporous polymers.
KR101135417B1 (en) Raw material carbon composition for carbon material for electrode of electric double layer capacitor
US9938152B2 (en) Method of making activated nano-porous carbon
CN101124646A (en) Raw material coal composition for carbon material for electrode in electric double layer capacitor
Wang et al. Synthesis and morphology evolution of ultrahigh content nitrogen‐doped, micropore‐dominated carbon materials as high‐performance supercapacitors
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP4092344B2 (en) Raw material composition of carbon material for electric double layer capacitor electrode
JP2002083748A (en) Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2002104817A (en) Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP4576374B2 (en) Activated carbon, its production method and its use
CN110914941B (en) Method for making hard carbon material
JP2002093667A (en) Carbon material for electric double-layer capacitor electrode
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
Wang et al. Hierarchical porous carbons from carboxylated coal-tar pitch functional poly (acrylic acid) hydrogel networks for supercapacitor electrodes
Yao et al. Facile self-templating preparation of polyacrylonitrile-derived hierarchical porous carbon nanospheres for high-performance supercapacitors
Ge et al. Nitrogen and oxygen co‐doped carbon microspheres with partially graphitic structures: Integrated high volumetric capacitance, mass loadings and rate capability for supercapacitors
JP2008308360A (en) Manufacturing method of carbon material for electric double layer capacitor electrode
Lu et al. Boron‐Doped Carbon Nano‐/Microballs from Orthoboric Acid‐Starch: Preparation, Characterization, and Lithium Ion Storage Properties
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
JP2005142439A (en) Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423