KR102062258B1 - Activated carbon with excellent adsorption performance - Google Patents

Activated carbon with excellent adsorption performance Download PDF

Info

Publication number
KR102062258B1
KR102062258B1 KR1020170163498A KR20170163498A KR102062258B1 KR 102062258 B1 KR102062258 B1 KR 102062258B1 KR 1020170163498 A KR1020170163498 A KR 1020170163498A KR 20170163498 A KR20170163498 A KR 20170163498A KR 102062258 B1 KR102062258 B1 KR 102062258B1
Authority
KR
South Korea
Prior art keywords
activated carbon
carbon
alkali metal
present
surface treatment
Prior art date
Application number
KR1020170163498A
Other languages
Korean (ko)
Other versions
KR20190064151A (en
Inventor
주광진
이재민
이영섭
박혜준
박민수
Original Assignee
주식회사 성창오토텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 성창오토텍 filed Critical 주식회사 성창오토텍
Priority to KR1020170163498A priority Critical patent/KR102062258B1/en
Publication of KR20190064151A publication Critical patent/KR20190064151A/en
Application granted granted Critical
Publication of KR102062258B1 publication Critical patent/KR102062258B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 흡착성능이 우수한 활성탄의 제조방법에 관한 것으로서, 더욱 상세하게는 특히 SOx, NOx 등의 유해성분에 대한 흡착성능이 우수한 활성탄과 이를 간단한 방법으로 제조하는 활성탄 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon having excellent adsorption performance, and more particularly, to an activated carbon having excellent adsorption performance for harmful components such as SOx and NOx and an activated carbon manufacturing method for producing the same by a simple method.

Description

흡착성능이 우수한 활성탄{Activated carbon with excellent adsorption performance}Activated carbon with excellent adsorption performance

본 발명은 흡착성능이 우수한 활성탄의 제조방법에 관한 것으로써, 더욱 상세하게는 특히 SOx, NOx 등의 유해성분에 대한 흡착성능이 우수한 활성탄과 이를 간단한 방법으로 제조하는 활성탄 제조방법에 관한 것이다.The present invention relates to a method for producing activated carbon having excellent adsorption performance, and more particularly, to an activated carbon having excellent adsorption performance for harmful components such as SOx and NOx and an activated carbon manufacturing method for producing the same by a simple method.

일반적으로 활성탄은 비표면적이 넓고 흡착력이 우수하여 광범위한 정화소재로 사용되고 있다.In general, activated carbon has a large specific surface area and excellent adsorption power, and thus is used for a wide range of purification materials.

이러한 활성탄에 대한 개발은 주로 활성탄의 비표면적의 개선 등과 같은 물리적인 성질의 개선과 활성탄 표면에 금속산화물을 침착시켜서 흡착성을 개선하는 등의 화학적인 성질의 개선 등이 주류를 이루고 있다.The development of such activated carbon is mainly made up of improvement of physical properties such as improvement of specific surface area of activated carbon and improvement of chemical properties such as improvement of adsorptivity by depositing metal oxide on the surface of activated carbon.

종래, 공기 중의 산성 가스 등의 유해 가스를 제거하기 위한 다양한 방법이 검토되어 있고 이들 방법 하나로써 활성탄에 의한 흡착소재의 이용기술이 가장 널리 연구되고 있다. Conventionally, various methods for removing harmful gases such as acidic gas in the air have been studied, and one of these methods has been widely studied for the technology of using an adsorption material using activated carbon.

활성탄을 이용하는 방법에는 활성탄의 활성탄에 특정 성분을 첨착하여 활성탄의 흡착 작용과 함께 화학적인 작용을 이용하는 방법으로써, 활성탄의 첨착성분이 특정 유해물질을 흡착하여 정화하는 기술이 있다.The method of using activated carbon is a method in which a specific component is attached to activated carbon of activated carbon to use a chemical action together with the adsorption action of activated carbon, and a technique in which an impregnated component of activated carbon adsorbs and purifies a specific harmful substance.

그러나 활성탄은 질소 산화물, 황 산화물 등에 대한 흡착성능이 낮아서 이러한 물질을 제대로 제거할 수 없다. 이로 인해 화학성분을 첨착하여 이러한 성분들의 흡착이 가능하게 하는 기술이 다수 연구되고 있다.However, activated carbon has low adsorption performance on nitrogen oxides, sulfur oxides, etc., and thus cannot remove these substances properly. For this reason, a number of researches have been conducted on techniques for enabling the adsorption of these components by adding chemical components.

상기와 같은 화학성분 첨착 필터로 대표적인 첨착활성탄은 활성탄의 표면 또는 세공 내에 특정한 금속염을 첨착시킨 것이며, 경우에 따라서는 이온교환수지에 관능 작용기를 부착시킴으로써 특정한 가스를 제거할 수 있도록 하였다.Representative impregnated activated carbon as the chemical impregnated filter as described above is a specific metal salt is impregnated on the surface or pores of the activated carbon, and in some cases, it is possible to remove a specific gas by attaching a functional group to the ion exchange resin.

그러나 종래의 화학성분 첨착 필터는 하나의 오염물 또는 동일한 종류의 오염물만을 제거할 수 있도록 구성되어 있어서 다양한 성분의 정화처리를 위해서는 다층 현태의 필터를 사용하는 것이 일반적이었다.However, the conventional chemically impregnated filter is configured to remove only one contaminant or the same kind of contaminants, and thus, it is common to use a multilayered state filter for purifying various components.

이러한 번거로움을 해소하기 위하여 화학성분 필터로서, 여러 기술이 연구되었는데, 그 종래기술의 예로서, 일본특허공개 제2007-260603호에는 소취 기능을 가지는 프리필터(제1 필터)와 집진 주름 필터(제2 필터)와 광촉매필터(제3 필터)와 금속 프탈로시아닌 착체와 약알칼리성 금속염을 활성탄 혼초지에 담지시킨 허니컴 혹은 콜게이트 필터( 제4 필터)로서, 금속 프탈로시아닌 착체로 약알칼리성 금속염이 탄산나트륨, 탄산수소나트륨, 구연산 나트륨, 탄산칼륨, 탄산수소칼륨, 구연산 칼륨의 군에서 선택되는 1종 또는 복수의 약알칼리성 금속염을 활성탄 혼초지에 담지시킨 허니컴 혹은 콜게이트 필터( 제4 필터)인 것에 특징이 있는 공기 청정기용 필터 유닛이 개시되어 있다. In order to solve this trouble, various techniques have been studied as chemical component filters. As an example of the prior art, Japanese Patent Application Laid-Open No. 2007-260603 discloses a prefilter (first filter) and a dust collecting pleated filter having a deodorizing function ( Second filter), a photocatalyst filter (third filter), a honeycomb or colgate filter (fourth filter) in which a metal phthalocyanine complex and a weakly alkaline metal salt are supported on an activated carbon mixture, wherein the weakly alkaline metal salt is a sodium carbonate or a carbonic acid. A honeycomb or colgate filter (fourth filter) in which one or a plurality of weakly alkaline metal salts selected from the group of sodium hydrogen, sodium citrate, potassium carbonate, potassium hydrogen carbonate and potassium citrate is supported on an activated carbon mixture. Disclosed is a filter unit for an air cleaner.

또한, 일본특허공개 제2006-431150호에서는 활성탄과 이 활성탄에 담지된 알칼리 성분(칼륨 등의 알칼리 금속의 탄산염 또는 수산화물 등) 및 알루민 산금속염(나트륨 등의 알칼리 금속염 등)으로 산성 가스 제거용 처리제를 구성하고, 이러한 처리제는 산성 가스를 포함한 가스와 접촉시켜 상기 산성 가스(일산화질소 등의 질소 산화물)를 제거하기 위해 유용하다고 제안되어 있다.In addition, Japanese Patent Application Laid-Open No. 2006-431150 discloses the use of activated carbon and alkali components (such as carbonates or hydroxides of alkali metals such as potassium) and aluminate metal salts (such as alkali metal salts such as sodium) for removing acidic gases. It is proposed that a treatment agent is constituted, and such a treatment agent is useful for removing the acid gas (nitrogen oxide such as nitrogen monoxide) by contacting with a gas containing an acid gas.

다른 사례로, 한국특허공개 제10-2004-0073614호에서는 복합가스를 동시에 제거하기 위해 NH3와 같은 염기성 가스를 제거할 수 있는 흡착층과 SOx와 같은 산성가스를 제거할 수 있는 흡착층으로 구성된 조합형 케미칼 필터 여재 및 선택적으로 염기성 가스 및 산성가스를 제거할 수 있도록 흡착층 사이에 이온교환수지가 부착된 망체를 삽입한 조합형 케미칼 필터 메디아에 대한 기술로서 SOx와 같은 산성 가스를 제거하는 목적으로 활성탄에 KI, KOH, K2CO3 등과 알칼리 금속 첨착물질 중 어느 한 물질로 구성된 흡착제를 적용하는 기술이 제안되어 있다.In another example, Korean Patent Publication No. 10-2004-0073614 discloses a combination type consisting of an adsorption layer capable of removing basic gases such as NH3 and an adsorption layer capable of removing acid gases such as SOx for simultaneous removal of complex gases. A technology for a combined chemical filter media in which a chemical filter medium and an ion exchange resin-attached network is inserted between an adsorption layer to selectively remove basic gas and acid gas, which is used to remove acid gas such as SOx. There has been proposed a technique for applying an adsorbent composed of any one of KI, KOH, K 2 CO 3 and an alkali metal additive.

그러나 이러한 종래기술들의 경우 활성탄에 별도로 화학성분을 첨착시켜야 하기 때문에 그 공정이 번거롭고, 특히 활성탄에 첨착된 화학성분이 활성탄의 미세 기공을 막거나 활성탄의 흡착성능을 저해하는 역할을 하여 물리적 흡착성을 떨어뜨리는 문제가 있다.However, in the case of these prior arts, the process is cumbersome because chemical components must be attached to activated carbon separately, and in particular, chemical components attached to activated carbon block the fine pores of activated carbon or inhibit the adsorption performance of activated carbon, thereby degrading physical adsorption. There is a problem that is floating.

일본특허공개 제2007-260603호Japanese Patent Publication No. 2007-260603 일본특허공개 제2006-431150호Japanese Patent Publication No. 2006-431150 한국특허공개 제10-2004-0073614호Korean Patent Publication No. 10-2004-0073614

본 발명은 위와 같은 종래기술의 문제점을 해결하기 위해, 기존의 활성탄 제조기술에서 새로운 공정을 통해 별도의 금속산화물을 첨가하지 않고서도 금속산화물이 활성탄 내의 탄소 격자구조에 존재하게 함으로써 본래의 흡착성능을 저해하지 않고서도 화학적 흡착성능을 추가적으로 개선시키는데 있다.The present invention to solve the problems of the prior art as described above, the original adsorption performance by the metal oxide present in the carbon lattice structure in the activated carbon without adding a separate metal oxide through a new process in the existing activated carbon manufacturing technology It is to further improve the chemical adsorption performance without inhibiting.

따라서 본 발명의 목적은 활성탄의 표면개질 성능을 유지하면서 금속산화물이 활성탄 내에 존재하는 새로운 구조의 흡착성능이 우수한 활성탄을 제공하는데 있다.Accordingly, an object of the present invention is to provide an activated carbon having excellent adsorption performance of a new structure in which a metal oxide exists in activated carbon while maintaining the surface modification performance of the activated carbon.

또한, 본 발명의 다른 목적은 탄소격자 구조에 탄산칼륨이 고정되어 고착되어 있는 형태로 함유되어 있는 흡착성능이 우수한 활성탄을 제공하는데 있다.Another object of the present invention is to provide an activated carbon having excellent adsorption performance, which is contained in a form in which potassium carbonate is fixed and fixed to a carbon lattice structure.

또한, 본 발명의 또 다른 목적은 활성탄의 표면 개질과정에서 수세공정 후에 중화공정을 거치지 않고 탄소격자 구조에 탄산칼륨이 고정되어 고착되어 있는 형태로 제조함으로써, 간단하고 경제적으로 흡착성능이 우수한 활성탄을 제조하는 방법을 제공하는데 있다.In addition, another object of the present invention is to produce activated carbon having excellent adsorptive performance simply and economically by manufacturing in a form in which potassium carbonate is fixed and fixed to the carbon grid structure without undergoing a neutralization step after washing the surface of activated carbon in a water reforming process. It is to provide a method of manufacturing.

상기와 같은 과제의 해결을 위하여, 본 발명은 목질계, 야자계, 피치계, 섬유계 중에서 선택된 하나이상으로 이루어지는 활성탄으로서, 그 표면의 기공크기가 100nm 이하의 크기를 가지는 탄소격자 구조를 가지며, 비표면적이 850-3,000m2/g 이고, 그 탄소격자 구조 내에 알칼리금속 탄산염이 고정되어 고착되어 있는 형태로 함유되어 있는 흡착성능이 우수한 활성탄을 제공한다.In order to solve the above problems, the present invention is an activated carbon consisting of at least one selected from wood, palm, pitch, fiber, has a carbon grid structure having a pore size of 100nm or less on the surface thereof, It provides an activated carbon having a high specific adsorption performance, in which the specific surface area is 850-3,000 m 2 / g and the alkali metal carbonate is fixed and fixed in the carbon lattice structure.

또한, 본 발명은 출발물질로서 목질계, 야자계, 피치계, 섬유계 중에서 선택된 하나 이상의 활성탄 소재를 200 ~ 450℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화단계; 상기 안정화 단계에서 형성된 탄소체를 무산소 조건에서 탄화시켜 일차적인 기공을 형성시키는 탄화단계; 상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액에 접촉시켜 표면처리를 수행하여 탄소체의 탄소격자 표면에 산소관능기를 고농도로 균질하게 형성시키는 표면처리단계; 상기 표면처리 단계의 산소관능기에 알칼리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알칼리금속 수용액에 침지하는 침지단계와; 무산소 분위기에서 600 ~ 1,100℃로 승온시키고 이산화탄소를 가하여 상기 알칼리금속의 산화와 환원을 유도하여 미세기공을 발달시키고자 표면개질을 수행하는 표면개질과정을 포함하는 단계; 및 상기 표면개질 과정에서 얻어진 알칼리금속 탄산염을 제거하기 위해 수세하고 곧바로 건조하는 단계를 포함하는 흡착성능이 우수한 활성탄의 제조방법을 제공한다.In addition, the present invention is a stabilizing step of oxidizing at least one activated carbon material selected from wood-based, palm-based, pitch-based, fibrous system by contact with air in the temperature range of 200 ~ 450 ℃ as a starting material; A carbonization step of carbonizing the carbon body formed in the stabilization step under anoxic conditions to form primary pores; Surface treatment to form a homogeneous oxygen functional group on the carbon grid surface of the carbon body by performing a surface treatment to contact the acid solution to homogeneously form a high concentration of oxygen functional group on the surface of the carbon grid on the carbon body formed with the primary pores step; An immersion step of immersing the carbon body subjected to the surface treatment in an aqueous alkali metal solution to contact the alkali metal with the oxygen functional group in the surface treatment step; Including an surface modification process to increase the temperature to 600 ~ 1,100 ℃ in an oxygen-free atmosphere and to perform the surface modification to induce oxidation and reduction of the alkali metal to develop micropores by adding carbon dioxide; And it provides a method for producing activated carbon excellent in adsorption performance, including the step of washing directly with water to remove the alkali metal carbonate obtained in the surface modification process.

본 발명에 따르면, 표면개질된 고비표면적의 활성탄 표면에 금속산화물이 존재하되 미세기공에 첨착된 것이 아니라 활성탄을 구성하는 탄소격자 구조 내에 금속산화물이 박혀있는 형태로 존재하기 때문에 금속산화물의 침지로 인한 기공의 막힘 현상이 없어서 활성탄의 흡착성능은 그대로 유지하면서도 금속산화물의 활성으로 인해 화학적 흡착성능도 우수하게 발휘할 수 있는 효과가 있는 것이다.According to the present invention, the metal oxide is present on the surface of the activated carbon of the surface-modified high specific surface area, but the metal oxide is embedded in the carbon lattice structure constituting the activated carbon, but not impregnated in the micropores. Since there is no pore blocking phenomenon, the adsorption performance of activated carbon is maintained but the chemical adsorption performance is excellent due to the activity of the metal oxide.

또한, 본 발명은 기존에 활성탄에 금속산화물을 첨착시키기 위해 활성탄을 제조한 후에 별도로 금속산화물의 침지공정을 거치는 경우 공정이 복잡하고 금속산화물의 첨착과정에서 공정 조건이 번거로운 문제를 일거에 해소하고, 활성탄의 표면처리공정에서 잔류물로 남게 되는 금속산화물을 수세 후 환원처리하지 않고 남겨둠으로써 공정도 간단하고, 탄소 격자구조 내에 금속산화물에 고정된 상태로 쉽게 제조할 수 있으므로 매우 경제적으로 제조할 수 있는 효과가 있다.In addition, the present invention solves the problem that the process is complicated and the process conditions are cumbersome in the process of impregnating the metal oxide when the activated carbon is prepared separately to impregnate the metal oxide on the activated carbon, and then separately immersed in the metal oxide, By leaving the metal oxide, which remains as a residue in the surface treatment process of activated carbon, without washing after reduction, the process is simple and can be manufactured very economically since it can be easily fixed to the metal oxide in the carbon lattice structure. It has an effect.

또한, 본 발명은 활성탄의 미세기공 내에 금속산화물이 침착된 것이 아니라, 활성탄 자체를 이루는 탄소격자 내에 금속산화물이 박혀있는 상태로 존재하기 때문에 장기간 사용시 금속산화물이 이탈하는 등의 문제로 성능이 저하되는 문제가 없으므로 장기간 사용에도 우수한 흡착성능을 장기간 유지할 수 있는 효과가 있다.In addition, in the present invention, since the metal oxide is not deposited in the micropores of the activated carbon, but the metal oxide is embedded in the carbon grid constituting the activated carbon itself, the performance is degraded due to the problem of the metal oxide being released during long-term use. Since there is no problem, there is an effect of maintaining excellent adsorption performance even for a long time use.

도 1은 본 발명에 따른 흡착성능이 우수한 활성탄의 제조방법에 대한 일 예를 도시한 예시 공정도로서 중화처리를 시행하는 경우와 중화처리를 시행하지 않은 본 발명의 제조방법의 예를 비교하여 함께 도시한 것이다.
도 2는 본 발명에서 사용하는 활성탄에 대한 활성화 전후의 활성탄의 Pore Volume와 Pore width 분포를 나타낸 그래프이다.
1 is an exemplary process diagram showing an example of a method for producing activated carbon having excellent adsorptive performance according to the present invention. It is.
Figure 2 is a graph showing the Pore Volume and Pore width distribution of activated carbon before and after activation for activated carbon used in the present invention.

이하, 본 발명을 하나의 구현예로서 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail as one embodiment.

본 발명은 기존의 활성탄을 표면 개질하여 나노 미세기공을 가지도록 활성화하는 과정에서 공정 개선을 통해 새로운 형태로 활성탄 구조 내에 금속산화물이 함유된 새로운 구조의 활성탄을 제공하는 것이다.The present invention provides a new structure of activated carbon containing a metal oxide in the activated carbon structure through a process improvement in the process of activating the surface of the existing activated carbon to have nano-pores.

본 발명의 바람직한 구현예에 따르면, 활성탄내에 존재하는 금속산화물은 다양한 형태가 가능하지만, 예컨대 K2CO3, Na2CO3가 가장 전형적이다.According to a preferred embodiment of the present invention, the metal oxides present in the activated carbon may be in various forms, for example K 2 CO 3 , Na 2 CO 3 is the most typical.

본 발명의 바람직한 구현예에 따르면, 상기 금속산화물은 활성탄의 미세기공 내에 침착되어 있는 것이 아니라 기공구조를 가지는 활성탄을 이루는 탄소구조 자체의 탄소격자 구조 내에 박혀서 고착되어 있는 형태를 가진다. 특히, 탄소격자구조 내에 금속이 내재하여 결과적으로 탄소격자 내에 금속산화물이 고착된 형태이므로 기공 내에 첨착되어 있는 구조와는 근본적으로 상이한 것이다.According to a preferred embodiment of the present invention, the metal oxide is not deposited in the micropores of the activated carbon, but is embedded in the carbon lattice structure of the carbon structure itself forming the activated carbon having a pore structure. In particular, since the metal is inherent in the carbon lattice structure, and as a result, the metal oxide is fixed in the carbon lattice, the structure is fundamentally different from the structure attached in the pores.

이러한 탄소격자 내의 고착 구조는 활성탄의 활성화를 위한 표면개질 과정에서 사용된 알칼리금속이 표면개질 과정에서 탄소격자 내에 파고 들어가 존재하고, 그 후에 산화 환원 과정에서 금속산화물로 전환되면서 그대로 고착된 형태로 잔류하기 때문이다.The fixation structure in the carbon grid is present in the form of alkali metal used in the surface modification process for activation of activated carbon penetrates into the carbon grid during the surface modification process, and then remains fixed as it is converted into the metal oxide in the redox process. Because.

본 발명의 바람직한 구현예에 따르면 이러한 금속산화물을 수세하면 세척이 가능하지만 일부는 잔류하여 남게 된다.According to a preferred embodiment of the present invention, when the metal oxide is washed with water, washing is possible, but some remain.

본 발명은 이렇게 잔류하는 금속산화물이 화학적 흡착능력을 나타낸다는 놀라운 사실을 알게 되어 본 발명에 이르게 된 것이다. The present invention leads to the present invention by surprising the fact that the remaining metal oxide exhibits a chemical adsorption capacity.

본 발명에 따르면 이러한 잔류된 금속산화물은 특히 SOx, NOx 등의 유해성분에 대한 흡착성능이 매우 우수한 효과를 갖는 것으로 확인되었다. 이러한 유해성분은 활성탄으로는 흡착이 잘 일어나지 않아서 일반 활성탄만으로는 제거가 어렵기 때문에, 기존에도 활성탄에 별도의 금속산화물을 첨착하여 사용하였던 것이지만, 본 발명에서는 활성탄의 표면개질 과정에서 잔류하게 되는 금속산화물을 일부는 제거하여 재활용하고 극이 일부만을 남겨지도록 세척하여 그대로 이용함으로써 새로운 형태의 활성탄 구조로 인해 매우 우수한 흡착성능을 가진 활성탄으로 품질을 개선하게 된 것이다.According to the present invention, such a residual metal oxide was found to have a particularly excellent effect of adsorption performance on harmful components such as SOx, NOx. Such harmful components are difficult to be removed by activated carbon alone because adsorption does not occur well with activated carbon. Therefore, in the present invention, a separate metal oxide is attached to activated carbon. However, in the present invention, the metal oxide remaining in the surface modification process of activated carbon is used. By removing some of it, recycling it and washing it to leave only a part of the pole, the new type of activated carbon structure improves the quality of activated carbon with very good adsorption performance.

본 발명의 바람직한 구현예에 따르면 상기 금속산화물은 활성탄 구조 내에서 전체 구성에 대해 3,000-100,000ppm으로 함유되어 있는 것이 바람직하다.According to a preferred embodiment of the present invention, the metal oxide is preferably contained in 3,000-100,000ppm of the total composition in the activated carbon structure.

만일, 그 함유량이 과다하면 금속산화물이 오히려 활성탄의 나노기공 구조를 막아버리므로 바람직하지 않게 되고, 그 함량이 너무 낮으면 화학적 흡착성능을 기대하기 어렵다.If the content is excessive, the metal oxides rather block the nanopore structure of the activated carbon, which is not preferable. If the content is too low, it is difficult to expect the chemical adsorption performance.

본 발명에서 적용 가능한 활성탄은 예컨대 기공크기가 100nm 이하인 것이 적용 가능하며, 3nm 이하인 것도 적용 가능하다.The activated carbon applicable in the present invention can be applied, for example, having a pore size of 100 nm or less, and also applicable to 3 nm or less.

본 발명의 바람직한 구현예에 따르면, 상기 활성탄은 비표면적이 850-3,000㎡/g, 더욱 좋기로는 1,700-2,200㎡/g인 것이 적용될 수 있다. According to a preferred embodiment of the present invention, the activated carbon may have a specific surface area of 850-3,000 m 2 / g, more preferably 1,700-2,200 m 2 / g.

본 발명에서 의미하는 활성탄은 활성탄 형태로 제조되는 활성탄 섬유도 포함하는 것을 의미한다.Activated carbon as used in the present invention is meant to include activated carbon fibers made in the form of activated carbon.

이하, 본 발명에 따른 흡착성능이 개선된 활성탄을 제조하는 방법에 대하여 자세하게 설명한다.Hereinafter, a method for producing activated carbon having improved adsorption performance according to the present invention will be described in detail.

도 1은 본 발명에 따른 흡착성능이 우수한 활성탄의 제조방법에 대한 일 예를 도시한 예시 공정도로서 중화처리를 시행하는 경우와 중화처리를 시행하지 않은 본 발명의 제조방법의 예를 비교하여 함께 도시한 것이다.1 is an exemplary process diagram showing an example of a method for producing activated carbon having excellent adsorptive performance according to the present invention. It is.

본 발명의 활성탄의 제조방법은 기공을 갖는 탄소격자상(carbon matrix)의 물질에 나노크기의 미세기공을 발달시키는 제조과정을 기본으로 하고 있으며, 이러한 일반적인 활성탄 제조과정은 한국등록특허 제10-1315127호에 자세하게 소개되어 있다.The method for manufacturing activated carbon of the present invention is based on a process of developing nano-sized micropores in a carbon matrix material having pores, and the general process of manufacturing activated carbon is Korean Patent No. 10-1315127. It is detailed in the issue.

본 발명에 따른 활성탄 제조를 위하여, 일반적으로 기공을 갖는 활성탄은 탄소격자상을 가지는 것으로써, 활성탄(AC), 활성탄소섬유(ACF) 등이 있다, 이러한 탄소격자 구조로 이루어지는 활성탄의 표면에 표면처리와 표면개질을 연계 처리하여 나노크기의 세공을 발달시킴으로써 표면적을 증대시키고 흡착 및 탈착 속도를 빠르게 할 수 있다.  In order to manufacture activated carbon according to the present invention, activated carbon having pores generally has a carbon lattice phase, and there are activated carbon (AC), activated carbon fiber (ACF), and the like on the surface of activated carbon having such a carbon lattice structure. By combining treatment with surface modification, nano-sized pores can be developed to increase surface area and speed up adsorption and desorption.

이와 같이 표면적을 증대시킴으로서 대기중 또는 수중의 탄화수소류에 대한 흡착량을 증대시키고 빠른 흡·탈착 속도를 나타냄으로서 재생 및 회수효율을 개선할 수 있는 것이다.By increasing the surface area as described above, the regeneration and recovery efficiency can be improved by increasing the amount of adsorption to hydrocarbons in the air or in water and exhibiting a fast adsorption / desorption rate.

본 발명의 바람직한 구현예에 따르면, 활성탄 제조를 위해 출발물질로서 목질계, 야자계, 피치계, 섬유계 중에서 선택된 하나 이상의 소재를 사용하는 전구체를 준비하는 단계를 거친다.According to a preferred embodiment of the present invention, to prepare a precursor using at least one material selected from wood-based, palm-based, pitch-based, fiber-based as a starting material for the production of activated carbon.

이렇게 준비된 상기 전구체를 200-450℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화단계를 거치게 된다.The precursor thus prepared is subjected to a stabilization step of oxidizing the contact with air in the temperature range of 200-450 ℃.

본 발명의 바람직한 구현예에 따르면, 상기 안정화 단계에서 형성된 탄소체는 무산소 조건에서 600-1,100 ℃ 온도범위에서 탄화시켜 일차적인 기공을 형성시키는 탄화단계를 거친다. 이러한 과정은 통상적으로 활성탄 제조에 활용되고 있다. According to a preferred embodiment of the present invention, the carbon body formed in the stabilization step is subjected to a carbonization step of carbonizing in the temperature range of 600-1,100 ℃ under anoxic conditions to form the primary pores. This process is commonly utilized in the production of activated carbon.

다음으로는, 상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액을 접촉시켜 표면처리를 수행하는 표면처리 단계를 거친다.Next, a surface treatment step of performing a surface treatment by contacting the acid solution to homogeneously form a high concentration of oxygen functional groups on the surface of the carbon grid to the carbon body formed with the primary pores.

본 발명에 따르면, 표면처리과정에서 산용액을 접촉시키는 것은, 탄소체를 제조하기 위하여 기공이 미발달된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키기 위한 목적으로 행해지는 것으로, 이러한 산용액의 접촉에 의해 일종의 전처리 개념으로 표면처리가 수행된다. According to the present invention, contacting the acid solution during the surface treatment is performed for the purpose of homogeneously forming a high concentration of oxygen functional groups on the surface of the carbon grid on the undeveloped carbon bodies in order to prepare the carbon bodies. Surface treatment is performed by a kind of pretreatment concept by contact of an acid solution.

본 발명의 바람직한 구현예에 따르면, 이때 산용액은 질산, 황산, 염산, 유기산이 단일 또는 혼합하여 1-5M 농도로 제조하여 사용될 수 있으며 0-80℃ 온도범위에서 탄소체에 접촉시킬 수 있다.According to a preferred embodiment of the present invention, the acid solution may be prepared by using a single or a mixture of nitric acid, sulfuric acid, hydrochloric acid, organic acid in a concentration of 1-5M and may be in contact with the carbon body in the temperature range of 0-80 ℃.

본 발명의 바람직한 구현예에 다르면, 상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알칼리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알칼리금속 수용액에 침치하는 침지단계와, 무산소 분위기에서 600-1,100℃로 승온시키면서 상기 알칼리금속의 산화와 환원을 유도하여 100nm이하, 더욱 좋기로는 3nm 이하의 미세기공을 발달시키고자 표면개질을 수행하는 표면개질 단계를 수행할 수 있다.  According to a preferred embodiment of the present invention, an immersion step of immersing the carbon body subjected to the surface treatment in an aqueous alkali metal solution to contact the alkali metal to the oxygen functional group formed by the acid in the surface treatment process, in an oxygen-free atmosphere The surface modification step of performing surface modification may be performed to induce oxidation and reduction of the alkali metal while raising the temperature to 600-1,100 ° C. to develop micropores of 100 nm or less, more preferably 3 nm or less.

본 발명의 다른 구현예로서는 표면개질을 위하여 더욱 바람직하게는 오존 접촉을 시행하는 것이 좋다. In another embodiment of the present invention, it is preferable to perform ozone contact more preferably for surface modification.

이렇게 하면, 예컨대 탄소격자 표면에 100nm이하, 더욱 바람직하게는 3nm크기 이하의 미세기공을 균일하게 발달시켜 표면적 850~3,000 ㎡/g 을 갖는 활성탄 또는 활성탄소섬유를 제조할 수 있다.In this way, for example, activated carbon or activated carbon fibers having a surface area of 850 to 3,000 m 2 / g can be produced by uniformly developing fine pores of 100 nm or less, more preferably 3 nm or less, on the surface of the carbon grid.

본 발명의 바람직한 구현예에 따르면, 표면처리 단계에서 산용액을 접촉시키는 것은, 탄소체를 제조하기 위하여 기공이 미발달된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키기 위한 목적으로 행해지는 것이다.According to a preferred embodiment of the present invention, the contacting of the acid solution in the surface treatment step is carried out for the purpose of homogeneously forming a high concentration of oxygen functional groups on the surface of the carbon grid on the undeveloped carbon body to produce a carbon body Will be.

본 발명의 바람직한 구현예에 따르면, 산용액에 접촉하지 않은 탄소체보다 질산의 농도가 증가할수록 산소관능기를 나타내는 2,400cm-1과 1,700cm-1 영역의 파장에서 피크가 증가하고 있음을 확인할 수 있었으며, 이는 표면의 산소관능기가 발달하고 있다는 증거이다.According to a preferred embodiment of the present invention, as the concentration of nitric acid increases than the carbon body not in contact with the acid solution, it was confirmed that the peak at the wavelength of 2,400cm -1 and 1,700cm -1 region representing the oxygen functional group increased. This is evidence that the surface oxygen functional group is developing.

본 발명의 바람직한 구현예에 따르면, 상기와 같이 표면처리 단계를 거친 활성탄에 대해서는 표면처리에 의하여 형성된 산소관능기에 알칼리금속을 접촉시키고 CO2 투입 하에 알칼리금속의 산화와 환원을 유도하여 표면개질을 수행할 수 있다. 이 과정은 바람직하게는 2-8시간, 더욱 좋기로는 2-4시간 정도를 수행하는 것이 바람직하다.According to a preferred embodiment of the present invention, for activated carbon that has undergone the surface treatment as described above, surface modification is performed by contacting an alkali metal to an oxygen functional group formed by surface treatment and inducing oxidation and reduction of the alkali metal under CO 2 input. can do. This process is preferably performed for 2-8 hours, more preferably about 2-4 hours.

상기와 같이 표면개질이 이루어진 후에는 활성탄 표면에 존재하는 금소산화물을 제거해야 한다. 즉, 상기 알칼리금속을 산화시켜서 활성탄의 표면을 개질시키는 과정에서 알칼리금속과 CO2 의 알칼리금속 탄산염반응으로 , 예컨대 탄산칼륨이나 탄산나트륨 등이 생성될 수 있다. 이러한 알칼리금속 탄산염은 활성탄 표면 개질 이후에는 제거하여야 표면개질이 완성될 수 있다.After the surface modification as described above, it is necessary to remove the gold oxide present on the surface of the activated carbon. That is, in the process of oxidizing the alkali metal to modify the surface of the activated carbon, an alkali metal carbonate reaction of the alkali metal and CO 2 may be generated, for example, potassium carbonate or sodium carbonate. Such alkali metal carbonates must be removed after surface modification of activated carbon to complete the surface modification.

기존에는 이를 위해 표면개질 단계의 완료 후, 알칼리금속 탄산염을 제거하기 위하여 중화처리 과정으로 무산소 조건에서 상온으로 냉각시킨 후, 5M 농도 이하의 황산용액에 1시간 이상 침지시키고, 증류수로 pH가 5-7 조건까지 중화시키는 과정을 수행하였다.For this purpose, after completion of the surface modification step, in order to remove the alkali metal carbonate, after cooling to room temperature under anoxic conditions by neutralization treatment, and then immersed in sulfuric acid solution of 5M or less for 1 hour or more, the pH is 5- Neutralization was carried out up to 7 conditions.

그러나 본 발명의 바람직한 구현예에 따르면, 상기와 같이 표면개질된 활성탄을 중화처리 없이 수회, 바람직하게는 2-4회 수세하여 활성탄에 잔류하는 알칼리금속 탄산염을 제거할 수 있다. 여기서 수세하여 얻어지는 알칼리금속 탄산염을 회수하여 알칼리금속을 재사용할 수 있다. 이때 수세는 알칼리금속 탄산염을 회수하는 목적으로도 활용되지만, 활성탄에 고착되어 잔류하는 알칼리금속 탄산염을 일부 잔류하도록 하기 위한 것이므로 그 수세의 회수는 활성탄 내에 고착되어 잔류하는 알칼리금속 산화물이 3,000-100,000ppm이 되도록 수세하면 된다.However, according to a preferred embodiment of the present invention, the surface-modified activated carbon can be washed several times, preferably 2-4 times, without neutralization treatment to remove alkali metal carbonate remaining in the activated carbon. The alkali metal carbonate obtained by washing with water can be recovered and the alkali metal can be reused. In this case, water washing is also used for recovering alkali metal carbonate, but since it is intended to retain some of the remaining alkali metal carbonate fixed on the activated carbon, the recovery of the washing is fixed in the activated carbon, and the residual alkali metal oxide is 3,000-100,000 ppm. It is good to wash with water.

이와 같이, 본 발명의 바람직한 구현예에 따르면, 활성탄에 잔류하는 알칼리금속 탄산염을 중화처리하지 아니하고 일부만을 남겨두는 것을 특징으로 한다.As such, according to a preferred embodiment of the present invention, the alkali metal carbonate remaining in the activated carbon is left without partial neutralization treatment.

본 발명의 바람직한 구현예에 따르면, 활성탄에 잔류하는 알칼리금속 탄산염은 그 함량이 상기보다 과다하면 활성탄의 흡착능, 특히 SOx, NOx 등의 흡착능이 크게 저하되고, 그 함량이 상기보다 적으면 상기와 같은 유해성분의 흡착특성을 기대할 수 없다.According to a preferred embodiment of the present invention, when the content of the alkali metal carbonate remaining in the activated carbon is more than the above, the adsorption capacity of activated carbon, in particular, the adsorption capacity of SOx, NOx, etc. is greatly reduced, and if the content is less than the above, Adsorption characteristics of hazardous components cannot be expected.

상기와 같이 본 발명에 따라 제조된 흡착성능이 개선된 활성탄은 기존에 활성탄에 알칼리금속 탄산염을 3-20중량%로 첨착시켜 사용하였던 것에 비해 그 제조공정이 간단하면서도, 알칼리금속 탄산염의 함량이 적은 상태에서도 활성탄의 기공이 아닌 탄소격자 자체의 내부에 고착된 형태로 존재하여 분산성이나 고착능이 우수하여 재생능력이 우수하고 장기간 흡착성능을 발휘할 수 있게 된다.As described above, the activated carbon having improved adsorption performance according to the present invention has a simpler manufacturing process, but has a smaller content of alkali metal carbonate, compared to the conventional use of impregnating alkali metal carbonate to 3-20% by weight of activated carbon. Even in the state, it exists in a form fixed to the inside of the carbon lattice itself, not the pores of activated carbon, so it is excellent in dispersibility and adhesion, and can exhibit excellent regeneration ability and long-term adsorption performance.

또한, 본 발명에 따른 활성탄은 알칼리금속 탄산염이 탄소격자 내부에 고착된 형태를 가지므로 활성탄의 미세기공을 막지 않아서 활성탄 고유의 흡착능력을 저하시키지 않는 것이므로 우수한 흡착능력과 SOx, NOx 등의 제거 효과가 우수한 특징이 있는 것이다.In addition, since the activated carbon according to the present invention has a form in which alkali metal carbonate is fixed inside the carbon grid, it does not block the micropores of the activated carbon and thus does not lower the adsorption capacity of the activated carbon. There is an excellent feature.

이하, 본 발명을 실시예에 의거하여 구체적으로 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1-5Example 1-5

출발물질로서 활성탄은 목질계 소재를 전구체로 사용하여 250℃ 온도에서 공기와 접촉시켜 산화시키는 안정화과정을 거치고, 이렇게 형성된 탄소체를 질소조건에서 1,000 ℃ 온도로 탄화시켜 일차적인 기공을 형성시켰다.As a starting material, activated carbon undergoes stabilization process by contacting with air at 250 ° C. using a wood-based material as a precursor, and carbonaceous carbon is formed at 1,000 ° C. under nitrogen to form primary pores.

기공이 형성된 탄소체에 산용액을 접촉시켜 표면처리하고 상기 표면처리과정의 산에 의하여 형성된 산소관능기에 알칼리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 KOH 수용액에 침지하고 질소 하에서 800℃로 승온시키면서 3시간 반응 후 CO2를 가하여 산화시키고 이때 활성탄 표면에 잔류하는 K2CO3를 3회 수세하여 회수하였다.Surface treatment by contacting the acid solution to the carbon body formed with pores and immersing the carbon body subjected to the surface treatment in an aqueous KOH solution to contact the alkali metal to the oxygen functional group formed by the acid in the surface treatment process and 800 ℃ under nitrogen After the reaction was conducted for 3 hours while the temperature was raised to CO 2 , CO 2 was added and oxidized. At this time, K 2 CO 3 remaining on the surface of the activated carbon was washed three times and recovered.

이러게 수세한 후 활성탄을 건조하였더니 미세기공이 균일하게 발달된 비표면적 2500 ㎡/g인 활성탄이 제조되었다.After washing with water, activated carbon was dried, and activated carbon having a specific surface area of 2500 m 2 / g with uniformly developed micropores was produced.

상기 제조된 활성탄의 표면에 잔류하는 K2CO3의 함량을 측정하였더니 50,000ppm인 것으로 확인되었다.It was confirmed that the content of K 2 CO 3 remaining on the surface of the prepared activated carbon was 50,000ppm.

상기와 같은 방법으로 실시하되, 수세과정을 다양하게 실시하여 활성탄 표면에 잔류하는 금속산화물의 함량을 다음 표 1과 같이 잔류하도록 실시하였다.It was carried out in the same manner as described above, but was carried out so that the content of the metal oxide remaining on the surface of the activated carbon to remain as shown in Table 1 by performing a variety of washing process.

비교예 1-4Comparative Example 1-4

상기 실시예와 동일하게 실시하되 활성탄에 잔류하는 함량을 달리하였다.The same procedure as in the above example was performed, but the contents remaining in the activated carbon were changed.

비교예 5-6Comparative Example 5-6

상기 실시예와 동일하게 실시하되 활성탄 표면에 잔류하는 K2CO3를 3회 수세하여 회수한 다음, 완전한 제거를 위하여 질소 조건에서 상온으로 냉각시킨 후, 3M 농도의 황산용액에 2시간 침지시키고, 증류수로 pH가 6.5 조건까지 중화시킬 목적으로 세척하고, 공기분위기에서 150℃로 건조하여 활성탄을 제조하였다.After performing the same as in the above embodiment, but washed three times to recover the K 2 CO 3 remaining on the surface of the activated carbon, and then cooled to room temperature under nitrogen conditions for complete removal, it was immersed in 3M sulfuric acid solution for 2 hours, Washed for the purpose of neutralizing the pH to 6.5 conditions with distilled water, and dried at 150 ℃ in an air atmosphere to prepare activated carbon.

그 후 금속산화물을 첨착시키기 위하여 K2CO3를 가하여 진공 첨착시켜서 활성탄에 K2CO3가 3중량%(비교예 5), 6중량%(비교예 6) 각각 함유하도록 첨착시켜 최종 활성탄 흡착 소재를 제조하였다.Then, in order to deposit metal oxides, K 2 CO 3 was added and vacuum-adhered, and the activated carbon was added so as to contain 3% by weight of K 2 CO 3 (Comparative Example 5) and 6% by weight (Comparative Example 6), respectively. Was prepared.

실험예 1Experimental Example 1

원소분석과 제품의 특성 차이를 확인하기 위하여 일반 활성탄과 활성화처리를 위해 표면 개질한 활성화 활성탄에 대하여 성분 분석을 실시하였다.In order to identify the difference between the elemental analysis and the characteristics of the product, the component analysis was performed on activated carbon and surface-activated activated carbon for activation treatment.

하기 표 1은 일반 활성탄과 본 발명과 같이 표면 개질 후에 알칼리금속 탄산염에 대한 잔여물을 중화 처리하지 않은 활성탄에 대하여 ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer) 비교분석 결과이다.Table 1 below is a comparative analysis result of ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer) for general activated carbon and activated carbon that does not neutralize residues on alkali metal carbonates after surface modification as in the present invention.

일반 활성탄 Normal activated carbon 활성화 활성탄 Activated activated carbon 원소명Element Name T1 T1 T2T2 원소명Element Name T1 T1 T2T2 MOMO N.D.N.D. N.D.N.D. MOMO 53.8953.89 53.81 53.81 Si Si 591.33591.33 584.60584.60 Si Si 276.29276.29 297.19297.19 Sn Sn N.D.N.D. N.D.N.D. Sn Sn N.D.N.D. N.D.N.D. Pt Pt 0.840.84 N.D.N.D. Pt Pt N.D.N.D. N.D.N.D. P P 196.12 196.12 193.16193.16 P P 75.4375.43 75.7275.72 ZrZr N.D.N.D. 0.360.36 ZrZr 0.36 0.36 0.84 0.84 AuAu N.D.N.D. N.D.N.D. AuAu N.D.N.D. N.D.N.D. V V 0.730.73 0.530.53 V V 1.521.52 1.371.37 W W 1.531.53 N.D.N.D. W W N.D.N.D. N.D.N.D. Se Se N.D.N.D. N.D.N.D. Se Se N.D.N.D. N.D.N.D. Nb Nb 1.721.72 1.681.68 Nb Nb 0.840.84 0.850.85 As As 1.941.94 1.231.23 As As N.D.N.D. N.D.N.D. Ti Ti 14.5914.59 16.3316.33 Ti Ti 9.349.34 9.679.67 K K 3798.943798.94 3959.963959.96 K K 185072.25185072.25 181532.95181532.95 AgAg N.D.N.D. N.D.N.D. AgAg 9.20 9.20 8.80 8.80 AlAl 269.67269.67 278.47278.47 AlAl 500.70500.70 488.73488.73 BB 23.34 23.34 43.7743.77 BB 183.32183.32 N.D.N.D. BaBa 8.14 8.14 8.51 8.51 BaBa 3.893.89 4.144.14

상기 표 1에서와 같이 일반 활성탄과 활성화 활성탄의 ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer) 비교결과를 보면, 일부 수세만 하고 중화 처리하지 않은 활성화된 활성탄의 K원소의 함량이 약 180,000ppm으로 일반 활성탄의 3,800~4,000ppm보다 확연히 높은 것으로 확인되었다.As shown in Table 1, the comparison results of ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometer) of ordinary activated carbon and activated activated carbon show that the content of K element of activated activated carbon which is only partially washed and not neutralized is about 180,000 ppm. It was found to be significantly higher than 3,800 ~ 4,000ppm of activated carbon.

이러한 실험결과로부터, 활성화된 활성탄을 중화처리하지 않고 수세하여 활성탄 내에 잔류하는 알칼리금속 탄산염을 3,000~100,000ppm으로 조절하는 것이 가능함을 알 수 있다.From these experimental results, it can be seen that it is possible to adjust the alkali metal carbonate remaining in the activated carbon to 3,000 to 100,000 ppm by washing with water without neutralizing the activated activated carbon.

실험예 2Experimental Example 2

활성탄과 표면 개질로 활성화처리된 활성탄에 대한 물성을 비교하기 위하여 활성화 전후 활성탄의 Pore Volume와 Pore width 분포를 조사하였다.The pore volume and pore width distribution of activated carbon were investigated before and after activation to compare the properties of activated carbon and activated carbon activated by surface modification.

그 결과는 도 2에 도시한 바와 같다. 도 2의 그래프에서 Raw AC는 일반 활성탄이고, Upgrade AC는 활성화시킨 활성탄을 의미한다.The result is as shown in FIG. In the graph of Figure 2 Raw AC is a general activated carbon, Upgrade AC means activated activated carbon.

실험예 3Experimental Example 3

상기 실시예에 의해 제조된 활성탄에 대하여 SOx 제거능력 실험을 통해 흡착성능을 비교하여 평가 하였다. 차량용 복합 필터에 대해 독일식 콤비네이션 사이클 시험법인 DIN71460 규격으로 소취효율에 대한 성능평가를 진행하였다. 평가조건은 풍량은 풍량은 150㎥/h±1㎥/h, 온도는 23±3℃, 습도는 50±2%, 농도는 30±3ppm을 표준조건으로 5분간 필터링을 실시하였다. The activated carbon prepared by the above example was evaluated by comparing the adsorption performance through the SOx removal ability test. Performance evaluation of the deodorizing efficiency was carried out in the DIN71460 standard of the German combination cycle test method for a vehicle composite filter. The evaluation conditions were filtered for 5 minutes under the standard conditions of air flow rate 150 ㎥ / h ± 1 ㎥ / h, temperature 23 ± 3 ℃, humidity 50 ± 2%, concentration 30 ± 3ppm.

그 결과는 하기 표 2와 표 3에 함께 나타내었다.The results are shown in Table 2 and Table 3 together.

실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예 4Example 4 실시예5Example 5 K2CO3함량
(ppm)
K 2 CO 3 Content
(ppm)
8,0008,000 12,00012,000 50,00050,000 70,00070,000 100,000100,000
SOx 흡착량
(%)
SOx adsorption amount
(%)
52.352.3 55.855.8 70.170.1 68.168.1 65.065.0

비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 K2CO3함량
(ppm)
K 2 CO 3 Content
(ppm)
500500 2,8002,800 120,000120,000 200,000200,000 3중량%3 wt% 6중량%6% by weight
SOx 흡착량
(%)
SOx adsorption amount
(%)
26.526.5 48.248.2 62.562.5 53.153.1 23.823.8 29.429.4

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 출발물질로서 목질계, 야자계, 피치계, 섬유계 중에서 선택된 하나 이상의 활성탄 소재를 200 ~ 450℃ 온도범위에서 공기와 접촉시켜 산화시키는 안정화단계;
상기 안정화 단계에서 형성된 탄소체를 무산소 조건에서 탄화시켜 일차적인 기공을 형성시키는 탄화단계;
상기 일차 기공이 형성된 탄소체에 탄소격자 표면의 산소관능기를 고농도로 균질하게 형성시키고자 산용액에 접촉시켜 표면처리를 수행하여 탄소체의 탄소격자 표면에 산소관능기를 고농도로 균질하게 형성시키는 표면처리단계;
상기 표면처리 단계의 산소관능기에 알칼리금속을 접촉시키고자 상기 표면처리가 수행된 탄소체를 알칼리금속 수용액에 침지하는 침지단계;
무산소 분위기에서 600 ~ 1,100℃로 승온시키고 이산화탄소를 가하여 상기 알칼리금속의 산화와 환원을 유도하여 미세기공을 발달시키고자 표면개질을 수행하는 표면개질 과정을 포함하는 단계; 및
상기 표면개질 과정에서 얻어진 알칼리금속 탄산염을 제거하기 위해 수세하고 중화처리 없이 곧바로 건조하는 단계
를 포함하는 공정을 거쳐서,
표면의 기공크기가 100nm 이하의 크기를 가지는 탄소격자 구조를 가지며, 비표면적이 850-3,000 ㎡/g이고, 그 탄소격자 구조 내에 알칼리금속 탄산염이 3,000-100,000ppm의 함량으로 고정되어 고착되어 있는 형태의 활성탄으로 제조하는 것을 특징으로 하는 흡착성능이 우수한 활성탄의 제조방법.
Stabilizing step of oxidizing at least one activated carbon material selected from wood-based, palm-based, pitch-based, fiber-based as a starting material in contact with air in the temperature range of 200 ~ 450 ℃;
A carbonization step of carbonizing the carbon body formed in the stabilization step under anoxic conditions to form primary pores;
Surface treatment to form a homogeneous oxygen functional group on the carbon grid surface of the carbon body by performing a surface treatment by contacting with an acid solution to homogeneously form a high concentration of oxygen functional group on the surface of the carbon grid on the carbon body formed with the primary pores step;
Immersion step of immersing the carbon body subjected to the surface treatment in an aqueous alkali metal solution to contact the alkali metal to the oxygen functional group of the surface treatment step;
A surface modification process for performing surface modification to develop micropores by inducing oxidation and reduction of the alkali metal by raising carbon dioxide to 600 to 1,100 ° C. in an oxygen-free atmosphere; And
Washing with water to remove the alkali metal carbonate obtained in the surface modification and immediately drying without neutralization
Through a process comprising a,
The surface has a carbon lattice structure with a pore size of 100 nm or less, the specific surface area is 850-3,000 m 2 / g, and the alkali metal carbonate is fixed and fixed in the carbon lattice structure at a content of 3,000-100,000 ppm. Method for producing activated carbon excellent in adsorption performance, characterized in that the production of activated carbon.
청구항 5에 있어서, 알칼리금속 수용액은 KOH 또는 NaOH 수용액인 것을 특징으로 하는 흡착성능이 우수한 활성탄의 제조방법.The method of claim 5, wherein the aqueous alkali metal solution is a KOH or NaOH aqueous solution.
KR1020170163498A 2017-11-30 2017-11-30 Activated carbon with excellent adsorption performance KR102062258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170163498A KR102062258B1 (en) 2017-11-30 2017-11-30 Activated carbon with excellent adsorption performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170163498A KR102062258B1 (en) 2017-11-30 2017-11-30 Activated carbon with excellent adsorption performance

Publications (2)

Publication Number Publication Date
KR20190064151A KR20190064151A (en) 2019-06-10
KR102062258B1 true KR102062258B1 (en) 2020-01-06

Family

ID=66848114

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163498A KR102062258B1 (en) 2017-11-30 2017-11-30 Activated carbon with excellent adsorption performance

Country Status (1)

Country Link
KR (1) KR102062258B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000589A (en) 2021-06-25 2023-01-03 주식회사 성창오토텍 Impregnated activated carbon and manufacturing method thereof
KR102599131B1 (en) 2023-02-23 2023-11-07 고등기술연구원연구조합 Method for producing high specific surface area activated carbon using lignocellulosic biomass using resource recycling type advanced activation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168615B1 (en) 2019-12-11 2020-11-04 이재희 Nano-porous mineral activated carbon and its using method
KR102434658B1 (en) * 2020-07-02 2022-08-23 주식회사 엠앤이테크 Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same
CN114715970A (en) * 2022-03-31 2022-07-08 延安大学 Method for removing glyphosate in water through adsorption of porous carbon material of coal tar pitch substrate layer
CN115010205A (en) * 2022-05-11 2022-09-06 天津大学 Method for removing heavy metal by biological activated carbon BAC process, determination method of heavy metal capacity and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode
KR101419868B1 (en) 2013-04-22 2014-07-16 고등기술연구원연구조합 Methode for preparing nano pore on carbon materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488410B1 (en) 2003-02-14 2005-05-10 이후근 The method of manufacturing of hybrid type chemical filter
JP2007260603A (en) 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode
KR101419868B1 (en) 2013-04-22 2014-07-16 고등기술연구원연구조합 Methode for preparing nano pore on carbon materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230000589A (en) 2021-06-25 2023-01-03 주식회사 성창오토텍 Impregnated activated carbon and manufacturing method thereof
KR102599131B1 (en) 2023-02-23 2023-11-07 고등기술연구원연구조합 Method for producing high specific surface area activated carbon using lignocellulosic biomass using resource recycling type advanced activation

Also Published As

Publication number Publication date
KR20190064151A (en) 2019-06-10

Similar Documents

Publication Publication Date Title
KR102062258B1 (en) Activated carbon with excellent adsorption performance
US4831011A (en) Carbon-based adsorbent and process for production thereof
KR20200096846A (en) Manganese catalyst for promoting formaldehyde oxidation and preparation and use thereof
CN105329976B (en) The method for adsorbing perfluorochemical in simultaneously degradation water
JP2019534159A (en) Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
CN1705504A (en) Method for purifying carbon dioxide
KR20100118570A (en) Contaminant removal from a gas stream
US5190908A (en) Racked bed for removal of residual mercury from gaseous hydrocarbons
KR101273494B1 (en) Recycle method of spent carbons by chemical impregnation and heating treatments in vacuum
JP6349736B2 (en) Acid gas adsorption / removal filter
JPH0986914A (en) Active carbon, its production and adsorption and removal of acidic component
WO2006096374B1 (en) Mercury removal sorbent
JP3930131B2 (en) Aldehydes removal agent
KR101315112B1 (en) Methode for preparing nano pore on carbon matrix
JP5076471B2 (en) Method for producing carbon-based catalyst for flue gas desulfurization
KR20230057210A (en) Elimination method of Nox including exhaust gases
JP3234919B2 (en) Activated carbon fiber catalyst for nitric oxide-ammonia reduction reaction and nitric oxide removing method for nitric oxide containing gas
KR102671784B1 (en) Method of reusing chemical filter
JP2017192429A (en) Catalyst filter, deodorization device and air cleaning device
KR100407806B1 (en) ACTIVATED CARBON FIBER CATALYST FOR REMOVAL OF SOx AND PREPARATION METHOD OF THE SAME
KR101943005B1 (en) Carbon dioxide absorbent, and method for removing carbon dioxide using the same
CN112642397A (en) Composite material and preparation method and application thereof
JP4238076B2 (en) Material for removing contaminants in gas and method for producing the same
Bajaj et al. PAN-based activated carbon fibres: Production, characterization and applications
JPH0576753A (en) Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right