JP2004182507A - Carbon porous body for capacitor electrode and its manufacturing method - Google Patents

Carbon porous body for capacitor electrode and its manufacturing method Download PDF

Info

Publication number
JP2004182507A
JP2004182507A JP2002349832A JP2002349832A JP2004182507A JP 2004182507 A JP2004182507 A JP 2004182507A JP 2002349832 A JP2002349832 A JP 2002349832A JP 2002349832 A JP2002349832 A JP 2002349832A JP 2004182507 A JP2004182507 A JP 2004182507A
Authority
JP
Japan
Prior art keywords
pitch
raw material
capacitor electrode
porous body
carbon porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002349832A
Other languages
Japanese (ja)
Inventor
Seiko In
聖昊 尹
Isao Mochida
勲 持田
Takatsugu Fujiura
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002349832A priority Critical patent/JP2004182507A/en
Publication of JP2004182507A publication Critical patent/JP2004182507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon porous body which stably and reproducibly exerts a high capacitance and is suitable as an electric double-layer capacitor electrode material. <P>SOLUTION: The carbon porous body for the capacitor electrode is obtained by carbonizing and subsequently activating a raw material pitch which has an average free volume radius, measured by positron annihilation lifetime spectroscopy, of equal to or above a specific value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電気二重層キャパシタ電極用炭素多孔体およびその製造方法に関する。
【0002】
【従来の技術】
電気二重層キャパシタ(以下、EDLCと称す)は高パワー密度、長寿命、高可逆性といった特長を有することから、地球環境保全、高度情報化社会を支えるキーデバイスとして注目を集めている。既にメモリーバックアップ用電源として実用化されているが、最近では余剰電力貯蔵庫やハイブリッド自動車向けの、高性能かつ低価格のEDLCの開発が積極的に進められている。EDLC電極用活性炭の製造方法としては、メソフェーズピッチを不融化処理後、炭素化処理し、アルカリ賦活によりEDLC電極用活性炭を製造する方法が知られている。例えば、塊状メソフェーズピッチを粉砕、不融化処理、炭化処理、アルカリ賦活する方法が提案されている(例えば、特許文献1参照。)、また、軟化点が150〜350℃、H/Cが0.5〜0.9、光学的異方性含有率が50%以上である原料ピッチを熱処理、賦活処理することにより、静電容量の高い活性炭電極が得られることが開示されている(特許文献2参照。)。しかしながら、現状ではEDLCが本来有する特性を充分に生かせておらず性能面で必ずしも満足すべきレベルに達していない。
【0003】
【特許文献1】
特開2001−52972号公報
【特許文献2】
特開2002−93667号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、高い静電容量が再現性良く安定して発現可能な、EDLC電極材料として好適な炭素多孔体を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意検討した結果、特定性状を有する原料ピッチを炭素化処理したのち賦活処理することによって得られるキャパシタ電極用炭素多孔体が、高い静電容量を再現性よく安定して発現することを見出し、本発明を完成させるに至った。
【0006】
すなわち本発明は、(1)陽電子消滅寿命測定法による平均自由体積半径が0.240nm以上である原料ピッチを炭素化したのち賦活処理して得られるキャパシタ電極用炭素多孔体、および(2)陽電子消滅寿命測定法による平均自由体積半径が0.240nm以上である原料ピッチを炭素化したのち賦活処理することを特徴とするキャパシタ電極用炭素多孔体の製造方法である。
【0007】
【発明の実施の形態】
本発明において用いられる原料ピッチでは、陽電子消滅寿命測定法によって求められる平均自由体積半径が0.240nm以上であることが必要である。原料ピッチの平均自由体積半径が0.240nm未満の場合には本発明の目的に適した炭素多孔体が得られない。
【0008】
また、本発明において用いられる原料ピッチはメトラー法による軟化点が150℃以上であることが好ましく、光学的に等方性のピッチも異方性のピッチも両方とも用いることができる。
【0009】
本発明における原料ピッチには、例えば、弗化水素・三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を100℃から400℃で重合させることによって得られる合成ピッチが好適に用いられる。この合成ピッチは特許第2931593号公報、特許第2621253号公報、あるいは特許第2526585号公報に示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を重合させて得られる合成ピッチである。重合触媒量は、ピッチ原料1モルに対し弗化水素0.1〜20モル、三弗化硼素0.05モル〜1.0モルである。重合に要する時間は、原料の種類、反応温度、および触媒量により変化するが、通常5〜300分である。重合反応終了後、触媒を分離し必要に応じて軽質分の除去を行なう。重合反応、触媒分離および軽質分除去の条件については、ピッチの平均自由体積半径が本発明の要件を満たすように設定される。
【0010】
こうして得られる合成ピッチは従来の石油系や石炭系のピッチに比べ、品質安定性や化学純度の点で極めて優れている。
【0011】
本明細書に記載の平均自由体積半径は、陽電子消滅寿命測定法に基づいて求められる。陽電子の発生源としては22NaClを用いる。22Na は22Neにβ崩壊するが、その過程で陽電子と1.28MeVのγ線を同時に放出する。一方、試料へ入射した陽電子は一旦空孔に捕捉されたのち、空孔表面にしみ出した電子と衝突して消滅するが、その際に511keVのγ線を放出する。したがって、1.28MeVのγ線をスタート信号、511keVのγ線をストップ信号として両者の時間差を計測することにより陽電子消滅寿命を求めることができる。こうして得られた寿命曲線(横軸:陽電子消滅寿命、縦軸:陽電子のカウント数)を逆ラプラス変換すると自由体積の分布曲線(横軸:自由体積半径、縦軸:自由体積の相対的な数濃度に相当)が算出される。本実施例に記載の平均自由体積半径の値は非線形最小二乗プログラムPOSITRONFITによる3成分解析から求めたものである。
【0012】
原料ピッチの炭素化処理方法は特に限定されない。静置あるいは攪拌下での常圧炭素化でもよいし、加圧下での炭素化でもよい。炭素化処理の前に粉末状あるいは繊維状のピッチを不融化処理してもよい。生産性の観点からはつぎのような連続的な炭素化処理が望ましい。すなわち、不活性雰囲気下400〜900℃の温度に保った反応容器内に、予め顆粒状または粉末状の原料ピッチの炭素化物を仕込んで攪拌しておき、そこへ原料ピッチをそのまま添加していくことで顆粒状または粉末状の炭素化物を製造する。
【0013】
この方法(以下、戻し媒方式炭素化と称す)では、添加した原料ピッチは加熱によりまず低粘度の液体となって、予め仕込んだ顆粒状または粉末状のピッチの炭素化物(以下、戻し媒と称す)の表面上に分散する。その後熱による重合反応が進むことにより最終的には不融の炭素化物へと変化する。戻し媒は攪拌によって常に流動状態が保たれているので、ピッチの反応によって生成するガスは速やかに系外に排出され、静置で炭素化を行なう時のような著しい溶融発泡を全く起こさず、静置での炭素化に比べてはるかに小さな容積の反応器で連続的に効率良く炭素化を行なうことができる。またピッチは戻し媒表面上に分散して熱重合が進み、戻し媒の流動によるせん断を受けながら固形化するので、得られる炭素化物の光学組織はモザイク状となる。
【0014】
ここで用いられる反応器には、顆粒状または粉末状のピッチ熱処理品を充分に攪拌できるような攪拌装置を付属した漕型の反応器、攪拌可能なパドルを備えた筒型の反応器、あるいはロータリーキルン等が使用できる。漕型反応器を使用する場合は、例えば特開平7−286181号公報に記載されたような攪拌羽根の回転軸を傾けて設置した反応器等が利用できる。
【0015】
予め反応器に仕込んでおく顆粒状または粉末状のピッチ炭素化物は、最初は静置による炭素化処理等で製造した流れ組織の炭素化物を使用せざるを得ないが、反応を継続していくうちに新しいモザイク組織の炭素化物にほぼ完全に置換され最終的に得られる炭素多孔体の性能には殆ど影響を及ぼさない。
【0016】
上述のように炭素化されたピッチは賦活処理される。炭素化処理温度が600℃未満であった場合には賦活剤と混合する前に600℃以上で更に熱処理すると炭素化が完了し、より効率の良い賦活ができる。
【0017】
賦活方法は賦活剤を用いる薬品賦活が好ましい。賦活に用いられる賦活剤には塩化亜鉛、アルカリ金属化合物等が使用される。特にアルカリ金属化合物が好ましく、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、塩化カリウム等が用いられるが、なかでも水酸化カリウムが最も好ましい。アルカリ賦活の方法や装置は特に限定されないが、炭素化物1重量部に対して1〜4重量部のアルカリ金属化合物を均一に混合し処理容器に充填し、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下の加熱炉中で室温から400〜1000℃まで昇温加熱して0.1〜20時間保持される。処理温度は400℃より低いと賦活反応が進行し難く賦活度が上がらない。1000℃より高い場合には金属カリウムの析出、飛散などによる処理装置の侵食の問題が起こるため、600〜900℃の温度で賦活処理することが好ましい。その後室温まで冷却しアルカリ成分を除去するため、アルコール中に投入、濾過し、濾液が中性になるまで水洗を繰り返す。その後乾燥し炭素多孔体を得る。
【0018】
EDLC用電極を作製する際には、炭素多孔体は平均粒径で通常1〜50μm、好ましくは平均粒径5〜30μmの範囲になるように粒度調整されたものを用いる。粉砕処理は炭素化処理品、賦活処理品のどちらの段階においても実施でき特に限定されない。粉砕機については衝撃式粉砕機やジェットミル、マイクロアトマイザー等から適宜、最適機種が選択される。分級機についても機械式分級、風力式分級機等から適宜、最適機種が選択され特に限定されない。
【0019】
こうして得られた炭素多孔体を電極材料に用いたEDLCは、再現性良く高い静電容量が得られるという特長を有する。
【0020】
【実施例】
次に実施例により本発明を更に具体的に説明する。但し本発明は以下の実施例により制限されるものではない。
【0021】
実施例1
ナフタレン78.0モル、弗化水素31.2モル、三弗化硼素7.8モルを43リットルのオートクレーブに仕込み270℃で4時間反応させた。その後オートクレーブの放出弁を開け、窒素を吹き込み実質的に全量の弗化水素、三弗化硼素を除去したピッチを得た。このピッチのメトラー法による軟化点は284℃、平均自由体積半径は0.242nmであった。
該ピッチを炭素化するため、窒素雰囲気下5℃/分で550℃まで昇温しこの温度で1時間保持した。室温まで冷却し内容物(炭素発泡体)を粉砕し平均粒径約0.5mmの炭素化物を得た。次に攪拌機を装備した直径170mm、高さ200mmの円筒反応器の中にこの炭素化物200gを戻し媒として予め仕込み、攪拌しながら窒素気流下550℃に昇温した。ここに上記合成ピッチを毎分10gの速度で反応器に加え、全体で300g投入した。投入終了後、550℃で10分間保持したのち反応器冷却し内容物を取り出したところ約400gの粒状の炭素化物が得られた。この粒状炭素化物を戻し媒として上述と同様の操作を行なった。これを7回繰り返し約99%の置換率の顆粒状炭素化物を得た。次に衝撃式粉砕機により平均粒径15μmに粉砕した。さらに得られた粉末を管状炉中、窒素雰囲気下5℃/分で700℃まで昇温し2時間保持した。
室温まで冷却後、炭素化物粉末1重量部に対して2重量部の水酸化カリウムを均一に混合し窒素雰囲気下5℃/分で750℃まで昇温し1時間保持した。室温まで冷却したのち2−プロパノール中に投入し濾液が中性になるまで濾過・水洗を繰り返し、炭素多孔体を得た。
次に該炭素多孔体を用いて電極を作製しその評価を行なった。炭素多孔体:導電性フィラー(ケッチェンブラック):結着剤(テフロン(登録商標))の重量比90:5:5で混合し電極を作製した。ガラス製二極式セルを用い、一対の電極の間にグラスファイバー製セパレータを挟みセルに収容した。電解液はテトラエチルアンモニウムテトラフルオロボレート(CNBFを1.0モル/リットル溶解したプロピレンカーボネートを用いた。アルゴン雰囲気中、室温下10mA/gの定電流で終止電圧2.7Vまで充電し、次に10mA/gの定電流で0Vまで放電した。体積当たりの静電容量は重量当たりの静電容量C(C=I・ΔT/ΔV、但し、I:電極重量当たりの平均放電電流値、ΔT:電圧降下時間、ΔV:電圧降下値)に電極の密度を乗ずることにより算出した。単位体積当たりの静電容量は34F/ccであった。
【0022】
実施例2
モノメチルナフタレン(α:β=1:1)70.3モル、弗化水素31.6モル、三弗化硼素10.5モルを43リットルのオートクレーブに仕込み270℃で時間反応させた。その後オートクレーブの放出弁を開け、窒素を吹き込み実質的に全量の弗化水素、三弗化硼素を除去したピッチを得た。このピッチの軟化点は270℃、平均自由体積半径は0.246nmであった。
実施例1と同様の炭素化処理、賦活処理を経て電極評価を行なった。単位体積当たりの静電容量は35F/ccであった。
【0023】
実施例3
2,6−ジメチルナフタレン86モル、弗化水素67モル、三弗化硼素19モルを43リットルのオートクレーブに仕込み250℃で4時間反応させた。その後オートクレーブの放出弁を開け、窒素を吹き込み実質的に全量の弗化水素、三弗化硼素を除去したピッチを得た。このピッチの軟化点は276℃、平均自由体積半径は0.250nmであった。
実施例1と同様の炭素化処理、賦活処理を経て電極評価を行なった。単位体積当たりの静電容量は37F/ccであった。
【0024】
実施例4
実施例1と同様のピッチを粉砕し平粒径15μmのピッチ粉末を得た。これを空気流通下220℃で2時間処理した。重量増加は104%であった。該酸化処理ピッチを700℃で2時間炭素化処理したのち、実施例1と同様に賦活処理を経て電極評価を行なった。単位体積当たりの静電容量は34F/ccであった。
【0025】
比較例1
軟化点300℃の石炭系ピッチを用いて陽電子消滅寿命測定を行なったところ、平均自由体積半径は0.238nmと求められた。該ピッチを実施例1と同様に炭素化処理、賦活処理して電極評価を行なった。単位体積当たりの静電容量は24F/ccであった。
【0026】
比較例2
軟化点121℃の石油系ピッチを窒素流通下攪拌しながら熱処理することにより軟化点320℃のピッチを得た。このピッチの平均自由体積半径は0.239nmであった。該ピッチを実施例1と同様に炭素化処理、賦活処理して電極評価を行なった。単位体積当たりの静電容量は26F/ccであった。
【0027】
【発明の効果】
本発明によれば、原料ピッチの平均自由体積半径が0.240nm以上のものを選択し、これを炭素化処理、賦活処理することによって、高い静電容量が再現性良く安定して発現可能な、EDLC電極材料として好適な炭素多孔体を製造できる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon porous body for an electrode of an electric double layer capacitor and a method for producing the same.
[0002]
[Prior art]
Electric double layer capacitors (hereinafter referred to as EDLCs) have attracted attention as key devices that support global environmental conservation and advanced information society because of their features such as high power density, long life, and high reversibility. Although it has already been put into practical use as a power supply for memory backup, development of a high-performance and low-cost EDLC for surplus power storage and hybrid vehicles has been actively promoted recently. As a method for producing activated carbon for EDLC electrodes, there is known a method for producing an activated carbon for EDLC electrodes by infusibilizing mesophase pitch, carbonizing the mesophase pitch, and activating alkali. For example, a method of pulverizing, infusibilizing, carbonizing, and activating the bulk of the mesophase pitch has been proposed (for example, see Patent Document 1). Further, the softening point is 150 to 350 ° C., and the H / C is 0.1%. It is disclosed that an activated carbon electrode having a high capacitance can be obtained by heat-treating and activating a raw material pitch having an optical anisotropy content of 5 to 0.9 and an optical anisotropy content of 50% or more (Patent Document 2). reference.). However, at present, the characteristics inherent to EDLC are not fully utilized, and the performance has not always reached a satisfactory level.
[0003]
[Patent Document 1]
JP 2001-52972 A [Patent Document 2]
JP-A-2002-93667
[Problems to be solved by the invention]
An object of the present invention is to provide a carbon porous body suitable for an EDLC electrode material that can stably express high capacitance with good reproducibility.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, a carbon porous body for a capacitor electrode obtained by subjecting a raw material pitch having a specific property to a carbonization treatment and then performing an activation treatment has high reproducibility. It was found that the expression was well and stably achieved, and the present invention was completed.
[0006]
That is, the present invention provides (1) a carbon porous material for a capacitor electrode obtained by carbonizing a raw material pitch having an average free volume radius of 0.240 nm or more by a positron annihilation lifetime measurement method and then performing an activation treatment; A method for producing a carbon porous body for a capacitor electrode, comprising carbonizing a raw material pitch having an average free volume radius of 0.240 nm or more as measured by an annihilation lifetime and then performing an activation treatment.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the raw material pitch used in the present invention, the average free volume radius determined by the positron annihilation lifetime measurement method needs to be 0.240 nm or more. If the average free volume radius of the raw material pitch is less than 0.240 nm, a carbon porous body suitable for the purpose of the present invention cannot be obtained.
[0008]
Further, the raw material pitch used in the present invention preferably has a softening point by a Mettler method of 150 ° C. or more, and both an optically isotropic pitch and an anisotropic pitch can be used.
[0009]
As the raw material pitch in the present invention, for example, a synthetic pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same at 100 ° C. to 400 ° C. in the presence of hydrogen fluoride / boron trifluoride is preferable. Used for This synthetic pitch has naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene and the like, as shown in Japanese Patent No. 2931593, Japanese Patent No. 26212253, or Japanese Patent No. 2526585. A synthetic pitch obtained by polymerizing a condensed polycyclic hydrocarbon, a mixture thereof, or a substance containing the same. The amount of the polymerization catalyst is 0.1 to 20 mol of hydrogen fluoride and 0.05 to 1.0 mol of boron trifluoride per 1 mol of the pitch raw material. The time required for the polymerization varies depending on the type of the raw material, the reaction temperature, and the amount of the catalyst, but is usually from 5 to 300 minutes. After the completion of the polymerization reaction, the catalyst is separated and, if necessary, light components are removed. The conditions for the polymerization reaction, catalyst separation and light matter removal are set so that the average free volume radius of the pitch satisfies the requirements of the present invention.
[0010]
The synthetic pitch obtained in this way is extremely superior in quality stability and chemical purity as compared with conventional petroleum or coal pitch.
[0011]
The average free volume radius described herein is determined based on a positron annihilation lifetime measurement method. 22 NaCl is used as a positron source. 22 Na decays into β + to 22 Ne, and simultaneously emits positrons and γ-rays at 1.28 MeV in the process. On the other hand, the positrons incident on the sample are once trapped in the vacancies, then collide with the electrons that have oozed to the surface of the vacancies and disappear, but emit 511 keV gamma rays. Therefore, the positron annihilation lifetime can be obtained by measuring the time difference between the γ-ray of 1.28 MeV as a start signal and the γ-ray of 511 keV as a stop signal. When the life curve (horizontal axis: positron annihilation lifetime, vertical axis: positron count) obtained in this way is inversely Laplace transformed, the distribution curve of free volume (horizontal axis: free volume radius, vertical axis: relative number of free volume) Is calculated. The value of the mean free volume radius described in the present embodiment is obtained by three-component analysis using the nonlinear least squares program POSITROFIT.
[0012]
The method of carbonizing the raw material pitch is not particularly limited. The carbonization may be normal pressure carbonization under standing or stirring, or carbonization under pressure. Before the carbonization treatment, the powdery or fibrous pitch may be infusibilized. From the viewpoint of productivity, the following continuous carbonization treatment is desirable. That is, in a reaction vessel maintained at a temperature of 400 to 900 ° C. under an inert atmosphere, a carbonized material of a granular or powdery raw material pitch is charged and stirred in advance, and the raw material pitch is added thereto as it is. This produces a granular or powdered carbonized product.
[0013]
In this method (hereinafter, referred to as return medium type carbonization), the added raw material pitch first becomes a low-viscosity liquid by heating, and the carbonized product of granular or powdery pitch previously charged (hereinafter referred to as return medium). ) On the surface. Thereafter, as the polymerization reaction proceeds by heat, it finally changes to an infusible carbonized product. Since the return medium is always kept in a fluid state by stirring, the gas generated by the reaction of the pitch is quickly discharged out of the system, and does not cause remarkable melt foaming as in the case of performing carbonization at rest, Carbonization can be continuously and efficiently performed in a reactor having a much smaller volume than in the case of carbonization in a stationary state. In addition, the pitch is dispersed on the surface of the return medium, thermal polymerization proceeds, and solidifies while being subjected to shear by the flow of the return medium, so that the optical structure of the obtained carbonized material becomes mosaic.
[0014]
The reactor used here is a tank-type reactor equipped with a stirrer capable of sufficiently stirring a granular or powdery pitch heat-treated product, a cylindrical reactor equipped with a stirrable paddle, or A rotary kiln or the like can be used. When a row reactor is used, for example, a reactor in which the rotation axis of a stirring blade is inclined as described in JP-A-7-286181 can be used.
[0015]
Granular or powdery pitch carbonized material previously charged into the reactor must first use a flow-structured carbonized material produced by standing carbonization or the like, but the reaction is continued. The carbonaceous material of the new mosaic structure is almost completely replaced in the meantime, and hardly affects the performance of the finally obtained carbon porous body.
[0016]
The pitch carbonized as described above is activated. If the carbonization treatment temperature is lower than 600 ° C., a further heat treatment at 600 ° C. or more before mixing with the activator completes the carbonization, thereby enabling more efficient activation.
[0017]
The activation method is preferably chemical activation using an activator. As an activator used for activation, zinc chloride, an alkali metal compound, or the like is used. Particularly, an alkali metal compound is preferable, and lithium hydroxide, potassium hydroxide, sodium hydroxide, potassium carbonate, potassium chloride and the like are used, and among them, potassium hydroxide is most preferable. The method and apparatus for alkali activation are not particularly limited, but 1 to 4 parts by weight of an alkali metal compound is uniformly mixed with 1 part by weight of a carbonized material, and the mixture is charged into a processing vessel. The temperature is raised from room temperature to 400 to 1000 ° C. in a heating furnace under an atmosphere, and the temperature is maintained for 0.1 to 20 hours. When the treatment temperature is lower than 400 ° C., the activation reaction hardly proceeds, and the activation degree does not increase. If the temperature is higher than 1000 ° C., there is a problem of erosion of the processing apparatus due to precipitation and scattering of metallic potassium. Therefore, the activation treatment is preferably performed at a temperature of 600 to 900 ° C. Thereafter, in order to cool to room temperature and remove alkali components, the mixture is put into alcohol, filtered, and repeatedly washed with water until the filtrate becomes neutral. Thereafter, drying is performed to obtain a porous carbon material.
[0018]
When producing an electrode for EDLC, the carbon porous body used is one whose particle size has been adjusted so that the average particle size is usually 1 to 50 μm, preferably 5 to 30 μm. The pulverization treatment can be carried out at any stage of the carbonized product and the activated product, and is not particularly limited. As the pulverizer, an optimal model is appropriately selected from an impact pulverizer, a jet mill, a micro atomizer, and the like. As for the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier and the like, and is not particularly limited.
[0019]
The EDLC using the carbon porous material thus obtained as an electrode material has a feature that a high capacitance can be obtained with good reproducibility.
[0020]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples.
[0021]
Example 1
78.0 mol of naphthalene, 31.2 mol of hydrogen fluoride and 7.8 mol of boron trifluoride were charged into a 43 liter autoclave and reacted at 270 ° C. for 4 hours. Thereafter, the discharge valve of the autoclave was opened, and nitrogen was blown thereinto to obtain a pitch from which substantially all of hydrogen fluoride and boron trifluoride had been removed. The softening point of this pitch according to the Mettler method was 284 ° C., and the average free volume radius was 0.242 nm.
In order to carbonize the pitch, the temperature was raised to 550 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere and kept at this temperature for 1 hour. After cooling to room temperature, the content (carbon foam) was pulverized to obtain a carbonized product having an average particle size of about 0.5 mm. Next, 200 g of the carbonized product was previously charged as a return medium into a cylindrical reactor having a diameter of 170 mm and a height of 200 mm equipped with a stirrer, and the temperature was raised to 550 ° C. under a nitrogen stream while stirring. Here, the synthetic pitch was added to the reactor at a rate of 10 g / min, and a total of 300 g was charged. After completion of the charging, the mixture was maintained at 550 ° C. for 10 minutes, cooled in the reactor, and the content was taken out. As a result, about 400 g of a granular carbonized product was obtained. The same operation as described above was performed using this granular carbonized material as a return medium. This was repeated seven times to obtain a granular carbonized product having a substitution rate of about 99%. Next, it was pulverized by an impact type pulverizer to an average particle size of 15 μm. Further, the obtained powder was heated up to 700 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere in a tubular furnace and kept for 2 hours.
After cooling to room temperature, 2 parts by weight of potassium hydroxide was uniformly mixed with 1 part by weight of the carbonized powder, the temperature was raised to 750 ° C. at 5 ° C./min in a nitrogen atmosphere, and the temperature was maintained for 1 hour. After cooling to room temperature, the mixture was poured into 2-propanol, and filtration and washing were repeated until the filtrate became neutral, to obtain a porous carbon material.
Next, an electrode was produced using the carbon porous body, and the electrode was evaluated. An electrode was prepared by mixing carbon porous body: conductive filler (Ketjen black): binder (Teflon (registered trademark)) at a weight ratio of 90: 5: 5. A glass bipolar cell was used, and a glass fiber separator was sandwiched between a pair of electrodes and housed in the cell. The electrolyte used was propylene carbonate in which 1.0 mol / liter of tetraethylammonium tetrafluoroborate (C 2 H 5 ) 4 NBF 4 was dissolved. In an argon atmosphere, the battery was charged to a final voltage of 2.7 V at a constant current of 10 mA / g at room temperature, and then discharged to 0 V at a constant current of 10 mA / g. The capacitance per volume is expressed as capacitance per weight C (C = I ・ ΔT / ΔV, where I: average discharge current value per electrode weight, ΔT: voltage drop time, ΔV: voltage drop value). Was calculated by multiplying by the density of The capacitance per unit volume was 34 F / cc.
[0022]
Example 2
70.3 mol of monomethylnaphthalene (α: β = 1: 1), 31.6 mol of hydrogen fluoride and 10.5 mol of boron trifluoride were charged into a 43 liter autoclave and reacted at 270 ° C. for an hour. Thereafter, the discharge valve of the autoclave was opened, and nitrogen was blown thereinto to obtain a pitch from which substantially all of hydrogen fluoride and boron trifluoride had been removed. The softening point of this pitch was 270 ° C., and the average free volume radius was 0.246 nm.
Electrode evaluation was performed through the same carbonization treatment and activation treatment as in Example 1. The capacitance per unit volume was 35 F / cc.
[0023]
Example 3
86 mol of 2,6-dimethylnaphthalene, 67 mol of hydrogen fluoride and 19 mol of boron trifluoride were charged into a 43 liter autoclave and reacted at 250 ° C. for 4 hours. Thereafter, the discharge valve of the autoclave was opened, and nitrogen was blown thereinto to obtain a pitch from which substantially all of hydrogen fluoride and boron trifluoride had been removed. The softening point of this pitch was 276 ° C., and the average free volume radius was 0.250 nm.
Electrode evaluation was performed through the same carbonization treatment and activation treatment as in Example 1. The capacitance per unit volume was 37 F / cc.
[0024]
Example 4
The same pitch as in Example 1 was pulverized to obtain a pitch powder having an average particle diameter of 15 μm. This was treated at 220 ° C. for 2 hours under flowing air. The weight gain was 104%. After carbonizing the oxidized pitch at 700 ° C. for 2 hours, the electrode was evaluated through an activation treatment in the same manner as in Example 1. The capacitance per unit volume was 34 F / cc.
[0025]
Comparative Example 1
Positron annihilation lifetime was measured using a coal-based pitch having a softening point of 300 ° C., and the average free volume radius was determined to be 0.238 nm. The pitch was carbonized and activated in the same manner as in Example 1 to evaluate the electrode. The capacitance per unit volume was 24 F / cc.
[0026]
Comparative Example 2
A pitch having a softening point of 320 ° C. was obtained by heat-treating a petroleum pitch having a softening point of 121 ° C. while stirring under nitrogen flow. The average free volume radius of this pitch was 0.239 nm. The pitch was carbonized and activated in the same manner as in Example 1 to evaluate the electrode. The capacitance per unit volume was 26 F / cc.
[0027]
【The invention's effect】
According to the present invention, a material having an average free volume radius of the raw material pitch of 0.240 nm or more is selected, and carbonized and activated, whereby a high capacitance can be stably expressed with good reproducibility. Thus, a porous carbon material suitable as an EDLC electrode material can be produced.

Claims (5)

陽電子消滅寿命測定法による平均自由体積半径が0.240nm以上である原料ピッチを炭素化したのち賦活処理して得られるキャパシタ電極用炭素多孔体。A carbon porous material for a capacitor electrode obtained by carbonizing a raw material pitch having an average free volume radius of 0.240 nm or more as measured by a positron annihilation lifetime measurement method and then performing an activation treatment. 陽電子消滅寿命測定法による平均自由体積半径が0.240nm以上である原料ピッチを炭素化したのち賦活処理することを特徴とするキャパシタ電極用炭素多孔体の製造方法。A method for producing a carbon porous body for a capacitor electrode, comprising carbonizing a raw material pitch having an average free volume radius of 0.240 nm or more by a positron annihilation lifetime measurement method and then activating the raw material pitch. 原料ピッチが、縮合多環炭化水素またはこれを含有する物質を弗化水素および三弗化硼素の存在下で重合させることによって得られるものであることを特徴とする請求項2に記載のキャパシタ電極用炭素多孔体の製造方法。The capacitor electrode according to claim 2, wherein the raw material pitch is obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. Of producing a porous carbon material for use. 炭素化処理を行なう際に、400〜900℃の反応器内に、予め熱処理済みの粒状または粉末状のピッチ熱処理品を仕込み、攪拌下に原料ピッチを添加することを特徴とする請求項2に記載のキャパシタ電極用炭素多孔体の製造方法。3. The method according to claim 2, wherein, when performing the carbonization treatment, a granular or powdery pitch heat-treated product that has been heat-treated in advance is charged into a reactor at 400 to 900 ° C., and the raw material pitch is added with stirring. A method for producing a carbon porous body for a capacitor electrode according to the above. 炭素化処理の前に、原料ピッチの不融化処理を行なうことを特徴とする請求項2に記載のキャパシタ電極用炭素多孔体の製造方法。The method for producing a carbon porous body for a capacitor electrode according to claim 2, wherein a raw material pitch infusibilization treatment is performed before the carbonization treatment.
JP2002349832A 2002-12-02 2002-12-02 Carbon porous body for capacitor electrode and its manufacturing method Pending JP2004182507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349832A JP2004182507A (en) 2002-12-02 2002-12-02 Carbon porous body for capacitor electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349832A JP2004182507A (en) 2002-12-02 2002-12-02 Carbon porous body for capacitor electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004182507A true JP2004182507A (en) 2004-07-02

Family

ID=32752262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349832A Pending JP2004182507A (en) 2002-12-02 2002-12-02 Carbon porous body for capacitor electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004182507A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132559A (en) * 2007-11-30 2009-06-18 Fujifilm Corp Method for manufacturing activated carbon
WO2011064936A1 (en) * 2009-11-25 2011-06-03 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011198690A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011198685A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2012156042A (en) * 2011-01-27 2012-08-16 Sumitomo Bakelite Co Ltd Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012209169A (en) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132559A (en) * 2007-11-30 2009-06-18 Fujifilm Corp Method for manufacturing activated carbon
WO2011064936A1 (en) * 2009-11-25 2011-06-03 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5477391B2 (en) * 2009-11-25 2014-04-23 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
US9236603B2 (en) 2009-11-25 2016-01-12 Sumitomo Bakelite Co., Ltd. Carbon material for lithium ion secondary cell, negative electrode material for lithium ion secondary cell and lithium ion secondary cell
JP2011198690A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2011198685A (en) * 2010-03-23 2011-10-06 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2012156042A (en) * 2011-01-27 2012-08-16 Sumitomo Bakelite Co Ltd Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012209169A (en) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
JP2002083595A (en) Coke, artificial graphite, method of manufacturing carbon material for negative electrode of nonaqueous solvent secondary battery, and pitch composition
KR101135417B1 (en) Raw material carbon composition for carbon material for electrode of electric double layer capacitor
JP2002104817A (en) Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
WO2010116612A1 (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP3460742B2 (en) Method for producing electrode material for non-aqueous solvent secondary battery
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
US7256157B2 (en) Carbon material for electric double layer capacitor electrodes
JP2008195559A (en) Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon
JP2001180923A (en) Activated carbon, its producing method, electrode made of the same, and electrical double layer capacitor using the electrode
JP2004182507A (en) Carbon porous body for capacitor electrode and its manufacturing method
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
JPWO2006118204A1 (en) Carbon material production method and alkali activation device
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2005142439A (en) Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material
EP1571127A2 (en) Production process for carbonized product and carbonized product obtained by the same process
JP2004182504A (en) Active carbon for capacitor electrode and its manufacturing method
JP4484046B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
JPH11121007A (en) Manufacture of carbonaceous powder for lithium ion secondary battery negative electrode active material
JP4892838B2 (en) Carbonized product production method and carbonized product obtained by the method
JP2000149946A (en) Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture
JP3986938B2 (en) Manufacturing method of carbonized material used for manufacturing activated carbon for electrode of electric double layer capacitor and organic material for carbonized material
JP2005333003A (en) Carbon material for electric double layer capacitor electrode, its manufacturing method and electric double layer capacitor