JP2004182508A - Method of producing carbon material for electric double layer capacitor electrode - Google Patents

Method of producing carbon material for electric double layer capacitor electrode Download PDF

Info

Publication number
JP2004182508A
JP2004182508A JP2002349833A JP2002349833A JP2004182508A JP 2004182508 A JP2004182508 A JP 2004182508A JP 2002349833 A JP2002349833 A JP 2002349833A JP 2002349833 A JP2002349833 A JP 2002349833A JP 2004182508 A JP2004182508 A JP 2004182508A
Authority
JP
Japan
Prior art keywords
pitch
double layer
electric double
layer capacitor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002349833A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Koichi Sugano
公一 菅野
Yasushi Miki
泰 三樹
Takasuke Shigematsu
隆助 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002349833A priority Critical patent/JP2004182508A/en
Publication of JP2004182508A publication Critical patent/JP2004182508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an electric double layer capacitor electrode material which has excellent durability and exhibits stably high capacitance by an industrially advantageous method. <P>SOLUTION: In the method of producing a carbon material for an electric double layer capacitor electrode, a pitch obtained by polymerizing condensed polycyclic hydrocarbon or a substance comprising the same in the presence of hydrogen fluoride-boron trifluoride is heat-treated, and is next subjected to activation treatment at 500 to 700°C using an activation agent comprising ≥70 wt.% sodium hydroxide. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電気二重層キャパシタ電極用炭素材料の製造方法に関する。
【0002】
【従来の技術】
現在、電気二重層キャパシタ(EDLC)の分極性電極材料としては、ヤシ殼、コークス、フェノール樹脂等を水蒸気や二酸化炭素等によって賦活した高比表面積を有する活性炭が使われている。しかしながら、これらの原料から高い静電容量を有する高比表面積の活性炭を得るために賦活度を上げていくと、電極材の嵩密度が低くなり、EDLCのエネルギー密度を高くできないという問題があった。
【0003】
最近、コークスやメソカーボンマイクロビーズ、あるいはメソフェーズピッチ系炭素繊維などの易黒鉛化性炭素からアルカリ金属化合物を用いた賦活(以下アルカリ賦活)によって高い静電容量の活性炭を得る方法が開示されている(例えば、特許文献1〜3参照。)。また、本発明者らは、特定のピッチ原料を熱処理、賦活処理することで優れたEDLC用活性炭が得られることを開示しており、アルカリ賦活に供する出発原料の選択および処理条件の選択が高い静電容量の活性炭を得るために重要であることを明らかにしている(特許文献4参照。)。
【0004】
上述のアルカリ賦活には主に水酸化カリウムが使用されているが、賦活反応性が高いために炭素中に容量に寄与しない空隙を生じさせて体積あたりの静電容量が低下するという問題を生ずることがあり、さらには、750℃以上の高温で反応を行うために装置の腐食という工業的問題を抱えていた。
【0005】
そこで、水酸化カリウムと水酸化ナトリウムを特定の配合比で混合したものを用いることによって高密度かつ高容量のキャパシタ材料を比較的低温の賦活条件で製造が可能であることが開示されている(例えば、特許文献5〜6参照。)が、工業的に有利な水酸化ナトリウムの配合量が多い場合には静電容量が上がらず、電極抵抗が増大することが指摘されている。
【0006】
【特許文献1】
特許2548546号公報
【特許文献2】
特許2634658号公報
【特許文献3】
特許3149504号公報
【特許文献4】
特開2002−93667号公報
【特許文献5】
特開2001−302226号公報
【特許文献6】
特開2002−15958号公報
【0007】
【発明が解決しようとする課題】
上述したように、従来の製造方法では、工業的に有利な水酸化ナトリウムを主剤とする賦活剤を用いた場合には静電容量が上がらず、実用的な材料が製造できないという問題点があった。本発明の目的は、工業的に有利な方法で、耐久性に優れ、安定的に高い静電容量を発現するEDLC電極材料を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意努力を重ねた結果、特定のピッチを熱処理し、次いで水酸化ナトリウムを一定以上含む賦活剤を用いて賦活処理することにより、体積当りの静電容量が高いEDLC電極材料が得られることを見出し、本発明に到達した。
【0009】
すなわち本発明は、縮合多環式炭化水素またはこれを含有する物質を弗化水素・三弗化硼素の存在下で重合させて得られたピッチを熱処理し、次いで水酸化ナトリウムを70重量%以上含む賦活剤を用いて500〜700℃で賦活処理することを特徴とする電気二重層キャパシタ電極用炭素材料の製造方法である。
【0010】
【発明の実施の形態】
以下に、本発明の詳細について記述するが、本発明は以下の記述だけに限定されるものではない。
本発明では縮合多環式炭化水素またはこれを含有する物質を弗化水素・三弗化硼素の存在下で重合させて得られた合成ピッチが用いられる。本合成ピッチは、プロトンが縮合多環式炭化水素に付加して生成したカチオンを経由して重合していると考えられており、生成したピッチ中に多くの脂肪族水素を有することから、軟化点が低く、溶媒への溶解性が高いなどの特徴を有することで、従来のピッチと区別される。このような特徴的な構造が水酸化ナトリウムを主剤とする賦活剤に対する良好な賦活性に関係していると推測される。
【0011】
合成ピッチの製造法は特に制限されるものではないが、例えば弗化水素および三弗化硼素の存在下で、縮合多環炭化水素またはこれらを含有する物質を重合させることによって得ることができる。縮合多環炭化水素としては、例えば特許第2931593号公報、特許第2621253号公報、あるいは特許第2526585号公報に示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を用いることができる。このうち、比較的安価で入手が容易なナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセンから選ばれる縮合多環炭化水素類、およびそれらの混合物が通常用いられる。
【0012】
重合反応はピッチ原料1モルに対し、重合触媒としてフッ化水素0.1〜20モル、三フッ化硼素0.05モル〜1.0モルを使用し、100℃〜400℃の温度で5〜300分間反応させることにより行なわれる。次いで窒素気流下で250〜400℃の温度で加熱することにより、軽沸分を除去してもよい。
【0013】
本発明における炭素化は、上記ピッチを、攪拌下あるいは静置のまま熱処理する方法により炭素化処理を行ってもよく、粉砕処理や溶融紡糸により得られる粉末状あるいは繊維状の前駆体を不融化処理により酸素を付加した後に炭素化処理を行ってもよい。中でも、モザイク状の内部組織を有する粒状または粉末状のピッチ熱処理品の連続的な製造が可能な、後述する戻し媒処理法が高容量のキャパシタ材料を安価に製造できるために好ましい。
【0014】
すなわち、400〜800℃の反応器内に、ピッチを熱処理した粒状または粉末状の熱処理済み製品(戻し媒と呼ぶ)を予め仕込み、当該反応器中に撹拌下に原料ピッチを供給することによって粒状または粉末状のピッチの熱処理品が製造できる。
【0015】
この方法では、添加したピッチは、加熱によりまず低粘度の液体となって、予め仕込んだ粒状または粉末状のピッチ熱処理品(戻し媒)の表面上に分散する。その後、熱による重合反応が進むことで、最終的には不融不溶な熱処理物と変化する。戻し媒は撹拌によって常に流動状態が保たれているので、ピッチの反応によって生成するガスは速やかに系外に排出され、小さな容積の反応器で効率よく熱処理を行うことができる。
【0016】
ピッチは戻し媒表面上に分散して重合が進み、戻し媒の流動によるせん断を受けながら固化するので、得られた熱処理品の光学組織はモザイク組織となる。また、急昇温によって熱処理を受けるために、粒子内部に微細な欠陥が多数存在することが推測される。このような独特の性状はこの後の水酸化ナトリウムを主剤とする賦活剤に対する良好な賦活性を実現する為にも好ましい。
【0017】
本発明では、上述の熱処理を行なった後、次いで水酸化ナトリウムを主剤とする賦活剤によって賦活処理する。賦活剤中の水酸化ナトリウムの配合割合は70重量%以上であり、好ましくは90重量%以上である。水酸化ナトリウム以外の成分は特に限定されないが、水酸化リチウム、水酸化カリウム、炭酸カリウム、塩化カリウム等のアルカリ金属化合物が好ましい。
【0018】
賦活の方法や装置は特に限定されないが、ピッチ熱処理物1重量部に対して1〜4重量部の賦活剤を均一に混合し処理容器に充填し、窒素ガスやアルゴンガスなどの不活性ガス雰囲気下の加熱炉中で500〜700℃、より好ましくは550〜650℃で加熱して0.1〜20時間保持される。500℃より低いと賦活反応が進行し難く賦活度が上がらない。また、処理温度を700℃以下にすることによって処理装置の腐食を最低限に抑えることができる。賦活後に室温まで冷却しアルカリ成分を除去するため、アルコール中に投入、濾過し、濾液が中性になるまで水洗を繰り返す。その後乾燥し活性炭を得る。
【0019】
EDLC用電極を作製する際には、活性炭は平均粒径で通常1〜50μm、好ましくは平均粒径5〜30μmの範囲になるように粒度調整されたものを用いる。粉砕処理は炭素化処理品、賦活処理品のどちらの段階においても行なうことができ特に限定されない。粉砕機については衝撃式粉砕機やジェットミル、マイクロアトマイザー等から適宜、最適機種が選択される。分級機についても機械式分級、風力式分級機等から適宜、最適機種が選択され特に限定されない。
【0020】
こうして得られた炭素材料は体積当りの静電容量が高く、これを電極材料に用いることで、エネルギー密度が高く、信頼性の高いEDLCが得られる。
【0021】
【実施例】
次に実施例により本発明を更に具体的に説明する。但し本発明は以下の実施例により制限されるものではない。
【0022】
<実施例1>
弗化水素・三弗化硼素の共存下、ナフタレンを重合させてメソフェ−ズピッチ(メトラー法軟化点:230℃)を合成した。得られたピッチを熱処理するため、窒素雰囲気下5℃/分で530℃まで昇温し、この温度で1時間保持した。室温まで冷却したのち、粗粉砕して平均粒径が約0.5mmの戻し媒用メソフェーズピッチ熱処理品を得た。
次に、撹拌機を装備した直径170mm、高さ170mmの漕型反応器の中に、この熱処理品200gを戻し媒として予め仕込み、撹拌しながら、窒素気流下550℃に昇温した。ここへ、該メソフェーズピッチを毎分10gの速度で反応器に加え、全体で300g投入した。投入終了後、550℃で10分間保持した後、反応器を冷却し内容物を取り出したところ、400gの粒状の熱処理品が得られた。同じ操作を7回繰り返し、約99%の置換率のメソフェーズピッチ熱処理品を得た。さらに、該熱処理品を管状炉中、窒素雰囲気下5℃/分で750℃まで昇温して、この温度で2時間保持して仮焼品を得た。
該仮焼品を衝撃式粉砕器により平均粒径15μmに粉砕し、得られた仮焼品粉末1重量部に対して2重量部の水酸化ナトリウムを均一に混合し、窒素雰囲気下5℃/分で600℃まで昇温し、この温度で2時間保持した。室温まで冷却したのち2−プロパノール中に投入し、濾液が中性になるまで濾過、水洗を繰り返した。
得られた活性炭を活性炭:導電性フィラー(ケッチェンブラック):結着剤(テフロン(登録商標))の重量比90:5:5で混合し電極を作成した。電極評価はガラス製2極式セルを用い、一対の電極の間にグラスファイバー製セパレータを挟みセルに収容した。電解液はテトラエチルアンモニウムテトラフルオロボレート((CNBF)を1モル/リットル溶解したプロピレンカーボネートを用いた。
Ar雰囲気中、室温下、10mA/gの定電流で電圧2.7Vまで充電し、さらに2.7Vで2時間充電を行った後、10mA/gの定電流で0Vまで放電した。これを3回繰り返した。次に、充放電の定電流を100mA/gとして同様に充放電を行い、放電された電気量から静電容量を算出した。静電容量は正負極両極中の炭素重量(活性炭およびケッチェンブラック)を基準とし、下式に従って算出した。また、体積当たりの静電容量Cv(F/cc)は重量当たりの静電容量Cw(F/g)に電極の密度を乗ずることにより算出した。
(式)静電容量Cw(F/g)=放電電気量(AH/g)×3600/2.7
その結果、重量当り静電容量32.0F/g、体積当り静電容量33.6F/cc、電極密度1.05g/ccと優れた値を示した。また、電流密度5mA/cmで放電したときの放電開始直後の電圧降下から算出した抵抗値は24Ω・cmであった。
【0023】
<実施例2>
仮焼品粉末1重量部に対して1.8重量部の水酸化ナトリウムと0.2重量部の水酸化カリウムの混合物を賦活剤に用いた以外は実施例1と同様にして活性炭を得た。得られた活性炭について実施例1と同様に静電容量を求めたところ、重量当り静電容量34.0F/g、体積当り静電容量32.3F/cc、電極密度0.95g/ccと優れた値を示した。また、抵抗値は20Ω・cmであった。
【0024】
<比較例>
石油系ニードルコークスを、窒素雰囲気下5℃/分で750℃まで昇温して、この温度で2時間保持した。これを衝撃式粉砕器により平均粒径15μmに粉砕し、得られた炭素粉末1重量部に対して2重量部の水酸化ナトリウムを均一に混合し、窒素雰囲気下5℃/分で600℃まで昇温し、この温度で2時間保持した。室温まで冷却したのち2−プロパノール中に投入し、濾液が中性になるまで濾過、水洗を繰り返した。
得られた活性炭について実施例1と同様に静電容量を求めたところ、重量当り静電容量22.0F/g、体積当り静電容量22.0F/cc、電極密度1.00g/ccであり、賦活があまり進行せず静電容量は低かった。また、抵抗値は56Ω・cmと高かった。
【0025】
【発明の効果】
特定のピッチを熱処理し、次いで水酸化ナトリウムを70重量%以上含む賦活剤を用いて賦活処理することで、安定的に高い静電容量を発現可能な、EDLC電極に適した活性炭を安価に提供することができる。
本発明を実施することにより、高いエネルギー密度を有するEDLCを安価にかつ安定的に製造することができ、工業的意義がきわめて大きい。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a carbon material for an electrode of an electric double layer capacitor.
[0002]
[Prior art]
At present, as a polarizable electrode material of an electric double layer capacitor (EDLC), activated carbon having a high specific surface area obtained by activating coconut shell, coke, phenol resin or the like with steam, carbon dioxide or the like is used. However, when the activation rate is increased to obtain activated carbon having a high capacitance and a high specific surface area from these raw materials, there is a problem that the bulk density of the electrode material decreases and the energy density of the EDLC cannot be increased. .
[0003]
Recently, there has been disclosed a method for obtaining activated carbon having a high capacitance from an easily graphitizable carbon such as coke, mesocarbon microbeads, or mesophase pitch-based carbon fiber by using an alkali metal compound (hereinafter referred to as alkali activation). (For example, refer to Patent Documents 1 to 3.) In addition, the present inventors have disclosed that an excellent activated carbon for EDLC can be obtained by subjecting a specific pitch raw material to heat treatment and activation treatment, and the selection of starting materials to be subjected to alkali activation and the selection of processing conditions are high. It is clarified that it is important to obtain activated carbon having a capacitance (see Patent Document 4).
[0004]
Potassium hydroxide is mainly used for the above-mentioned alkali activation. However, since the activation reactivity is high, a void that does not contribute to the capacity is generated in carbon, which causes a problem that the capacitance per volume is reduced. In some cases, the reaction is performed at a high temperature of 750 ° C. or more, which causes an industrial problem of corrosion of the apparatus.
[0005]
Therefore, it is disclosed that a high-density and high-capacity capacitor material can be manufactured under relatively low-temperature activation conditions by using a mixture of potassium hydroxide and sodium hydroxide at a specific compounding ratio ( For example, Patent Documents 5 and 6) point out that when the amount of industrially advantageous sodium hydroxide is large, the capacitance does not increase and the electrode resistance increases.
[0006]
[Patent Document 1]
Japanese Patent No. 2548546 [Patent Document 2]
Japanese Patent No. 26334658 [Patent Document 3]
Japanese Patent No. 3149504 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-93667 [Patent Document 5]
JP 2001-302226 A [Patent Document 6]
JP 2002-15958 A
[Problems to be solved by the invention]
As described above, in the conventional production method, when an activator containing sodium hydroxide as a main component, which is industrially advantageous, is used, the capacitance does not increase, and there is a problem that a practical material cannot be produced. Was. An object of the present invention is to provide a method for manufacturing an EDLC electrode material having excellent durability and stably exhibiting a high capacitance by an industrially advantageous method.
[0008]
[Means for Solving the Problems]
The present inventors have made intensive efforts to solve the above-mentioned problems, and as a result, heat-treated a specific pitch and then activated using an activator containing sodium hydroxide in a certain amount or more, so that the electrostatic capacity per volume was reduced. The inventors have found that an EDLC electrode material having a high capacity can be obtained, and have reached the present invention.
[0009]
That is, the present invention provides a method for heat treating a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride, and then adding 70% by weight or more of sodium hydroxide. A method for producing a carbon material for an electric double layer capacitor electrode, comprising performing an activation treatment at 500 to 700 ° C. using an activator containing the same.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description.
In the present invention, a synthetic pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride is used. This synthetic pitch is considered to be polymerized via cations generated by the addition of protons to the condensed polycyclic hydrocarbon.Since the generated pitch has a large amount of aliphatic hydrogen, it is softened. It is distinguished from conventional pitches by having features such as low points and high solubility in solvents. It is presumed that such a characteristic structure is related to good activation of the activator containing sodium hydroxide as a main component.
[0011]
The method for producing the synthetic pitch is not particularly limited. For example, the synthetic pitch can be obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing these in the presence of hydrogen fluoride and boron trifluoride. Examples of the condensed polycyclic hydrocarbon include, for example, naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene, and the like, as described in Japanese Patent No. 2931593, Japanese Patent No. 262253, or Japanese Patent No. 2526585. Condensed polycyclic hydrocarbons having these skeletons, mixtures thereof, or substances containing these can be used. Among them, condensed polycyclic hydrocarbons selected from naphthalene, monomethylnaphthalene, dimethylnaphthalene and anthracene, which are relatively inexpensive and easily available, and mixtures thereof are usually used.
[0012]
In the polymerization reaction, 0.1 to 20 mol of hydrogen fluoride and 0.05 to 1.0 mol of boron trifluoride are used as a polymerization catalyst per mol of the pitch raw material at a temperature of 100 to 400 ° C. for 5 to 5 mol. It is performed by reacting for 300 minutes. Next, by heating at a temperature of 250 to 400 ° C. under a nitrogen stream, light boilers may be removed.
[0013]
In the carbonization in the present invention, the above-mentioned pitch may be subjected to a carbonization treatment by a method of heat treatment with stirring or standing, and infusibilize a powdery or fibrous precursor obtained by pulverization or melt spinning. The carbonization treatment may be performed after oxygen is added by the treatment. Above all, a return medium treatment method described later, which enables continuous production of a granular or powdery pitch heat-treated product having a mosaic-shaped internal structure, is preferable because a high-capacity capacitor material can be produced at low cost.
[0014]
That is, a granular or powdered heat-treated product (referred to as a return medium) in which a pitch has been heat-treated is preliminarily charged into a reactor at 400 to 800 ° C., and the raw material pitch is supplied into the reactor under stirring to obtain a granular material. Alternatively, a heat-treated product having a powdery pitch can be manufactured.
[0015]
In this method, the added pitch first becomes a low-viscosity liquid by heating, and is dispersed on the surface of a previously prepared granular or powdered pitch heat-treated product (return medium). Thereafter, as the polymerization reaction by heat progresses, it finally changes into an infusible and insoluble heat-treated product. Since the return medium is always kept in a fluid state by stirring, the gas generated by the pitch reaction is quickly discharged out of the system, and the heat treatment can be efficiently performed in a small-volume reactor.
[0016]
The pitch is dispersed on the surface of the return medium, polymerization proceeds, and the pitch solidifies while being subjected to shear by the flow of the return medium. Therefore, the optical structure of the obtained heat-treated product has a mosaic structure. Further, it is presumed that a large number of fine defects are present inside the particles due to the heat treatment due to the rapid temperature rise. Such a unique property is also preferable in order to realize a good activator for the activator mainly containing sodium hydroxide thereafter.
[0017]
In the present invention, after performing the above-described heat treatment, an activation treatment is then performed using an activator containing sodium hydroxide as a main component. The mixing ratio of sodium hydroxide in the activator is 70% by weight or more, preferably 90% by weight or more. Components other than sodium hydroxide are not particularly limited, but alkali metal compounds such as lithium hydroxide, potassium hydroxide, potassium carbonate, and potassium chloride are preferred.
[0018]
The method and apparatus for activation are not particularly limited, but 1 to 4 parts by weight of an activator is uniformly mixed with 1 part by weight of the pitch heat-treated product, and the mixture is filled in a processing vessel. It is heated at 500 to 700 ° C., more preferably 550 to 650 ° C. in a lower heating furnace and is kept for 0.1 to 20 hours. When the temperature is lower than 500 ° C., the activation reaction hardly proceeds, and the degree of activation does not increase. Further, by setting the processing temperature to 700 ° C. or lower, the corrosion of the processing apparatus can be minimized. After activation, the mixture is cooled to room temperature to remove an alkaline component, and then poured into alcohol, filtered, and repeatedly washed with water until the filtrate becomes neutral. After that, it is dried to obtain activated carbon.
[0019]
When producing an electrode for EDLC, the activated carbon used is one whose particle size has been adjusted so as to have an average particle diameter of usually 1 to 50 μm, preferably 5 to 30 μm. The pulverizing treatment can be performed at any stage of the carbonized product and the activated product, and is not particularly limited. As the pulverizer, an optimal model is appropriately selected from an impact pulverizer, a jet mill, a micro atomizer, and the like. As for the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier and the like, and is not particularly limited.
[0020]
The carbon material thus obtained has a high capacitance per volume, and by using this as an electrode material, an EDLC with high energy density and high reliability can be obtained.
[0021]
【Example】
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples.
[0022]
<Example 1>
In the presence of hydrogen fluoride and boron trifluoride, naphthalene was polymerized to synthesize a mesophase pitch (Mettler softening point: 230 ° C.). In order to heat-treat the obtained pitch, the temperature was increased to 530 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere and maintained at this temperature for 1 hour. After cooling to room temperature, the resultant was coarsely pulverized to obtain a mesophase pitch heat-treated product for a return medium having an average particle size of about 0.5 mm.
Next, 200 g of this heat-treated product was previously charged as a return medium into a 170 mm diameter, 170 mm height tank-type reactor equipped with a stirrer, and the temperature was raised to 550 ° C. under a nitrogen stream while stirring. Here, the mesophase pitch was added to the reactor at a rate of 10 g per minute, and a total of 300 g was charged. After the charging was completed, the temperature was maintained at 550 ° C. for 10 minutes, and then the reactor was cooled and the content was taken out. As a result, 400 g of a granular heat-treated product was obtained. The same operation was repeated seven times to obtain a mesophase pitch heat-treated product having a substitution rate of about 99%. Further, the heat-treated product was heated to 750 ° C. in a tubular furnace at a rate of 5 ° C./min in a nitrogen atmosphere, and kept at this temperature for 2 hours to obtain a calcined product.
The calcined product was pulverized to an average particle size of 15 μm with an impact grinder, and 2 parts by weight of sodium hydroxide was uniformly mixed with 1 part by weight of the obtained calcined product powder. The temperature was raised to 600 ° C. in minutes and kept at this temperature for 2 hours. After cooling to room temperature, the mixture was poured into 2-propanol, and filtration and washing with water were repeated until the filtrate became neutral.
The obtained activated carbon was mixed at a weight ratio of activated carbon: conductive filler (Ketjen black): binder (Teflon (registered trademark)) of 90: 5: 5 to prepare an electrode. For electrode evaluation, a glass bipolar cell was used, and a glass fiber separator was sandwiched between a pair of electrodes and housed in the cell. As the electrolytic solution, propylene carbonate in which tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) was dissolved at 1 mol / liter was used.
In an Ar atmosphere, at room temperature, the battery was charged to a voltage of 2.7 V at a constant current of 10 mA / g, further charged at 2.7 V for 2 hours, and then discharged to 0 V at a constant current of 10 mA / g. This was repeated three times. Next, charging and discharging were performed in the same manner with the constant current of charging and discharging being 100 mA / g, and the capacitance was calculated from the amount of discharged electricity. The capacitance was calculated in accordance with the following equation based on the weight of carbon in both the positive and negative electrodes (activated carbon and Ketjen black). The capacitance per volume Cv (F / cc) was calculated by multiplying the capacitance per weight Cw (F / g) by the density of the electrode.
(Formula) Capacitance Cw (F / g) = discharged electricity (AH / g) × 3600 / 2.7
As a result, excellent values were obtained, with a capacitance per weight of 32.0 F / g, a capacitance per volume of 33.6 F / cc, and an electrode density of 1.05 g / cc. The resistance value calculated from the voltage drop immediately after the start of discharge when discharging at a current density of 5 mA / cm 2 was 24 Ω · cm 2 .
[0023]
<Example 2>
Activated carbon was obtained in the same manner as in Example 1, except that a mixture of 1.8 parts by weight of sodium hydroxide and 0.2 parts by weight of potassium hydroxide was used as an activator per 1 part by weight of the calcined product powder. . The capacitance of the obtained activated carbon was determined in the same manner as in Example 1. The capacitance per weight was 34.0 F / g, the capacitance per volume was 32.3 F / cc, and the electrode density was 0.95 g / cc. Value. The resistance was 20 Ω · cm 2 .
[0024]
<Comparative example>
The petroleum-based needle coke was heated to 750 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere and kept at this temperature for 2 hours. This was pulverized with an impact type pulverizer to an average particle size of 15 μm, 2 parts by weight of sodium hydroxide was uniformly mixed with 1 part by weight of the obtained carbon powder, and the mixture was heated to 600 ° C. at 5 ° C./min in a nitrogen atmosphere. The temperature was raised and kept at this temperature for 2 hours. After cooling to room temperature, the mixture was poured into 2-propanol, and filtration and washing with water were repeated until the filtrate became neutral.
The capacitance of the obtained activated carbon was determined in the same manner as in Example 1. As a result, the capacitance per weight was 22.0 F / g, the capacitance per volume was 22.0 F / cc, and the electrode density was 1.00 g / cc. The activation did not proceed so much and the capacitance was low. The resistance value was as high as 56 Ω · cm 2 .
[0025]
【The invention's effect】
By heat-treating a specific pitch and then activating using an activator containing 70% by weight or more of sodium hydroxide, we can provide low-cost activated carbon suitable for EDLC electrodes that can stably exhibit high capacitance. can do.
By carrying out the present invention, an EDLC having a high energy density can be manufactured stably at a low cost, and is of great industrial significance.

Claims (3)

縮合多環炭化水素またはこれを含有する物質を弗化水素・三弗化硼素の存在下で重合させて得られたピッチを熱処理し、次いで水酸化ナトリウムを70重量%以上含む賦活剤を用いて500〜700℃で賦活処理することを特徴とする電気二重層キャパシタ電極用炭素材料の製造方法。The pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride is heat-treated, and then an activator containing 70% by weight or more of sodium hydroxide is used. A method for producing a carbon material for an electric double layer capacitor electrode, comprising activating at 500 to 700 ° C. 前記賦活剤が、水酸化ナトリウムを90重量%以上含むものである請求項1に記載の電気二重層キャパシタ電極用炭素材料の製造方法。The method for producing a carbon material for an electric double layer capacitor electrode according to claim 1, wherein the activator contains at least 90% by weight of sodium hydroxide. ピッチの熱処理方法が反応器内に粒状または粉末状の熱処理済み製品を予め仕込み、当該反応器中に撹拌下に原料重質油またはピッチを供給することによって粒状または粉末状のピッチ熱処理品を製造する工程を含むことを特徴とする請求項1または2に記載の電気二重層キャパシタ電極用炭素材料の製造方法。The pitch heat treatment method prepares granular or powdered heat-treated products in a reactor in advance, and supplies raw heavy oil or pitch to the reactor under stirring to produce granular or powdery pitch heat-treated products. The method for producing a carbon material for an electrode of an electric double layer capacitor according to claim 1, further comprising:
JP2002349833A 2002-12-02 2002-12-02 Method of producing carbon material for electric double layer capacitor electrode Pending JP2004182508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349833A JP2004182508A (en) 2002-12-02 2002-12-02 Method of producing carbon material for electric double layer capacitor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349833A JP2004182508A (en) 2002-12-02 2002-12-02 Method of producing carbon material for electric double layer capacitor electrode

Publications (1)

Publication Number Publication Date
JP2004182508A true JP2004182508A (en) 2004-07-02

Family

ID=32752263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349833A Pending JP2004182508A (en) 2002-12-02 2002-12-02 Method of producing carbon material for electric double layer capacitor electrode

Country Status (1)

Country Link
JP (1) JP2004182508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103069A (en) * 2005-09-30 2007-04-19 Denso Corp Electrode for lithium secondary battery and its manufacturing method as well as lithium secondary battery
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103069A (en) * 2005-09-30 2007-04-19 Denso Corp Electrode for lithium secondary battery and its manufacturing method as well as lithium secondary battery
JP2012009474A (en) * 2010-06-22 2012-01-12 Mitsubishi Gas Chemical Co Inc Method for producing activated carbon for electric double layer capacitor electrode

Similar Documents

Publication Publication Date Title
KR100841587B1 (en) Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor
EP1168389B1 (en) Activated carbon material, process for producing the same and electric double layer capacitor employing the same
JP4877441B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
US7256157B2 (en) Carbon material for electric double layer capacitor electrodes
JP2002083595A (en) Coke, artificial graphite, method of manufacturing carbon material for negative electrode of nonaqueous solvent secondary battery, and pitch composition
JP2014203530A (en) Carbonaceous negative electrode material for sodium secondary battery and method for producing the same
JP2008195559A (en) Activated carbon for electric double-layer capacitor electrode and method for producing the activated carbon
JP5071106B2 (en) Carbon material production method and alkali activation device
JPH06236755A (en) Negative electrode material, its manufacture, and lithium secondary battery
JP2000138140A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2004182508A (en) Method of producing carbon material for electric double layer capacitor electrode
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2008247627A (en) Method for manufacturing carbon material, carbon material and electric double layer capacitor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP2004182507A (en) Carbon porous body for capacitor electrode and its manufacturing method
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP2003212529A (en) Method of manufacturing highly graphitized carbon powder and highly graphitized graphite powder, and method of manufacturing electrical double layer capacitor and lithium ion secondary battery negative pole material
JP2008308360A (en) Manufacturing method of carbon material for electric double layer capacitor electrode
JP4484046B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
JP2004182503A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode
JP2004182504A (en) Active carbon for capacitor electrode and its manufacturing method
JP4072947B2 (en) Process for producing activated carbon fiber and electric double layer capacitor using the same
JP4108422B2 (en) Method for producing activated carbon and electric double layer capacitor using the same
JP2002121570A (en) Process for manufacturing bulk mesophase carbon and graphite powder
JP4892838B2 (en) Carbonized product production method and carbonized product obtained by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090218