JPH0312284A - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JPH0312284A
JPH0312284A JP1146858A JP14685889A JPH0312284A JP H0312284 A JPH0312284 A JP H0312284A JP 1146858 A JP1146858 A JP 1146858A JP 14685889 A JP14685889 A JP 14685889A JP H0312284 A JPH0312284 A JP H0312284A
Authority
JP
Japan
Prior art keywords
activated carbon
treatment
water
surface area
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1146858A
Other languages
Japanese (ja)
Other versions
JPH0729096B2 (en
Inventor
Tamotsu Ogawa
保 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1146858A priority Critical patent/JPH0729096B2/en
Publication of JPH0312284A publication Critical patent/JPH0312284A/en
Publication of JPH0729096B2 publication Critical patent/JPH0729096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To keep good treatment effect over a long period of time and to extend the regeneration cycle of activated carbon by using activated carbon wherein particle specific gravity is a specific value or less and a pore volume with a pore radius of 1mum or more and a specific surface area are specific values or more. CONSTITUTION:Activated carbon to be used for activated carbon treatment has characteristic values such that particle specific gravity (density) is 0.6g/ml or less, a pore volume with a pore radius of 1mum or more is 30-70% and a specific surface area is 1100m<2>/g or more. Since the substances which are adsorbed by activated carbon are efficiently decomposed and removed by bacteria adhered to activated carbon in the same way, the adsorbing capacity of activated carbon can be kept long. As a result, the regeneration cycle of activated carbon can be extended and the running cost in water treatment is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微生物の有機物分解・除去作用やアンモニア
硝化作用等を利用した、上水の高度浄化処理ならびに下
水、し原廃水等の高度処理等の水処理技術に関し、更に
詳細には、活性炭の有する吸着機能と、活性炭に吸着し
た被吸着質を微生物の作用により分解する、生物再生機
能とを共に発揮することのできる水処理技術に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to advanced purification of tap water and advanced treatment of sewage, Shihara wastewater, etc., using the organic matter decomposition/removal action and ammonia nitrification action of microorganisms. More specifically, it relates to water treatment technology that can exhibit both the adsorption function of activated carbon and the biological regeneration function of decomposing adsorbed matter adsorbed on activated carbon through the action of microorganisms.

[従来の技術およびその課題] 従来の活性炭処理技術において、その主目的は、物理吸
着による溶存有機物の除去であった。
[Prior art and its problems] In the conventional activated carbon treatment technology, the main purpose was to remove dissolved organic matter by physical adsorption.

しかし、・この従来技術において問題となるのが活性炭
の再生にかかるコストである。
However, a problem with this prior art is the cost involved in regenerating activated carbon.

通常の場合、活性炭から被吸着質を除去するための活性
炭の再生は水蒸気加熱によって行なわれ、その標準的コ
ストは、現在200円/kg−活性炭前後となっている
。例えば、上水における再生周期は一般に8力月〜1年
であるが、使用活性炭量が極めて多いため、全遣水コス
トに占める活性炭再生処理費の割合は高く、ランニング
コストを低減させるためには、活性炭寿命を延ばす手段
の開発が求められていた。
Normally, activated carbon is regenerated to remove adsorbate from activated carbon by steam heating, and the standard cost is currently around 200 yen/kg of activated carbon. For example, the regeneration cycle for tap water is generally 8 months to 1 year, but since the amount of activated carbon used is extremely large, the activated carbon regeneration cost accounts for a high proportion of the total water supply cost.In order to reduce running costs, There was a need to develop a means to extend the life of activated carbon.

そこで近年、活性炭による吸着と微生物による自己再生
を処理系内で同時に行なわしめる、いわゆる生物活性炭
処理に関する検討が盛んに進められている。
Therefore, in recent years, studies have been actively conducted on so-called biological activated carbon treatment, in which adsorption by activated carbon and self-regeneration by microorganisms are performed simultaneously within a treatment system.

しかしながら、従来検討されている生物活性炭処理に利
用されている活性炭は、もともと水処理用吸着剤として
開発されたものを転用したものであるため、微生物の有
する機能を十分に発揮しきれていないという問題もあっ
た。すなわち、微生物の大きさはミクロンのオーダーで
あり、現実に活性炭表面に付着した好気性微生物の大き
さを電子顕微鏡で観察しても1〜20μmのものが大部
分であった。これに対し、従来使用されている活性炭は
、細孔分布で評価すると、ミクロボアとトランジショナ
ルボア(≦細孔半径100A )が大部分を占めるもの
であり、物理的吸着剤としては優れていても、微生物が
付着するためには細孔が細かすぎ、細孔内に吸着した被
吸着質を分解することが難しかった。
However, the activated carbon used in the biological activated carbon treatment currently under consideration is a repurposed product originally developed as an adsorbent for water treatment, so it is said that it is not able to fully demonstrate the functions of microorganisms. There were also problems. That is, the size of microorganisms is on the order of microns, and even when the size of aerobic microorganisms actually attached to the surface of activated carbon was observed using an electron microscope, most of them were 1 to 20 μm in size. On the other hand, when evaluating the pore distribution of conventionally used activated carbon, micropores and transitional pores (≦pore radius of 100A) account for the majority, and although it is excellent as a physical adsorbent, However, the pores were too small for microorganisms to adhere to, and it was difficult to decompose adsorbed substances adsorbed within the pores.

[課題を解決するための手段] 本発明者は、活性炭処理に用いる活性炭の優れた吸着能
を維持しつつ、これに高い微生物濃度を付与することが
できれば、被吸着質の吸着速度とその生物分解速度が都
合よくバランスし、長期間にわたり良好な処理効果を維
持でき、この結果、活性炭の再生周期を延ばすことがで
きると考えた。
[Means for Solving the Problems] The present inventors believe that if activated carbon used for activated carbon treatment can be given a high microbial concentration while maintaining its excellent adsorption capacity, the adsorption rate of the adsorbed substance and its biological properties can be improved. We believe that the decomposition rate is well balanced and good treatment effects can be maintained over a long period of time, and as a result, the regeneration cycle of activated carbon can be extended.

そして、研究を進めた結果、微生物が数多く付着し、し
かも、有機物等の被吸着質の吸着が良い活性炭は一定の
条件を備えているもののみであることを見出し本発明を
完成した。
As a result of further research, it was discovered that activated carbons that have a large number of microorganisms attached to them and that are good at adsorbing substances such as organic matter are only those that meet certain conditions, and have completed the present invention.

従って、本発明は、活性炭処理用の活性炭として、粒子
比重(密度)が0 、6 g / m 1以下、細孔半
径1μm以上の細孔容積が30〜70%、比表面積が1
100m2/g以上である活性炭を用いることを特徴と
する水処理方法である。
Therefore, the present invention provides activated carbon for activated carbon treatment with a particle specific gravity (density) of 0.6 g/m or less, a pore volume of 30 to 70% with a pore radius of 1 μm or more, and a specific surface area of 1
This water treatment method is characterized by using activated carbon having a density of 100 m2/g or more.

本発明で用いる、上記条件を備えた活性炭は従来水処理
の分野で使われている活性炭の賦活条件では製造するこ
とができず、賦活に当っての賦活時間、賦活温度あるい
は水蒸気添加率等の条件を、いわゆる過剰賦活といわれ
る条件にすることにより製造される。
Activated carbon with the above conditions used in the present invention cannot be manufactured under the activation conditions of activated carbon conventionally used in the field of water treatment, and the activation time, activation temperature, water vapor addition rate, etc. It is produced by setting the conditions to what is called overactivation.

過剰賦活は、例えば、賦活時間を通常の賦活より5〜5
0%程度長くあるいは短くしたり、賦活温度を100〜
300°C程度高くしたり、水蒸気添加率を50〜20
0%程度高める等の条件により行なわれる。このうち、
賦活時間については、他の条件設定や素材の程度(炭化
度)により通常値より短くなる場合もある。例えば、泥
炭等の炭化度の低い石炭を原料とする場合は、高温、高
水蒸気量で急速賦活を行なう必要がある。
Excessive activation means, for example, activation time 5 to 5 times longer than normal activation.
Make it longer or shorter by about 0%, or set the activation temperature to 100% or less.
Increase the temperature by about 300°C or increase the water vapor addition rate by 50 to 20°C.
This is done under conditions such as raising the temperature by about 0%. this house,
The activation time may be shorter than the normal value depending on other condition settings and the degree of material (carbonization degree). For example, when coal with a low degree of carbonization such as peat is used as a raw material, it is necessary to perform rapid activation at high temperature and high amount of steam.

また、木質系(木炭系)素材も本発明活性炭に要求され
る条件を満足する。
Furthermore, wood-based (charcoal-based) materials also satisfy the conditions required for the activated carbon of the present invention.

本発明の活性炭に要求される条件は、比表面積、細孔割
合および粒子比重である。そして、上水中のトリハロメ
タン前駆物質を対象とし、総トリハロメタン生成能(T
THMFP)を指標として平衡濃度30μg/lにおけ
る比表面積と吸着量の関係を示す第1図から明らかなよ
うに、比表面積が 1100m’/g以下になると被吸
着質の吸着量が著しく減少する。また、細孔の割合と吸
着量の関係を示す第2図から明らかなように、細孔半径
が1μm以上の細孔が70%を越えると必然的に微細孔
割合が低下し、結果的に吸着面積が減少して吸着量が著
しく減少する。
The conditions required for the activated carbon of the present invention are specific surface area, pore ratio, and particle specific gravity. Then, the total trihalomethane production capacity (T
As is clear from FIG. 1, which shows the relationship between the specific surface area and adsorption amount at an equilibrium concentration of 30 μg/l using THMFP) as an index, when the specific surface area becomes 1100 m'/g or less, the adsorption amount of the adsorbate decreases significantly. Furthermore, as is clear from Figure 2, which shows the relationship between the pore ratio and adsorption amount, when the pores with a pore radius of 1 μm or more exceed 70%, the pore ratio inevitably decreases, resulting in The adsorption area decreases and the amount of adsorption decreases significantly.

一方、細孔半径が1μm以上の細孔が30%以下の場合
は微細孔割合が増加し、分子量が大きな有機物質等の被
吸着質が侵入できない、いわゆるミクロボアが増えるた
め、吸着量の増大はほとんど期待できない。更に、粒子
比重と付着微生物量の関係を示す第3図から明らかなよ
うに、粒子比重が0.6g/mlより大きくなると、微
生物が付着できる細孔容積が減少するため、付着微生物
量が激減し、生物活性炭処理を行なうことが難しくなる
On the other hand, if the percentage of pores with a pore radius of 1 μm or more is less than 30%, the proportion of micropores increases, and the number of so-called micropores that cannot be penetrated by organic substances with large molecular weights increases, so the amount of adsorption does not increase. I can hardly expect it. Furthermore, as is clear from Figure 3, which shows the relationship between the particle specific gravity and the amount of attached microorganisms, when the particle specific gravity becomes larger than 0.6 g/ml, the pore volume to which microorganisms can attach decreases, so the amount of attached microorganisms decreases sharply. However, it becomes difficult to perform biological activated carbon treatment.

本発明の水処理方法は、上記した条件を満たす活性炭を
用いる以外はすでに公知の方法によって実施することが
できる。すなわち、上水を高度処理する場合の一般的な
処理フローシートは、 凝集・沈澱→砂ろ過→活性炭ろ過 であり、上記条件を満足した活性炭を充填したろ通塔に
被処理水を通過せしめれば良く、また、溶存有機物の生
物分解性を高める必要がある場合には、オゾン、過酸化
水素等の酸化剤により有81物を予め化学分解した後、
本発明活性炭を充填したろ通塔を通過せしめれば良い。
The water treatment method of the present invention can be carried out by already known methods except for using activated carbon that satisfies the above conditions. In other words, the general treatment flow sheet for advanced treatment of clean water is coagulation/sedimentation → sand filtration → activated carbon filtration, and the water to be treated is passed through a filtration tower filled with activated carbon that satisfies the above conditions. In addition, if it is necessary to improve the biodegradability of dissolved organic matter, after chemically decomposing the organic matter with an oxidizing agent such as ozone or hydrogen peroxide,
It may be passed through a filtration tower filled with the activated carbon of the present invention.

この場合、前記のフローシートに比べて微生物付着量が
多くなり、基質の分解が効果的に行なわれる。
In this case, the amount of microorganisms adhering to the sheet is larger than that of the flow sheet described above, and the substrate is effectively decomposed.

なお、水質汚染が進んでいたり、溶存酸素が少ない水を
対象として好気性処理する場合に、活性炭層内を好気的
雰囲気に維持することが困難である場合には、充填塔内
をエアレーシヨンすることにより効果的な処理を行なう
ことができる。エアレーシヨンは、好ましくは充填層内
もしくはその下部より散気することにより実施される。
In addition, if water pollution is advanced or it is difficult to maintain an aerobic atmosphere in the activated carbon bed when performing aerobic treatment on water with low dissolved oxygen, aerate the inside of the packed tower. This allows effective processing. Aeration is preferably performed by diffusing air from within or below the packed bed.

[発明の効果] 本発明の水処理方法によれば、活性炭に吸着した被吸着
質は、同じく活性炭に付着している微生物により効率良
く分解・除去されるため、活性炭の有する吸着能を長く
維持させることが可能となる。そしてその結果、活性炭
の再生周期を長くすることができ、水処理におけるラン
ニングコストが低減される。
[Effects of the Invention] According to the water treatment method of the present invention, adsorbates adsorbed on activated carbon are efficiently decomposed and removed by microorganisms also attached to the activated carbon, so the adsorption capacity of the activated carbon can be maintained for a long time. It becomes possible to do so. As a result, the regeneration cycle of activated carbon can be lengthened, and running costs in water treatment can be reduced.

[実施例] 次に実施例および参考例を挙げ、本発明を更に詳しく説
明するが、本発明はこれら実施例になんら制限されるも
のではない。
[Examples] Next, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited to these Examples in any way.

参考例 1 泥炭を原料とし、これを賦活温度1100″C23倍量
の水蒸気添加により2時間賦活して活性炭Aを得た。
Reference Example 1 Activated carbon A was obtained by using peat as a raw material and activating it for 2 hours by adding 23 times the amount of steam at an activation temperature of 1100''C.

実施例 l 富栄養化が進んだ湖沼水を対象に、参考例で得た活性炭
を用い、第4図に示すフローシートおよび第1表に示す
処理条件で上水高度処理実験を行なった。
Example 1 Targeting lake water with advanced eutrophication, an advanced water treatment experiment was conducted using the activated carbon obtained in Reference Example under the flow sheet shown in FIG. 4 and the treatment conditions shown in Table 1.

基本的な処理工程は、湖水を水源とする浄水場の着水井
から試料水を採取し、これを凝集沈澱処理した後、オゾ
ン処理を行なって予備処理液を得た。次いでこれを生物
活性炭処理工程へ導入し、上水処理した。
The basic treatment process was to collect sample water from the receiving well of a water treatment plant whose water source is lake water, subject it to coagulation and sedimentation, and then ozone treatment to obtain a pre-treated liquid. This was then introduced into a biological activated carbon treatment process to treat tap water.

生物活性炭処理は、本発明方法と従来法の処理効果を比
較できるように予備処理液を4系列に等分し、それぞれ
を第2表で示す物性を有する活性炭を充填したカラムに
連続通水した。第2表の活性炭中、活性炭Bは従来法で
用いられているものであり、本発明の活性炭Aと比べて
粒子比重が大きく、また、1μm以下の細孔割合および
比表面積が小さい。
In the biological activated carbon treatment, in order to compare the treatment effects of the method of the present invention and the conventional method, the pretreatment liquid was equally divided into four series, and each series was continuously passed through a column filled with activated carbon having the physical properties shown in Table 2. . Among the activated carbons in Table 2, activated carbon B is used in the conventional method, and has a larger particle specific gravity and a smaller pore ratio of 1 μm or less and a smaller specific surface area than the activated carbon A of the present invention.

活性炭Cおよび活性炭りは、本発明の活性炭Aの比較対
象として調製したものであり、活性炭Cは比表面積が小
さい点で、また活性炭りは細孔分布割合の点でそれぞれ
活性炭Aと異なっている。
Activated carbon C and activated carbon porcelain were prepared as comparison targets for activated carbon A of the present invention, and activated carbon C differs from activated carbon A in that the specific surface area is small, and activated carbon porcelain differs from activated carbon A in terms of pore distribution ratio. .

第 ¥2 基   本   処 理 条 件 取   水   量 凝集剤 凝集剤注入率 オゾン注入率 オゾン反応時間 活性炭 SV 活性炭 LV 50  m3/日 硫酸ばん 40   mg/I 2  り9/1 10分 5(/h 10 幻/h と 第 表 活性炭A  活性炭B (本発明方法)  (従来法) 活性炭C (比較法工) 活性炭D (比較法II) 平均粒子径 (IIlffl) 充填密度 (g/ml) 空隙率 粒子比重 (geIll ) 真比重  (g/a+1) 細孔容積 全   体(口1/g) 1μm以上(%) 比表面積 (鋭2/g) 1.0 0.20 0.47 o、38 1.80 1.0 0.44 0.45 o、80 1.82 1.1 0.30 0.48 0.58 1.85 0.95 0.31 0.48 0.60 1.90 2.19   0.70   1.24   1.10
45     31    39    182380
   1150   890  1210試験の結果を
第5図に示す。この結果から明らかなように、活性炭A
を用いた本発明方法の処理効果は、従来法の処理効果を
常に上回っていた。また、本発明方法の破過率(100
%−除去率)は50%前後でほぼ平衡状態を維持してい
た。これに対し、従来法の場合、初期の破過速度は比較
的遅いが、粒子比重が大きいため細孔容積が小さくなり
、はぼ物理吸着だけによる処理系となる結果、活性炭が
飽和吸着に近くなると共に100%近く破過してくる。
Chapter 2 Basic Treatment Conditions Water Intake Quantity Flocculant Flocculant Injection Rate Ozone Injection Rate Ozone Reaction Time Activated Carbon SV Activated Carbon LV 50 m3/day Sulfuric Acid 40 mg/I 9/1 10 minutes 5 (/h 10 phantom/ h and Table Activated carbon A Activated carbon B (method of the present invention) (conventional method) Activated carbon C (comparative method) Activated carbon D (comparative method II) Average particle diameter (IIlffl) Packing density (g/ml) Porosity particle specific gravity (geIll ) True specific gravity (g/a+1) Total pore volume (mouth 1/g) 1 μm or more (%) Specific surface area (acute 2/g) 1.0 0.20 0.47 o, 38 1.80 1.0 0.44 0.45 o, 80 1.82 1.1 0.30 0.48 0.58 1.85 0.95 0.31 0.48 0.60 1.90 2.19 0.70 1. 24 1.10
45 31 39 182380
The results of the 1150 890 1210 test are shown in FIG. As is clear from this result, activated carbon A
The treatment effect of the method of the present invention using the method always exceeded the treatment effect of the conventional method. In addition, the breakthrough rate of the method of the present invention (100
%-removal rate) maintained an almost equilibrium state at around 50%. In contrast, in the case of the conventional method, the initial breakthrough rate is relatively slow, but the pore volume is small due to the large particle specific gravity, resulting in a treatment system that relies only on physical adsorption, resulting in activated carbon approaching saturated adsorption. As time goes on, it will break through to nearly 100%.

また、比較系のうち活性炭Cを用いる比較法Iでは、活
性炭の比表面積が他のものより小さいため、吸着容量が
小さく、活性炭の生物再生効果を期待する前に急速に活
性炭の破過が進む。一方、活性炭りを用いる比較法II
では、活性炭の細孔容積は比較的大きいが、半径100
A以下の細孔が多いため十分な生物再生効果を得ること
はできない。
In addition, in Comparative Method I using activated carbon C, the adsorption capacity is small because the specific surface area of activated carbon is smaller than the other methods, and the breakthrough of activated carbon progresses rapidly before the biological regeneration effect of activated carbon can be expected. . On the other hand, comparative method II using activated carbon
, the pore volume of activated carbon is relatively large, but the radius is 100
Since there are many pores of size A or smaller, a sufficient biological regeneration effect cannot be obtained.

実施例2 被検水として、湖沼原水、凝集処理水およびオゾン処理
水を用い、tRTHM生成能を指標として、本発明方法
によるTHM前駆物質の活性炭に対する吸着能力を比較
した。この結果を第6図に示す。
Example 2 Using lake raw water, coagulated treated water, and ozonated water as test waters, the adsorption ability of THM precursors to activated carbon by the method of the present invention was compared using tRTHM production ability as an index. The results are shown in FIG.

この結果から明らかなように、湖沼原水に直接本方法を
適用するよりも、凝集処理やオゾン処理した水に本発明
方法を適用するほうがTHM前駆物質等被吸着物質に対
する見掛けの吸着量が増大する点で有利であった。
As is clear from these results, the apparent adsorption amount of adsorbed substances such as THM precursors increases when the method of the present invention is applied to water that has been subjected to coagulation treatment or ozonation treatment, rather than when the method is applied directly to lake raw water. It was advantageous in that respect.

これは、活性炭処理の前でオゾン処理を付加することに
より、溶存有機物の生物分解性が高められ、活性炭層内
での生物再生機能が助長されるためである。
This is because adding ozone treatment before activated carbon treatment increases the biodegradability of dissolved organic matter and promotes the biological regeneration function within the activated carbon layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比表面積と吸着量の関係を示す図面である。 第2図は、細孔の割合と吸着量の関係を示す図面である
。 第3図は、粒子比重と付着微生物量の関係を示す図面で
ある。 第4図は、連続生物活性炭処理のフローチャートを示す
図面である。 第5図は、連続生物活性炭処理の破過率を示す図面であ
る。 第6図は、オゾン処理と生物活性炭処理を組合せた場合
と単独生物活性炭処理を比較した結果を示す図面である
。 以   上 第 図
FIG. 1 is a drawing showing the relationship between specific surface area and adsorption amount. FIG. 2 is a drawing showing the relationship between the proportion of pores and the amount of adsorption. FIG. 3 is a diagram showing the relationship between particle specific gravity and the amount of attached microorganisms. FIG. 4 is a drawing showing a flowchart of continuous biological activated carbon treatment. FIG. 5 is a diagram showing the breakthrough rate of continuous biological activated carbon treatment. FIG. 6 is a drawing showing the results of a comparison between a combination of ozone treatment and biological activated carbon treatment and a single biological activated carbon treatment. Above diagram

Claims (1)

【特許請求の範囲】[Claims] (1)活性炭処理用の活性炭として、粒子比重(密度)
が0.6g/ml以下、細孔半 径1μm以上の細孔容積が30〜70%、 比表面積が1100m^2/g以上である活性炭を用い
ることを特徴とする水処理方法。(2)活性炭充填塔内
をエアレーシヨンすることを特徴とする第1項記載の水
処理方法。
(1) Particle specific gravity (density) as activated carbon for activated carbon treatment
A water treatment method characterized by using activated carbon having a carbon content of 0.6 g/ml or less, a pore volume of 30 to 70% with a pore radius of 1 μm or more, and a specific surface area of 1100 m^2/g or more. (2) The water treatment method according to item 1, characterized in that the inside of the activated carbon packed column is aerated.
JP1146858A 1989-06-12 1989-06-12 Water treatment method Expired - Lifetime JPH0729096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146858A JPH0729096B2 (en) 1989-06-12 1989-06-12 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146858A JPH0729096B2 (en) 1989-06-12 1989-06-12 Water treatment method

Publications (2)

Publication Number Publication Date
JPH0312284A true JPH0312284A (en) 1991-01-21
JPH0729096B2 JPH0729096B2 (en) 1995-04-05

Family

ID=15417153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146858A Expired - Lifetime JPH0729096B2 (en) 1989-06-12 1989-06-12 Water treatment method

Country Status (1)

Country Link
JP (1) JPH0729096B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528716A (en) * 2009-06-03 2012-11-15 バイオウォーター テクノロジー エーエス Method and reactor for biological purification of wastewater
CN104971694A (en) * 2015-07-15 2015-10-14 中国石油天然气股份有限公司 Inorganic-organic composite bentonite material and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELIMINATION DE SUBSTANCES HUMIQUES PAR LE CHARBON ACTIF=1981 *
SCIENCES ET TECHNIQUES DELEAU=1988 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528716A (en) * 2009-06-03 2012-11-15 バイオウォーター テクノロジー エーエス Method and reactor for biological purification of wastewater
JP2015145006A (en) * 2009-06-03 2015-08-13 バイオウォーター テクノロジー エーエス Method for biological purification of waste water and reactor
US9758402B2 (en) 2009-06-03 2017-09-12 Biowater Technology AS Method and reactor for biological purification of waste water
CN104971694A (en) * 2015-07-15 2015-10-14 中国石油天然气股份有限公司 Inorganic-organic composite bentonite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0729096B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
Liu et al. Performance and mechanism of low-frequency ultrasound to regenerate the biological activated carbon
CA3090276A1 (en) Chemical sorbent oxidation method and sorbents made therefrom
DeWalle et al. Biological regeneration of powdered activated carbon added to activated sludge units
CN1785845A (en) Treatment technology of powdered built biocarrier fluidized bed A/O sewage
Nie et al. Composite functional particle enhanced gravity driven ceramic membrane bioreactor for simultaneous removal of nitrogen and phosphorus from groundwater
JP2004524967A (en) Biochemical treatment of wastewater using nanomaterials
KR20010031611A (en) Method for treating process waste waters highly charged with ammonium in waste water systems
KR102432539B1 (en) Media for Water Treatment Using Zeolite and Preparation Method thereof
KR100277017B1 (en) Media for wastewater treatment, manufacturing method thereof and wastewater treatment method using the media
JPH0312284A (en) Water treatment method
JPH0474076B2 (en)
JPS62279888A (en) Treatment of sewage
Han et al. A novel γ-Fe3O4-N-BC combined membrane bioreactor for wastewater treatment: Performance and mechanism
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
CN111995063A (en) Powdered activated carbon carrier and preparation method and application thereof
JP3555812B2 (en) Advanced treatment method for organic wastewater
JP2002159985A (en) Microorganism stuck carrier and waste water treatment method using the same
JP3420838B2 (en) Method for treating phosphorus-containing organic wastewater
US3794581A (en) Wastewater treatment
Park The effect of porosity of seiving particles on the romoval efficiency of organic substances via biofilter in the fixed bed
KR830002326B1 (en) Wastewater Treatment Method
Dalmacija et al. Nitrates removal from surface river water by means of a biosorption system
KR100405268B1 (en) The contactive filter for purification of the polluted water and waste water
JPH0311836B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15