JP2006104002A - Activated carbon and its manufacturing method - Google Patents

Activated carbon and its manufacturing method Download PDF

Info

Publication number
JP2006104002A
JP2006104002A JP2004291005A JP2004291005A JP2006104002A JP 2006104002 A JP2006104002 A JP 2006104002A JP 2004291005 A JP2004291005 A JP 2004291005A JP 2004291005 A JP2004291005 A JP 2004291005A JP 2006104002 A JP2006104002 A JP 2006104002A
Authority
JP
Japan
Prior art keywords
activated carbon
carbonaceous material
hardness
pore volume
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004291005A
Other languages
Japanese (ja)
Other versions
JP4704001B2 (en
Inventor
Takayuki Yamada
隆之 山田
Hiroyoshi Shibuya
拓慶 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2004291005A priority Critical patent/JP4704001B2/en
Publication of JP2006104002A publication Critical patent/JP2006104002A/en
Application granted granted Critical
Publication of JP4704001B2 publication Critical patent/JP4704001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon having high decolorizing power and high strength and its manufacturing method. <P>SOLUTION: The activated carbon has a micropore volume in a range of micropore diameter of 200-1,000 nm of ≥0.060 cm<SP>3</SP>/cm<SP>3</SP>, which is determined by a packing density, and hardness of ≥94.0%. It is manufactured by dry-mixing and grinding a carbonaceous material having a caking property better than a weak caking property and a carbonaceous material containing alkali metals and/or alkaline-earth metals, press-molding the obtained mixed powder, crushing, heat-treating, and then activating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、活性炭及びその製造方法に関する。さらに詳細には、糖液などの溶液から色素成分を効率的に除去するのに適した活性炭及びその製造方法に関する。   The present invention relates to activated carbon and a method for producing the same. More specifically, the present invention relates to activated carbon suitable for efficiently removing a pigment component from a solution such as a sugar solution and a method for producing the same.

活性炭は、各種物質の吸着に優れた能力を有し、従来より家庭用、工業用を問わず多くの分野で吸着剤として使用されている。活性炭にはこのように優れた吸着能力があるが、その吸着能力は、活性炭の比表面積、細孔容積、細孔分布などの特性が、その吸着対象物質や、処理の対象となる液体の特性と適合しているかどうかに大きく左右される。   Activated carbon has an excellent ability to adsorb various substances and has been conventionally used as an adsorbent in many fields regardless of household use or industrial use. Activated carbon has such an excellent adsorption capacity, but the adsorption capacity depends on the specific surface area, pore volume, pore distribution, etc. of the activated carbon, and the characteristics of the substance to be adsorbed and the liquid to be treated. It greatly depends on whether or not it fits.

これまで、上記したような活性炭の特性を調整する方法が種々提案されており、例えば、比較的大分子量の化合物を除去するにはトランジショナル域(直径50〜100nm)の細孔容積を増大させた活性炭が適すること、及びかかる活性炭は炭素質材料に特定量の金属化合物を添加した後賦活することによって得られることが開示されている(特許文献1)。
特開昭54−78395号公報
Various methods for adjusting the properties of activated carbon as described above have been proposed so far. For example, in order to remove a compound having a relatively large molecular weight, the pore volume in the transitional region (diameter 50 to 100 nm) is increased. It is disclosed that activated carbon is suitable, and that such activated carbon is obtained by activating after adding a specific amount of a metal compound to a carbonaceous material (Patent Document 1).
JP 54-78395 A

一方、金属化合物を用いて活性炭を製造することも良く知られており、例えば、水酸化カリウムおよび/または水酸化ナトリウムまたはその塩で亜炭を処理してヘキサン作業能力を向上させる活性炭の製造方法が知られている(特許文献2)。
特表平7−508215号公報
On the other hand, it is also well known to produce activated carbon using a metal compound. For example, there is a method for producing activated carbon that improves hexane working capacity by treating lignite with potassium hydroxide and / or sodium hydroxide or a salt thereof. Known (Patent Document 2).
Japanese National Patent Publication No. 7-508215

特許文献1にはトランジショナル域の細孔容積を増大させると脱色能力が向上することが記載されているが、トランジショナル域の細孔容積を増大させても脱色能力が向上しないことがあり、単にトランジショナル域の細孔容積を増大させるのみでは必ずしも脱色能力を向上させることができるとはいえない。また、脱色能力を向上させるべくトランジショナル域の細孔容積を増大させると、必然的に硬度が低下するため、高い脱色能力と高い硬度を両立させることは極めて困難である。   Patent Document 1 describes that increasing the pore volume in the transitional region improves the decolorization ability, but increasing the pore volume in the transitional region may not improve the decolorization ability. Simply increasing the pore volume in the transitional region does not necessarily improve the decolorization ability. Further, if the pore volume in the transitional region is increased in order to improve the decolorization capability, the hardness is inevitably lowered, so it is extremely difficult to achieve both high decolorization capability and high hardness.

また、特許文献2には、アルカリ金属及び/又はアルカリ土類金属を炭素質材料に添着した後賦活することによって活性炭を製造し、さらにアルカリ金属及び/又はアルカリ土類金属を添着することで活性炭の特性を調整することが記載されているが、どのような条件を取ることで糖液などの脱色に有用な特定構造の活性炭を製造できるかは記載されていない。しかも、これらの方法にしたがって、脱色能力を上げるために総細孔容積を増加させると、硬度が著しく低下し、充填時及び使用時に活性炭が破損するという問題に加え、再生ロスが多いという問題があった。   Patent Document 2 discloses that activated carbon is produced by adding an alkali metal and / or alkaline earth metal to a carbonaceous material and then activating, and further adding activated metal by adding an alkali metal and / or alkaline earth metal. However, it does not describe what conditions can be used to produce activated carbon having a specific structure useful for decolorization of sugar solutions and the like. In addition, when the total pore volume is increased in order to increase the decolorization ability according to these methods, the hardness is remarkably lowered, and the activated carbon is damaged at the time of filling and use, and there is a problem that the regeneration loss is large. there were.

従って、本発明の目的は、高い脱色性能を有し、かつ強度の高い活性炭及びその工業的に有利な製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an activated carbon having high decolorization performance and high strength and an industrially advantageous production method thereof.

本発明者らは、上記目的を達成するため、活性炭の細孔構造と脱色性能との関係について詳細に検討した結果、従来吸着性能に大きな影響はないとされていた比較的直径の大きな細孔が意外にも脱色性能に有効であることを見出し、好ましくは活性炭原料である炭素質材料として、2種類の石炭を用いることで、上記活性炭を効率よく製造できることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have studied in detail the relationship between the pore structure of the activated carbon and the decolorization performance. As a result, the pores having a relatively large diameter that have not been significantly affected by the conventional adsorption performance. Is surprisingly effective for decolorization performance, and preferably finds that the activated carbon can be efficiently produced by using two types of coal as the carbonaceous material that is a raw material for the activated carbon, to complete the present invention. It came.

すなわち、本発明は、細孔直径200〜1000nmの領域における活性炭充填容積あたりの細孔容積が0.060cm/cm以上で、硬度が94.0%以上の活性炭である。 That is, the present invention is the pore volume per activated carbon filling volume in the region of pore diameters 200~1000nm is 0.060cm 3 / cm 3 or more, a hardness of activated carbon than 94.0%.

本発明のもう一つの発明は、少なくとも、弱粘結性以上を有する炭素質材料と、アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料とを乾式混合粉砕し、得られた混合粉体を加圧成型した後破砕し、熱処理した後賦活する活性炭の製造方法である。   Another invention of the present invention is a mixed powder obtained by dry-mixing and pulverizing at least a carbonaceous material having weak cohesiveness or more and a carbonaceous material containing an alkali metal and / or alkaline earth metal. This is a method for producing activated carbon that is activated after being pressure-molded, crushed and heat-treated.

本発明の脱色用活性炭によれば、糖液などに含まれる着色成分を高い容積効率で除去することができる。また、本発明の活性炭は高硬度を有するので、充填時や使用時における活性炭の損傷が少なく、再生ロスを低減化することができる。また、本発明の方法によれば、このような活性炭を工業的に有利に製造することができる。   According to the activated carbon for decolorization of the present invention, it is possible to remove a coloring component contained in a sugar solution or the like with high volumetric efficiency. Moreover, since the activated carbon of the present invention has high hardness, the activated carbon is less damaged at the time of filling and use, and the regeneration loss can be reduced. Moreover, according to the method of this invention, such activated carbon can be manufactured industrially advantageously.

本発明の活性炭における第1の特徴は、細孔直径200〜1000nmの領域における活性炭充填容積あたりの細孔容積が0.060cm/cm以上で、かつ硬度が94.0%以上あることにある。 The first feature of the activated carbon of the present invention is the pore volume per activated carbon filling volume in the region of pore diameters 200~1000nm is 0.060cm 3 / cm 3 or more, and that the hardness is not less than 94.0% is there.

従来、糖液などの脱色に対しては、活性炭のトランジショナル域(細孔直径50〜100nm)の細孔容積が関係すると言われていた。しかしながら、本発明者らが詳細に検討を行ったところ、トランジショナル域の細孔容積は想定よりも少なくてよく、むしろさらに大きな細孔直径の領域の細孔容積を増大させることにより、脱色能力が向上することが明らかになった。   Conventionally, it has been said that decolorization of a sugar solution or the like is related to the pore volume in the transitional region (pore diameter 50 to 100 nm) of activated carbon. However, when the present inventors examined in detail, the pore volume of the transitional region may be smaller than expected, but rather, the decolorizing ability is increased by increasing the pore volume of the region having a larger pore diameter. It became clear that improved.

現実に液体の脱色を行う場合、活性炭の脱色能力はその重量あたりの能力より、容器に充填した際の体積(充填容積)あたりの能力の方が重要であるため、本発明においては活性炭の細孔容積を充填容積あたりの細孔容積で評価した。   When actually decolorizing a liquid, the decolorization ability of activated carbon is more important per volume (filling volume) when the container is filled than the capacity per weight. The pore volume was evaluated by the pore volume per filling volume.

活性炭の充填容積あたりの細孔容積は、以下の方法で算出する。まず、活性炭の重量当たりの細孔容積を、ポロシメーターを用い、水銀圧入法により、水銀圧は0.45psiから30000psiで測定する。一方、JIS−1474に準拠して該活性炭の充填比重を求め、前記重量あたりの細孔容積に充填比重を乗じて充填容積あたりの細孔容積を算出する。   The pore volume per packed volume of activated carbon is calculated by the following method. First, the pore volume per weight of the activated carbon is measured from 0.45 psi to 30000 psi by a mercury intrusion method using a porosimeter. On the other hand, the filling specific gravity of the activated carbon is obtained based on JIS-1474, and the pore volume per filling volume is calculated by multiplying the pore volume per weight by the filling specific gravity.

本発明の活性炭は上記方法によって算出された細孔直径200〜1000nmの領域における活性炭充填容積あたりの細孔容積が0.060cm/cm以上の活性炭である。この領域の細孔容積は大きい方が物質の拡散が容易になるため脱色能力が上がる傾向があるので、この細孔容積は0.065cm/cm以上が好ましく、0.070cm/cm以上がさらに好ましい。一方、あまり細孔容積が大きいと、硬度が低下したり微分が発生したりしやすくなる傾向があるため、細孔直径200〜1000nmの領域における活性炭充填容積あたりの細孔容積は0.20cm/cm以下であることが好ましく、0.125cm/cm以下であることがさらに好ましい。 Activated carbon of the present invention are activated carbon pore volume per activated carbon filling volume in the region of the pore diameter 200~1000nm calculated is 0.060cm 3 / cm 3 or more by the above method. Since the pore volume of this region larger tends to go up bleaching ability for easier diffusion of substances, the pore volume is preferably 0.065cm 3 / cm 3 or more, 0.070cm 3 / cm 3 The above is more preferable. On the other hand, if the pore volume is too large, hardness tends to decrease or differentiation tends to occur, so the pore volume per activated carbon filling volume in the region of pore diameter 200 to 1000 nm is 0.20 cm 3. / preferably cm 3 or less, still more preferably 0.125 cm 3 / cm 3 or less.

本発明の活性炭の硬度は94.0%以上である。この程度の硬度があれば、活性炭は通常の使用範囲では粉化せず高い再生収率が得られる。硬度は高い方がよく、96.0%以上とするのがより好ましい。硬度の上限はとくに限られるものではない。なお、本発明における活性炭の硬度とはJIS−1474に準拠して測定されたものを指す。   The activated carbon of the present invention has a hardness of 94.0% or more. With this degree of hardness, the activated carbon is not pulverized in the normal use range, and a high regeneration yield can be obtained. The hardness should be high, and more preferably 96.0% or more. The upper limit of the hardness is not particularly limited. In addition, the hardness of activated carbon in this invention points out what was measured based on JIS-1474.

本発明の活性炭においては、200〜1000nmの領域の細孔容積が一定以上あることに加え、この全領域の細孔が一定の範囲で存在することが好ましい。一般に、200〜600nmの領域に比べ600〜1000nmの範囲に細孔容積の小さい領域ができやすいが、高い脱色性能を得るためには、600〜1000nmの領域においても一定の細孔容積が存在する事が好ましい。即ち、細孔直径600〜1000nmの領域における活性炭充填容積あたり細孔容積が0.023cm/cm以上が好ましい。 In the activated carbon of the present invention, the pore volume in the region of 200 to 1000 nm is preferably not less than a certain value, and the pores in this entire region are preferably present in a certain range. In general, a region having a small pore volume is easily formed in a range of 600 to 1000 nm compared to a region of 200 to 600 nm, but in order to obtain high decolorization performance, a constant pore volume exists in the region of 600 to 1000 nm. Things are preferable. That is, the activated carbon packed volume per pore volume in the region of pore diameters 600~1000nm is 0.023cm 3 / cm 3 or more.

一方、本発明の活性炭におけるミクロ域からトランジショナル域の細孔に関しては、吸着能力を確保するためある程度以上あればよく、それ以上に多くても吸着能力はあまり向上しない。一定以上の吸着能力を得るためには細孔直径10〜200nmの領域の細孔容積は0.023cm/cm以上あればよく、0.030cm/cm以上であればより好ましい。逆にこの領域の細孔容積があまり大きいと硬度が低下したり微粉の脱落が起こりやすくなる傾向があり実用上不利になる場合があるため、0.150cm/cm以下が好ましく、0.100cm/cm以下がさらに好ましい。 On the other hand, with respect to the pores in the micro range to the transitional range in the activated carbon of the present invention, it is sufficient if it is more than a certain level in order to secure the adsorption capability. The pore volume of the region of pore diameters 10~200nm in order to obtain a certain level of adsorption capacity is sufficient if 0.023cm 3 / cm 3 or more, more preferably equal to 0.030 cm 3 / cm 3 or more. Because in some cases reverse the pore volume of the space is too large and the hardness tends to easily occur shedding of fine lowered practical disadvantage is preferably 0.150cm 3 / cm 3 or less, 0. 100 cm 3 / cm 3 or less is more preferable.

本発明の活性炭は、植物系、果実殻系、鉱物系などの各種炭素質材料を原料として製造できるが、活性炭の硬度を高くしやすく、一定品質のものを容易に、安価に入手できる点から中でも石炭系の炭素質材料を原料とするのが好ましい。石炭系の炭素質材料としては微粘炭、弱粘炭、強粘炭などを例示することができる。   The activated carbon of the present invention can be produced from various carbonaceous materials such as plant-based, fruit shell-based, and mineral-based materials. However, it is easy to increase the hardness of the activated carbon, and a certain quality can be obtained easily and inexpensively. Among them, it is preferable to use a coal-based carbonaceous material as a raw material. Examples of the coal-based carbonaceous material include slightly viscous coal, weakly viscous coal, and strongly viscous coal.

脱色の対象となる液体の粘度は限定されるものではなく、種々の粘度のものに対応することが出来る。細孔に吸着される物質の拡散状態にもよるが、一般に粘性の高い液の脱色は粘性の低い液の脱色に比べ困難が増すが、本発明の活性炭は適切な細孔分布を有することから25℃における粘度が20mPa・秒以上という比較的高粘度の溶液の脱色にも好適に使用できる。なお、ここでいう粘度とはB型粘度計により測定した粘度である。   The viscosity of the liquid to be decolorized is not limited, and can correspond to various viscosities. Although it depends on the diffusion state of the substance adsorbed in the pores, in general, decolorization of liquids with high viscosity is more difficult than decolorization of liquids with low viscosity, but the activated carbon of the present invention has an appropriate pore distribution. It can be suitably used for decolorization of a relatively high viscosity solution having a viscosity at 25 ° C. of 20 mPa · second or more. In addition, the viscosity here is a viscosity measured with a B-type viscometer.

本発明の活性炭は、弱粘結性以上を有する炭素質材料と、アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料とを乾式混合し、熱処理した後賦活することによって製造することができる。ここで、弱粘結性以上を有する炭素質材料とは、ボタン指数が1.0以上である炭素質材料である。なお、ボタン指数は、JIS M 8801 6のるつぼ膨張試験方法に準拠し、試料を所定のるつぼに入れて所定の条件で加熱し、生成した残渣を標準輪郭と比較して測定される。   The activated carbon of the present invention can be produced by dry-mixing a carbonaceous material having weak cohesiveness or higher and a carbonaceous material containing an alkali metal and / or alkaline earth metal, heat-treating and then activating. it can. Here, the carbonaceous material having a weak caking property or more is a carbonaceous material having a button index of 1.0 or more. The button index is measured in accordance with the crucible expansion test method of JIS M88016, in which a sample is placed in a predetermined crucible and heated under predetermined conditions, and the generated residue is compared with a standard contour.

弱粘結性以上を有する炭素質材料としては、植物系、果実殻系、鉱物系などを挙げることができるが、なかでも石炭系の炭素質材料が前述の理由から好ましい。このような石炭系の炭素質材料としては、ボタン指数が1〜3の弱粘炭が好ましく用いられるが、粘結性が不足して成型性が良くない場合にはボタン指数が3以上の強粘炭およびピッチなどを適切な割合で混合して用いることもできる。   Examples of the carbonaceous material having weak cohesiveness or more include plant-based, fruit shell-based, and mineral-based materials, and among them, coal-based carbonaceous materials are preferable for the above-described reasons. As such a coal-based carbonaceous material, weakly viscous coal having a button index of 1 to 3 is preferably used, but if the caking property is insufficient and the moldability is not good, the button index is a strong index of 3 or more. It is also possible to mix and use lignite and pitch at an appropriate ratio.

アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料としては、石炭系の炭素質材料が好ましい。アルカリ金属としては、カリウム、ナトリウムなどを挙げることができる。また、アルカリ土類金属としては、カルシウムなどを挙げることができる。アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料中のアルカリ金属とアルカリ土類金属は金属原子総量として、300ppm以上、1100ppm以下が好ましい。アルカリ金属及びアルカリ土類金属の中でも特にカルシウムが好ましく、カルシウムの含有量は300ppm以上、1000ppm以下の炭素質材料を使用するのが脱色能力、硬度、成型性の観点から好ましい。   As the carbonaceous material containing an alkali metal and / or alkaline earth metal, a coal-based carbonaceous material is preferable. Examples of the alkali metal include potassium and sodium. Examples of the alkaline earth metal include calcium. The alkali metal and alkaline earth metal in the carbonaceous material containing an alkali metal and / or alkaline earth metal is preferably 300 ppm or more and 1100 ppm or less as the total amount of metal atoms. Among alkali metals and alkaline earth metals, calcium is particularly preferable, and the use of a carbonaceous material having a calcium content of 300 ppm or more and 1000 ppm or less is preferable from the viewpoint of decolorization ability, hardness, and moldability.

本発明の活性炭の製造方法においては、炭素質材料の組織中にアルカリ金属及び/又はアルカリ土類金属が均質かつ高分散に分布している原料が用いられるため、炭素質材料に特定量の金属化合物を添加した後賦活する方法と比較して、細孔形成の局在化が起こりにくく均質な細孔形成が成されるため、適切な細孔分布が得られ、硬度も高くすることができる。   In the method for producing activated carbon of the present invention, since a raw material in which alkali metal and / or alkaline earth metal is homogeneously and highly dispersed is used in the structure of the carbonaceous material, a specific amount of metal is used as the carbonaceous material. Compared with the method of activation after the addition of the compound, the pore formation is less likely to be localized and uniform pore formation is achieved, so that an appropriate pore distribution can be obtained and the hardness can be increased. .

本発明の活性炭を製造するには、先ず弱粘結性以上を有する炭素質材料(以下材料1ということがある)とアルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料(以下材料2ということがある)とを乾式混合粉砕する。これらの炭素質材料1及び2の他、本発明の効果を阻害しない範囲で強粘炭あるいはピッチなどを添加するのは差し支えない。乾式混合粉砕する方法は、両炭素質材料の比率がほぼ一定になるように混合粉砕できれば特に制限はないが、ボールミル、ロットミルあるいは高速ミキサーなどにより容易に実施することができる。   In order to produce the activated carbon of the present invention, first, a carbonaceous material having weak cohesiveness or higher (hereinafter sometimes referred to as material 1) and a carbonaceous material containing alkali metal and / or alkaline earth metal (hereinafter referred to as material 2). May be dry mixed and pulverized. In addition to these carbonaceous materials 1 and 2, it is possible to add strong coal or pitch within a range that does not impair the effects of the present invention. The dry mixing and pulverization method is not particularly limited as long as the ratio of both carbonaceous materials can be mixed and pulverized so as to be almost constant, but can be easily implemented by a ball mill, a lot mill, a high speed mixer or the like.

材料1と材料2の混合比率は原料となる炭素質材料と目的とする脱色能力や硬度に応じて定めればよいが、材料1の比率があまり高すぎると硬度は増大する一方、細孔直径が200nm以上の細孔形成が抑制され、脱色性能が低下する傾向にあり、また材料1の比率があまり低すぎると成型性が低下し、硬度が低下する傾向があるので、材料1と材料2は、重量比で1:9〜9:1が好ましく、より好ましくは4:6〜3:7の割合で混合するのが好ましい。   The mixing ratio of the material 1 and the material 2 may be determined according to the carbonaceous material used as a raw material and the target decolorization ability and hardness. However, if the ratio of the material 1 is too high, the hardness increases, but the pore diameter However, when the ratio of the material 1 is too low, the moldability tends to be lowered and the hardness tends to be lowered. Is preferably in a weight ratio of 1: 9 to 9: 1, more preferably in a ratio of 4: 6 to 3: 7.

成形工程においては、材料1と材料2は乾式混合粉砕された後、180kg/cm以上の圧力で加圧することにより、成型物を得ることができ好ましい。加圧成型するための装置はとくに限定されるものではなく、例えばロールプレス式、ディスク方ペレッター式、リング型ペレッター式、押し出し式などの成型装置が使用可能である。また、圧力や成型物の形状もとくに限定されるものではなく、円柱状、円筒状、ペレット状、球状、シート状など目的に応じて適宜決めればよい。これらの大きさもとくに限定されない。 In the molding step, the material 1 and the material 2 are preferably dry-mixed and pulverized and then pressed at a pressure of 180 kg / cm 2 or more to obtain a molded product. An apparatus for pressure molding is not particularly limited, and for example, a roll press type, a disk side pelleter type, a ring type pelleter type, an extrusion type, or the like can be used. Further, the pressure and the shape of the molded product are not particularly limited, and may be appropriately determined according to the purpose such as a columnar shape, a cylindrical shape, a pellet shape, a spherical shape, or a sheet shape. These sizes are not particularly limited.

得られた成型物は公知の粉砕機、例えば上述したボールミル、ロットミルあるいは高速ミキサーなどにより粉砕される。粉砕物は8/30メッシュなど所定の大きさに整粒されるが、活性炭としての平均粒径として0.3〜30mm程度、好ましくは0.5〜1.0mm程度になるように整粒するのが実用的であり、好ましい。整粒された粉砕物は熱処理に付される。熱処理は、還元ガス雰囲気下で550〜750℃まで加熱すればよい。より高性能、より高強度の炭化物又は活性炭を得るには、二段階での熱処理、例えば、200〜400℃まで酸化ガス雰囲気下5〜30℃/分で昇温し、さらに550〜750℃まで還元ガス雰囲気下5〜30℃/分で昇温するのが好ましい。   The obtained molded product is pulverized by a known pulverizer such as the above-described ball mill, lot mill or high-speed mixer. The pulverized product is sized to a predetermined size such as 8/30 mesh, but is sized so that the average particle size as activated carbon is about 0.3 to 30 mm, preferably about 0.5 to 1.0 mm. Is practical and preferred. The sized pulverized product is subjected to heat treatment. The heat treatment may be performed up to 550 to 750 ° C. in a reducing gas atmosphere. In order to obtain a higher-performance, higher-strength carbide or activated carbon, heat treatment in two stages, for example, 200 to 400 ° C., raised to 5 to 30 ° C./min in an oxidizing gas atmosphere, and further to 550 to 750 ° C. It is preferable to raise the temperature at 5 to 30 ° C./min in a reducing gas atmosphere.

乾留された粉砕物はさらに賦活されて活性炭となる。賦活は、水蒸気、二酸化炭素、空気、プロパン燃焼排ガス、これら混合ガス等の酸化性ガスの雰囲気下400〜1000℃で実施するガス賦活や塩化亜鉛、リン酸、塩化カルシウム、硫化カリウムなどの薬剤の存在下400〜800℃程度で実施する薬品賦活が採用される。なかでも、空気とLPGの比率が1対0.0425程度の燃焼ガス流通下900〜1000℃で行う燃焼ガス賦活を採用するのが好ましい。賦活収率は、脱色能力と硬度の関係から必要に応じて適宜決定すればよい。   The dry-pulverized pulverized product is further activated to become activated carbon. Activation is performed at 400 to 1000 ° C. in an atmosphere of oxidizing gas such as water vapor, carbon dioxide, air, propane combustion exhaust gas, and mixed gas thereof, and chemicals such as zinc chloride, phosphoric acid, calcium chloride, potassium sulfide, etc. Chemical activation carried out at about 400 to 800 ° C. in the presence is employed. Especially, it is preferable to employ | adopt the combustion gas activation performed at 900-1000 degreeC under the combustion gas distribution | circulation whose ratio of air and LPG is about 1 to 0.0425. The activation yield may be appropriately determined as necessary from the relationship between the decolorization ability and the hardness.

賦活後、活性炭は希塩酸などで酸水洗され、pH5.0以上7.0以下に調整することで、本発明の活性炭を得ることができる。ここでいう活性炭のpHとは、JIS−K1474に準拠して測定されたpHである。 After activation, the activated carbon is washed with dilute hydrochloric acid and adjusted to pH 5.0 or more and 7.0 or less, whereby the activated carbon of the present invention can be obtained. The pH of the activated carbon here is a pH measured in accordance with JIS-K1474.

本発明の活性炭は用途に応じて、表面を化学修飾する、表面に物理的に機能性物質を担持させるなどの後処理を施しても良い。このような表面修飾の例としては、銀、鉄などの金属の塩や酸化物、鉱酸を添着する他、表面を酸性にする処理なども挙げられる。   The activated carbon of the present invention may be subjected to post-treatment such as chemical modification of the surface or physical loading of a functional substance on the surface depending on the application. Examples of such surface modification include treatment of making the surface acidic in addition to adding a salt or oxide of a metal such as silver or iron, or a mineral acid.

本発明の活性炭は、例えば、糖液を強酸性カチオン交換樹脂に接触させて糖液の脱塩処理又は転化処理を行った後、酸性の糖液中に残存する色素成分を効率的に除去するために用いられる。   For example, the activated carbon of the present invention efficiently removes the dye component remaining in the acidic sugar liquid after the sugar liquid is brought into contact with a strongly acidic cation exchange resin and subjected to desalting or conversion treatment of the sugar liquid. Used for.

活性炭を脱色用に使用する場合、活性炭をカラムなどの容器に充填し、バッチ式又は連続式で実施される。連続式で行う場合は向流方式で実施することが多い。脱色性能が低下した活性炭は所定の処理を施して再生され、再使用される。   When activated carbon is used for decolorization, the activated carbon is packed in a container such as a column and is carried out batchwise or continuously. When using the continuous method, the countercurrent method is often used. The activated carbon having a reduced decolorization performance is regenerated after being subjected to a predetermined treatment and reused.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、各物性値は次の方法により測定した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Each physical property value was measured by the following method.

ヨウ素吸着量(IA)、硬度はJIS−K1474に準拠して測定した。また、細孔分布の測定には株式会社島津製作所製のオートポアIV9510型を使用した。また、溶液の粘度は(株)東京計器製のB型粘度計で測定した。   The iodine adsorption amount (IA) and hardness were measured according to JIS-K1474. Moreover, Shimadzu Corporation auto-pore IV9510 type | mold was used for the measurement of pore distribution. The viscosity of the solution was measured with a B-type viscometer manufactured by Tokyo Keiki Co., Ltd.

先ず、材料1として固定炭素分59.5重量%、かつ灰分0.7重量%の弱粘結性を有する瀝青炭(ボタン指数3)を、材料2として固定炭素分48.3重量%以上、かつ灰分0.7重量%でありかつナトリウム45ppm、カルシウム800ppmを含む微粘結性の瀝青炭(ボタン指数0.5)を使用し、材料1と材料2を重量比3:7でボールミルを用いて混合粉砕し、得られた粉体を(株)山本水圧工業所製の加圧成形機を用いて直径4cm、長さ15cmの容器に充填し、100℃、280kg/cmの圧力で加圧成型した後ジョークラッシャーで破砕し、粒径範囲0.1〜2.0mm、平均粒径0.95mmの顆粒に整粒した。 First, bituminous coal (button index 3) having a fixed carbon content of 59.5% by weight and an ash content of 0.7% by weight as material 1 and a fixed carbon content of 48.3% by weight or more as material 2; Using a bituminous bituminous coal (button index 0.5) with an ash content of 0.7% by weight and containing 45 ppm of sodium and 800 ppm of calcium, mixing the materials 1 and 2 using a ball mill at a weight ratio of 3: 7 The powder obtained is pulverized and filled into a container with a diameter of 4 cm and a length of 15 cm using a pressure molding machine manufactured by Yamamoto Hydraulic Industry Co., Ltd., and pressure molded at a pressure of 100 ° C. and 280 kg / cm 2. After that, it was crushed with a jaw crusher and sized into granules having a particle size range of 0.1 to 2.0 mm and an average particle size of 0.95 mm.

次いでこの顆粒を外熱式ロータリーキルンに投入し、300℃まで酸化ガス雰囲気下5℃/分の昇温を施し2時間保持し、続いて650℃まで還元ガス雰囲気下8.75℃/分の昇温を実施して炭化した。揮発分0gベースに換算したこの炭化炭75.0gを内径57mm、高さ600mmの流動炉に仕込み、空気20L(リットル、以下同じ)/分、LPG 0.85L/分の燃焼ガス流通下950℃で賦活収率50%となるように燃焼ガス賦活を行い活性炭を得た。   Next, the granules are put into an externally heated rotary kiln, heated up to 300 ° C. under an oxidizing gas atmosphere at 5 ° C./min, held for 2 hours, and then up to 650 ° C. under a reducing gas atmosphere at 8.75 ° C./min. Carbonization was performed by heating. 75.0 g of this charcoal converted to a base of 0 g of volatile matter was charged into a fluidized furnace having an inner diameter of 57 mm and a height of 600 mm, and 950 ° C. under a combustion gas flow of 20 L (liter, the same applies hereinafter) / min and LPG 0.85 L / min The activated gas was obtained by activating the combustion gas so that the activation yield was 50%.

得られた活性炭を酸水洗し、6回の煮沸水洗浄を行い、pHを6.5±0.5に調整した後120℃で2〜3時間乾燥した。活性炭の充填密度ρB(g/cm)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填容積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。 The obtained activated carbon was washed with acid water, washed 6 times with boiling water, adjusted to pH 6.5 ± 0.5, and dried at 120 ° C. for 2 to 3 hours. Charging density ρB (g / cm 3 ) of activated carbon, iodine adsorption amount IA (mg / g), decolorization ability (%), pore volume per packing volume in the range of 200 to 1000 nm and 600 to 1000 nm (cm 3 / cm 3 ) and hardness (%).

内径2.07cm、高さ40cmのカラムに上記活性炭を充填し、三井製糖(株)製三温糖:イオン交換水=1:1(重量比)からなる原液を25℃、SV=2hr−1の条件下、アップフローで通流し、脱色テストを行った。この原液の粘度は25℃において30mPa・秒であった。充填した活性炭の20倍通液した時点でサンプルを採取し、10mmセルを使用し、波長λ=420nmで吸光度を測定し、次の式で脱色能を算出した。
脱色能(%)=〔(原液吸光度−20倍通液後の処理液の吸光度)/原液吸光度〕×100。
The activated carbon is packed in a column having an inner diameter of 2.07 cm and a height of 40 cm, and a stock solution made of Mitsui Sugar Co., Ltd., tri-warm sugar: ion exchange water = 1: 1 (weight ratio) is 25 ° C., SV = 2 hr −1. Under the above conditions, a decolorization test was conducted by passing the product up-flow. The viscosity of this stock solution was 30 mPa · sec at 25 ° C. A sample was taken when the charged activated carbon was passed 20 times, the absorbance was measured at a wavelength λ = 420 nm using a 10 mm cell, and the decolorization ability was calculated by the following formula.
Decolorization ability (%) = [(absorbance of stock solution−absorbance of treated solution after passing through 20 times) / absorbance of stock solution] × 100.

得られた活性炭の充填密度、ヨウ素吸着量、脱色能、各細孔直径領域における細孔容積、硬度を表1に示す。実施例1の活性炭は硬度も高く、実用上充分な良好な脱色能力を示した。   Table 1 shows the packing density, iodine adsorption amount, decolorizing ability, pore volume and hardness in each pore diameter region of the obtained activated carbon. The activated carbon of Example 1 had a high hardness and exhibited a good decolorizing ability sufficient for practical use.

材料1と、材料2を重量比で4:6とする以外は実施例1と同様にして活性炭を得た。同様に活性炭の充填密度ρB(g/cc)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填密度より求めた体積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。結果を表1に示す。硬度、脱色性能とも良好である。 Activated carbon was obtained in the same manner as in Example 1 except that the weight ratio of Material 1 and Material 2 was 4: 6. Similarly, the packing density of activated carbon ρB (g / cc), iodine adsorption amount IA (mg / g), decolorization ability (%), pore diameter per volume determined from the packing density in the region of 200 to 1000 nm and 600 to 1000 nm. The pore volume (cm 3 / cm 3 ) and hardness (%) were measured. The results are shown in Table 1. Both hardness and decolorization performance are good.

材料1及び2を、ボールミルで粉砕する際に、材料1及び2の合計100重量部に対し、固定炭素分60.9重量%、かつ灰分6.2重量%の強粘結炭(ボタン指数9)20重量部を添加する以外は実施例1と同様にして活性炭を得た。同様に活性炭の充填密度ρB(g/cc)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填密度より求めた体積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。結果を表1に示す。硬度、脱色性能とも良好である。 When materials 1 and 2 are pulverized by a ball mill, strong coking coal having a fixed carbon content of 60.9% by weight and an ash content of 6.2% by weight (button index 9) with respect to 100 parts by weight of materials 1 and 2 in total. ) Activated carbon was obtained in the same manner as in Example 1 except for adding 20 parts by weight. Similarly, the packing density of activated carbon ρB (g / cc), iodine adsorption amount IA (mg / g), decolorization ability (%), pore diameter per volume determined from the packing density in the region of 200 to 1000 nm and 600 to 1000 nm. The pore volume (cm 3 / cm 3 ) and hardness (%) were measured. The results are shown in Table 1. Both hardness and decolorization performance are good.

材料1及び2の合計100重量部に対し、強粘結炭25重量部を添加する以外は実施例1と同様にして活性炭を得た。同様に活性炭の充填密度ρB(g/cc)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填密度より求めた体積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。結果を表1に示す。実施例4で得られた活性炭は、実施例1〜3で得られた活性炭に比べ、脱色能力でやや劣るが、実用上問題のないレベルである。 Activated carbon was obtained in the same manner as in Example 1 except that 25 parts by weight of strong caking coal was added to 100 parts by weight of the total of materials 1 and 2. Similarly, the packing density of activated carbon ρB (g / cc), iodine adsorption amount IA (mg / g), decolorization ability (%), pore diameter per volume determined from the packing density in the region of 200 to 1000 nm and 600 to 1000 nm. The pore volume (cm 3 / cm 3 ) and hardness (%) were measured. The results are shown in Table 1. The activated carbon obtained in Example 4 is slightly inferior in decoloring ability as compared with the activated carbon obtained in Examples 1 to 3, but is at a level having no practical problem.

比較例1
炭素質材料として材料1のみを使用し、賦活を900℃で行う以外は実施例1と同様にして活性炭を得た。同様に活性炭の充填密度ρB(g/cc)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填密度より求めた体積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。結果を表1に示す。実施例1〜4で得られた活性炭に比べ200〜1000nmの範囲の細孔容積がかなり小さく、脱色能力に大きく劣っている。
Comparative Example 1
Activated carbon was obtained in the same manner as in Example 1 except that only the material 1 was used as the carbonaceous material and activation was performed at 900 ° C. Similarly, the packing density of activated carbon ρB (g / cc), iodine adsorption amount IA (mg / g), decolorization ability (%), pore diameter per volume determined from the packing density in the region of 200 to 1000 nm and 600 to 1000 nm. The pore volume (cm 3 / cm 3 ) and hardness (%) were measured. The results are shown in Table 1. Compared with the activated carbon obtained in Examples 1 to 4, the pore volume in the range of 200 to 1000 nm is considerably small, and the decolorization ability is greatly inferior.

比較例2
炭素質材料を粉砕する工程において、Ca(OH)を1重量%添加して混合粉砕する以外は比較例1と同様にして活性炭を得た。同様に活性炭の充填密度ρB(g/cc)、ヨウ素吸着量IA(mg/g)、脱色能(%)、充填密度より求めた体積あたりの細孔直径200〜1000nmおよび600〜1000nmの領域における細孔容積(cm/cm)、硬度(%)を測定した。結果を表1に示す。脱色能力については実施例の活性炭と同等であるが硬度で大きく劣るものとなっている。
Comparative Example 2
In the step of pulverizing the carbonaceous material, activated carbon was obtained in the same manner as in Comparative Example 1 except that 1% by weight of Ca (OH) 2 was added and mixed and pulverized. Similarly, the packing density of activated carbon ρB (g / cc), iodine adsorption amount IA (mg / g), decolorization ability (%), pore diameter per volume determined from the packing density in the region of 200 to 1000 nm and 600 to 1000 nm. The pore volume (cm 3 / cm 3 ) and hardness (%) were measured. The results are shown in Table 1. The decolorizing ability is the same as that of the activated carbon of the example, but the hardness is greatly inferior.

Figure 2006104002
Figure 2006104002

本発明の活性炭は、糖液などに含まれる着色成分の除去に好適である。また、本発明の活性炭は、高硬度を有するので、充填時や使用時における活性炭の損傷が少なく、再生ロスを低減化することができる。本発明の活性炭は、好ましくは、弱粘結性以上を有する炭素質材料と、アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料とを乾式混合粉砕し、得られた混合粉体を加圧成型した後破砕し、熱処理した後賦活するという簡単な方法で製造することができ、産業上有用である。

The activated carbon of the present invention is suitable for removing colored components contained in a sugar solution or the like. Moreover, since the activated carbon of this invention has high hardness, there is little damage to activated carbon at the time of filling and use, and it can reduce a regeneration loss. The activated carbon of the present invention is preferably obtained by dry-mixing and grinding a carbonaceous material having weak cohesiveness or higher and a carbonaceous material containing an alkali metal and / or an alkaline earth metal, and It can be produced by a simple method of crushing after pressure molding, activation after heat treatment, and industrially useful.

Claims (11)

細孔直径200〜1000nmの領域における活性炭充填容積あたり細孔容積が0.060cm/cm以上で、硬度が94.0%以上の活性炭。 Activated carbon fill volume per pore volume in the region of pore diameters 200~1000nm is 0.060cm 3 / cm 3 or more, the hardness 94.0% or more of the activated carbon. 細孔直径600〜1000nmの領域における活性炭充填容積あたり細孔容積が0.023cm/cm以上で、請求項1記載の活性炭。 Activated carbon fill volume per pore volume in the region of pore diameters 600~1000nm is 0.023cm 3 / cm 3 or more, according to claim 1 activated carbon according. 該活性炭が石炭系の炭素質材料を原料とする活性炭である請求項1又は2に記載の活性炭。   The activated carbon according to claim 1 or 2, wherein the activated carbon is activated carbon made of a coal-based carbonaceous material. 該活性炭が脱色用の活性炭である請求項1〜3いずれかに記載の活性炭。   The activated carbon according to any one of claims 1 to 3, wherein the activated carbon is a decolorizing activated carbon. 該活性炭が糖液脱色用の活性炭である請求項1〜4いずれかに記載の活性炭。   The activated carbon according to any one of claims 1 to 4, wherein the activated carbon is activated carbon for decolorizing a sugar solution. 少なくとも、弱粘結性以上を有する炭素質材料と、アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料とを乾式混合粉砕し、得られた混合粉体を加圧成型した後破砕し、熱処理した後賦活する活性炭の製造方法。   At least a carbonaceous material having a weak caking property or more and a carbonaceous material containing an alkali metal and / or alkaline earth metal are dry-mixed and pulverized, and the obtained mixed powder is pressed and then crushed. A method for producing activated carbon that is activated after heat treatment. 該弱粘結性以上を有する炭素質材料が石炭系の炭素質材料である請求項6記載の活性炭の製造方法。   The method for producing activated carbon according to claim 6, wherein the carbonaceous material having a weak caking property or more is a coal-based carbonaceous material. アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料が石炭系の炭素質材料である請求項6又は7記載の活性炭の製造方法。   The method for producing activated carbon according to claim 6 or 7, wherein the carbonaceous material containing an alkali metal and / or an alkaline earth metal is a coal-based carbonaceous material. 該アルカリ土類金属がカルシウムである請求項6〜8いずれかに記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 6 to 8, wherein the alkaline earth metal is calcium. 該アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料のカルシウムの含有量が300ppm以上である請求項6〜9いずれかに記載の活性炭の製造方法。   The method for producing activated carbon according to any one of claims 6 to 9, wherein the carbonaceous material containing the alkali metal and / or alkaline earth metal has a calcium content of 300 ppm or more. 該弱粘結性以上を有する炭素質材料と、アルカリ金属及び/又はアルカリ土類金属を含有する炭素質材料との混合比率が重量比で1:9〜9:1である請求項6〜10いずれかに記載の活性炭の製造方法。

The mixing ratio of the carbonaceous material having the weak caking property or more and the carbonaceous material containing an alkali metal and / or an alkaline earth metal is 1: 9 to 9: 1 by weight. The manufacturing method of activated carbon in any one.

JP2004291005A 2004-10-04 2004-10-04 Activated carbon and manufacturing method thereof Active JP4704001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291005A JP4704001B2 (en) 2004-10-04 2004-10-04 Activated carbon and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291005A JP4704001B2 (en) 2004-10-04 2004-10-04 Activated carbon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006104002A true JP2006104002A (en) 2006-04-20
JP4704001B2 JP4704001B2 (en) 2011-06-15

Family

ID=36374150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291005A Active JP4704001B2 (en) 2004-10-04 2004-10-04 Activated carbon and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4704001B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331986A (en) * 2006-06-15 2007-12-27 Japan Enviro Chemicals Ltd Activated carbon
JP5159970B1 (en) * 2012-05-16 2013-03-13 株式会社アルメディオ Activated carbon and manufacturing method thereof
CN107913689A (en) * 2017-11-16 2018-04-17 于伟军 A kind of dangerous waste solid waste method for regenerating activated carbon
WO2019131209A1 (en) 2017-12-27 2019-07-04 株式会社クラレ Activated carbon and production method thereof
WO2019131208A1 (en) 2017-12-27 2019-07-04 株式会社クラレ Activated carbon and production method thereof
WO2020170985A1 (en) 2019-02-18 2020-08-27 株式会社クラレ Activated carbon and method for producing same
CN115124037A (en) * 2021-03-29 2022-09-30 内蒙古浦瑞芬环保科技有限公司 High-sugar honey briquette crushed charcoal and method for producing high-sugar honey briquette crushed charcoal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302216A (en) * 1992-04-27 1993-11-16 Kunitaro Kawazoe Modification of carbonaceous fiber
JPH09187648A (en) * 1996-01-11 1997-07-22 Mitsubishi Chem Corp Active carbon for refining dry cleaning solvent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302216A (en) * 1992-04-27 1993-11-16 Kunitaro Kawazoe Modification of carbonaceous fiber
JPH09187648A (en) * 1996-01-11 1997-07-22 Mitsubishi Chem Corp Active carbon for refining dry cleaning solvent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331986A (en) * 2006-06-15 2007-12-27 Japan Enviro Chemicals Ltd Activated carbon
JP5159970B1 (en) * 2012-05-16 2013-03-13 株式会社アルメディオ Activated carbon and manufacturing method thereof
JP2013237595A (en) * 2012-05-16 2013-11-28 Almedio Inc Activated carbon and method for producing the same
CN107913689A (en) * 2017-11-16 2018-04-17 于伟军 A kind of dangerous waste solid waste method for regenerating activated carbon
WO2019131209A1 (en) 2017-12-27 2019-07-04 株式会社クラレ Activated carbon and production method thereof
WO2019131208A1 (en) 2017-12-27 2019-07-04 株式会社クラレ Activated carbon and production method thereof
US11857943B2 (en) 2017-12-27 2024-01-02 Kuraray Co., Ltd. Activated carbon and production method thereof
US11945724B2 (en) 2017-12-27 2024-04-02 Kuraray Co., Ltd. Activated carbon and production method thereof
WO2020170985A1 (en) 2019-02-18 2020-08-27 株式会社クラレ Activated carbon and method for producing same
CN115124037A (en) * 2021-03-29 2022-09-30 内蒙古浦瑞芬环保科技有限公司 High-sugar honey briquette crushed charcoal and method for producing high-sugar honey briquette crushed charcoal
CN115124037B (en) * 2021-03-29 2023-09-22 内蒙古浦瑞芬环保科技有限公司 Broken carbon prepared by high molasses briquettes and method for producing broken carbon prepared by high molasses briquettes

Also Published As

Publication number Publication date
JP4704001B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
Fierro et al. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH
Yang et al. Characteristics of activated carbons prepared from pistachio-nut shells by potassium hydroxide activation
Mahmoudi et al. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption
JP3746509B1 (en) Spherical activated carbon and its manufacturing method
TW201437141A (en) Granular activated carbon having many mesopores, and manufacturing method for same
PL117489B1 (en) Method of manufacture of granular activated carbon from brown coalurogo uglja
CN103818939B (en) Hydrogen peroxide fluid bed special aluminium oxide and production technology
JP4704001B2 (en) Activated carbon and manufacturing method thereof
KR20100038390A (en) Silica gel manufacturing method and gels made thereby
CN102046535B (en) Basic magnesium sulfate granule and process for production thereof
CN110475608B (en) Heavy metal adsorbent
JP2000313611A (en) Active carbon and its production
KR20100053510A (en) Caustic silica gel manufacturing method and gels made thereby
CA3120955A1 (en) Pelletized activated carbon and methods of production
Sutthasupa et al. Sugarcane bagasse-derived granular activated carbon hybridized with ash in bio-based alginate/gelatin polymer matrix for methylene blue adsorption
CN116323497A (en) Activated carbon and water treatment method using the same
CN104805279A (en) Magnesium-containing compounded additive and preparation method thereof
JPS6323125B2 (en)
PL111361B1 (en) Process for manufacturing granulated activated carbon
JP2020152902A (en) Carbon black molded body and method for producing the same
US11452984B2 (en) Adsorbent composition and a process for preparing the same
JP6930897B2 (en) Anion adsorbent
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
JP2828268B2 (en) Activated carbon for advanced treatment of purified water
JP2020023420A (en) Active carbon and manufacturing method of active carbon, and decoloration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350