JP3746509B1 - Spherical activated carbon and its manufacturing method - Google Patents

Spherical activated carbon and its manufacturing method Download PDF

Info

Publication number
JP3746509B1
JP3746509B1 JP2005118487A JP2005118487A JP3746509B1 JP 3746509 B1 JP3746509 B1 JP 3746509B1 JP 2005118487 A JP2005118487 A JP 2005118487A JP 2005118487 A JP2005118487 A JP 2005118487A JP 3746509 B1 JP3746509 B1 JP 3746509B1
Authority
JP
Japan
Prior art keywords
activated carbon
pore volume
diameter
less
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005118487A
Other languages
Japanese (ja)
Other versions
JP2006083052A (en
Inventor
寿一 柳
昇二 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Enviro Chemicals Ltd
Original Assignee
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Enviro Chemicals Ltd filed Critical Japan Enviro Chemicals Ltd
Priority to JP2005118487A priority Critical patent/JP3746509B1/en
Application granted granted Critical
Publication of JP3746509B1 publication Critical patent/JP3746509B1/en
Publication of JP2006083052A publication Critical patent/JP2006083052A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】硬度が高く、磨耗を受け難く、マクロ孔、トランジショナル孔、ミクロ孔のそれぞれがバランス良く発達した活性炭であり、水処理用に使用した際、有機物の吸着性能に優れ、かつ再生時の摩耗による損失の少ない活性炭及びその製法提供。
【解決手段】石炭を原料とし、その16〜24重量%に相当する水とともに練合し、造粒機により球状に成形し、これを炭化、賦活化して得られる細孔径30nm以上細孔容積が0.2〜0.6ml/gであり、そのうち直径1μm以下の細孔容積の割合が60%以上であり、安息角が30°以下である球状活性炭が上記課題を解決した。
【選択図】なし
[PROBLEMS] An activated carbon that has high hardness, is hardly subject to wear, and has well-developed macropores, transitional pores, and micropores. When used for water treatment, it has excellent adsorption performance for organic matter and at the time of regeneration. Providing activated carbon with less loss due to wear and its manufacturing method.
[MEANS FOR SOLVING PROBLEMS] Coal is a raw material, kneaded with water corresponding to 16 to 24% by weight thereof, formed into a spherical shape by a granulator, and carbonized and activated to obtain a pore volume of 30 nm or more. A spherical activated carbon having a pore volume ratio of 0.2 to 0.6 ml / g, of which the pore volume with a diameter of 1 μm or less is 60% or more and the angle of repose is 30 ° or less solved the above problems.
[Selection figure] None

Description

本発明は、硬度が高く、磨耗を受け難く、マクロ孔、トランジショナル孔、ミクロ孔のそれぞれがバランス良く発達した活性炭であり、水処理用に使用した際、有機物の吸着性能に優れ、かつ再生時の摩耗による損失の少ない活性炭及びその製法に関する。   The present invention is activated carbon that has high hardness, is hard to be worn, and has well-developed macropores, transitional pores, and micropores. When used for water treatment, it has excellent organic substance adsorption performance and is regenerated. The present invention relates to an activated carbon with little loss due to wear and its manufacturing method.

従来、水道原水、各種工業用水、排水の浄化に活性炭が使用されている。それらの活性炭は、吸着能力が低下した後は再生して使用することがあるが、その際磨耗、破損などによって活性炭が滅失すると、高い収率で活性炭を再生することはできない。   Conventionally, activated carbon is used for purification of raw water for water supply, various industrial waters, and waste water. These activated carbons may be regenerated and used after the adsorption capacity is reduced. However, if the activated carbon is lost due to wear or breakage, the activated carbon cannot be regenerated in a high yield.

ところで、近年水中におけるダイオキシン類のような微量有害物質の存在が次々と明らかにされ、これらを効果的に吸着できる吸着剤が強く求められているが、ヤシガラ活性炭のようにミクロ孔に富む活性炭は、平衡吸着性能は高いものの、トランジショナル孔、マクロ孔に乏しく、対象とする水中に存在する種々の分子量を持った有機物の吸着に対応できないことや、吸着に時間がかかりすぎるため実用上十分な吸着性能を発揮することができない。
一方、石炭を原料とした成形活性炭は、マクロ孔に富むが、形状が一般に破砕状、ペレット状であるため、その形状では使用中、あるいは再生する際に粉化する率が高く、再生処理をした場合の再生率は高くない。
By the way, in recent years, the existence of trace harmful substances such as dioxins in water has been clarified one after another, and there is a strong demand for an adsorbent that can effectively adsorb these substances. Although the equilibrium adsorption performance is high, it has few transitional pores and macropores, so it cannot handle adsorption of organic substances with various molecular weights present in the target water, and it takes too much time for adsorption, so it is practically sufficient. Adsorption performance cannot be demonstrated.
On the other hand, molded activated carbon made from coal is rich in macropores, but its shape is generally crushed and pelleted, so its shape has a high rate of pulverization during use or when it is regenerated. The playback rate is not high.

石炭を粉砕して、球状に成形する活性炭の製造法も知られてはいる(特許文献1)が、これまでの成形方法によって成形された球状活性炭では硬度が不十分で、マクロ孔とミクロ孔のバランスも一定せず、結局実用的な吸着能を有し、且つ再生率の高い活性炭は得られていない。
特公昭46−41210
A method for producing activated carbon that pulverizes coal into a spherical shape is also known (Patent Document 1), but the spherical activated carbon molded by the conventional molding method has insufficient hardness, so that macropores and micropores are produced. The activated carbon having a practical adsorption capacity and a high regeneration rate has not been obtained.
Shoko 46-41210

活性炭の細孔は、吸着にかかわる細孔直径30nm未満の細孔と、吸着には直接関与せず活性炭内部の物質の輸送速度に関係する細孔直径30nm以上の細孔に分けられるが、活性炭に細孔直径30nm以上の細孔が少ないと、吸着速度が遅くなり、実用上は吸着剤として使用することが難しい。一方、細孔直径30nm以上の細孔の中でも、例えば直径1μm以上のマクロ孔が多いと、活性炭の骨格部分が弱くなり、機械的強度が低くなるので、使用に際して微粉が発生したり、再生処理をした場合再生率の低下を招くことになる。   The pores of activated carbon are divided into pores with a diameter of less than 30 nm that are involved in adsorption and pores with a diameter of 30 nm or more that are not directly involved in adsorption and are related to the transport rate of substances inside activated carbon. If the number of pores having a pore diameter of 30 nm or more is small, the adsorption rate becomes slow and it is difficult to use as an adsorbent in practical use. On the other hand, among the pores with a pore diameter of 30 nm or more, for example, if there are many macropores with a diameter of 1 μm or more, the skeleton of activated carbon becomes weak and the mechanical strength becomes low. If this is done, the playback rate will decrease.

球状造粒物は通常転動造粒法によって製造される。その際粒子の成長は、造粒機上で回転する粉末粒子が、粒子間に介在する水により互いに接着し、雪だるま式に粒子径が大きくなることにより行われ、一定の硬さ、平均粒径を有する球状成形品ができる。
しかし、原料がヤシガラ炭のような粘結性のない粉末の場合は、この転動造粒法による成形は困難で、粘結剤などを用いて球状造粒物を得たとしても、賦活時に破損・粉化する率が高くなる。石炭粉末の場合は、例えば原料石炭を粘結剤と混合し少量の水を加えて転動造粒した後、炭化・賦活化すると球状活性炭を得ることができるが、機械的強度が高く且つ細孔径が30nm以上で1μm以下のマクロ孔に富んだ水処理に適した活性炭は得られない。
したがって、本発明の課題は、硬度が高く、磨耗を受け難く、細孔直径30nm以上の細孔及び細孔直径30nm未満の細孔のそれぞれがバランスよく発達した水中の有機物吸着に適した球状活性炭およびその製法を提供することにある。
Spherical granules are usually produced by rolling granulation. At this time, the particle growth is performed by the powder particles rotating on the granulator being bonded to each other by water intervening between the particles, and the particle size is increased by a snowman type. A spherical molded article having
However, when the raw material is a non-caking powder such as coconut charcoal, it is difficult to form by this rolling granulation method, and even if a spherical granulated material is obtained using a caking agent, etc. The rate of breakage and powdering increases. In the case of coal powder, spherical activated carbon can be obtained by mixing raw material coal with a binder, adding a small amount of water, rolling and granulating, then carbonizing and activating, but it has high mechanical strength and fineness. Activated carbon suitable for water treatment with a pore size of 30 nm to 1 μm and rich in macropores cannot be obtained.
Accordingly, an object of the present invention is a spherical activated carbon suitable for adsorption of organic matter in water, which has high hardness, is hardly subject to wear, and has well-developed pores each having a pore diameter of 30 nm or more and a pore diameter of less than 30 nm. And providing a method for producing the same.

本発明者らは前記課題を解決するような活性炭を得るには、まず成形に際して活性炭に加える水分の量と、混練時における微細気泡の生成が重要であることに気づいた。すなわち、混練の際、必要最小限の厚さの水膜を原料粒子間に介在させる量の水を加え、微細気泡を巻き込まないように混練することにより、賦活工程において、マクロ孔分布を狭くし、直径30nm〜1μmの細孔に富み、硬度の高い球状活性炭を調製することができるという知見を得た。さらに、活性炭の原料や粒径も、活性炭の吸着能や強度に大いに関係してくることが分かった。本発明は、これらの知見を基に更に検討を重ねて完成するに到った。   In order to obtain activated carbon that can solve the above-mentioned problems, the present inventors first realized that the amount of moisture added to the activated carbon during molding and the generation of fine bubbles during kneading are important. That is, when kneading, by adding an amount of water interposing the raw material particles with a minimum necessary thickness, kneading so as not to entrain fine bubbles, thereby narrowing the macropore distribution in the activation process. It was found that spherical activated carbon rich in pores having a diameter of 30 nm to 1 μm and having high hardness can be prepared. Furthermore, it was found that the raw material and particle size of activated carbon are greatly related to the adsorption capacity and strength of activated carbon. The present invention has been completed through further studies based on these findings.

即ち本発明は、
(1)
石炭を原料とし、直径30nm以上の細孔容積が0.2〜0.6ml/gで、そのうち直径1μm以下の細孔容積の割合が60%以上であり、BET比表面積が800〜2000m2/gであり、安息角が30°以下である球状活性炭、
(2)
水質浄化用である(1)記載の球状活性炭、
(3)
石炭を原料とする粉末炭を、その16〜24重量%に相当する水とともに練合し、造粒機により球状に成形し、これを炭化、賦活化することを特徴とする直径30nm以上の細孔容積が0.2〜0.6 ml/gで、そのうち直径1μm以下の細孔容積の割合が60%以上であり、BET比表面積が800〜2000m2/gであり、安息角が30°以下である球状活性炭の製造法、
(4)
使用済みの(1)記載の球状活性炭を、700〜1000℃で水蒸気再生する球状活性炭の製造法、
である。
That is, the present invention
(1)
Using coal as a raw material, the pore volume of 30 nm or more in diameter is 0.2 to 0.6 ml / g, of which the proportion of pore volume of 1 μm or less in diameter is 60% or more, and the BET specific surface area is 800 to 2000 m 2 / g Spherical activated carbon with an angle of repose of 30 ° or less,
(2)
(1) spherical activated carbon for water purification,
(3)
Powdered coal made from coal is kneaded with water corresponding to 16 to 24% by weight, formed into a spherical shape by a granulator, and carbonized and activated. Spherical shape with a pore volume of 0.2 to 0.6 ml / g, of which the proportion of pore volume with a diameter of 1 μm or less is 60% or more, the BET specific surface area is 800 to 2000 m 2 / g, and the angle of repose is 30 ° or less Production method of activated carbon,
(4)
A method for producing a spherical activated carbon in which the spherical activated carbon described in (1) is steam-regenerated at 700 to 1000 ° C .;
It is.

本発明の活性炭の原料としては、亜炭、褐炭、瀝青炭、無煙炭などの各種石炭が挙げられるが、適切な粘結性を有するものがよい。粘結性が高すぎると、炭化の際に膨らみを生じ、空隙の多い活性炭になってしまう。逆に粘結性が低いと、十分な硬さを持った球状物とすることができない。好ましい原料は、適度の粘結性を有する瀝青炭である。
活性炭を球状に成形するには、まず石炭を粉砕機で粉砕して、微粉状とする。微粉は、100メッシュ(0.149mm)パス、好ましくはその90%以上が200メッシュ(0.074mm)パスする程度の粉末炭とするのがよく、粉末の平均粒子径は、通常0.005〜0.12mm、好ましくは、0.01〜0.1mmである。
この粉末炭を用いて造球するには、先ず、粉末炭に特定量の水と必要により粘結剤を加えて均一に混合し、微細気泡を巻き込まないように練合することが肝要である。
造球は、存在する水分の表面張力で微粉炭相互の凝集が促進されて球形となるので、造球時に含まれる水分の量が少な過ぎると造球が困難となる。一方供給する水分量が多過ぎると、ベタついて造球できないことがあり、造球できたとしても微細な気泡を巻き込んだ粒子を形成し、この気泡が炭化時直径1μm以上の細孔の形成に大きな影響を与えるので、混練時における粉末炭と水の割合は活性炭の直径1μm以上の細孔形成にとって極めて重要である。
すなわち、本発明において混練時に存在させる水分は、粉末炭の16〜24重量%、好ましくは16〜20重量%、特に好ましくは17〜20重量%である。転動造粒をする際は、蒸発する水分を補うために、混練物に適量の水、例えば1〜10重量%、好ましくは3〜7重量%の水を噴霧することもできる。成型物の水分は15〜20%、好ましくは16〜19%である。
Examples of the raw material of the activated carbon of the present invention include various coals such as lignite, lignite, bituminous coal, and anthracite, but those having appropriate caking properties are preferable. If the caking property is too high, swelling occurs during carbonization, resulting in activated carbon with many voids. On the other hand, if the caking property is low, a spherical object with sufficient hardness cannot be obtained. A preferred raw material is bituminous coal having moderate caking properties.
In order to form activated carbon into a spherical shape, coal is first pulverized with a pulverizer to form a fine powder. The fine powder should be 100-mesh (0.149 mm) pass, preferably 90% or more of powdered charcoal that passes 200 mesh (0.074 mm), and the average particle size of the powder is usually 0.005-0.12 mm, preferably Is 0.01 to 0.1 mm.
In order to make a ball using this powdered charcoal, it is important to first add a specific amount of water and if necessary a binder to the powdered charcoal and mix uniformly, and knead so as not to entrain fine bubbles. .
Since sphere formation is a spherical shape because the cohesion of pulverized coal is promoted by the surface tension of the existing moisture, sphere formation becomes difficult if the amount of moisture contained during sphere formation is too small. On the other hand, if the amount of water supplied is too large, it may become sticky and cannot be formed, and even if it can be formed, particles with fine bubbles are formed, and these bubbles form pores with a diameter of 1 μm or more when carbonized. Since it has a great influence, the ratio of powdered charcoal to water during kneading is extremely important for the formation of pores having a diameter of 1 μm or more of activated carbon.
That is, the moisture present during kneading in the present invention is 16 to 24% by weight, preferably 16 to 20% by weight, and particularly preferably 17 to 20% by weight of the powdered coal. When rolling granulation, an appropriate amount of water, for example, 1 to 10% by weight, preferably 3 to 7% by weight, can be sprayed onto the kneaded product in order to compensate for the water that evaporates. The moisture content of the molded product is 15 to 20%, preferably 16 to 19%.

粘結剤は、球状炭に強度を与え、造球速度を速めるのに有効である。通常、25〜600℃の範囲で粘結性を有するものであればよく、例えばカルボキシメチルセルロース、硬ピッチ、軟ピッチ、パルプ廃液(主成分はリグニンスルホン酸塩)などが用いられる。粘結剤は、通常粉末炭の3〜20重量%、好ましくは5〜15重量%の範囲で使用される。
つぎに、この練合物から球状炭を得るために、転動造粒法または押出し成形とマルメライザー成形を組み合わせて造球することができるが、転動造粒法が好ましい。
The binder is effective for imparting strength to the spheroidal charcoal and for increasing the speed of ball forming. Generally, any material having caking properties in the range of 25 to 600 ° C. may be used. For example, carboxymethyl cellulose, hard pitch, soft pitch, pulp waste liquid (main component is lignin sulfonate), and the like are used. The binder is usually used in the range of 3 to 20% by weight, preferably 5 to 15% by weight of the powdered charcoal.
Next, in order to obtain spherical charcoal from this kneaded product, ball rolling can be performed by combining rolling granulation method or extrusion molding with Malmerizer molding, but rolling granulation method is preferred.

本発明において、「球状」とは、必ずしも個々の粒子が真球またはそれに近い球状のものを意味するのではなく、安息角が30°以下、好ましくは28°以下である丸みを帯びた粒子の形状を意味し、この安息角は小さい方が好ましい。成形に当たっては、配合する水分の割合、粘結剤の種類を決める必要があるが、原料の石炭によって配合条件は適宜選択される。   In the present invention, “spherical” does not necessarily mean that each individual particle is a true sphere or a spherical particle close to it, but a rounded particle having an angle of repose of 30 ° or less, preferably 28 ° or less. It means the shape, and the angle of repose is preferably smaller. In molding, it is necessary to determine the proportion of moisture to be blended and the type of binder, but the blending conditions are appropriately selected depending on the raw material coal.

得られた球状炭は、緩和な熱条件下で水分が1〜3%程度になるまで乾燥した後、ロータリーキルンのような公知の製造設備によって300〜650℃の温度範囲で炭化され、続いてロータリーキルン、流動炉、斯列普炉などの公知の製造設備によって750〜1050℃の温度範囲で賦活される。賦活した活性炭を篩い分けて粒度を揃え、製品とする。得られた活性炭は、公知の方法で塩酸、硝酸、硫酸、燐酸などの鉱酸を用いて洗浄してもよいし、その後さらに水で洗浄してもよい。また、種々の目的のために薬品等を添着した添着活性炭として使用してもよい。   The obtained spherical charcoal is dried to a moisture content of about 1 to 3% under mild heat conditions, and then carbonized in a temperature range of 300 to 650 ° C. by a known production facility such as a rotary kiln, followed by rotary kiln. And activated in a temperature range of 750 to 1050 ° C. by a known production facility such as a fluidized furnace and a common furnace. The activated carbon is sieved to obtain a uniform particle size. The obtained activated carbon may be washed with a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid by a known method, or may be further washed with water. Further, it may be used as an impregnated activated carbon impregnated with chemicals for various purposes.

賦活方法は特に限定されない。たとえば「活性炭工業」 重化学工業通信社出版(1974)、p.23〜p.37に記載の、水蒸気、酸素、炭酸ガスなどの活性ガスによる賦活や、リン酸、塩化亜鉛などを用いた薬品による賦活などが適宜用いられる。
賦活化された活性炭のBET比表面積は、通常800〜2000m2/g、好ましくは900〜1800m2/g、さらに好ましくは900〜1300m2/gである。BET比表面積が少ないと、ミクロ孔の発達が不十分となり、吸着性能が低くなる。
The activation method is not particularly limited. For example, activated carbon industry, published by Heavy Chemical Industry News Agency (1974), p.23-p.37, activated by active gases such as water vapor, oxygen, carbon dioxide, and chemicals using phosphoric acid, zinc chloride, etc. Activation etc. are used suitably.
BET specific surface area of activation activated carbon is usually 800~2000m 2 / g, preferably 900~1800m 2 / g, more preferably from 900~1300m 2 / g. When the BET specific surface area is small, the micropores are not sufficiently developed and the adsorption performance is lowered.

本発明の賦活された活性炭は、細孔径30nm以上の細孔容積が0.2〜0.6ml/g、好ましくは0.25〜0.5ml/g、より好ましくは0.3〜0.4ml/gであり、そのうち直径1μm以下の細孔容積の割合が60%以上、好ましくは75%以上、より好ましくは80%以上のものである。また、直径30nm未満の細孔容積は、0.4〜1.0ml/g、好ましくは0.4〜0.8ml/g、さらに好ましくは0.5〜0.8ml/gである。この直径30nm未満の細孔容積が少ない活性炭は吸着容量が少なくなる。
賦活化活性炭の充てん密度は、通常0.43〜0.63g/ml、好ましくは0.45〜0.60g/ml、さらに好ましくは0.47〜0.57g/mlである。
The activated activated carbon of the present invention has a pore volume of 30 nm or more and a pore volume of 0.2 to 0.6 ml / g, preferably 0.25 to 0.5 ml / g, more preferably 0.3 to 0.4 ml / g, of which the diameter is 1 μm or less. The pore volume ratio is 60% or more, preferably 75% or more, more preferably 80% or more. The pore volume with a diameter of less than 30 nm is 0.4 to 1.0 ml / g, preferably 0.4 to 0.8 ml / g, more preferably 0.5 to 0.8 ml / g. The activated carbon with a small pore volume of less than 30 nm in diameter has a small adsorption capacity.
The packing density of the activated activated carbon is usually 0.43 to 0.63 g / ml, preferably 0.45 to 0.60 g / ml, more preferably 0.47 to 0.57 g / ml.

水中の有機物質吸着能を最大限に発揮させ、圧損を少なくし、再生率を高くするには球状活性炭の平均粒径を0.6〜10mmとするのがよく、水処理用には、好ましくは0.6〜3mm、さらに好ましくは0.6〜1.5mmである。目的の粒子径の球状炭は、篩を用いて篩い分けをすればよい。
活性炭のBET比表面積は、液体窒素温度での活性炭の窒素吸着等温線を作成し、BET法により計算する。
活性炭の直径30nm以下の細孔容積は、液体窒素温度での活性炭の窒素吸着等温線を作成し、CI法により計算する。
活性炭のマクロ孔容積は、水銀圧入法細孔容積測定装置(マイクロメリティクス社製、AUTOPORE9220)を用いて求める。
安息角は、図1に示す容器に活性炭を入れ、容器を静かに転がして静止させたのち、角φを測定する(傾斜法)ことにより求めた。
使用済みの活性炭は、たとえば、700〜1000℃、好ましくは、800〜900℃に保った炉内で、水蒸気を導入しながら10〜30分間程度加熱することによって容易に再生することができる。本発明によって得られた活性炭は硬さが高く、実質的に球状であるため再生操作による粒子の摩耗による損失も受け難く、水蒸気再生によって使用する前とほぼ同等の好ましい性能を有する活性炭を得ることができる。
この再生活性炭は、新炭と同様、公知の方法で塩酸、硝酸、硫酸、燐酸などの鉱酸を用いて洗浄してもよいし、その後さらに水で洗浄してもよい。また、種々の目的のために薬品等を添着した添着活性炭として使用してもよい。
In order to maximize the ability to adsorb organic substances in water, reduce pressure loss, and increase the regeneration rate, the average particle diameter of the spherical activated carbon should be 0.6 to 10 mm, and for water treatment, preferably 0.6. -3 mm, more preferably 0.6-1.5 mm. What is necessary is just to sieve the spherical charcoal of the target particle diameter using a sieve.
The BET specific surface area of activated carbon is calculated by the BET method by creating a nitrogen adsorption isotherm of activated carbon at liquid nitrogen temperature.
The pore volume of activated carbon with a diameter of 30 nm or less is calculated by the CI method by creating a nitrogen adsorption isotherm of activated carbon at liquid nitrogen temperature.
The macropore volume of the activated carbon is determined using a mercury intrusion pore volume measuring device (manufactured by Micromeritics, AUTOPORE9220).
The angle of repose was obtained by placing activated carbon in the container shown in FIG. 1, gently rolling the container to stand still, and measuring the angle φ (inclination method).
The used activated carbon can be easily regenerated, for example, by heating for about 10 to 30 minutes while introducing water vapor in a furnace maintained at 700 to 1000 ° C., preferably 800 to 900 ° C. The activated carbon obtained by the present invention has a high hardness and is substantially spherical, so that it is difficult to suffer from loss due to particle abrasion due to the regeneration operation, and obtain activated carbon having almost the same preferable performance as before use by steam regeneration. Can do.
This regenerated activated carbon may be washed with a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid or the like by a known method, and may be further washed with water. Further, it may be used as an impregnated activated carbon impregnated with chemicals for various purposes.

本発明の活性炭は、水処理工程において、吸着力が高いうえに有機物の吸着速度がはやく、再生時の活性炭粒子の損失が極めて少ないので、再生を繰り返しても再生率は高く、活性炭の吸着性能の劣化も少ない。   In the water treatment process, the activated carbon of the present invention has high adsorptive power and fast organic adsorption rate, and the loss of activated carbon particles during regeneration is extremely small. There is also little deterioration.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

乾燥した瀝青炭を粉砕機で平均粒径62μm(200メッシュパス90重量%)に粉砕し、混合機、ニーダーを用いて石炭100重量部に対し、水10部、粘結剤(リグニンスルホン酸)の50%水溶液18部を加えて良く混練した。
混練物を転動造粒機にかけ、水5重量部を噴霧しながら造球して、平均粒径1.7mmの成形品を得た。これを100℃で乾燥後、300〜600℃で炭化した。続いて850℃で2時間水蒸気賦活した。賦活後、篩にかけ2.36mmを通過し、0.50mmを通過しない粒子を集め、活性炭No.1を得た。この活性炭のBET比表面積は1000m2/g、水銀圧入法で求めた直径30nm以上の細孔容積は0.37ml/g、そのうち直径1μm以下の割合は80%であった。
また、直径30nm未満の細孔容積は、0.50ml/g、活性炭の平均粒径は1.3mm、安息角は28°、活性炭の充てん密度は0.520g/mlであった。
The dried bituminous coal is pulverized to a mean particle size of 62μm (200 mesh pass 90% by weight) with a pulverizer, 10 parts of water and 100 parts of coal (lignin sulfonic acid) are added to 100 parts by weight of coal using a mixer and kneader. 18 parts of 50% aqueous solution was added and kneaded well.
The kneaded product was put on a rolling granulator and granulated while spraying 5 parts by weight of water to obtain a molded product having an average particle size of 1.7 mm. This was dried at 100 ° C. and carbonized at 300 to 600 ° C. Subsequently, steam activation was performed at 850 ° C. for 2 hours. After the activation, particles passed through 2.36 mm through a sieve and not passed through 0.50 mm were collected to obtain activated carbon No. 1. The activated carbon had a BET specific surface area of 1000 m 2 / g, a pore volume of 30 nm or more obtained by mercury intrusion method of 0.37 ml / g, of which the ratio of 1 μm or less was 80%.
The pore volume with a diameter of less than 30 nm was 0.50 ml / g, the average particle diameter of activated carbon was 1.3 mm, the angle of repose was 28 °, and the packing density of activated carbon was 0.520 g / ml.

水蒸気賦活時間を2時間半とした以外は実施例1と同様にして活性炭No.2を得た。この活性炭のBET比表面積は1200 m2/gであり、水銀圧入法で求めた直径30nm以上の細孔容積は0.40ml/g、そのうち直径1μm以下の割合は83%であった。また、直径30nm未満の細孔容積は、0.62ml/gであった。活性炭の平均粒径は1.3mm、安息角は28°、活性炭の充てん密度は、0.468g/mlであった。 Activated carbon No. 2 was obtained in the same manner as in Example 1 except that the steam activation time was set to 2.5 hours. The activated carbon had a BET specific surface area of 1200 m 2 / g, and the pore volume of 30 nm or more obtained by mercury porosimetry was 0.40 ml / g, of which the ratio of 1 μm or less was 83%. The pore volume with a diameter of less than 30 nm was 0.62 ml / g. The average particle diameter of the activated carbon was 1.3 mm, the angle of repose was 28 °, and the packing density of the activated carbon was 0.468 g / ml.

石炭微粉末混練時の水の使用量を14重量部(結合剤溶液の水と合わせると合計23重量部)とした以外は、実施例1と同様にして活性炭No.3を得た。この活性炭のBET比表面積は1020 m2/g、水銀圧入法で求めた直径30nm以上の細孔容積は0.44ml/g、そのうち直径1μm以下の割合は75%であった。また、直径30nm未満の細孔容積は、0.51ml/gであった。活性炭の平均粒径は1.3mm、安息角は28°、活性炭の充てん密度は、0.491g/mlであった。
〔比較例1〕
Activated carbon No. 3 was obtained in the same manner as in Example 1 except that the amount of water used in the coal fine powder kneading was 14 parts by weight (a total of 23 parts by weight when combined with the water of the binder solution). The activated carbon had a BET specific surface area of 1020 m 2 / g, a pore volume of 30 nm or more in diameter obtained by mercury intrusion method was 0.44 ml / g, of which the ratio of 1 μm or less was 75% . The pore volume with a diameter of less than 30 nm was 0.51 ml / g. The average particle diameter of the activated carbon was 1.3 mm, the angle of repose was 28 °, and the packing density of the activated carbon was 0.491 g / ml.
[Comparative Example 1]

石炭100部に対し使用する水の合計を26部としたほかは、実施例1と同様にして活性炭No.4を得た。この活性炭のBET比表面積は1050 m2/gであり、水銀圧入法で求めた直径30nm以上の細孔容積は0.52ml/g、そのうち直径1μm以下の割合は33%であった。また、直径30nm未満の細孔容積は、0.53ml/g、活性炭の平均粒径は1.3mm、安息角は28°であった。活性炭の充てん密度は0.459g/mlであった。
〔比較例2〕
Activated carbon No. 4 was obtained in the same manner as in Example 1 except that the total amount of water used for 100 parts of coal was 26 parts. The activated carbon had a BET specific surface area of 1050 m 2 / g, the pore volume of 30 nm or more obtained by mercury intrusion method was 0.52 ml / g, of which the ratio of 1 μm or less was 33%. The pore volume with a diameter of less than 30 nm was 0.53 ml / g, the average particle size of activated carbon was 1.3 mm, and the angle of repose was 28 °. The packing density of activated carbon was 0.459 g / ml.
[Comparative Example 2]

石炭100部に対し使用する水の合計を15部としたほかは、実施例1と同様にして活性炭No.5を得た。この活性炭のBET比表面積は1080 m2/gであり、水銀圧入法で求めた直径30nm以上の細孔容積は0.15ml/g、そのうち直径1μm以下の割合は75%であった。また、直径30nm未満の細孔容積は、0.54ml/g、活性炭の平均粒径は1.3mm、安息角は28°であった。活性炭の充てん密度は0.600g/mlであった。
〔比較例3〕
Activated carbon No. 5 was obtained in the same manner as in Example 1 except that the total amount of water used for 100 parts of coal was 15 parts. The activated carbon had a BET specific surface area of 1080 m 2 / g, the pore volume of 30 nm or more obtained by mercury porosimetry was 0.15 ml / g, of which the ratio of 1 μm or less was 75%. The pore volume with a diameter of less than 30 nm was 0.54 ml / g, the average particle diameter of activated carbon was 1.3 mm, and the angle of repose was 28 °. The packing density of activated carbon was 0.600 g / ml.
[Comparative Example 3]

実施例1と同様にして、石炭100重量部に対し、水8部、粘結剤の50重量%水溶液18部を加えて良く混練したものをロールコンパクターで成形し、ハンマーミルと篩を用いて平均粒径1.7mmの破砕状成形品である活性炭No.6を得た。この活性炭のBET比表面積は1040 m2/g、水銀圧入法で求めた直径30nm以上の細孔容積は0.42ml/g、そのうち直径1μm以下の割合は73%であった。また、直径30nm未満の細孔容積は、0.51ml/g、活性炭の平均粒径は1.3mm、安息角は39°、活性炭の充てん密度は0.494g/mlであった。
〔比較例4〕
In the same manner as in Example 1, 8 parts of water and 18 parts of a 50% by weight aqueous solution of a binder were added to 100 parts by weight of coal, and the mixture was kneaded and molded with a roll compactor, using a hammer mill and a sieve. Activated carbon No. 6 was obtained as a crushed molded product having an average particle diameter of 1.7 mm. The activated carbon had a BET specific surface area of 1040 m 2 / g, a pore volume of 30 nm or more in diameter obtained by mercury intrusion method was 0.42 ml / g, of which the ratio of 1 μm or less was 73%. The pore volume with a diameter of less than 30 nm was 0.51 ml / g, the average particle diameter of activated carbon was 1.3 mm, the angle of repose was 39 °, and the packing density of activated carbon was 0.494 g / ml.
[Comparative Example 4]

ヤシガラ炭化品を粉砕機で平均粒径62μm(200メッシュパス90重量%)に粉砕し、混合機、ニーダーを用いてヤシガラ炭化品100重量部に対し、水6部、粘結剤(リグニンスルホン酸)の50%水溶液18部を加えて良く混練した。
混練物に水5重量部を噴霧しながら転動造粒機にかけ、平均粒径1.9mmの成形品を得た。これを60℃で乾燥後、300〜600℃で炭化したところ、殆どの粒子が崩壊し、粉末と化した。したがって、後述する各種の試験には、試料として用いなかった。
The coconut shell carbonized product is pulverized to an average particle size of 62 μm (200 mesh pass 90% by weight) with a pulverizer, and 6 parts of water and a binder (lignin sulfonic acid) are added to 100 parts by weight of the coconut shell carbonized product using a mixer and kneader. ) Was added and kneaded well.
While spraying 5 parts by weight of water on the kneaded product, it was put on a rolling granulator to obtain a molded product having an average particle size of 1.9 mm. When this was carbonized at 300-600 degreeC after drying at 60 degreeC, most particle | grains disintegrated and it turned into powder. Therefore, it was not used as a sample in various tests described later.

粉末化した比較例4の活性炭を除き、活性炭No.1〜6について以下に記載する各種試験を行った。
硬さ測定試験:
活性炭の粒度を篩により2.36mm〜0.50mmとして、JIS K1474の硬さ測定方法によって測定した。この方法は、主として摩擦に対する耐久性を求める方法である。
MS硬度測定方法:
図2に示す容器にあらかじめ粒度範囲の篩を用いて篩い分けた活性炭10mlを直径7.94mmの鋼球10個と共に入れ、毎分25回転で40分回転後、活性炭と鋼球を分離し、活性炭を0.355mmの篩で篩い分けたとき、
[ふるい上の質量]×100(%)/[ふるい上の質量+ふるい下の質量]
で求めた。この方法は、衝撃、摩擦に対する耐久性を求める方法である。
Except for the powdered activated carbon of Comparative Example 4, various tests described below were performed on activated carbon Nos. 1 to 6.
Hardness measurement test:
The particle size of the activated carbon was adjusted to 2.36 mm to 0.50 mm with a sieve, and the hardness was measured by the hardness measurement method of JIS K1474. This method is mainly a method for obtaining durability against friction.
MS hardness measurement method:
Put 10 ml of activated carbon that has been sieved in advance in the container shown in Fig. 2 using a sieve with a particle size range together with 10 steel balls with a diameter of 7.94 mm. After rotating for 40 minutes at 25 revolutions per minute, the activated carbon and steel balls are separated and activated carbon Is sieved with a 0.355 mm sieve,
[Mass on sieve] x 100 (%) / [Mass on sieve + Mass under sieve]
I asked for it. This method is a method for obtaining durability against impact and friction.

有機物破過吸着実験:
活性炭No.1〜3(実施例1〜3)、活性炭No.4〜6(比較例1〜3)各220mlを直径50mmのガラス製カラムに充てんし、ジベンゾフラン1000μg/Lを含む水溶液を25℃で2.16L/hの割合で通水した。吸着層の目詰まりを防止するため、週1回の頻度で、水を上向きに1L/分の割合で15分間流し逆洗浄をした。活性炭処理水、処理前の水のジベンゾフラン濃度を蛍光分光光度計により測定し、次式によって破過率を求め、通水日数を横軸に、破過率を縦軸に結果をプロットし、破過率5%に達するまでの日数を比較した。
また、試験終了時の活性炭の体積を測定した。
これらの結果を表1に纏めた。
Organic breakthrough adsorption experiment:
Activated carbon No. 1 to 3 (Examples 1 to 3), Activated carbon No. 4 to 6 (Comparative Examples 1 to 3) 220 ml each was packed in a glass column with a diameter of 50 mm, and an aqueous solution containing dibenzofuran 1000 μg / L at 25 ° C. The water was passed at a rate of 2.16 L / h. In order to prevent clogging of the adsorption layer, water was flushed at a rate of 1 L / min for 15 minutes at a frequency of once a week for backwashing. Measure the concentration of dibenzofuran in the activated carbon treated water and the water before treatment with a fluorescence spectrophotometer, obtain the breakthrough rate by the following formula, plot the result on the horizontal axis and the breakthrough rate on the vertical axis. The number of days until the excess rate reached 5% was compared.
Moreover, the volume of the activated carbon at the end of the test was measured.
These results are summarized in Table 1.

Figure 0003746509
本発明の活性炭1〜3、No.5は、高い硬さを有している。一方、直径30nm以上の細孔容積の過大なNo.4の活性炭は、硬さが低く、直径30nm以上の細孔容積の過少なNo.5の活性炭は吸着性能が不充分である。また、No.6の活性炭は破砕状であるため、割れ、欠けが生じ、硬さも低かった。
Figure 0003746509
The activated carbons 1 to 3 and No. 5 of the present invention have high hardness. On the other hand, No. 4 activated carbon having an excessive pore volume with a diameter of 30 nm or more has low hardness, and No. 5 activated carbon having an excessive pore volume with a diameter of 30 nm or more has insufficient adsorption performance. Moreover, since the activated carbon of No. 6 was crushed, it was cracked and chipped, and the hardness was low.

再生活性炭の収率、物性、吸着性能の測定
前記有機物破過吸着試験終了後、それぞれの活性炭を所定の温度に保った電気炉内で、水蒸気を導入しながら20分間加熱し、再生活性炭を得た。再生活性炭の収率(再生前活性炭の固定炭素分基準)、JIS K1474で測定した硬さ、MS硬度、平均粒径、吸着性能を比較した。それらの実験結果を表2に示した。
Measurement of yield, physical properties and adsorption performance of regenerated activated carbon After completion of the organic breakthrough adsorption test, each activated carbon is heated for 20 minutes while introducing steam in an electric furnace to obtain a regenerated activated carbon. It was. The yield of regenerated activated carbon (based on the fixed carbon content of activated carbon before regeneration), hardness measured by JIS K1474, MS hardness, average particle size, and adsorption performance were compared. The experimental results are shown in Table 2.

Figure 0003746509
Figure 0003746509

使用済みの本発明の活性炭(活性炭No. 1〜No. 3)を850℃で再生したものは、活性炭の損失が極めて少なく、再生収率が高く、再生品の硬さが高く保持された。また、再生温度を950℃とすると、収率、硬さはわずかに低下したが、吸着能は向上した。
直径30nm以上の細孔分布が異なる活性炭No.4は、再生収率が低く、再生品の平均粒径が小さくなっていた。再生温度を950℃にすると、さらに再生収率が低下した。活性炭No.5は、再生後も吸着能が低くかった。また、破砕状である活性炭No.6は、再生時に活性炭の割れ、欠けが生じて収率が低く、再生品の平均粒径も小さくなり、吸着性能も低下した。再生温度を950℃にすると、さらに収率が低くなってしまった。
The used activated carbon of the present invention (activated carbon No. 1 to No. 3) regenerated at 850 ° C. has a very low loss of activated carbon, a high regeneration yield, and a high hardness of the recycled product. When the regeneration temperature was 950 ° C., the yield and hardness were slightly reduced, but the adsorption ability was improved.
Activated carbon No. 4 having a pore distribution of 30 nm or more in diameter and having a different pore distribution had a low regeneration yield, and the average particle size of the regenerated product was small. When the regeneration temperature was 950 ° C., the regeneration yield further decreased. Activated carbon No. 5 had a low adsorption capacity even after regeneration. Moreover, activated carbon No. 6 in a pulverized state had low yield due to cracking and chipping of the activated carbon during regeneration, the average particle size of the regenerated product was reduced, and the adsorption performance was also lowered. When the regeneration temperature was 950 ° C., the yield was further lowered.

本発明の活性炭は、吸着能が高い上に、粒子の損失が起きない。また再生収率も高く、再生によっても同等の性能を有する活性炭を得ることができるので、水道原水、各種工業用水、排水等の水浄化用に特に有利に使用される。   The activated carbon of the present invention has a high adsorption capacity and does not cause particle loss. In addition, since the activated carbon having a high regeneration yield and the same performance can be obtained even by regeneration, it is particularly advantageously used for water purification of raw water for tap water, various industrial waters, waste water and the like.

安息角測定装置の断面図Cross section of repose angle measuring device MS硬度測定機容器の側面図Side view of MS hardness tester container

Claims (4)

石炭を原料とし、直径30nm以上の細孔容積が0.2〜0.6ml/gで、そのうち直径1μm以下の細孔容積の割合が60%以上であり、BET比表面積が800〜2000m2/gであり、安息角が30°以下である球状活性炭。 Using coal as a raw material, the pore volume of 30 nm or more in diameter is 0.2 to 0.6 ml / g, of which the proportion of pore volume of 1 μm or less in diameter is 60% or more, and the BET specific surface area is 800 to 2000 m 2 / g Spherical activated carbon with an angle of repose of 30 ° or less. 水質浄化用である請求項1記載の球状活性炭。   2. The spherical activated carbon according to claim 1, which is used for water purification. 石炭を原料とする粉末炭を、その16〜24重量%に相当する水とともに練合し、造粒機により球状に成形し、これを炭化、賦活化することを特徴とする直径30nm以上の細孔容積が0.2〜0.6ml/gで、そのうち直径1μm以下の細孔容積の割合が60%以上であり、BET比表面積が800〜2000m2/gであり、安息角が30°以下である球状活性炭の製造法。 Powdered coal made from coal is kneaded with water corresponding to 16 to 24% by weight, formed into a spherical shape by a granulator, and carbonized and activated. A spherical shape with a pore volume of 0.2 to 0.6 ml / g, of which the proportion of pore volume with a diameter of 1 μm or less is 60% or more, the BET specific surface area is 800 to 2000 m 2 / g, and the angle of repose is 30 ° or less. Production method of activated carbon. 使用済みの請求項1記載の球状活性炭を、700〜1000℃で水蒸気再生する球状活性炭の製造法。

A method for producing spherical activated carbon, wherein the spherical activated carbon according to claim 1 is regenerated by steam at 700 to 1000 ° C.

JP2005118487A 2004-08-20 2005-04-15 Spherical activated carbon and its manufacturing method Active JP3746509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118487A JP3746509B1 (en) 2004-08-20 2005-04-15 Spherical activated carbon and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004240424 2004-08-20
JP2005118487A JP3746509B1 (en) 2004-08-20 2005-04-15 Spherical activated carbon and its manufacturing method

Publications (2)

Publication Number Publication Date
JP3746509B1 true JP3746509B1 (en) 2006-02-15
JP2006083052A JP2006083052A (en) 2006-03-30

Family

ID=36032079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118487A Active JP3746509B1 (en) 2004-08-20 2005-04-15 Spherical activated carbon and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3746509B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682368B2 (en) 2014-04-29 2017-06-20 Rennovia Inc. Shaped porous carbon products
CN107597086A (en) * 2017-10-24 2018-01-19 湖北君集水处理有限公司 A kind of Powdered Activated Carbon regenerative system and method for being used to reduce dust pollution
US10464048B2 (en) 2015-10-28 2019-11-05 Archer-Daniels-Midland Company Porous shaped metal-carbon products
US10722867B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped carbon products
CN113401899A (en) * 2021-07-07 2021-09-17 山西新华防化装备研究院有限公司 Method for preparing desulfurization and denitrification active carbon without coal tar
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034246B2 (en) * 2007-05-16 2011-10-11 Exxonmobil Research & Engineering Company Wastewater mercury removal process
JP5792664B2 (en) * 2012-03-09 2015-10-14 水ing株式会社 Method for regenerating used activated carbon, activated activated carbon and method for producing the same
CN103495419B (en) * 2013-10-23 2016-01-06 林天安 Three-diemsnional electrode active carbon and preparation method thereof and the application on refractory organic waste water treatment
JP6165598B2 (en) * 2013-11-13 2017-07-19 水ing株式会社 Regeneration method of plant-based spherical activated carbon and reuse method of the regenerated plant-based spherical activated carbon in water purification treatment
JP6290900B2 (en) * 2014-04-03 2018-03-07 関西熱化学株式会社 Activated carbon for water purifier
JP5776053B1 (en) * 2015-01-22 2015-09-09 株式会社エム・イ−・ティ− Scrub agents and methods of use
CN105800610B (en) 2016-03-31 2018-03-27 神华集团有限责任公司 A kind of preparation method of binder free coal base agglomerated activated carbon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682368B2 (en) 2014-04-29 2017-06-20 Rennovia Inc. Shaped porous carbon products
US9993802B2 (en) 2014-04-29 2018-06-12 Archer Daniels Midland Company Shaped porous carbon products
US10384192B2 (en) 2014-04-29 2019-08-20 Archer-Daniels-Midland Company Shaped porous carbon products
US10654027B2 (en) 2014-04-29 2020-05-19 Archer-Daniels-Midland Company Shaped porous carbon products
US11253839B2 (en) 2014-04-29 2022-02-22 Archer-Daniels-Midland Company Shaped porous carbon products
US10464048B2 (en) 2015-10-28 2019-11-05 Archer-Daniels-Midland Company Porous shaped metal-carbon products
US10722867B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped carbon products
US10722869B2 (en) 2015-10-28 2020-07-28 Archer-Daniels-Midland Company Porous shaped metal-carbon products
CN107597086A (en) * 2017-10-24 2018-01-19 湖北君集水处理有限公司 A kind of Powdered Activated Carbon regenerative system and method for being used to reduce dust pollution
CN113401899A (en) * 2021-07-07 2021-09-17 山西新华防化装备研究院有限公司 Method for preparing desulfurization and denitrification active carbon without coal tar

Also Published As

Publication number Publication date
JP2006083052A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP3746509B1 (en) Spherical activated carbon and its manufacturing method
US5726118A (en) Activated carbon for separation of fluids by adsorption and method for its preparation
US5304527A (en) Preparation for high activity, high density carbon
JP5013290B2 (en) High performance adsorbent based on activated carbon
US5250491A (en) Preparation of high activity, high density activated carbon
JP5602435B2 (en) Adsorbents based on activated carbon with meso and macroporosity
JP5773647B2 (en) Chemical activated carbon and method for its preparation
ES2209931T3 (en) PROCEDURE TO PREPARE CONFORMED ACTIVATED CARBON.
US4029600A (en) Carbon particulates with controlled density
JPH01126214A (en) Production of activated carbon
US20170007980A1 (en) Process for the production of high-quality activated carbons as well as activated carbons produced according to the process
JP4855251B2 (en) Spherical activated carbon and method for producing the same
TW201437141A (en) Granular activated carbon having many mesopores, and manufacturing method for same
US5736481A (en) Shaped lignocellulosic-based activated carbon
JP4418079B2 (en) Method for producing activated coke having high strength and high adsorption capacity
JP2000313611A (en) Active carbon and its production
JP7453463B1 (en) Carbonaceous material and its manufacturing method, and adsorption filter
JP2007331986A (en) Activated carbon
JPS6323125B2 (en)
RU2597400C1 (en) Method of producing composite sorbent based on mineral and vegetable carbon-containing material
JP2009057239A (en) Activated carbon preparation method
PL111361B1 (en) Process for manufacturing granulated activated carbon
JP2828268B2 (en) Activated carbon for advanced treatment of purified water
JP2002348111A (en) Method for producing activated carbon
JPH07277716A (en) Active carbon

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Ref document number: 3746509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250