JP2013237595A - Activated carbon and method for producing the same - Google Patents

Activated carbon and method for producing the same Download PDF

Info

Publication number
JP2013237595A
JP2013237595A JP2012112514A JP2012112514A JP2013237595A JP 2013237595 A JP2013237595 A JP 2013237595A JP 2012112514 A JP2012112514 A JP 2012112514A JP 2012112514 A JP2012112514 A JP 2012112514A JP 2013237595 A JP2013237595 A JP 2013237595A
Authority
JP
Japan
Prior art keywords
activated carbon
activation
raw material
temperature
carbonization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112514A
Other languages
Japanese (ja)
Other versions
JP5159970B1 (en
Inventor
Koichiro Konno
孝一郎 金野
Takashi Oishi
隆志 大石
Tomitaka Toyama
富孝 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Almedio Inc
Original Assignee
Almedio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Almedio Inc filed Critical Almedio Inc
Priority to JP2012112514A priority Critical patent/JP5159970B1/en
Application granted granted Critical
Publication of JP5159970B1 publication Critical patent/JP5159970B1/en
Priority to CN2013101756581A priority patent/CN103420367A/en
Publication of JP2013237595A publication Critical patent/JP2013237595A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing activated carbon, capable of simply preparing activated carbon having a large pore volume and pore size suitable for adsorption/desorption of substances without relying on alkali activation.SOLUTION: A method for producing activated carbon comprises: a carbonizing step of carbonizing a fruit of Camellia japonica, as a raw material, containing potassium of ≥0.8% by an absolute dry mass rate of the raw material; and an activation step of activating the carbonized product obtained in the carbonizing step with at least one gas selected from steam, air and carbon dioxide, as activation gas.

Description

本発明は、活性炭及びその製造方法に関する。   The present invention relates to activated carbon and a method for producing the same.

近年、活性炭に要求される特性は、高度化の一途をたどり、用途に応じた特性を持つ活性炭が必要とされている。活性炭の最大の特徴は、活性炭表面に形成されている細孔が物質を吸着、脱着(吸脱着)することにある。   In recent years, the characteristics required for activated carbon have been increasingly advanced, and activated carbon having characteristics according to the use is required. The greatest feature of activated carbon is that the pores formed on the activated carbon surface adsorb and desorb (desorb and desorb) substances.

炭素質原料を多孔質の材料に変化させて活性炭を得るための賦活方法には、アルカリ賦活とガス賦活とがあり、吸脱着する物質に応じた細孔径と細孔容積を得る観点から、近年ではアルカリ賦活法による活性炭製造が有効手段となっている。   The activation method for obtaining activated carbon by changing the carbonaceous raw material into a porous material includes alkali activation and gas activation. From the viewpoint of obtaining a pore diameter and a pore volume according to the substance to be adsorbed and desorbed, Then, activated carbon production by an alkali activation method is an effective means.

このアルカリ賦活法では、一般に原料重量に対して2〜5倍重量のアルカリ剤を必要とするため、(1)工程数が多くなる、(2)アルカリ腐食による装置の短寿命化、(3)アルカリ回収、再利用に係わる装置の大規模化などの懸念がある。これらが原因で製造コストが高く、改善が望まれている。   This alkali activation method generally requires 2 to 5 times the weight of the alkali agent relative to the raw material weight, so (1) the number of steps is increased, (2) the life of the equipment is shortened due to alkali corrosion, (3) There are concerns such as the increase in scale of equipment related to alkali recovery and reuse. Due to these reasons, the manufacturing cost is high, and improvement is desired.

上記のような状況のもと、粘結性を与えて成型性を高めるための弱粘結性以上の石炭系の炭素質材料とアルカリ金属及び/又はアルカリ土類金属を含有する微粘結性の石炭系の炭素質材料との2種類の石炭を用いることで、活性炭を効率よく製造する活性炭の製造方法が開示されており、高い脱色性能と高強度が得られるとされている(例えば、特許文献1参照)。   Under the circumstances as described above, a slightly caking property containing a coal-based carbonaceous material and an alkali metal and / or an alkaline earth metal more than a weak caking property for imparting caking property and improving moldability. By using two types of coal with a coal-based carbonaceous material, a method for producing activated carbon that efficiently produces activated carbon is disclosed, and high decolorization performance and high strength are obtained (for example, Patent Document 1).

また、木質にアルカリ金属等を分散し、炭化しつつ、炭化時の加熱に伴い発生する木質由来の水性ガス及び揮発性炭化水素類により木質の賦活を行なう活性炭の製法が開示されている(例えば、特許文献2参照)。   Further, a method for producing activated carbon is disclosed in which wood is activated by water-derived water gas and volatile hydrocarbons generated by heating during carbonization while dispersing and carbonizing an alkali metal or the like in wood (for example, , See Patent Document 2).

更に、原料としてヤシガラを用い、ヤシガラを炭化し水蒸気賦活することで所定のBET比表面積を有するヤシガラ活性炭が開示されている(例えば、特許文献3参照)。   Furthermore, coconut husk activated carbon having a predetermined BET specific surface area is disclosed by using coconut husk as a raw material, carbonizing the coconut husk and activating water vapor (see, for example, Patent Document 3).

特開2006−104002号公報JP 2006-104002 A 特許第4142341号Japanese Patent No. 4142341 国際公開第2008−53919号パンフレットInternational Publication No. 2008-53919 Pamphlet

しかしながら、アルカリ賦活のために原料に対し重量比で2倍以上のアルカリ剤を用いる従来の方法では、上記のように、製造コストが抑えられないばかりか、賦活度(収率)のコントロールも難しい。また、アルカリ剤を加えるため、装置が腐食しやすく、爆発等の危険性を有しているほか、一般にバッチ生産にしか向かず、連続生産が行なえないのが実情である。   However, in the conventional method using an alkali agent at a weight ratio of 2 times or more with respect to the raw material for alkali activation, the production cost is not suppressed as described above, and the activation degree (yield) is difficult to control. . In addition, since an alkali agent is added, the apparatus is easily corroded and there is a risk of explosion and the like. In general, it is only suitable for batch production, and continuous production is not possible.

また、上記従来の技術のうち、原料に石炭系の炭素質材料を用いた石炭系の活性炭では、数nm〜数十nmのメソ孔が主の孔分布となっており比較的孔サイズが大きいため、分子サイズの大きい物質を吸着するには適しているが、分子サイズの比較的小さい物質の吸着には適していない。また、製造のための構成上、弱粘結性以上の石炭系材料とは別にアルカリ金属を含む材料が必要とされるため、混合過程を設けなければならず、工程が煩雑となる。   Also, among the above conventional techniques, in coal-based activated carbon using a coal-based carbonaceous material as a raw material, mesopores of several nm to several tens of nm are the main pore distribution, and the pore size is relatively large. Therefore, although it is suitable for adsorbing a substance having a large molecular size, it is not suitable for adsorbing a substance having a relatively small molecular size. In addition, since a material containing an alkali metal is required in addition to a coal-based material having weak caking properties or more due to the structure for production, a mixing process must be provided, and the process becomes complicated.

一方、ヤシガラを原料として炭化しこれを賦活して得られたヤシガラ活性炭では、むしろ0.5〜0.6nm付近に孔径ピークのある細孔分布を有すると考えられるが、このような細孔径の範囲ではむしろ細孔径が小さ過ぎてしまい、一般に分子サイズが数nm程度の例えば低分子量の有機物などの吸着には適さない。この場合、必ずしも物質の吸脱着性の点で劣ることにならないが、近年ではこのような分子サイズを持つ物質の吸脱着が良好に行なえる性質をそなえた活性炭が求められている。   On the other hand, coconut husk activated carbon obtained by carbonizing coconut husk as a raw material and activating it is rather considered to have a pore distribution with a pore size peak in the vicinity of 0.5 to 0.6 nm. In the range, the pore size is rather too small, and generally not suitable for adsorption of, for example, low molecular weight organic substances having a molecular size of about several nanometers. In this case, although not necessarily inferior in the adsorption / desorption property of the substance, in recent years, activated carbon having a property capable of satisfactorily adsorbing / desorbing a substance having such a molecular size has been demanded.

本発明は、上記状況に鑑みなされたものであり、アルカリ賦活によることなく、細孔容積が大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭が簡易に作製される活性炭の製造方法、及び細孔容積の大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above situation, and an activated carbon having a large pore volume and a pore diameter suitable for adsorption / desorption of a substance (particularly a low molecular weight substance) can be easily produced without being activated by alkali. It is an object of the present invention to provide a method for producing activated carbon and to provide activated carbon having a large pore volume and a pore diameter suitable for adsorption / desorption of a substance (particularly a low molecular weight substance). .

前記課題を達成するための具体的手段は以下の通りである。
<1> カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料とし、該原料を炭化する炭化工程と、前記炭化工程で得られた炭化物を、水蒸気、空気、及び二酸化炭素から選ばれる少なくとも1種の気体を賦活ガスとして賦活する賦活工程と、を含む活性炭の製造方法である。
<2> 前記椿の実が、椿油の搾り滓、又は椿の実の殻である前記<1>に記載の活性炭の製造方法である。
<3> 前記炭化工程は、炭化を600℃以上の温度で行なう前記<1>又は前記<2>に記載の活性炭の製造方法である。
<4> 前記炭化工程は、昇温速度を2段階に変化させて昇温することで炭化する前記<1>〜前記<3>のいずれか1つに記載の活性炭の製造方法である。
Specific means for achieving the above object are as follows.
<1> A raw material containing 0.8% or more of potassium as a raw material mass ratio of potassium is used as a raw material, a carbonization step for carbonizing the raw material, and a carbide obtained in the carbonization step is converted into water vapor, air, and carbon dioxide. And an activation step of activating at least one gas selected from carbon as an activation gas.
<2> The method for producing activated carbon according to <1>, wherein the coconut is a squeezed cocoon oil or a coconut shell.
<3> The carbonization step is the method for producing activated carbon according to <1> or <2>, wherein carbonization is performed at a temperature of 600 ° C. or higher.
<4> The carbonization step is the method for producing activated carbon according to any one of <1> to <3>, wherein the carbonization is performed by changing the temperature increase rate in two stages to raise the temperature.

<5> 前記炭化工程は、200℃以上600℃以下の温度範囲での昇温速度を2℃/min以上4℃/min以下として炭化する前記<1>〜前記<4>のいずれか1つに記載の活性炭の製造方法である。
<6> 前記賦活工程は、賦活を750℃以上の温度で行なう前記<1>〜前記<5>のいずれか1つに記載の活性炭の製造方法である。
<7> 前記賦活工程は、周期律表1族の金属の総質量に対する含有量が質量基準で5%以上である活性炭が得られるように賦活する前記<1>〜前記<6>のいずれか1つに記載の活性炭の製造方法である。
<8> 賦活工程を経て得られた活性炭に対して、金属含有量が活性炭総量に対して質量基準で0.5%以下になるように、水洗処理及び酸洗処理の少なくとも一方を施す洗浄工程を更に含む前記<1>〜前記<7>のいずれか1つに記載の活性炭の製造方法である。
<5> The carbonization step is any one of <1> to <4>, wherein the carbonization is performed at a temperature increase rate in a temperature range of 200 ° C. or more and 600 ° C. or less at 2 ° C./min or more and 4 ° C./min or less. It is a manufacturing method of activated carbon as described in above.
<6> The activation process is the method for producing activated carbon according to any one of <1> to <5>, wherein the activation is performed at a temperature of 750 ° C. or higher.
<7> Any one of the items <1> to <6>, wherein the activation step is activated so that activated carbon having a content based on a mass of 5% or more based on a total mass of the metals in the group 1 of the periodic table is obtained. It is a manufacturing method of activated carbon as described in one.
<8> A washing step of performing at least one of a water washing treatment and a pickling treatment so that the metal content is 0.5% or less on a mass basis with respect to the total amount of activated carbon with respect to the activated carbon obtained through the activation step. The method for producing activated carbon according to any one of <1> to <7>, further including:

<9> カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料として作製され、細孔直径が0.7nm以上の細孔が占める細孔容積が全細孔容積の65%以上である活性炭である。
<10> 細孔直径が0.7nm以上の孔径範囲に微分細孔容積ピーク値が0.3cm/g・nm以上となるピーク細孔直径を有する前記<9>に記載の活性炭である。
<9> Pork volume containing 0.8% or more of potassium in an absolute dry raw material mass ratio as a raw material, and the pore volume occupied by pores having a pore diameter of 0.7 nm or more is 65% of the total pore volume. % Of activated carbon.
<10> The activated carbon according to <9>, which has a peak pore diameter in which a differential pore volume peak value is 0.3 cm 3 / g · nm or more in a pore diameter range having a pore diameter of 0.7 nm or more.

本発明によれば、アルカリ賦活によることなく、細孔容積が大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭が簡易に作製される活性炭の製造方法が提供される。また、
本発明によれば、細孔容積の大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭が提供される。
According to the present invention, there is provided an activated carbon production method in which activated carbon having a large pore volume and having a pore diameter suitable for adsorption / desorption of a substance (particularly a low molecular weight substance) can be easily produced without using alkali activation. The Also,
ADVANTAGE OF THE INVENTION According to this invention, the activated carbon which has a large pore volume and a pore diameter suitable for adsorption / desorption of a substance (especially low molecular weight substance) is provided.

(a)は実施例1の収率15%付近での活性炭の細孔容積分布を比較例と対比して示すグラフであり、(b)は実施例1の収率10%付近での活性炭の細孔容積分布を比較例と対比して示すグラフである。(A) is a graph showing the pore volume distribution of activated carbon in the vicinity of 15% yield of Example 1 in comparison with the comparative example, and (b) is a graph of the activated carbon in the vicinity of 10% yield of Example 1. It is a graph which shows pore volume distribution in contrast with a comparative example.

以下、本発明の活性炭の製造方法について詳細に説明し、該説明を通じて本発明の活性炭の詳細について詳述することとする。   Hereinafter, the manufacturing method of the activated carbon of the present invention will be described in detail, and the details of the activated carbon of the present invention will be described in detail through the description.

<活性炭の製造方法>
本発明の活性炭の製造方法は、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料とし、該原料を炭化する炭化工程と、炭化工程で得られた炭化物を、水蒸気、空気、及び二酸化炭素から選ばれる少なくとも1種の気体を賦活ガスとして賦活する賦活工程とを設けて構成されている。本発明の活性炭の製造方法は、必要に応じて、更に、炭化工程で得られた炭化物や賦活後の活性炭を洗浄する洗浄工程などの他の工程を設けて構成することができる。
<Method for producing activated carbon>
The method for producing activated carbon according to the present invention uses, as a raw material, coconuts containing 0.8% or more of potassium by an absolutely dry raw material mass ratio, and carbonizes the raw material, and the carbide obtained in the carbonization step is treated with steam. And an activation step of activating at least one gas selected from air and carbon dioxide as an activation gas. The method for producing activated carbon of the present invention can be configured by further providing other steps such as a washing step for washing the carbide obtained in the carbonization step and activated carbon after activation, if necessary.

本発明においては、炭化工程での炭化に用いる原料として、特に所定量以上のカリウムを含有している椿の実(植物原料)を用い、椿の実から得られた炭化物に対して、アルカリ賦活を行なうのではなく、ガス賦活(特に水蒸気賦活)を行なうことで、アルカリ賦活相当の性能、すなわち細孔容積が大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭が所望の賦活度(収率)にて作製される。
また、アルカリ賦活を行なわないことで、活性炭に付着した過剰なアルカリ剤を洗浄除去する手間が省け工程の簡略化が図れるのみならず、洗浄後のアルカリ金属の回収作業も不要になる。更に、アルカリ賦活を行なわないため、アルカリ環境に曝されて生じる装置自体の腐食が防止され、多量アルカリの存在で懸念される爆発などの危険性も解消される。
In the present invention, as a raw material used for carbonization in the carbonization step, particularly a coconut (plant raw material) containing a predetermined amount or more of potassium is used, and an alkali activation is performed on a carbide obtained from the coconut. Activated carbon having a pore size suitable for adsorption and desorption of a substance (particularly a low molecular weight substance) by performing gas activation (especially steam activation) instead of performing the activation. Is produced with a desired activation degree (yield).
Moreover, by not performing alkali activation, not only can the process of washing and removing excess alkali agent adhering to the activated carbon be omitted, the process can be simplified, but the recovery work of the alkali metal after washing is also unnecessary. Further, since alkali activation is not performed, corrosion of the device itself caused by exposure to an alkaline environment is prevented, and dangers such as explosions that are a concern in the presence of a large amount of alkali are also eliminated.

−炭化工程−
本発明における炭化工程では、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料として用い、この原料を炭化処理する。したがって、本工程では、活性炭を作成するための椿の実の炭化物が得られることになる。
-Carbonization process-
In the carbonization step in the present invention, the raw material of the coconut containing 0.8% or more of potassium by an absolute dry raw material mass ratio is used as a raw material, and this raw material is carbonized. Therefore, in this step, charcoal carbides for producing activated carbon are obtained.

本発明においては、原料として、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を用いることで、後述する賦活工程でのアルカリ賦活が不要になる。従来から活性炭の原料として用いられている石炭系の炭素質材料では、高比表面積、高細孔容積にする場合、多孔の活性炭を得るためにアルカリ賦活処理あるいはアルカリ金属等を含む副成分の併用が不可欠とされている。また、ヤシガラや椿の実以外の例えば枝や幹などは、含有されるカリウム量が椿の実と比べて一桁程度少ないため、この程度のカリウム量ではアルカリ賦活を行なわなければ、所望とする細孔が形成された活性炭を得ようとすると長時間を要する。
本発明における椿の実は、0.8質量%以上のカリウムを含有しており、カリウムは実を形成している組織中に均質かつ高分散に分布していると考えられることから、後述する賦活工程において賦活処理する場合に、原料に多量のアルカリ剤を別添し賦活処理する従来の方法と比較して、形成される細孔の偏在を防ぎ、物質の吸脱着に適した均質性のある細孔が一様に得られる。したがって、活性炭を作製したときには、所定の細孔直径を有する細孔が適切に分布した細孔分布が得られ、硬度も高められる。換言すれば、カリウムの含有量が0.8質量%未満であると、所望とする均質性のある細孔が一様に形成された活性炭を得ようとすると長時間を要する。
In the present invention, alkali activation in the activation step described later becomes unnecessary by using as a raw material the coconut that contains 0.8% or more of potassium in an absolutely dry raw material mass ratio. In the case of coal-based carbonaceous materials that have been used as raw materials for activated carbon in the past, in order to obtain porous activated carbon when using a high specific surface area and high pore volume, combined use of alkali activation treatment or secondary components including alkali metals Is indispensable. Moreover, for example, branches and trunks other than coconut husk and coconuts are less than an order of magnitude of potassium compared to coconuts, so if alkali activation is not performed at this amount of potassium, it is desirable. It takes a long time to obtain activated carbon with pores formed.
The fruit of the cocoon in the present invention contains 0.8% by mass or more of potassium, and it is considered that potassium is distributed homogeneously and highly dispersed in the tissue forming the fruit. Compared with the conventional method in which a large amount of an alkali agent is separately added to the raw material and activated in the process, the formation of uneven pores is prevented and the material is homogeneous and suitable for adsorption / desorption of substances. The pores can be obtained uniformly. Therefore, when activated carbon is produced, a pore distribution in which pores having a predetermined pore diameter are appropriately distributed is obtained, and the hardness is also increased. In other words, when the content of potassium is less than 0.8% by mass, it takes a long time to obtain activated carbon in which the desired homogeneous pores are uniformly formed.

原料である椿の実に含まれるカリウムの含有量としては、細孔形成の点では多いほど好ましいが、上記と同様の理由から1.0質量%以上が好ましい。カリウムの含有量の上限値については、必ずしも制限されるものではないが、賦活後の洗浄の観点からは、1.5質量%以下が好ましい。   As the content of potassium contained in the raw material of the cocoon, it is more preferable in terms of pore formation, but 1.0% by mass or more is preferable for the same reason as described above. The upper limit of the potassium content is not necessarily limited, but is preferably 1.5% by mass or less from the viewpoint of cleaning after activation.

ここで、原料として用いられる椿の実は、植物である椿にできる実のことであり、この椿の実には、種子の部分とこの外側を包んでいる殻とが含まれる。原料としては、カリウム含有量が絶乾原料質量に対して1質量%以上である点で、椿の実を形成している種子や外殻が好ましく、椿の枝や幹の部分はカリウムの含有量が絶乾原料質量比率で0.1質量%を下回るため好ましくない。炭化工程で用いる原料としては、椿の実あるいはその種子や外殻をそのまま用いるほか、油絞り滓を用いてもよい。   Here, the fruit of a cocoon used as a raw material is a fruit that can be made into a cocoon that is a plant, and the fruit of the cocoon includes a seed part and a shell that wraps the outside. As the raw material, seeds and shells forming coconuts are preferable in that the potassium content is 1% by mass or more based on the mass of the absolutely dry raw material, and the branches and trunk parts of the pods contain potassium. The amount is less than 0.1% by mass in terms of the absolute dry raw material mass ratio, which is not preferable. As a raw material used in the carbonization step, coconuts or their seeds and outer shells may be used as they are, or oil squeezed potatoes may be used.

炭化処理は、原料を600℃以上の温度範囲で加熱して炭化することにより好適に行なうことができる。原料を炭化するにあたり、用意した原料を一度に600℃以上の高温に加熱して炭化させてもよいが、好ましくは、原料中の水分が排出されるように一旦200〜300℃程度の温度域まで昇温し、必要に応じて200〜300℃で保持して水分を気化した後、炭化のため更に昇温することが好ましい。   The carbonization treatment can be suitably performed by heating and carbonizing the raw material in a temperature range of 600 ° C. or higher. In carbonizing the raw material, the prepared raw material may be carbonized by heating to a high temperature of 600 ° C. or more at a time, but preferably, a temperature range of about 200 to 300 ° C. once so that moisture in the raw material is discharged. It is preferable that the temperature is further increased for carbonization after the water is vaporized by holding at 200 to 300 ° C. and vaporizing moisture as necessary.

原料を炭化させる炭化温度は、600℃以上が好ましく、800℃以上がより好ましく、更に好ましくは850℃以上である。炭化温度の上限値は、装置の耐久性の点で、1050℃が望ましい。炭化温度が600℃以上であることで、原料に含まれる植物成分(例えばセルロースやリグニン)の結晶化がより進んだ炭化物が得られやすい。   The carbonization temperature for carbonizing the raw material is preferably 600 ° C. or higher, more preferably 800 ° C. or higher, and still more preferably 850 ° C. or higher. The upper limit of the carbonization temperature is preferably 1050 ° C. from the viewpoint of the durability of the apparatus. When the carbonization temperature is 600 ° C. or higher, it is easy to obtain a carbide in which crystallization of plant components (for example, cellulose and lignin) contained in the raw material is further advanced.

炭化処理においては、所望とする温度に昇温するまでの過程で昇温速度を多段階に分けて昇温を行なうことが好ましく、特には2段階に昇温速度を変化させて昇温する方法が好ましい。段階的に温度を上昇させることで、原料組成の熱分解に合わせた炭化処理が行なえ、最終的に得られる活性炭の性能を高めるのに有効である。具体的には、
原料を加熱していくと、200℃付近に達する過程及び必要により200〜300℃で保持する過程で原料中の水分が気化し水分の排出が減少していくが、その後の200℃を超える温度域において、原料中の成分の熱分解反応が進行する。原料成分の熱分解が始まると、可燃ガス(例えばメタンガス)の発生を伴なって原料質量が低下する傾向が現れる。このように原料成分が熱分解して可燃ガスが生じ質量低下する温度範囲では、比較的ゆっくりとした昇温速度で温度上昇させることが、最終的に得られる活性炭の性能を高める点で好ましい。
In the carbonization treatment, it is preferable to increase the temperature increase rate in multiple stages in the process until the temperature is increased to a desired temperature, and in particular, a method of increasing the temperature by changing the temperature increase rate in two stages. Is preferred. By raising the temperature stepwise, carbonization can be performed in accordance with the thermal decomposition of the raw material composition, which is effective in improving the performance of the finally obtained activated carbon. In particular,
When the raw material is heated, the moisture in the raw material is vaporized in the process of reaching around 200 ° C. and, if necessary, maintained at 200-300 ° C., and the discharge of moisture decreases. In the region, the thermal decomposition reaction of the components in the raw material proceeds. When the thermal decomposition of the raw material components begins, the raw material mass tends to decrease with the generation of combustible gas (for example, methane gas). Thus, in the temperature range where the raw material components are thermally decomposed to generate a combustible gas and the mass is reduced, it is preferable to raise the temperature at a relatively slow temperature increase rate in terms of improving the performance of the finally obtained activated carbon.

上記の観点から、本発明における炭化工程では、200℃以上600℃以下の温度領域における昇温速度を2℃/min以上4℃/min以下とすることが好ましい。この温度範囲での昇温速度を前記範囲にすることで、単位体積あたりの質量が大きい活性炭が得られやすく、活性炭の有する物質の吸脱着に優れる。
昇温速度の切り替えは、原料の質量変化を追跡することで把握することができる。
From the above viewpoint, in the carbonization step in the present invention, it is preferable that the temperature increase rate in the temperature range of 200 ° C. or more and 600 ° C. or less is 2 ° C./min or more and 4 ° C./min or less. By setting the rate of temperature rise in this temperature range to the above range, activated carbon having a large mass per unit volume can be easily obtained, and the adsorption and desorption of the substance possessed by the activated carbon is excellent.
The temperature increase rate can be switched by tracking the mass change of the raw material.

本発明における炭化工程では、上記のように600℃以下の温度領域の昇温速度を前記範囲にした後、更に600℃を超える温度(好ましくは800℃以上、より好ましくは850℃以上)に昇温することが好ましい。この場合の昇温速度には、特に制限はないが、600℃を超える温度領域では原料組成の変化が少ないため、炭化処理をより効率良く行なう観点から、昇温速度を4℃/minを超える範囲に切り替えてもよい。このときの昇温速度は、更に8℃/min以上であることが好ましい。   In the carbonization step in the present invention, after the temperature increase rate in the temperature region of 600 ° C. or lower is set to the above range as described above, the temperature is further increased to a temperature exceeding 600 ° C. (preferably 800 ° C. or higher, more preferably 850 ° C. or higher). It is preferable to warm. The temperature increase rate in this case is not particularly limited, but since the change in the raw material composition is small in the temperature region exceeding 600 ° C., the temperature increase rate exceeds 4 ° C./min from the viewpoint of performing carbonization more efficiently. You may switch to the range. It is preferable that the temperature increase rate at this time is further 8 ° C./min or more.

上記の炭化温度に昇温して炭化処理を行なう場合、所望とする温度(例えば800〜850℃)まで昇温するときには、その温度(例えば800〜850℃)に達した時点から一定時間その温度に保持されることが好ましい。所望の温度で一定時間保持することで、炭化をより均一に行なうことができる。   In the case where the carbonization is performed by raising the temperature to the above carbonization temperature, when the temperature is raised to a desired temperature (for example, 800 to 850 ° C.), that temperature (for example, 800 to 850 ° C.) is reached for a certain period of time. It is preferable to be held in By maintaining at a desired temperature for a certain time, carbonization can be performed more uniformly.

本発明においては、炭化工程は、200℃以上600℃以下の温度領域における昇温速度を2℃/min以上4℃/min以下とし、600℃超(好ましくは800℃以上)の温度領域における昇温速度を4℃/min超、好ましくは8℃/min以上とする態様が好ましい。   In the present invention, the carbonization step is performed at a rate of temperature rise in the temperature range of 200 ° C. or higher and 600 ° C. or lower in the temperature range of 2 ° C./min or higher and 4 ° C./min or lower, and in the temperature range higher than 600 ° C. A mode in which the temperature rate is higher than 4 ° C./min, preferably 8 ° C./min or higher is preferable.

原料の炭化は、ロータリーキルン、各種炉(例えば流動層炉、固定層炉、移動層炉、移動床炉など)を使用して行なうことができる。本発明では、原料の投入や取り出しを連続的に行なう連続炉を適用可能であり、原料の投入や取り出しを間欠的に行なうバッチ炉を適用することもできる。   The raw material can be carbonized using a rotary kiln and various furnaces (eg, fluidized bed furnace, fixed bed furnace, moving bed furnace, moving bed furnace, etc.). In the present invention, a continuous furnace that continuously inputs and removes raw materials can be applied, and a batch furnace that intermittently inputs and removes raw materials can also be applied.

加熱手段としては、所望とする温度まで加熱可能な手段であれば特に制限はなく、例えば、電気加熱、ガス燃焼加熱、高周波誘導加熱などを適用することができる。   The heating means is not particularly limited as long as it is a means capable of heating to a desired temperature, and for example, electric heating, gas combustion heating, high-frequency induction heating, or the like can be applied.

−賦活工程
本発明における賦活工程では、前記炭化工程で得られた炭化物を、水蒸気、空気、及び二酸化炭素から選ばれる少なくとも1種の気体を賦活ガスとして賦活処理する。本工程では、原料の炭化物をガス賦活して活性炭を得る。
-Activation process In the activation process in this invention, the carbide | carbonized_material obtained by the said carbonization process is activated by using at least 1 sort (s) of gas chosen from water vapor | steam, air, and a carbon dioxide as activation gas. In this step, activated carbon is obtained by gas activation of the raw material carbide.

本発明におけるガス賦活は、水蒸気、空気、二酸化炭素、あるいはこれらの二種以上を混合した混合気体(以下、「水蒸気等」ともいう。)を用いて行なわれる。中でも、水蒸気を賦活ガスとして賦活する場合が好ましい。本発明では、原料がカリウムを含んでおり、カリウムが存在する原料の炭化物に対して賦活を行なう点から、水蒸気による態様が好ましい。カリウム含有の炭化物に対して水蒸気を用いることで、細孔が形成されやすく、比表面積の大きい活性炭が得られやすい。   The gas activation in the present invention is performed using water vapor, air, carbon dioxide, or a mixed gas in which two or more of these are mixed (hereinafter also referred to as “water vapor”). Especially, the case where water vapor | steam is activated as activation gas is preferable. In this invention, the aspect by water vapor | steam is preferable from the point which activates with respect to the carbide | carbonized_material of the raw material in which the raw material contains potassium and potassium exists. By using water vapor with respect to the potassium-containing carbide, pores are easily formed and activated carbon having a large specific surface area is easily obtained.

賦活処理は、750℃以上の温度で行なうことが好ましい。賦活処理時の温度(賦活温度)が750℃以上であることで、細孔が形成されやすく、所望とする細孔構造が得られやすい。賦活処理の温度としては、上記と同様の理由から、800℃以上が好ましく、850℃以上がより好ましい。   The activation process is preferably performed at a temperature of 750 ° C. or higher. When the temperature at the activation treatment (activation temperature) is 750 ° C. or higher, pores are easily formed, and a desired pore structure is easily obtained. The temperature for the activation treatment is preferably 800 ° C. or higher and more preferably 850 ° C. or higher for the same reason as described above.

賦活処理する時間(賦活時間)は、賦活温度や導入される水蒸気等の量、炭化物の量などに依存して変化し、特に制限されるものではないが、賦活時間は短い程よく、100分以上300分以下の範囲であるのが好ましく、100分以上250分以下の範囲であることがより好ましい。   The time for activation treatment (activation time) varies depending on the activation temperature, the amount of water vapor introduced, the amount of carbide, etc., and is not particularly limited, but the activation time is preferably as short as possible and is 100 minutes or more. The range is preferably 300 minutes or less, and more preferably 100 minutes or more and 250 minutes or less.

賦活は、周期律表1族の金属の総質量に対する含有量が質量基準で5%以上である活性炭が得られるように行なわれるのが好ましい。本発明では、原料としてカリウム濃度が0.8質量%以上の椿の実が用いられるが、例えば賦活により原料(カリウム含量=1%)の質量が1/5に減少した場合、逆に活性炭中に占めるカリウム含量の比率が5倍になることになる。すなわち、賦活の度合いを示し、カリウムを含む金属量が5%以上になるように賦活することで、吸脱着に適した細孔径を有する活性炭が得られやすい。   The activation is preferably performed so that activated carbon having a content of 5% or more on the mass basis with respect to the total mass of the metals of Group 1 of the periodic table is obtained. In the present invention, coconuts having a potassium concentration of 0.8% by mass or more are used as the raw material. For example, when the mass of the raw material (potassium content = 1%) is reduced to 1/5 by activation, conversely in the activated carbon The ratio of the potassium content in the water will be 5 times. That is, the activated carbon which shows the degree of activation and activates so that the amount of metals containing potassium may be 5% or more can easily obtain activated carbon having a pore diameter suitable for adsorption / desorption.

賦活処理は、賦活温度まで昇温し、賦活温度に達した後に水蒸気等を導入することにより行なえる。水蒸気等の導入は、その導入開始から所定の賦活時間が経過するまで継続し、賦活時間経過後に導入を停止する態様が好ましい。   The activation treatment can be performed by raising the temperature to the activation temperature and introducing water vapor or the like after reaching the activation temperature. The introduction of water vapor or the like is preferably continued from the start of the introduction until a predetermined activation time elapses, and the introduction is stopped after the activation time elapses.

賦活処理は、空気中の酸素、二酸化炭素などによる反応を抑える点で、水蒸気等の導入前にあらかじめ窒素ガス等の不活性ガスを賦活処理するロータリーキルン等の処理器内に充填しておくことが好ましい。器内に存在する反応性の物質をあらかじめ除去した後に賦活を開始することで、賦活反応が効率良く行なわれ、均一性のある細孔が得られやすい。   In the activation treatment, it is possible to fill a treatment device such as a rotary kiln that activates an inert gas such as nitrogen gas in advance before introducing steam or the like in order to suppress a reaction caused by oxygen, carbon dioxide, etc. in the air. preferable. By starting the activation after removing the reactive substance present in the vessel in advance, the activation reaction is efficiently performed and uniform pores are easily obtained.

−洗浄工程−
本発明の活性炭の製造方法は、上記工程に加えて、炭化工程を経て得られた炭化物、又は賦活工程を経て得られた活性炭を洗浄する各種の洗浄工程を設けて構成することができる。洗浄により、炭化物や活性炭に付着する不純物が除去される。
-Washing process-
In addition to the above steps, the method for producing activated carbon of the present invention can be constituted by providing various washing steps for washing the carbide obtained through the carbonization step or the activated carbon obtained through the activation step. By washing, impurities adhering to the carbide and activated carbon are removed.

洗浄方法としては、水洗処理、酸洗処理などが挙げられる。水洗処理は、活性炭を水中に浸して洗う洗浄処理であり、酸洗処理は、酸液に浸漬して酸化物を洗い落とす化学洗浄処理である。中でも、無機酸による酸洗処理が好ましく、活性炭を酸化しない塩酸による洗浄が好ましい。塩酸による洗浄後、水洗してもよい。また、水洗処理と酸洗処理とを繰り返して行なう等、水洗処理と酸洗処理とを組み合わせて行なってもよい。   Examples of the washing method include water washing treatment and pickling treatment. The water washing treatment is a washing treatment in which activated carbon is immersed in water for washing, and the pickling treatment is a chemical washing treatment in which the oxide is washed off by dipping in an acid solution. Among them, pickling treatment with an inorganic acid is preferable, and cleaning with hydrochloric acid that does not oxidize activated carbon is preferable. After washing with hydrochloric acid, it may be washed with water. Moreover, you may perform combining a water-washing process and a pickling process, such as performing a water-washing process and a pickling process repeatedly.

塩酸を用いた酸洗処理を行なう場合、塩酸濃度が0.1質量%以上3.0質量%以下の塩酸水溶液を用いた方法が好ましく、塩酸濃度は0.3質量%以上1.0質量%以下であることがより好ましい。塩酸濃度が0.1質量%以上であることで、適当な酸洗回数にて洗浄が行なえる。また、塩酸濃度が3.0質量%以下であることで、残留塩酸が少なく抑えられる。   When performing pickling treatment using hydrochloric acid, a method using an aqueous hydrochloric acid solution having a hydrochloric acid concentration of 0.1% by mass to 3.0% by mass is preferable, and the hydrochloric acid concentration is 0.3% by mass to 1.0% by mass. The following is more preferable. When the hydrochloric acid concentration is 0.1% by mass or more, cleaning can be performed with an appropriate number of pickling times. Moreover, residual hydrochloric acid is restrained little because hydrochloric acid concentration is 3.0 mass% or less.

洗浄温度については、洗浄性の点で高い方が好ましく、通常は80℃以上である。また、煮沸状態にした洗浄液に活性炭を浸漬し、洗浄することも好ましい態様である。   About the washing | cleaning temperature, the higher one is preferable at the point of detergency, and it is usually 80 degreeC or more. Moreover, it is also a preferable aspect to immerse activated carbon in a boiling cleaning solution and wash it.

本発明においては、前記賦活工程で得られた活性炭に対して、活性炭の総量に対する金属含有量が質量基準で0.5%以下になるように、洗浄処理することが好ましい。本発明においては、アルカリ賦活を行なわないことで必ずしも過剰にアルカリが付着している状態ではないが、不純物となる金属量を減らす観点から、洗浄により前記範囲に調節されていることが好ましい。金属量が前記範囲にあると、例えば電極と共に用いられた場合に耐久性能を損なう等の支障を回避することができる。   In this invention, it is preferable to wash-process so that the metal content with respect to the total amount of activated carbon may be 0.5% or less with respect to the activated carbon obtained at the said activation process. In the present invention, the alkali is not necessarily excessively adhered by not performing the alkali activation, but from the viewpoint of reducing the amount of metal that becomes an impurity, it is preferably adjusted to the above range by washing. When the amount of metal is in the above range, for example, troubles such as impaired durability when used together with electrodes can be avoided.

金属含有量は、活性炭を酸分解(完全溶解)後、原子吸光光度計Z5310(日立ハイテクノロジーズ社製)を用い、測定波長766.5nmにて原子吸光度測定することにより求められる。   The metal content is determined by measuring atomic absorbance at a measurement wavelength of 766.5 nm using an atomic absorption photometer Z5310 (manufactured by Hitachi High-Technologies Corporation) after acid decomposition (complete dissolution) of activated carbon.

酸洗処理を行なった場合には、更に、脱酸処理が施されることが好ましい。例えば塩酸を用いた酸洗処理を行なった後、酸化性ガスと接触させることで残留塩酸を除くことができる。具体的には、水蒸気等でガス賦活された活性炭を塩酸等で酸洗処理した後、酸化性ガス雰囲気下で脱酸することが好ましい。酸化性ガスとしては、酸素、水蒸気、炭酸ガス等が挙げられる。   When the pickling treatment is performed, it is preferable to further perform a deoxidation treatment. For example, after a pickling treatment using hydrochloric acid, the residual hydrochloric acid can be removed by contacting with an oxidizing gas. Specifically, it is preferable that the activated carbon gas-activated with water vapor or the like is pickled with hydrochloric acid or the like and then deoxidized in an oxidizing gas atmosphere. Examples of the oxidizing gas include oxygen, water vapor, and carbon dioxide gas.

更に、上記のように脱酸した活性炭に対して、その表面の官能基を減少させるために、希ガスや窒素ガス等の不活性ガス下でさらに熱処理してもよい。   Furthermore, the activated carbon deoxidized as described above may be further heat-treated under an inert gas such as a rare gas or nitrogen gas in order to reduce the functional groups on the surface.

<活性炭>
次に、本発明の活性炭について説明する。
本発明の活性炭は、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料とする活性炭であり、細孔直径が0.7nm以上の細孔が占める細孔容積を、全細孔容積に対して65%以上として構成されている。
<Activated carbon>
Next, the activated carbon of the present invention will be described.
The activated carbon of the present invention is activated carbon made from coconuts containing 0.8% or more of potassium in an absolutely dry raw material mass ratio, and the pore volume occupied by pores having a pore diameter of 0.7 nm or more, It is comprised as 65% or more with respect to the total pore volume.

本発明の活性炭は、既述の通り、カリウムを0.8質量%以上含有する椿の実を原料としたものであるため、アルカリ賦活相当の性能、すなわち細孔容積が大きく、物質の吸脱着に適した細孔径を有している。具体的には、本発明の活性炭は、以下の細孔直径、及びその占有割合を満たす。   As described above, the activated carbon of the present invention is made from coconuts containing 0.8% by mass or more of potassium, as described above. Therefore, the performance equivalent to alkali activation, that is, the pore volume is large, and the adsorption / desorption of substances. It has a pore size suitable for. Specifically, the activated carbon of the present invention satisfies the following pore diameter and its occupation ratio.

細孔直径は、窒素吸着法で求められる値である。例えば、自動比表面積/細孔分布測定装置BELSORP−miniII(日本ベル社製)により計測することができる。   The pore diameter is a value determined by a nitrogen adsorption method. For example, it can be measured by an automatic specific surface area / pore distribution measuring apparatus BELSORP-miniII (manufactured by Nippon Bell Co., Ltd.).

本発明の活性炭のピーク細孔直径は、0.7nm以上である。ピーク細孔直径が0.7nmを下回ると、細孔径が小さ過ぎて、低分子量の物質の吸脱着がスムーズに行なえない。ピーク細孔直径としては、吸脱着の観点から、0.9nm以上であることが好ましい。ピーク細孔直径の上限値は、2nmが望ましい。   The peak pore diameter of the activated carbon of the present invention is 0.7 nm or more. When the peak pore diameter is less than 0.7 nm, the pore diameter is too small and the low molecular weight substance cannot be adsorbed / desorbed smoothly. The peak pore diameter is preferably 0.9 nm or more from the viewpoint of adsorption / desorption. The upper limit of the peak pore diameter is desirably 2 nm.

ピーク細孔直径は、自動比表面積/細孔分布測定装置BELSORP−miniII(日本ベル社製)により計測を行ない、一方の軸(例えば横軸)に細孔直径[nm]を、他方の軸(例えば縦軸)に微分細孔容積[cm/g・nm]をとって関係線を引いたときに、微分細孔容積が最大値を示す細孔直径をいう。 The peak pore diameter is measured by an automatic specific surface area / pore distribution measuring device BELSORP-miniII (manufactured by Nippon Bell Co., Ltd.), and the pore diameter [nm] is plotted on one axis (for example, the horizontal axis) and the other axis ( For example, when the differential pore volume [cm 3 / g · nm] is taken on the vertical axis) and the relation line is drawn, the pore diameter indicates the maximum value of the differential pore volume.

また、本発明の活性炭の、細孔直径が0.7nm以上の細孔が占める細孔容積が、全細孔容積に対して65%以上である。物質の吸脱着に適した孔径を持つ細孔の占有容積が65%に満たないと、活性炭としての物質の吸脱着能、特に低分子量の物質(例えば低分子量の有機物)の吸脱着能が低下する。占有容積としては、吸脱着の観点から、80%以上であることが好ましい。   In addition, the pore volume occupied by pores having a pore diameter of 0.7 nm or more in the activated carbon of the present invention is 65% or more with respect to the total pore volume. If the occupied volume of pores with pore sizes suitable for the adsorption and desorption of substances is less than 65%, the adsorption and desorption ability of substances as activated carbon, especially the adsorption and desorption ability of substances of low molecular weight (for example, low molecular weight organic substances) is reduced. To do. The occupied volume is preferably 80% or more from the viewpoint of adsorption / desorption.

活性炭の細孔容積は、以下の方法で算出される値である。
日本ベル社製の自動比表面積/細孔分布測定装置BELSORP−miniIIを使用し、定温(77K)下での圧力と窒素の吸着量との変化を表す吸着等温線を作成後、これを吸着層厚みに対する窒素吸着量に変換してプロットした関係線の勾配変化(即ち表面積の変化)から体積変化を求め、細孔分布を算出する。つまり、細孔直径から直接、細孔容積が求められる。
The pore volume of the activated carbon is a value calculated by the following method.
Using an automatic specific surface area / pore distribution measuring device BELSORP-miniII manufactured by Nippon Bell Co., Ltd., an adsorption isotherm representing the change in pressure and the amount of nitrogen adsorbed under a constant temperature (77K) is created, and this is used as an adsorption layer. The volume change is obtained from the change in the gradient of the relationship line converted into the nitrogen adsorption amount with respect to the thickness (that is, the change in the surface area), and the pore distribution is calculated. That is, the pore volume is determined directly from the pore diameter.

本発明の活性炭中における、周期律表1族の金属(アルカリ金属)の合計含量が、活性炭の総質量に対して、5質量%以上であることが好ましい。この合計含量が5質量%以上であると、1%に近い原料中のカリウム量が約5倍になる程度の賦活処理が施されたことになり、物質の吸脱着に適した細孔の形成が期待できる。また、アルカリ金属の合計含量は、1質量%以上がより好ましい。
アルカリ金属のうち、活性炭中におけるカリウム(K)の含有量が前記範囲にあることが好ましい。
In the activated carbon of the present invention, the total content of metals (alkali metals) belonging to Group 1 of the periodic table is preferably 5% by mass or more based on the total mass of the activated carbon. When the total content is 5% by mass or more, the activation treatment is performed so that the amount of potassium in the raw material close to 1% is about 5 times, and formation of pores suitable for the adsorption / desorption of substances is performed. Can be expected. The total content of alkali metals is more preferably 1% by mass or more.
Of the alkali metals, the content of potassium (K) in the activated carbon is preferably in the above range.

本発明の活性炭は、細孔容積分布における微分細孔容積のピーク値(微分細孔容積ピーク値)が0.3cm/g・nm以上である細孔直径を、0.7nm以上の範囲に有していることが好ましい。細孔直径が0.7nm以上の細孔が多く存在することになるので、物質の吸脱着が良好に行なえる。中でも、微分細孔容積のピーク値が0.3cm/g・nm以上である細孔直径を、細孔直径が0.9nm以上2nm以下の範囲に有していることがより好ましい。 The activated carbon of the present invention has a pore diameter in which the peak value of the differential pore volume in the pore volume distribution (differential pore volume peak value) is 0.3 cm 3 / g · nm or more in the range of 0.7 nm or more. It is preferable to have. Since many pores having a pore diameter of 0.7 nm or more exist, the substance can be adsorbed and desorbed satisfactorily. Especially, it is more preferable to have a pore diameter having a peak value of the differential pore volume of 0.3 cm 3 / g · nm or more in a range of 0.9 nm or more and 2 nm or less.

本発明の活性炭は、上記の細孔直径の細孔が占める細孔容積を全細孔容積の65%以上とし得る方法であれば、いずれの方法で作製されてもよいが、好ましくは、既述の本発明の活性炭の製造方法により作製される。   The activated carbon of the present invention may be produced by any method as long as the pore volume occupied by pores having the above-mentioned pore diameters can be 65% or more of the total pore volume. It is produced by the method for producing activated carbon of the present invention described above.

以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. Unless otherwise specified, “part” is based on mass.

(実施例1)
−活性炭の作製−
下記表1に示す原料を用い、炭化工程、賦活工程、及び洗浄工程を下記表1に示す条件にて以下の方法で行ない、活性炭を作製した。
Example 1
-Production of activated carbon-
Using the raw materials shown in Table 1 below, the carbonization step, the activation step, and the washing step were performed by the following method under the conditions shown in Table 1 below to produce activated carbon.

(a)炭化工程
原料である椿の実の油搾り滓(カリウム含量:1.0質量%)を、原料の投入と処理とを連続的に行なえるロータリー式キルンに投入し、はじめに昇温速度8℃/minにて250℃まで昇温した。原料には、下記表1に示すものを用いた。続いて、キルン内の温度が250℃に達してから原料由来の水分が出終わるまで約30分保持した。水分の排出が終了したことの判断は、排気管から水蒸気が出なくなったことの確認により行なった。
(A) Carbonization process The raw oil mash (potassium content: 1.0% by mass) of the raw material, which is the raw material, is charged into a rotary kiln that can continuously perform the raw material charging and processing. The temperature was raised to 250 ° C. at 8 ° C./min. The raw materials shown in Table 1 below were used. Subsequently, after the temperature in the kiln reached 250 ° C., the raw material-derived water was held for about 30 minutes. Judgment that the discharge of moisture was completed was made by confirming that water vapor was not emitted from the exhaust pipe.

その後、昇温速度を4℃/minに下げて600℃まで昇温し、次いで昇温速度を8℃/minに上げて850℃まで昇温した。更に、850℃に達した時点から約30分間保持した。このようにして、原料の炭化処理を行なった。   Thereafter, the temperature raising rate was lowered to 4 ° C./min and the temperature was raised to 600 ° C., and then the temperature raising rate was raised to 8 ° C./min and the temperature was raised to 850 ° C. Furthermore, the temperature was maintained for about 30 minutes after reaching 850 ° C. In this way, the raw material was carbonized.

(b)賦活工程
炭化処理が施された原料をロータリー式キルンに投入し、窒素充填後、下記表1に示す賦活温度まで昇温を行なった。賦活温度に到達後、キルン内への水蒸気の導入を開始し、下記表1に示す賦活時間が経過するまで水蒸気の導入を継続した。そして、賦活時間が経過したところで水蒸気の導入を停止した。
(B) Activation process The raw material by which the carbonization process was performed was thrown into the rotary kiln, and it heated up to the activation temperature shown in following Table 1 after nitrogen filling. After reaching the activation temperature, the introduction of water vapor into the kiln was started, and the introduction of water vapor was continued until the activation time shown in Table 1 below passed. And when activation time passed, introduction | transduction of water vapor | steam was stopped.

(c)洗浄工程
賦活工程を終了した後、得られた活性炭に対して、水と希塩酸とを用いた洗浄処理を行なった。このとき、煮沸水での水洗いの後に煮沸希塩酸を用いた酸洗いを行なうサイクルを、洗浄溶液のpHが7付近になるまで繰返し行なった。
(C) Washing step After the activation step, the obtained activated carbon was washed with water and dilute hydrochloric acid. At this time, the cycle of pickling with boiling dilute hydrochloric acid after washing with boiling water was repeated until the pH of the washing solution reached around 7.

−測定・評価−
賦活工程後の洗浄前後における活性炭の各々について、以下の測定、評価を行なった。測定、評価の結果は、下記表1に示す。また、実施例1で得られた活性炭について、微分細孔容積分布を図1に示す。
-Measurement and evaluation-
The following measurements and evaluations were performed for each activated carbon before and after washing after the activation step. The results of measurement and evaluation are shown in Table 1 below. Moreover, about the activated carbon obtained in Example 1, differential pore volume distribution is shown in FIG.

(1)ヨウ素吸着性能
JIS K 01474に準拠した方法で、ヨウ素の吸着量を測定した。
(1) Iodine adsorption performance The adsorption amount of iodine was measured by a method based on JIS K 01474.

(2)メチレンブルー吸着性能
JIS K 01474に準拠した方法で、メチレンブルー吸着量を測定した。
(2) Methylene blue adsorption performance The amount of methylene blue adsorption was measured by a method according to JIS K 01474.

(3)カリウム含有量
サンプリングした活性炭を約1g秤量し、硫酸、硝酸、及び過塩素酸の存在下で加熱酸分解(完全溶解)した後、硫酸白煙処理を行ない、さらに塩酸で酸分解して試料とした。この試料50mlに対して、原子吸光光度計Z5310(日立ハイテクノロジーズ社製)を用い、測定波長766.5nmにて原子吸光度を測定して、カリウム濃度を求めた。
(3) Potassium content Approximately 1g of sampled activated carbon is weighed and subjected to thermal acid decomposition (complete dissolution) in the presence of sulfuric acid, nitric acid and perchloric acid, followed by sulfuric acid white smoke treatment and further acid decomposition with hydrochloric acid. And used as a sample. With respect to 50 ml of this sample, an atomic absorption photometer Z5310 (manufactured by Hitachi High-Technologies Corporation) was used to measure atomic absorbance at a measurement wavelength of 766.5 nm, thereby obtaining a potassium concentration.

(4)比表面積
日本ベル社製の自動比表面積/細孔分布測定装置BELSORP−miniIIを使用し、定温(77K)下での圧力と窒素の吸着量との変化を表す吸着等温線を作成後、これを吸着層厚みに対する窒素吸着量に変換してプロットした関係線の勾配変化(即ち表面積の変化)から体積変化を計測し、細孔分布を算出し、細孔直径から比表面積を求めた。
(4) Specific surface area Using an automatic specific surface area / pore distribution measuring device BELSORP-mini II manufactured by Nippon Bell Co., Ltd., after creating an adsorption isotherm representing the change in pressure and nitrogen adsorption amount under constant temperature (77K) The volume change was measured from the gradient change (that is, the surface area change) of the relationship line plotted by converting this into the nitrogen adsorption amount with respect to the adsorption layer thickness, the pore distribution was calculated, and the specific surface area was obtained from the pore diameter. .

(5)細孔容積
日本ベル社製の自動比表面積/細孔分布測定装置BELSORP−miniIIを使用し、定温(77K)下での圧力と窒素の吸着量との変化を表す吸着等温線を作成後、これを吸着層厚みに対する窒素吸着量に変換してプロットした関係線の勾配変化(即ち表面積の変化)から体積変化を計測し、細孔分布を算出し、細孔直径から細孔容積を求めた。
(5) Pore volume Using an automatic specific surface area / pore distribution measuring device BELSORP-mini II manufactured by Nippon Bell Co., Ltd., an adsorption isotherm representing the change in pressure and nitrogen adsorption amount under constant temperature (77K) is created. After that, this is converted into a nitrogen adsorption amount with respect to the adsorption layer thickness, the volume change is measured from the gradient change (that is, the surface area change) of the plotted relationship line, the pore distribution is calculated, and the pore volume is calculated from the pore diameter. Asked.

(6)収率
絶乾状態での原料の質量に対する、得られた活性炭の質量の比率[%]を求め、収率とした。
(6) Yield The ratio [%] of the mass of the obtained activated carbon to the mass of the raw material in the absolutely dry state was determined and used as the yield.

(7)金属含有比
得られた活性炭を酸分解(完全溶解)後、原子吸光光度計Z5310(日立ハイテクノロジーズ社製)を用い、測定波長766.5nmにて原子吸光度測定することにより求めた。
(7) Metal content ratio After the obtained activated carbon was acid-decomposed (completely dissolved), it was determined by measuring the atomic absorption at a measurement wavelength of 766.5 nm using an atomic absorption photometer Z5310 (manufactured by Hitachi High-Technologies Corporation).

(実施例2〜3)
実施例1において、賦活温度を850℃から750℃、650℃にそれぞれ変更したこと以外は、実施例1と同様にして、活性炭を作製し、測定、評価を行なった。測定評価の結果は、下記表1に示す。
(Examples 2-3)
In Example 1, activated carbon was prepared, measured and evaluated in the same manner as in Example 1 except that the activation temperature was changed from 850 ° C. to 750 ° C. and 650 ° C., respectively. The results of measurement evaluation are shown in Table 1 below.

(実施例4)
実施例1において、原料として用いた油絞り滓(カリウム含有量:1.0質量%[対絶乾原料質量比])を、椿の実の外殻(カリウム含有量:1.2質量%[対絶乾原料質量比])に代えたこと以外は、実施例1と同様にして、活性炭を作製し、測定、評価を行なった。測定評価の結果は、下記表1に示す。
Example 4
In Example 1, the oil squeezed potato used as a raw material (potassium content: 1.0 mass% [vs. dry raw material mass ratio]) was used as the outer shell of the coconut (potassium content: 1.2 mass% [ Activated carbon was prepared, measured, and evaluated in the same manner as in Example 1 except that it was replaced with the mass ratio of dry raw materials]). The results of measurement evaluation are shown in Table 1 below.

(比較例1)
実施例1において、炭化工程後、賦活工程に移行する前に得られた炭化物を水と希塩酸とで洗浄処理を行なうことでカリウム量の調整を行なったこと以外は、実施例1と同様にして、比較用の活性炭を作製し、測定、評価を行なった。ここで、洗浄処理は、水洗処理と希塩酸を用いた酸洗処理とを、これらに用いる水又は洗浄溶液を煮沸しながら交互に行なった。この洗浄処理は、洗浄溶液のpHが7付近になるまで繰返し行なった。このようにして、賦活工程前に含まれるカリウム量を減じ、カリウム含有量の少ない油絞り滓(カリウム含有量:0.3質量%[対絶乾原料質量比])を原料とする例とした。
測定評価の結果は、下記表1に示す。
(Comparative Example 1)
In Example 1, after the carbonization step and before the transition to the activation step, the same procedure as in Example 1 was carried out except that the amount of potassium was adjusted by washing with water and dilute hydrochloric acid. Then, activated carbon for comparison was prepared and measured and evaluated. Here, the washing treatment was performed alternately with a washing treatment and a pickling treatment using dilute hydrochloric acid while boiling water or a washing solution used for them. This washing treatment was repeated until the pH of the washing solution became around 7. In this way, the amount of potassium contained before the activation step was reduced, and oil squeezed rice cake (potassium content: 0.3% by mass [absolute dry material mass ratio]) having a low potassium content was used as an example. .
The results of measurement evaluation are shown in Table 1 below.

(比較例2)
下記表1に示す原料を用い、炭化工程、賦活工程(アルカリ添加を含む)、及び洗浄工程を下記表1に示す条件にて以下の方法で行ない、比較用の活性炭を作製した。
(Comparative Example 2)
Using the raw materials shown in Table 1 below, a carbonization step, an activation step (including alkali addition), and a washing step were performed by the following method under the conditions shown in Table 1 below to produce a comparative activated carbon.

(i)炭化工程
原料である椿の実の油搾り滓(カリウム含量:1.0質量%)を、原料の投入と処理とを連続的に行なえるロータリー式キルンに投入し、はじめに昇温速度8℃/minにて250℃まで昇温した。原料には、下記表1に示すものを用いた。続いて、キルン内の温度が250℃に達してから原料由来の水分が出終わるまで約30分保持した。水分の排出が終了したことの判断は、排気管から水蒸気が出なくなったことの確認により行なった。
その後、昇温速度を4℃/minに下げて600℃まで昇温し、次いで昇温速度を8℃/minに上げて850℃まで昇温した。更に、850℃に達した時点から約30分間保持した。このようにして、原料の炭化処理を行なった。
(I) Carbonization process The raw oil mash (potassium content: 1.0% by mass) of the raw material, which is the raw material, is put into a rotary kiln where the raw material can be continuously charged and treated, and the rate of temperature increase is first introduced. The temperature was raised to 250 ° C. at 8 ° C./min. The raw materials shown in Table 1 below were used. Subsequently, after the temperature in the kiln reached 250 ° C., the raw material-derived water was held for about 30 minutes. Judgment that the discharge of moisture was completed was made by confirming that water vapor was not emitted from the exhaust pipe.
Thereafter, the temperature raising rate was lowered to 4 ° C./min and the temperature was raised to 600 ° C., and then the temperature raising rate was raised to 8 ° C./min and the temperature was raised to 850 ° C. Furthermore, the temperature was maintained for about 30 minutes after reaching 850 ° C. In this way, the raw material was carbonized.

(ii)洗浄工程
前記炭化工程で得えられた炭化物を、水と希塩酸とを用いて洗浄処理した。洗浄処理は、水洗処理と希塩酸を用いた酸洗処理とを、これらに用いる水又は洗浄溶液を煮沸しながら交互に行ない。洗浄溶液のpHが7付近になるまで繰り返した。
(Ii) Cleaning step The carbide obtained in the carbonization step was cleaned using water and dilute hydrochloric acid. The washing treatment is alternately carried out with a water washing treatment and a pickling treatment using dilute hydrochloric acid while boiling water or a washing solution used for these. This was repeated until the pH of the washing solution reached around 7.

(iii)賦活工程
次に、洗浄後の炭化物を、水酸化カリウム水溶液に含浸し、乾燥させることで、カリウム含有量が実施例1と等量となるように調整した。調整後の炭化物をロータリー式キルンに投入し、窒素充填後、下記表1に示す賦活温度まで昇温した。賦活温度に到達後、キルン内への水蒸気の導入を開始し、下記表1に示す賦活時間が経過するまで水蒸気の導入を継続した。そして、賦活時間が経過したところで水蒸気の導入を停止した。
(Iii) Activation Step Next, the washed carbide was impregnated in a potassium hydroxide aqueous solution and dried to adjust the potassium content to be equal to that in Example 1. The adjusted carbide was put into a rotary kiln, filled with nitrogen, and then heated to the activation temperature shown in Table 1 below. After reaching the activation temperature, the introduction of water vapor into the kiln was started, and the introduction of water vapor was continued until the activation time shown in Table 1 below passed. And when activation time passed, introduction | transduction of water vapor | steam was stopped.

(iv)洗浄工程
賦活工程を終了した後、得られた活性炭に対して、水と希塩酸とを用いた洗浄処理を行なった。このとき、煮沸水での水洗いの後に煮沸希塩酸を用いた酸洗いを行なう操作サイクルを、洗浄溶液のpHが7付近になるまで繰返し行なった。
以上のようにして、比較用の活性炭を作製した。
(Iv) Washing process After finishing the activation process, the obtained activated carbon was washed with water and dilute hydrochloric acid. At this time, the operation cycle of pickling with boiling dilute hydrochloric acid after washing with boiling water was repeated until the pH of the washing solution reached around 7.
A comparative activated carbon was produced as described above.

−測定・評価−
賦活工程後の洗浄前後における活性炭の各々について、実施例1と同様の方法で測定、評価を行なった。測定、評価の結果は、下記表1に示す。
-Measurement and evaluation-
Each activated carbon before and after washing after the activation step was measured and evaluated in the same manner as in Example 1. The results of measurement and evaluation are shown in Table 1 below.

(比較例3)
比較例2において、アルカリ賦活するために加えた水酸化カリウム水溶液の添加量を、カリウム含有量が実施例1の2倍量になるようにしたこと以外は、比較例2と同様にして、比較用の活性炭を作製し、測定、評価を行なった。測定、評価の結果は、下記表1に示す。
(Comparative Example 3)
In Comparative Example 2, the amount of potassium hydroxide aqueous solution added to activate the alkali was compared with that of Comparative Example 2 except that the potassium content was twice that of Example 1. Activated carbon was prepared, measured and evaluated. The results of measurement and evaluation are shown in Table 1 below.

前記表1に示されるように、実施例では、原料に椿の実を用いたガス賦活によることで、アルカリ賦活相当の構造及び性能を有する活性炭を作製することができた。具体的には、作製された活性炭は、同じ賦活時間とした比較用の活性炭と比較して、細孔容積及び細孔直径φ0.7nm以上の細孔の占有比率が大きく、物質に対する吸脱着性に優れており、良好な収率15%で1200m/g以上の比表面積を確保することができた。
また、本発明では、アルカリ剤を用いないため、装置の腐食懸念、危険性が小さく抑えられており、連続生産も可能である。
As shown in Table 1, in Examples, activated carbon having a structure and performance equivalent to alkali activation could be produced by gas activation using strawberries as raw materials. Specifically, the produced activated carbon has a larger occupation ratio of pore volume and pore diameter of φ0.7 nm or more than the activated carbon for comparison with the same activation time, and the adsorption / desorption property to the substance. It was possible to secure a specific surface area of 1200 m 2 / g or more with a good yield of 15%.
Further, in the present invention, since no alkali agent is used, the concern about the corrosion of the apparatus and the risk are kept small, and continuous production is possible.

前記課題を達成するための具体的手段は以下の通りである。
<1> カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料とし、昇温速度を2段階に変化させて昇温し600℃以上の温度で前記原料を炭化する炭化工程と、前記炭化工程で得られた炭化物を、水蒸気を賦活ガスとして賦活する賦活工程と、を含む活性炭の製造方法である。
Specific means for achieving the above object are as follows.
<1> 600 kg or more of dried koji coconut oil containing potassium in an absolute dry material mass ratio is used as a raw material, and the temperature is raised by changing the heating rate in two stages to 600 ℃ and carbonization step of carbonizing the raw material at a temperature above the carbide obtained in the carbonization step, the activating step of activating the air Mizu蒸as an activator gas, a method for producing activated carbon including.

> 前記炭化工程は、200℃以上600℃以下の温度範囲での昇温速度を2℃/min以上4℃/min以下として炭化する前記<1>に記載の活性炭の製造方法である。
> 前記賦活工程は、賦活を750℃以上の温度で行なう前記<1>又は前記<2>に記載の活性炭の製造方法である。
> 前記賦活工程は、周期律表1族の金属の総質量に対する含有量が質量基準で5%以上である活性炭が得られるように賦活する前記<1>〜前記<>のいずれか1つに記載の活性炭の製造方法である。
> 賦活工程を経て得られた活性炭に対して、金属含有量が活性炭総量に対して質量基準で0.5%以下になるように、水洗処理及び酸洗処理の少なくとも一方を施す洗浄工程を更に含む前記<1>〜前記<>のいずれか1つに記載の活性炭の製造方法である。
< 2 > The carbonization step is the method for producing activated carbon according to <1 >, wherein the carbonization is performed at a temperature increase rate in a temperature range of 200 ° C. to 600 ° C. at 2 ° C./min to 4 ° C./min.
< 3 > The activation step is the method for producing activated carbon according to <1> or <2>, wherein activation is performed at a temperature of 750 ° C. or higher.
< 4 > Any one of the above <1> to < 3 >, wherein the activation step is activated so that activated carbon having a content based on a mass of 5% or more with respect to the total mass of the metal of Group 1 of the periodic table is obtained. It is a manufacturing method of activated carbon as described in one.
< 5 > A washing step of performing at least one of a water washing treatment and a pickling treatment so that the metal content is 0.5% or less on a mass basis with respect to the total amount of activated carbon with respect to the activated carbon obtained through the activation step. The activated carbon production method according to any one of <1> to < 4 >, further including:

> カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料として作製され、細孔直径が0.7nm以上の細孔が占める細孔容積が全細孔容積の65%以上である活性炭である。
> 細孔直径が0.7nm以上の孔径範囲に微分細孔容積ピーク値が0.3cm/g・nm以上となるピーク細孔直径を有する前記<>に記載の活性炭である。
< 6 > A cocoon coconut oil squeezed or a coconut husk containing 0.8% or more of potassium in an absolute dry material mass ratio is used as a raw material, and a pore having a pore diameter of 0.7 nm or more The activated carbon has an occupied pore volume of 65% or more of the total pore volume.
< 7 > The activated carbon according to < 6 >, wherein the differential pore volume peak value is 0.3 cm 3 / g · nm or more in a pore diameter range having a pore diameter of 0.7 nm or more.

<活性炭の製造方法>
本発明の活性炭の製造方法は、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料とし、昇温速度を2段階に変化させて昇温し600℃以上の温度で前記原料を炭化する炭化工程と、炭化工程で得られた炭化物を、水蒸気を賦活ガスとして賦活する賦活工程とを設けて構成されている。本発明の活性炭の製造方法は、必要に応じて、更に、炭化工程で得られた炭化物や賦活後の活性炭を洗浄する洗浄工程などの他の工程を設けて構成することができる。
<Method for producing activated carbon>
The method for producing activated carbon according to the present invention uses cocoon coconut oil squeezed or coconut shell containing 0.8% or more of potassium by dry mass as a raw material, and the heating rate is changed in two stages. and allowed to carbonization step of carbonizing the raw material in heated 600 ° C. or higher temperature is, the carbide obtained in the carbonization step, and is configured by providing the activation step of activating the air Mizu蒸as an activator gas. The method for producing activated carbon of the present invention can be configured by further providing other steps such as a washing step for washing the carbide obtained in the carbonization step and activated carbon after activation, if necessary.

本発明においては、炭化工程での炭化に用いる原料として、特に所定量以上のカリウムを含有している椿の実(植物原料)の椿油の搾り滓又は椿の実の殻を用い、椿の実から得られた炭化物に対して、アルカリ賦活を行なうのではなく、ガス賦活として特に水蒸気賦活を行なうことで、アルカリ賦活相当の性能、すなわち細孔容積が大きく、物質(特に低分子量の物質)の吸脱着に適した細孔径を有する活性炭が所望の賦活度(収率)にて作製される。
また、アルカリ賦活を行なわないことで、活性炭に付着した過剰なアルカリ剤を洗浄除去する手間が省け工程の簡略化が図れるのみならず、洗浄後のアルカリ金属の回収作業も不要になる。更に、アルカリ賦活を行なわないため、アルカリ環境に曝されて生じる装置自体の腐食が防止され、多量アルカリの存在で懸念される爆発などの危険性も解消される。
In the present invention, as a raw material used for carbonization in the carbonization step, a coconut oil squeezed coconut oil or a coconut husk containing a predetermined amount or more of potassium is used. against carbides obtained from, rather than performing alkali activation, by performing the particular steam vehicle active as gas activation, the performance of the alkali activation equivalent, i.e. the pore volume is large, materials (substances especially low molecular weight) Activated carbon having a pore size suitable for the adsorption and desorption of is produced with a desired activation degree (yield).
Moreover, by not performing alkali activation, not only can the process of washing and removing excess alkali agent adhering to the activated carbon be omitted, the process can be simplified, but the recovery work of the alkali metal after washing is also unnecessary. Further, since alkali activation is not performed, corrosion of the device itself caused by exposure to an alkaline environment is prevented, and dangers such as explosions that are a concern in the presence of a large amount of alkali are also eliminated.

−炭化工程−
本発明における炭化工程では、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料として用い、この原料を炭化処理する。したがって、本工程では、活性炭を作成するための椿の実の椿油の搾り滓又は椿の実の殻の炭化物が得られることになる。
-Carbonization process-
In the carbonization step in the present invention, the raw material of the coconut coconut oil squeezed or the coconut shell containing 0.8% or more of potassium by dry mass is used as a raw material, and this raw material is carbonized. Therefore, in this step, squeezed coconut oil or coconut shell carbide for producing activated carbon is obtained.

本発明においては、原料として、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を用いることで、後述する賦活工程でのアルカリ賦活が不要になる。従来から活性炭の原料として用いられている石炭系の炭素質材料では、高比表面積、高細孔容積にする場合、多孔の活性炭を得るためにアルカリ賦活処理あるいはアルカリ金属等を含む副成分の併用が不可欠とされている。また、ヤシガラや椿の実以外の例えば枝や幹などは、含有されるカリウム量が椿の実と比べて一桁程度少ないため、この程度のカリウム量ではアルカリ賦活を行なわなければ、所望とする細孔が形成された活性炭を得ようとすると長時間を要する。
本発明における椿の実の椿油の搾り滓又は椿の実の殻は、0.8質量%以上のカリウムを含有しており、カリウムは実を形成している組織中に均質かつ高分散に分布していると考えられることから、後述する賦活工程において賦活処理する場合に、原料に多量のアルカリ剤を別添し賦活処理する従来の方法と比較して、形成される細孔の偏在を防ぎ、物質の吸脱着に適した均質性のある細孔が一様に得られる。したがって、活性炭を作製したときには、所定の細孔直径を有する細孔が適切に分布した細孔分布が得られ、硬度も高められる。換言すれば、カリウムの含有量が0.8質量%未満であると、所望とする均質性のある細孔が一様に形成された活性炭を得ようとすると長時間を要する。
In the present invention, alkali activation in the activation step described later is performed by using, as a raw material, squeezed persimmon oil of persimmon oil or potassium persimmon shell containing 0.8% or more of potassium in an absolute dry raw material mass ratio. Is no longer necessary. In the case of coal-based carbonaceous materials that have been used as raw materials for activated carbon in the past, in order to obtain porous activated carbon when using a high specific surface area and high pore volume, combined use of alkali activation treatment or secondary components including alkali metals Is indispensable. Moreover, for example, branches and trunks other than coconut husk and coconuts are less than an order of magnitude of potassium compared to coconuts, so if alkali activation is not performed at this amount of potassium, it is desirable. It takes a long time to obtain activated carbon with pores formed.
In the present invention , squeezed persimmon oil of persimmon seed or persimmon seed shell contains 0.8% by mass or more of potassium, and potassium is distributed homogeneously and highly dispersed in the tissue forming the fruit. Therefore, when activation treatment is performed in the activation step described later, compared to the conventional method in which a large amount of alkaline agent is added to the raw material and activated, the uneven distribution of the formed pores is prevented. Uniform pores suitable for the adsorption and desorption of substances can be obtained uniformly. Therefore, when activated carbon is produced, a pore distribution in which pores having a predetermined pore diameter are appropriately distributed is obtained, and the hardness is also increased. In other words, when the content of potassium is less than 0.8% by mass, it takes a long time to obtain activated carbon in which the desired homogeneous pores are uniformly formed.

原料である椿の実の椿油の搾り滓又は椿の実の殻に含まれるカリウムの含有量としては、細孔形成の点では多いほど好ましいが、上記と同様の理由から1.0質量%以上が好ましい。カリウムの含有量の上限値については、必ずしも制限されるものではないが、賦活後の洗浄の観点からは、1.5質量%以下が好ましい。 As the content of potassium contained in the squeezed coconut oil or coconut shell , which is the raw material, the more preferable in terms of pore formation, it is 1.0 mass% or more for the same reason as above. Is preferred. The upper limit of the potassium content is not necessarily limited, but is preferably 1.5% by mass or less from the viewpoint of cleaning after activation.

ここで、原料として用いられる椿の実は、植物である椿にできる実のことであり、この椿の実には、種子の部分とこの外側を包んでいる殻とが含まれる。原料としては、カリウム含有量が絶乾原料質量に対して1質量%以上である点で、椿の実を形成している種子や外殻が好ましく、椿の枝や幹の部分はカリウムの含有量が絶乾原料質量比率で0.1質量%を下回るため好ましくない。炭化工程で用いる原料としては、椿の実あるいはその種子や外殻をそのまま用いるほか、油絞り滓用いられるHere, the fruit of a cocoon used as a raw material is a fruit that can be made into a cocoon that is a plant, and the fruit of the cocoon includes a seed part and a shell that wraps the outside. As the raw material, seeds and shells forming coconuts are preferable in that the potassium content is 1% by mass or more based on the mass of the absolutely dry raw material, and the branches and trunk parts of the pods contain potassium. The amount is less than 0.1% by mass in terms of the absolute dry raw material mass ratio, which is not preferable. As a raw material used in the carbonization step, coconuts or their seeds and outer shells are used as they are , and oil squeezed cocoons are used.

炭化処理は、原料を600℃以上の温度範囲で加熱して炭化する。原料を炭化するにあたり、用意した原料を一度に600℃以上の高温に加熱して炭化させてもよいが、好ましくは、原料中の水分が排出されるように一旦200〜300℃程度の温度域まで昇温し、必要に応じて200〜300℃で保持して水分を気化した後、炭化のため更に昇温することが好ましい。 Carbonization process, the raw material is heated in a temperature range of above 600 ° C. you carbonization. In carbonizing the raw material, the prepared raw material may be carbonized by heating to a high temperature of 600 ° C. or more at a time, but preferably, a temperature range of about 200 to 300 ° C. once so that moisture in the raw material is discharged. It is preferable that the temperature is further increased for carbonization after the water is vaporized by holding at 200 to 300 ° C. and vaporizing moisture as necessary.

原料を炭化させる炭化温度は、600℃以上とし、800℃以上がより好ましく、更に好ましくは850℃以上である。炭化温度の上限値は、装置の耐久性の点で、1050℃が望ましい。炭化温度が600℃以上であることで、原料に含まれる植物成分(例えばセルロースやリグニン)の結晶化がより進んだ炭化物が得られやすい。 Carbonization temperature for raw materials and carbonization, and 600 ° C. or higher, more preferably at least 800 ° C., more preferably at 850 ° C. or higher. The upper limit of the carbonization temperature is preferably 1050 ° C. from the viewpoint of the durability of the apparatus. When the carbonization temperature is 600 ° C. or higher, it is easy to obtain a carbide in which crystallization of plant components (for example, cellulose and lignin) contained in the raw material is further advanced.

炭化処理においては、所望とする温度に昇温するまでの過程で昇温速度を多段階に分けて昇温を行なうことが好ましく、特には本発明においては2段階に昇温速度を変化させて昇温する。段階的に温度を上昇させることで、原料組成の熱分解に合わせた炭化処理が行なえ、最終的に得られる活性炭の性能を高めるのに有効である。具体的には、
原料を加熱していくと、200℃付近に達する過程及び必要により200〜300℃で保持する過程で原料中の水分が気化し水分の排出が減少していくが、その後の200℃を超える温度域において、原料中の成分の熱分解反応が進行する。原料成分の熱分解が始まると、可燃ガス(例えばメタンガス)の発生を伴なって原料質量が低下する傾向が現れる。このように原料成分が熱分解して可燃ガスが生じ質量低下する温度範囲では、比較的ゆっくりとした昇温速度で温度上昇させることが、最終的に得られる活性炭の性能を高める点で好ましい。
In the carbonization treatment, it is preferable that the temperature increase rate is divided into multiple stages in the process until the temperature is increased to a desired temperature. In particular, in the present invention, the temperature increase rate is changed in two stages. NoboriAtsushisu Ru. By raising the temperature stepwise, carbonization can be performed in accordance with the thermal decomposition of the raw material composition, which is effective in improving the performance of the finally obtained activated carbon. In particular,
When the raw material is heated, the moisture in the raw material is vaporized in the process of reaching around 200 ° C. and, if necessary, maintained at 200-300 ° C., and the discharge of moisture decreases. In the region, the thermal decomposition reaction of the components in the raw material proceeds. When the thermal decomposition of the raw material components begins, the raw material mass tends to decrease with the generation of combustible gas (for example, methane gas). Thus, in the temperature range where the raw material components are thermally decomposed to generate a combustible gas and the mass is reduced, it is preferable to raise the temperature at a relatively slow temperature increase rate in terms of improving the performance of the finally obtained activated carbon.

−賦活工程
本発明における賦活工程では、前記炭化工程で得られた炭化物を、水蒸気を賦活ガスとして賦活処理する。本工程では、原料の炭化物をガス賦活して活性炭を得る。
- The activation step in the activation process the present invention, the carbide obtained in the carbonization step, the activation treatment gas Mizu蒸as an activator gas. In this step, activated carbon is obtained by gas activation of the raw material carbide.

本発明におけるガス賦活は、水蒸気、空気、二酸化炭素、あるいはこれらの二種以上を混合した混合気体(以下、「水蒸気等」ともいう。)を用いて行なわれる。中でも、本発明においては水蒸気を賦活ガスとして賦活する。本発明では、原料がカリウムを含んでおり、カリウムが存在する原料の炭化物に対して賦活を行なう点から、水蒸気による態様が好ましい。カリウム含有の炭化物に対して水蒸気を用いることで、細孔が形成されやすく、比表面積の大きい活性炭が得られやすい。 The gas activation in the present invention is performed using water vapor, air, carbon dioxide, or a mixed gas in which two or more of these are mixed (hereinafter also referred to as “water vapor”). Above all, we activate the steam as an activator gas in the present invention. In this invention, the aspect by water vapor | steam is preferable from the point which activates with respect to the carbide | carbonized_material of the raw material in which the raw material contains potassium and potassium exists. By using water vapor with respect to the potassium-containing carbide, pores are easily formed and activated carbon having a large specific surface area is easily obtained.

<活性炭>
次に、本発明の活性炭について説明する。
本発明の活性炭は、カリウムを絶乾原料質量比率で0.8%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料とする活性炭であり、細孔直径が0.7nm以上の細孔が占める細孔容積を、全細孔容積に対して65%以上として構成されている。
<Activated carbon>
Next, the activated carbon of the present invention will be described.
The activated carbon of the present invention is activated carbon made from squeezed coconut cocoon oil or coconut husk containing 0.8% or more of potassium by dry mass as a raw material, and has a pore diameter of 0.7 nm. The pore volume occupied by the above pores is configured to be 65% or more with respect to the total pore volume.

本発明の活性炭は、既述の通り、カリウムを0.8質量%以上含有する椿の実の椿油の搾り滓又は椿の実の殻を原料としたものであるため、アルカリ賦活相当の性能、すなわち細孔容積が大きく、物質の吸脱着に適した細孔径を有している。具体的には、本発明の活性炭は、以下の細孔直径、及びその占有割合を満たす。 As described above, the activated carbon of the present invention is obtained by using a cocoon coconut oil squeezed coconut oil containing 0.8% by mass or more of potassium or a coconut husk as a raw material. That is, the pore volume is large and the pore diameter is suitable for the adsorption and desorption of substances. Specifically, the activated carbon of the present invention satisfies the following pore diameter and its occupation ratio.

Claims (10)

カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料とし、該原料を炭化する炭化工程と、
前記炭化工程で得られた炭化物を、水蒸気、空気、及び二酸化炭素から選ばれる少なくとも1種の気体を賦活ガスとして賦活する賦活工程と、
を含む活性炭の製造方法。
A carbonization step of carbonizing the raw material, using as a raw material the coconut that contains 0.8% or more of an absolute dry raw material mass ratio of potassium;
An activation step of activating the carbide obtained in the carbonization step with at least one gas selected from water vapor, air, and carbon dioxide as an activation gas;
The manufacturing method of activated carbon containing.
前記椿の実が、椿油の搾り滓、又は椿の実の殻である請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the coconut is squeezed cocoon oil or a coconut shell. 前記炭化工程は、炭化を600℃以上の温度で行なう請求項1又は請求項2に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1 or 2, wherein in the carbonization step, carbonization is performed at a temperature of 600 ° C or higher. 前記炭化工程は、昇温速度を2段階に変化させて昇温することで炭化する請求項1〜請求項3のいずれか1項に記載の活性炭の製造方法。   The said carbonization process is a manufacturing method of the activated carbon of any one of Claims 1-3 which carbonize by changing a temperature increase rate into two steps and heating up. 前記炭化工程は、200℃以上600℃以下の温度範囲での昇温速度を2℃/min以上4℃/min以下として炭化する請求項1〜請求項4のいずれか1項に記載の活性炭の製造方法。   5. The activated carbon according to claim 1, wherein the carbonization step is carbonized at a temperature rising rate in a temperature range of 200 ° C. or more and 600 ° C. or less at 2 ° C./min or more and 4 ° C./min or less. Production method. 前記賦活工程は、賦活を750℃以上の温度で行なう請求項1〜請求項5のいずれか1項に記載の活性炭の製造方法。   The said activation process is a manufacturing method of the activated carbon of any one of Claims 1-5 which performs activation at the temperature of 750 degreeC or more. 前記賦活工程は、周期律表1族の金属の総質量に対する含有量が質量基準で5%以上である活性炭が得られるように賦活する請求項1〜請求項6のいずれか1項に記載の活性炭の製造方法。   The said activation process activates so that activated carbon with which content with respect to the total mass of the metal of a periodic table 1 group is 5% or more on a mass basis is obtained. A method for producing activated carbon. 賦活工程を経て得られた活性炭に対して、金属含有量が活性炭総量に対して質量基準で0.5%以下になるように、水洗処理及び酸洗処理の少なくとも一方を施す洗浄工程を更に含む請求項1〜請求項7のいずれか1項に記載の活性炭の製造方法。   The activated carbon obtained through the activation step further includes a washing step of performing at least one of a water washing treatment and a pickling treatment so that the metal content is 0.5% or less on a mass basis with respect to the total amount of activated carbon. The manufacturing method of activated carbon of any one of Claims 1-7. カリウムを絶乾原料質量比率で0.8%以上含有する椿の実を原料として作製され、細孔直径が0.7nm以上の細孔が占める細孔容積が全細孔容積の65%以上である活性炭。   Produced from coconuts containing 0.8% or more of an absolute dry material mass ratio of potassium, the pore volume occupied by pores having a pore diameter of 0.7 nm or more is 65% or more of the total pore volume. A certain activated carbon. 細孔直径が0.7nm以上の孔径範囲に微分細孔容積ピーク値が0.3cm/g・nm以上となるピーク細孔直径を有する請求項9に記載の活性炭。 The activated carbon according to claim 9, which has a peak pore diameter in which a differential pore volume peak value is 0.3 cm 3 / g · nm or more in a pore diameter range having a pore diameter of 0.7 nm or more.
JP2012112514A 2012-05-16 2012-05-16 Activated carbon and manufacturing method thereof Expired - Fee Related JP5159970B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012112514A JP5159970B1 (en) 2012-05-16 2012-05-16 Activated carbon and manufacturing method thereof
CN2013101756581A CN103420367A (en) 2012-05-16 2013-05-13 Activated carbon and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112514A JP5159970B1 (en) 2012-05-16 2012-05-16 Activated carbon and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5159970B1 JP5159970B1 (en) 2013-03-13
JP2013237595A true JP2013237595A (en) 2013-11-28

Family

ID=48013561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112514A Expired - Fee Related JP5159970B1 (en) 2012-05-16 2012-05-16 Activated carbon and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5159970B1 (en)
CN (1) CN103420367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117153A1 (en) * 2015-01-22 2016-07-28 株式会社エム・イー・ティー Scrub and method for using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771407B (en) * 2014-01-20 2015-12-30 中盈长江国际新能源投资有限公司 Take biomass power plant ash as the method that super-activated carbon prepared by raw material
JP6290900B2 (en) * 2014-04-03 2018-03-07 関西熱化学株式会社 Activated carbon for water purifier
US20220002161A1 (en) * 2018-11-09 2022-01-06 Kuraray Co., Ltd. Carbonaceous material, method for producing same, electrode active material for electrochemical device, electrode for electrochemical device, and electrochemical device
WO2020170985A1 (en) * 2019-02-18 2020-08-27 株式会社クラレ Activated carbon and method for producing same
CN113621226A (en) * 2021-06-22 2021-11-09 莆田市超越泡棉有限公司 Formula and preparation method of antibacterial sponge with good rebound effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309269A (en) * 1992-04-30 1993-11-22 Kyodo Kumiai Ratesuto Activated-carbon catalyst
JP2003342014A (en) * 2002-05-24 2003-12-03 Futamura Chemical Industries Co Ltd Activated carbon and its manufacturing method
JP2006104002A (en) * 2004-10-04 2006-04-20 Kuraray Chem Corp Activated carbon and its manufacturing method
WO2008053919A1 (en) * 2006-11-02 2008-05-08 Kuraray Chemical Co., Ltd Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors
JP2011057457A (en) * 2009-09-04 2011-03-24 Nagaoka Univ Of Technology Hydrogen occlusion method, hydrogen occlusion apparatus and hydrogen occluding carbon material
JP2011162368A (en) * 2010-02-05 2011-08-25 Jissen Kankyo Kenkyusho:Kk Method for producing activated carbon and activated carbon

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727001B2 (en) * 1988-09-03 1998-03-11 三井鉱山株式会社 Manufacturing method of carbon material for desulfurization
CN1275528A (en) * 2000-06-28 2000-12-06 喻承庚 Productive technology for activated char
CN101863470A (en) * 2010-05-24 2010-10-20 浙江省林业科学研究院 Method for preparing granular active carbon for gasoline vapor recovery by using oil tea shells
CN101885486B (en) * 2010-07-05 2012-09-26 南京林业大学 Technology for producing acid granular activated carbon by air activation method
CN102275911B (en) * 2011-06-03 2013-06-19 中国林业科学研究院林产化学工业研究所 Microporous active carbon and preparation method by chemical agent aperture regulation and control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309269A (en) * 1992-04-30 1993-11-22 Kyodo Kumiai Ratesuto Activated-carbon catalyst
JP2003342014A (en) * 2002-05-24 2003-12-03 Futamura Chemical Industries Co Ltd Activated carbon and its manufacturing method
JP2006104002A (en) * 2004-10-04 2006-04-20 Kuraray Chem Corp Activated carbon and its manufacturing method
WO2008053919A1 (en) * 2006-11-02 2008-05-08 Kuraray Chemical Co., Ltd Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors
JP2011057457A (en) * 2009-09-04 2011-03-24 Nagaoka Univ Of Technology Hydrogen occlusion method, hydrogen occlusion apparatus and hydrogen occluding carbon material
JP2011162368A (en) * 2010-02-05 2011-08-25 Jissen Kankyo Kenkyusho:Kk Method for producing activated carbon and activated carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117153A1 (en) * 2015-01-22 2016-07-28 株式会社エム・イー・ティー Scrub and method for using same
CN106456460A (en) * 2015-01-22 2017-02-22 株式会社Met Scrub and method for using same
KR101858461B1 (en) 2015-01-22 2018-05-16 가부시키가이샤 엠이티 Scrub and method for using same
CN106456460B (en) * 2015-01-22 2019-05-28 株式会社Met Frosting agent and its application method

Also Published As

Publication number Publication date
CN103420367A (en) 2013-12-04
JP5159970B1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5159970B1 (en) Activated carbon and manufacturing method thereof
JP5288592B2 (en) Method for producing high specific surface area activated carbon
CN110451509B (en) Method for preparing nitrogen-doped porous carbon material by using zinc nitrate as activating agent
JP6760583B2 (en) How to make activated carbon
JP5542146B2 (en) Very porous activated carbon with controlled oxygen content
JP5400892B2 (en) Method for producing porous activated carbon
JP2014072497A (en) Active carbon for capacitor electrode material, process of manufacturing the same, electrode for capacitor, and capacitor
JP2012045538A (en) Nicotine absorbent, quinoline absorbent, benzopyrene absorbent, toluidine absorbent, and carcinogen absorbent
US11504697B2 (en) Porous carbon material, method for producing same, and synthesis reaction catalyst
CN110734049B (en) Method for preparing nitrogen-doped carbon material with high specific surface area by using potassium phthalimide
KR20150100636A (en) Electrode material for secondary batteries, method for producing same, and secondary battery
KR102683021B1 (en) activated carbon electrode material
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
JP5485734B2 (en) Activated carbon production method and activated carbon
KR102424905B1 (en) Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage
Li et al. Preparation of Activated Carbon from Pyrolyzed Rice Husk by Leaching out Ash Content after CO 2 Activation.
KR20110010491A (en) Method for producing activated carbons using sewage sludge
JP5281926B2 (en) Volatile organic compound adsorbent, method for producing the same, and method for using bark or molded article thereof
CN114436258B (en) Preparation method of graphitized porous carbon for removing earthy and musty substances
WO2016035669A1 (en) Method for purifying plant-derived carbon precursor
Ajayi et al. A comparative study of thermal and chemical activation of Canarium Schweinfurthii Nutshell
KR20200089155A (en) A method for producing activated carbon derived from rice husks using synergistic effect of steam activation and silica removal for methane storage
Al Gharibi et al. The effect of chemical activation method in the preparation of activated carbon from local phoenix dactylifera waste stems
JP2016052954A (en) Method for refining plant-derived carbon precursor
JP2016150895A (en) Carbide derived from vegetable raw material, and production method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees