JP2006307373A - Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst - Google Patents

Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst Download PDF

Info

Publication number
JP2006307373A
JP2006307373A JP2005130460A JP2005130460A JP2006307373A JP 2006307373 A JP2006307373 A JP 2006307373A JP 2005130460 A JP2005130460 A JP 2005130460A JP 2005130460 A JP2005130460 A JP 2005130460A JP 2006307373 A JP2006307373 A JP 2006307373A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
metal
solution
desulfurization catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005130460A
Other languages
Japanese (ja)
Other versions
JP4848135B2 (en
Inventor
Masayuki Tabata
雅之 田畑
Mio Nozaki
未央 野崎
Masazumi Taura
昌純 田浦
Akinori Yasutake
昭典 安武
Masaaki Yoshikawa
正晃 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Osaka Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005130460A priority Critical patent/JP4848135B2/en
Publication of JP2006307373A publication Critical patent/JP2006307373A/en
Application granted granted Critical
Publication of JP4848135B2 publication Critical patent/JP4848135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing an active carbon fiber for a desulfurization catalyst having high desulfurization efficiency and long activity life and to provide the active carbon fiber for the desulfurization catalyst obtained by the method. <P>SOLUTION: The method for preparing the active carbon fiber for the desulfurization catalyst is characterized as follows. The active carbon fiber is dipped in a metal solution controlled at a low pH value and sufficiently impregnated with the metal solution. The active carbon fiber is then washed and dried to thereby afford the active carbon fiber for the desulfurization catalyst in which the amount of the discharged metal is reduced in use as the catalyst without reducing the surface area of the active carbon fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市ゴミ焼却炉、産業廃棄物焼却炉、汚泥焼却炉等の各種焼却炉、溶融炉、ボイラ、ガスタービン、エンジンなどから排出される排ガス中に含有されるイオウ酸化物(SOx)を除去するための脱硫触媒用活性炭素繊維の調製方法および該方法による得られる脱硫触媒用活性炭素繊維に関するものである。   The present invention relates to sulfur oxide (SOx) contained in exhaust gas discharged from various incinerators such as municipal waste incinerators, industrial waste incinerators, sludge incinerators, melting furnaces, boilers, gas turbines, engines and the like. The present invention relates to a method for preparing activated carbon fibers for a desulfurization catalyst for removing water and the activated carbon fibers for a desulfurization catalyst obtained by the method.

従来、排ガス中のSOxを除去する装置として、活性炭素繊維に排ガス中のSOxを吸着させ、該活性炭素繊維の触媒作用を利用して排ガス中に含まれる酸素により硫黄成分を酸化させ、これを水分に吸収させて硫酸として前記活性炭素繊維から除去することが提案されている(特許文献1)。この活性炭素繊維を用いた排ガス処理装置では、排ガス中のSOxを吸着するための活性炭素繊維槽を吸着塔内に配設し、排ガスを下方から供給して活性炭素繊維の表面でSO2をSO3に酸化し、生成したSO3が塔内に供給された水と反応して、硫酸(H2SO4)を生成するようにしている。 Conventionally, as an apparatus for removing SOx in exhaust gas, SOx in exhaust gas is adsorbed on activated carbon fiber, and the sulfur component is oxidized by oxygen contained in the exhaust gas by utilizing the catalytic action of the activated carbon fiber. It has been proposed to remove the activated carbon fiber from the activated carbon fiber by absorbing it into moisture (Patent Document 1). In the exhaust gas treatment apparatus using activated carbon fiber, an activated carbon fiber tank for adsorbing SOx in the exhaust gas is disposed in the adsorption tower, and the exhaust gas is supplied from below to make SO 2 on the surface of the activated carbon fiber. The SO 3 is oxidized to SO 3 and the generated SO 3 reacts with the water supplied into the tower to produce sulfuric acid (H 2 SO 4 ).

前記排ガス処理装置により、石炭や重油等の燃料を燃焼させるボイラからの排ガスを処理する場合を考えると、これらの排ガス量は膨大であるため、排ガス処理装置の脱硫効率の向上が必要になる。脱硫効率を上げるためには、装置を大型化するばかりでなく、触媒として用いられている活性炭素繊維自体の脱硫効率を向上させることが必要となる。   Considering the case where exhaust gas from a boiler that burns fuel such as coal or heavy oil is processed by the exhaust gas processing device, the amount of these exhaust gases is enormous, and therefore it is necessary to improve the desulfurization efficiency of the exhaust gas processing device. In order to increase the desulfurization efficiency, it is necessary not only to increase the size of the apparatus but also to improve the desulfurization efficiency of the activated carbon fiber itself used as a catalyst.

これに対して、従来、活性炭素繊維に金属材料を添加することによって活性炭素繊維の脱硫効率を向上させる方法が提案されている(特許文献2)。この方法では、活性炭素繊維に金属材料を添加する方法は限定されておらず、例えば、金属原料を溶液にして活性炭素繊維に含浸させる方法、金属粉末を活性炭素繊維に散布等により添加する方法、熱処理時に金属または金属化合物のバルク体(固形物)とともに焼成する方法、容器や炉の部品を添加する金属から構成し、活性炭素繊維の熱処理時に繊維に金属を移行させる方法等が例示されている。この文献2では、前記活性炭素繊維への金属材料の添加方法の具体的事例として、Cr、Fe、Ag、Pt、Ir、Pd、Mn、Niの各金属の水溶液に活性炭素繊維を浸漬し、その後、窒素雰囲気中で焼成処理することにより、脱硫効率がほぼ2倍に向上した実施例が開示されている。   On the other hand, a method for improving the desulfurization efficiency of the activated carbon fiber by adding a metal material to the activated carbon fiber has been proposed (Patent Document 2). In this method, the method of adding the metal material to the activated carbon fiber is not limited. For example, the method of impregnating the activated carbon fiber with a metal raw material as a solution, the method of adding the metal powder to the activated carbon fiber by spraying, etc. Examples include a method of firing together with a bulk body (solid) of a metal or a metal compound at the time of heat treatment, a method consisting of a metal added with a container or a furnace part, and a method of transferring a metal to a fiber at the time of heat treatment of activated carbon fiber. Yes. In this document 2, as a specific example of a method for adding a metal material to the activated carbon fiber, the activated carbon fiber is immersed in an aqueous solution of each metal of Cr, Fe, Ag, Pt, Ir, Pd, Mn, and Ni. After that, an example in which the desulfurization efficiency is almost doubled by firing in a nitrogen atmosphere is disclosed.

また、脱硫を目的にするのではなく、大気などのガス中から窒素酸化物(NOx)を除去する目的に用いる活性炭素繊維が提案されている(特許文献3)。この活性炭素繊維には、金属銅と酸化銅とからなる銅化合物が添着されている。この活性炭素繊維の調製方法としては、銅塩の水溶液に活性炭素繊維を浸漬し、該銅塩の水溶液に塩基性水溶液を加えることにより活性炭素繊維に銅の水酸化物を添着させ、該活性炭素繊維を不活性ガスの雰囲気下で600〜800℃の温度で処理する方法が開示されている。   In addition, activated carbon fibers used for the purpose of removing nitrogen oxides (NOx) from gases such as the atmosphere instead of desulfurization have been proposed (Patent Document 3). A copper compound composed of metallic copper and copper oxide is attached to the activated carbon fiber. As a method for preparing this activated carbon fiber, activated carbon fiber is immersed in an aqueous solution of copper salt, and a basic aqueous solution is added to the aqueous solution of copper salt to attach copper hydroxide to the activated carbon fiber. A method of treating carbon fiber at a temperature of 600 to 800 ° C. in an inert gas atmosphere is disclosed.

特開平11−347350号公報JP 11-347350 A 特開2004−66009号公報JP 2004-66009 A 特開平5−103986号公報JP-A-5-103986

前記特許文献2に開示の活性炭素繊維の調製方法では、金属水溶液に活性炭素繊維を浸漬し、その後、熱処理する方法が開示されているが、より詳細な処理条件が開示されておらず、単純にこの方法に従って得られた活性炭素繊維の脱硫効率には、製品ごとにバラツキが生じ、性能安定性に欠ける点がある。そのため、安定した脱硫効率特性を得ることができる改良された活性炭素繊維の調製方法が望まれる。   The method for preparing activated carbon fibers disclosed in Patent Document 2 discloses a method in which activated carbon fibers are immersed in a metal aqueous solution and then heat-treated. However, more detailed treatment conditions are not disclosed, and the method is simple. In addition, the desulfurization efficiency of the activated carbon fiber obtained according to this method varies from product to product and lacks performance stability. Therefore, an improved method for preparing activated carbon fibers capable of obtaining stable desulfurization efficiency characteristics is desired.

また、前記特許文献3に開示の活性炭素繊維の調製方法では、酸性の銅水溶液にアルカリを加えて生成させた銅水酸化物微粒子を活性炭素繊維上に沈殿させて、前記銅水酸化物微粒子を添着するので、繊維の微小孔に銅が入り込まず、繊維の表面部分に付着した状態になり、さらに沈殿により添着させた銅水酸化物粒子が繊維の微細孔を塞ぐ場合があり、触媒に重要な要件である繊維の表面積を低下させる虞がある。これらの結果、活性炭素繊維から銅化合物粒子が剥離しやすく、添着金属による効果(この場合、脱硝効率)が比較的早期に低下してしまうことになり、また、表面積低下により脱硝効率が低下する場合もある。   Further, in the method for preparing activated carbon fibers disclosed in Patent Document 3, copper hydroxide fine particles formed by adding alkali to an acidic copper aqueous solution are precipitated on the activated carbon fibers, and the copper hydroxide fine particles are obtained. Therefore, copper does not enter the fiber micropores, but is attached to the fiber surface, and the copper hydroxide particles added by precipitation may block the fiber micropores. There is a risk of reducing the fiber surface area, which is an important requirement. As a result, the copper compound particles are easily peeled off from the activated carbon fibers, and the effect of the adhering metal (in this case, the denitration efficiency) is lowered relatively early, and the denitration efficiency is lowered due to the reduction in the surface area. In some cases.

本発明は、上記事情に鑑みてなされたものであって、その目的は、金属を添着することにより脱硫効率を向上させた活性炭素繊維において、その脱硫効率をさらに向上させるとともに活性寿命の延長を図ることにある。すなわち、本発明の課題は、脱硫効率が高く、かつ活性寿命の長い脱硫触媒用活性炭素繊維の調製方法および該方法により得られる脱硫触媒用活性炭素繊維を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to further improve the desulfurization efficiency and extend the active life in the activated carbon fiber in which the desulfurization efficiency is improved by adding metal. There is to plan. That is, an object of the present invention is to provide a method for preparing activated carbon fibers for a desulfurization catalyst having a high desulfurization efficiency and a long active life, and an activated carbon fiber for a desulfurization catalyst obtained by the method.

上述した課題を解決し、目的を達成するために、本発明の請求項[1]に係る脱硫触媒用活性炭素繊維の調製方法は、低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記活性炭素繊維を洗浄し、乾燥することによって、前記活性炭素繊維の表面積を低下させることなく、触媒として使用時の金属流出量が低減された脱硫触媒用活性炭素繊維を得ることを特徴とする。
なお、前記乾燥後の活性炭素繊維は、さらに不活性雰囲気中で加熱処理することが、望ましい。この不活性雰囲気中での加熱処理(焼成)によって、付着金属の繊維への定着を増強することができる。
In order to solve the above-described problems and achieve the object, the method for preparing activated carbon fibers for a desulfurization catalyst according to claim [1] of the present invention immerses the activated carbon fibers in a metal solution controlled to a low pH value. Then, after the activated carbon fiber is sufficiently impregnated with the metal solution, the activated carbon fiber is washed and dried to reduce the surface area of the activated carbon fiber without reducing the surface area of the activated carbon fiber. It is characterized by obtaining an activated carbon fiber for a desulfurization catalyst whose amount is reduced.
The dried activated carbon fiber is preferably further heat-treated in an inert atmosphere. By the heat treatment (baking) in the inert atmosphere, the adhesion of the adhered metal to the fibers can be enhanced.

本発明の請求項[2]の脱硫触媒用活性炭素繊維の調製方法は、前記請求項[1]に記載の脱硫触媒用活性炭素繊維の調製方法において、前記金属溶液を前記活性炭素繊維に十分に含浸させた後に、前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させ、その後、前記活性炭素繊維の洗浄および乾燥を行うことによって、さらに前記活性炭素繊維に対する金属担持量を増加させることを特徴とする。   The method for preparing activated carbon fibers for a desulfurization catalyst according to claim [2] of the present invention is the method for preparing activated carbon fibers for a desulfurization catalyst according to claim [1], wherein the metal solution is sufficient for the activated carbon fibers. After impregnating with the activated carbon fiber, an alkali is added to the metal solution to precipitate and settle a metal compound in the solution, and then the activated carbon fiber is washed and dried, thereby further supporting the amount of metal on the activated carbon fiber. It is characterized by increasing.

本発明の請求項[3]の脱硫触媒用活性炭素繊維の調製方法は、前記請求項[2]に記載の脱硫触媒用活性炭素繊維の調製方法において、前記金属溶液の金属含有量を調節することによって前記金属化合物の前記活性炭素繊維に対する担持量を制御することを特徴とする。   The method for preparing activated carbon fibers for a desulfurization catalyst according to claim [3] of the present invention adjusts the metal content of the metal solution in the method for preparing activated carbon fibers for a desulfurization catalyst according to claim [2]. Thus, the amount of the metal compound supported on the activated carbon fiber is controlled.

本発明の請求項[4]の脱硫触媒用活性炭素繊維の調製方法は、前記請求項[1]〜[3]のいずれか1項に記載の脱硫触媒用活性炭素繊維の調製方法において、前記活性炭素繊維を前記金属溶液に浸漬した後、前記活性炭素繊維を浸漬したままで前記金属溶液を減圧環境下に置くことによって、前記低pH値の金属溶液を前記活性炭素繊維中に十分に含浸させることを特徴とする。   The method for preparing activated carbon fibers for desulfurization catalyst according to claim [4] of the present invention is the method for preparing activated carbon fibers for desulfurization catalyst according to any one of claims [1] to [3]. After immersing the activated carbon fiber in the metal solution, the activated carbon fiber is sufficiently immersed in the activated carbon fiber by placing the metal solution in a reduced pressure environment while immersing the activated carbon fiber. It is characterized by making it.

本発明の請求項[5]の脱硫触媒用活性炭素繊維の調製方法は、前記請求項[2]または[3]に記載の脱硫触媒用活性炭素繊維の調製方法において、前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させた後、前記活性炭素繊維を浸漬したままで前記金属溶液を減圧環境下に置くことによって、前記金属化合物の析出粒子の前記活性炭素繊維への添着を確実にすることを特徴とする。   The method for preparing activated carbon fiber for desulfurization catalyst according to claim [5] of the present invention is the method for preparing activated carbon fiber for desulfurization catalyst according to claim [2] or [3], wherein alkali is added to the metal solution. In addition, after depositing and precipitating the metal compound in the solution, the metal solution is placed in a reduced pressure environment while the activated carbon fiber is immersed, whereby the deposited particles of the metal compound are applied to the activated carbon fiber. It is characterized by ensuring attachment.

本発明の請求項[6]の脱硫触媒用活性炭素繊維の調製方法は、前記請求項[1]〜[5]のいずれか1項に記載の脱硫触媒用活性炭素繊維の調製方法において、前記活性炭素繊維に担持させる金属がFeであることを特徴とする。   The method for preparing activated carbon fibers for a desulfurization catalyst according to claim [6] of the present invention is the method for preparing activated carbon fibers for a desulfurization catalyst according to any one of claims [1] to [5]. The metal supported on the activated carbon fiber is Fe.

本発明の請求項[7]は脱硫触媒用活性炭素繊維に係るもので、この脱硫触媒用活性炭素繊維は、前記請求項[1]〜[6]のいずれか一項の脱硫触媒用活性炭素繊維の調製方法により得られたことを特徴とする。   Claim [7] of the present invention relates to activated carbon fiber for desulfurization catalyst, and this activated carbon fiber for desulfurization catalyst is activated carbon for desulfurization catalyst according to any one of claims [1] to [6]. It was obtained by the fiber preparation method.

本発明の請求項[8]は脱硫触媒用活性炭素繊維に係るもので、この脱硫触媒用活性炭素繊維は、低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記活性炭素繊維を洗浄し、乾燥することによって得られた脱硫用活性炭素繊維であって、各活性炭素繊維が有する微細孔の内面に該微細孔を閉塞することなく前記金属の非晶質微粒子が付着していることを特徴とする。   Claim [8] of the present invention relates to an activated carbon fiber for a desulfurization catalyst. The activated carbon fiber for a desulfurization catalyst is obtained by immersing the activated carbon fiber in a metal solution controlled to a low pH value. The activated carbon fiber is thoroughly impregnated with the metal solution, and the activated carbon fiber is washed and dried to obtain the desulfurized activated carbon fiber, which is formed on the inner surface of each activated carbon fiber. The amorphous fine particles of the metal are adhered without clogging.

本発明の請求項[9]は脱硫触媒用活性炭素繊維に係るもので、この脱硫触媒用活性炭素繊維は、低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させ、その後、前記活性炭素繊維を洗浄し、乾燥することによって得られた脱硫用活性炭素繊維であって、各活性炭素繊維が有する微細孔の内部の少なくとも一部に前記金属の結晶性粒子が充填されていることを特徴とする。   Claim [9] of the present invention relates to an activated carbon fiber for a desulfurization catalyst, and the activated carbon fiber for a desulfurization catalyst is obtained by immersing the activated carbon fiber in a metal solution controlled to a low pH value. After sufficiently impregnating the metal solution, desulfurization obtained by adding an alkali to the metal solution to precipitate and precipitate a metal compound in the solution, and then washing and drying the activated carbon fiber The activated carbon fiber is characterized in that at least a part of the inside of the fine pores of each activated carbon fiber is filled with crystalline particles of the metal.

本発明にかかる脱硫触媒用活性炭素繊維の調製方法は、脱硫触媒用活性炭素繊維の脱硫効率向上と長寿命化を実現する。また、本方法によれば、金属添加で起きる活性炭素繊維の微細孔の閉塞を抑制し、該繊維が有する高い表面積を維持させることができ、それにより、脱硫触媒としての活性炭素繊維の処理性能の向上を可能にする。   The method for preparing activated carbon fibers for a desulfurization catalyst according to the present invention achieves an improvement in desulfurization efficiency and a longer life of the activated carbon fibers for a desulfurization catalyst. Further, according to this method, it is possible to suppress the clogging of the fine pores of the activated carbon fiber caused by the addition of metal, and to maintain the high surface area of the fiber, thereby enabling the treatment performance of the activated carbon fiber as a desulfurization catalyst. Can be improved.

前述のように、本発明に係る脱硫触媒用活性炭素繊維の調製方法は、低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記活性炭素繊維を洗浄し、乾燥することによって、前記活性炭素繊維の表面積を低下させることなく、触媒として使用時の金属流出量が低減された脱硫触媒用活性炭素繊維を得ることを特徴とする。   As described above, in the method for preparing activated carbon fibers for a desulfurization catalyst according to the present invention, activated carbon fibers are immersed in a metal solution controlled to a low pH value, and the activated carbon fibers are sufficiently impregnated with the metal solution. Thereafter, the activated carbon fiber is washed and dried to obtain an activated carbon fiber for a desulfurization catalyst with reduced metal outflow when used as a catalyst without reducing the surface area of the activated carbon fiber. Features.

本発明で用いられる活性炭素繊維としては、例えば、ピッチ系活性炭素繊維、ポリアクリロニトリル系活性炭素繊維、フェノール系活性炭素繊維、セルロース系活性炭素繊維を挙げることができるが、これらに限定されるものではない。   Examples of the activated carbon fiber used in the present invention include, but are not limited to, pitch-based activated carbon fiber, polyacrylonitrile-based activated carbon fiber, phenol-based activated carbon fiber, and cellulose-based activated carbon fiber. is not.

本発明に用いる金属としては、脱硫反応および生成硫酸により劣化しにくく、酸化活性の高い金属であるCr,Mn,Feなどの元素周期律表上で3族から12族の金属元素が好ましく、その中でも(コスト)対(性能)面からFeがより好ましい。   The metal used in the present invention is preferably a group 3 to group 12 metal element on the periodic table of elements such as Cr, Mn, and Fe, which is a metal that is not easily deteriorated by desulfurization reaction and produced sulfuric acid and has high oxidation activity. Among these, Fe is more preferable from the viewpoint of (cost) versus (performance).

本発明の脱硫触媒用活性炭素繊維の調製方法では、活性炭素繊維へ金属を担持する際に用いる金属溶液を少なくとも当初において低pH値に調整することを特徴としている。この低pH値としては、pH2以下が好ましく、この範囲に金属溶液を調整することにより、金属を完全に溶解させることができ、活性炭素繊維の多数の微細孔内面への金属の付着が可能になる。これによって、活性炭素繊維の高い表面積値を維持しつつ、金属担持による脱硫性能の向上を図ることができる。脱硫触媒に用いる活性炭素繊維において、金属担持による脱硫性能の向上は、活性炭素面と金属とが共存している部分において脱硫反応が活性化されるためであると考えられている。活性炭素繊維の径寸法は〜10μmであり、この各繊維の表面に形成されている微細孔の径寸法は〜10Åである。このような微細孔を多数有する活性炭素繊維に対して、本発明の方法では、かかる活性炭素繊維の多数の微細孔を塞ぐことなく、その内面に金属を付着させることができる。その結果、本発明方法により得られた活性炭素繊維は、脱硫反応に活性を持つ領域が大変広い面積を有することになり、その脱硫効率を大幅に向上させることができる。しかも、金属は、繊維の微細孔内に付着しているので、流出しにくく、触媒として使用している間に活性炭素繊維から流出する金属量は大幅に低減される。   The method for preparing activated carbon fibers for a desulfurization catalyst according to the present invention is characterized in that a metal solution used for loading a metal on activated carbon fibers is adjusted to a low pH value at least initially. As this low pH value, pH 2 or less is preferable. By adjusting the metal solution within this range, the metal can be completely dissolved, and the metal can adhere to the inner surfaces of many fine pores of the activated carbon fiber. Become. As a result, it is possible to improve the desulfurization performance by supporting the metal while maintaining the high surface area value of the activated carbon fiber. In the activated carbon fiber used for the desulfurization catalyst, the improvement of the desulfurization performance by the metal loading is considered to be because the desulfurization reaction is activated in the portion where the activated carbon surface and the metal coexist. The diameter of the activated carbon fiber is 10 μm, and the diameter of the micropores formed on the surface of each fiber is −10 mm. With respect to the activated carbon fiber having a large number of such fine pores, the method of the present invention makes it possible to attach a metal to the inner surface of the activated carbon fiber without blocking the numerous fine pores of the activated carbon fiber. As a result, the activated carbon fiber obtained by the method of the present invention has a very wide area active in the desulfurization reaction, and can greatly improve the desulfurization efficiency. Moreover, since the metal adheres in the fine pores of the fiber, it is difficult for the metal to flow out, and the amount of metal flowing out from the activated carbon fiber during use as a catalyst is greatly reduced.

前記多数の微細孔内面への金属の付着は、前記低pH値の金属溶液を繊維の微細孔内部にまで含浸させることによって可能になるが、そのためには、浸漬時間を十分にとることも一つの手段であるが、効率的には、活性炭素繊維を浸漬したままで金属溶液を減圧下におくことによって、微細孔から気体を排除して、溶液の含浸を促進することが、好ましい。   The metal can be adhered to the inner surfaces of the plurality of micropores by impregnating the metal solution having the low pH value into the micropores of the fiber. For this purpose, it is possible to take a sufficient immersion time. Although it is one means, it is preferable to accelerate | stimulate the impregnation of a solution efficiently by excluding gas from a micropore by leaving a metal solution under reduced pressure with the activated carbon fiber immersed.

また、本発明の方法では、必要に応じて、中間処理工程として、金属溶液にアルカリを加えて金属化合物の析出を促進させる工程を設けてもよい。このpH調整による金属析出促進工程により、担持する金属微粒子の数と粒径を増加する方向に調節し、活性炭素繊維の表面に担持する金属の担持量を増やすことも可能である。   Moreover, in the method of this invention, you may provide the process of adding the alkali to a metal solution and promoting precipitation of a metal compound as an intermediate treatment process as needed. It is possible to increase the amount of the metal supported on the surface of the activated carbon fiber by adjusting the number of metal fine particles to be supported and the particle diameter in the direction of increasing the metal precipitation promotion step by adjusting the pH.

さらに、本発明の方法では、前記金属溶液の金属含有量を調節することによって前記金属化合物の前記活性炭素繊維に対する担持量を制御することも、可能である。金属溶液の金属含有量の調節は、具体的には、別途濃度調製した別濃度の金属溶液中に前記金属溶液含浸後の活性炭素繊維を移すことにより実現することができる。あるいは、活性炭素繊維に十分金属溶液を含浸させた後の金属溶液を減量させることによって、実現することもできる。この場合の金属溶液の減量は、一気に行ってもよいし、少しずつ連続的に行ってもよい。   Furthermore, in the method of the present invention, it is also possible to control the amount of the metal compound supported on the activated carbon fiber by adjusting the metal content of the metal solution. Specifically, the adjustment of the metal content of the metal solution can be realized by transferring the activated carbon fiber impregnated with the metal solution into a metal solution of another concentration prepared separately. Alternatively, it can be realized by reducing the amount of the metal solution after sufficiently impregnating the activated carbon fiber with the metal solution. In this case, the reduction of the metal solution may be performed at once or may be performed continuously little by little.

上述の本発明に係る脱硫触媒用活性炭素繊維の調製方法の基本構成を、金属がFeである場合を例にとって、図面を用いて、以下にさらに説明する。   The basic structure of the method for preparing activated carbon fibers for a desulfurization catalyst according to the present invention will be further described below with reference to the drawings, taking as an example the case where the metal is Fe.

図1に示すように、容器1内のH2S04水溶液にFe(NH3)(SO42を溶解させてpH1.5の鉄水溶液2を調製し、この鉄水溶液2中に活性炭素繊維3を浸漬する。Fe(NH3)(SO42はpH1.5という酸性溶液中で溶解させることによって完全に溶解させることができる。その結果、金属鉄を、溶液が浸入可能で、鉄イオン(Fe3+,イオン半径:0.67Å)より大きな径のものあれば、どのような微細な空間にも送り込むことができる。一旦、鉄水溶液を付着させることができれば、その後、乾燥処理を行うことにより、その微細空間に鉄化合物を付着させることができる。 As shown in FIG. 1, Fe (NH 3 ) (SO 4 ) 2 is dissolved in an aqueous solution of H 2 SO 4 in a container 1 to prepare an aqueous iron solution 2 having a pH of 1.5, and activated carbon is contained in the aqueous iron solution 2. The fiber 3 is immersed. Fe (NH 3 ) (SO 4 ) 2 can be completely dissolved by dissolving it in an acidic solution having a pH of 1.5. As a result, metallic iron can be fed into any minute space as long as the solution can enter and has a diameter larger than iron ions (Fe 3+ , ion radius: 0.67 mm). Once the aqueous iron solution can be adhered, the iron compound can be adhered to the fine space by performing a drying process thereafter.

前述の微細空間である活性炭素繊維3の多数の微細孔に鉄水溶液2を十分に浸入させるために、次に、図2に示すように、前記鉄水溶液2と活性炭素繊維3とを満たした容器1を減圧環境4の下に置く。この間、鉄水溶液2は撹拌により濃度を均一に保っておくことが好ましい。多数の微細孔に鉄水溶液2が浸入すると、鉄水溶液2中の鉄成分が微細孔内面に吸着することになる。   Next, in order to fully infiltrate the iron aqueous solution 2 into the numerous micropores of the activated carbon fiber 3 that is the fine space, the iron aqueous solution 2 and the activated carbon fiber 3 were filled as shown in FIG. Place container 1 under reduced pressure environment 4. During this time, the concentration of the aqueous iron solution 2 is preferably kept uniform by stirring. When the iron aqueous solution 2 permeates into a large number of micropores, the iron component in the iron aqueous solution 2 is adsorbed on the inner surfaces of the micropores.

容器1中で活性炭素繊維2に十分に鉄水溶液2を含浸させた後、活性炭素繊維3を取り出し、図3に示すように、吸引濾過装置5を用いて、pH1.5のH2SO4溶液にて洗浄する。これにより活性炭素繊維2の表面に定着していない金属成分は洗い流される。 After the activated carbon fiber 2 is sufficiently impregnated with the aqueous iron solution 2 in the container 1, the activated carbon fiber 3 is taken out and, as shown in FIG. 3, using a suction filtration device 5, pH 1.5 H 2 SO 4. Wash with solution. As a result, the metal component not fixed on the surface of the activated carbon fiber 2 is washed away.

洗浄後の活性炭素繊維2を減圧乾燥機6中に入れて乾燥させる。乾燥の結果、活性炭素繊維2の微細孔に吸着した鉄成分は微細な粒子となって微細孔内面に定着する。   The washed activated carbon fiber 2 is put in a vacuum dryer 6 and dried. As a result of drying, the iron component adsorbed in the fine pores of the activated carbon fiber 2 becomes fine particles and is fixed on the inner surface of the fine pores.

前記鉄成分の定着、すなわち、吸着担持は、活性炭素繊維の微細孔内面に行われるので、鉄が吸着担持する面積は広大であり、鉄の担持量は格段に増加することになる。しかも、担持の形態は吸着であるので、担持の鉄微粒子は凝集することも、結晶化して粒径が大きくなることもがなく、微細孔を鉄の二次粒子により塞いでしまうことがない。また、凝集や結晶成長による金属粒子自体の活性低下も防止できる。   Since the iron component is fixed, that is, adsorbed and supported on the inner surface of the fine pores of the activated carbon fiber, the area on which iron is adsorbed and supported is large, and the amount of iron supported is remarkably increased. Moreover, since the supported form is adsorption, the supported iron fine particles are not aggregated or crystallized to increase the particle size, and the fine pores are not blocked by the iron secondary particles. In addition, it is possible to prevent a decrease in activity of the metal particles themselves due to aggregation and crystal growth.

前記調製方法では、鉄成分が完全に溶解した鉄水溶液を活性炭素繊維の微細孔を含む全表面に付着させ、これを乾燥させることによって、活性炭素繊維の表面に鉄成分の微粒子を吸着担持させている。この鉄成分の担持量を増やすように調節するために、前記調製方法において、前記図2にて説明した減圧環境4の下に置くことによる鉄水溶液2の微細孔への浸入促進工程の後に、鉄成分の析出促進工程を設けても良い。この鉄成分の析出促進工程では、図5に示すように、容器1内の鉄水溶液2にNH3水溶液7を添加して、鉄水溶液2のpH値を例えばpH4に調整することにより、鉄水溶液2に含まれる鉄成分の析出を促し、活性炭素繊維2の表面に付着する金属成分の微粒子の数および粒径をともに増加する方向に制御する。この場合、金属成分の微粒子は結晶化しやすくなるので、アルカリの添加量の調整が重要となる。アルカリ添加による析出量が多くなると、添着金属粒子は結晶化後、成長して粒径が大きくなり、活性炭素繊維の微細孔を閉塞するからである。 In the preparation method, an iron aqueous solution in which the iron component is completely dissolved is attached to the entire surface including the fine pores of the activated carbon fiber, and dried to adsorb and support the fine particles of the iron component on the surface of the activated carbon fiber. ing. In order to adjust the loading amount of the iron component to be increased, in the preparation method, after the step of promoting the penetration of the aqueous iron solution 2 into the micropores by placing it under the reduced pressure environment 4 described with reference to FIG. You may provide the precipitation promotion process of an iron component. In this iron component precipitation accelerating step, as shown in FIG. 5, an aqueous NH 3 solution 7 is added to the aqueous iron solution 2 in the container 1 to adjust the pH value of the aqueous iron solution 2 to, for example, pH 4. 2 is promoted to precipitate the iron component, and the number and particle size of the metal component adhering to the surface of the activated carbon fiber 2 are both controlled to increase. In this case, since the fine particles of the metal component are easily crystallized, it is important to adjust the amount of alkali added. This is because if the amount of precipitation due to the addition of alkali increases, the adhering metal particles grow after crystallization to increase the particle size and close the fine pores of the activated carbon fiber.

前記鉄成分の析出促進工程におけるpH調整値は、pH4に限定されるものではなく、任意である。このpH値を適宜に調整することによって、鉄成分の析出量、析出粒子の粒径を制御することができる。前述のように、析出量が多くなったり、析出粒径が大きくなると、微細孔を閉塞する虞があり、また、析出粒子が凝集したり、結晶化後、成長しやすくなり、鉄成分粒子の析出量全体における表面積が低下傾向になる。このようなマイナス効果が発生しない範囲内でpH値の調整を行う必要がある。   The pH adjustment value in the iron component precipitation promoting step is not limited to pH 4, but is arbitrary. By appropriately adjusting this pH value, it is possible to control the precipitation amount of the iron component and the particle size of the precipitated particles. As described above, when the amount of precipitation increases or the particle size of the precipitate increases, the fine pores may be clogged. In addition, the precipitated particles aggregate or become easy to grow after crystallization. The surface area in the whole precipitation amount tends to decrease. It is necessary to adjust the pH value within a range where such a negative effect does not occur.

従来の金属水溶液への浸漬、含浸方法では、通常、活性炭素繊維への担持量として10質量%を超えるように設定すると、活性炭素繊維の微細孔を閉塞する結果となるが、本発明でのように、当初、低pH値の金属水溶液に活性炭素繊維を浸漬して、活性炭素繊維に十分に金属水溶液を含浸させた後、金属水溶液のpHを中性寄りに適切に調整することにより、活性炭素繊維の微細孔を閉塞させることなく、金属担持量を10質量%を超える量に調節することができる。   In conventional immersion and impregnation methods in metal aqueous solutions, usually, if the amount supported on the activated carbon fiber is set to exceed 10% by mass, the result is that the micropores of the activated carbon fiber are blocked. Thus, by first immersing the activated carbon fiber in a low pH metal aqueous solution and sufficiently impregnating the activated carbon fiber with the metal aqueous solution, by appropriately adjusting the pH of the metal aqueous solution closer to neutrality, The metal loading can be adjusted to an amount exceeding 10% by mass without clogging the fine pores of the activated carbon fiber.

前記析出促進工程の後は、前記図3を用いて説明した洗浄工程を行うが、この場合、洗浄溶液として前記NH3水溶液7を用いることが異なる。この洗浄工程の後には、先に図4にて説明した減圧乾燥処理を行う。 After the precipitation promoting step, the cleaning step described with reference to FIG. 3 is performed. In this case, the NH 3 aqueous solution 7 is used as a cleaning solution. After this cleaning step, the reduced-pressure drying process described above with reference to FIG. 4 is performed.

以下、本発明の実施例を説明するが、以下に説明する実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Examples of the present invention will be described below. However, the examples described below are merely examples for suitably explaining the present invention, and do not limit the present invention.

(実施例1)
本発明の実施例1を図1〜図4を参照しつつ説明する。H2S04水溶液にFe(NH3)(SO42を溶解させてpH1.5の鉄水溶液2を容器1内に調製した。鉄水溶液2として、1.5〜500mモル/Lまでの8種の濃度の鉄水溶液を調整した。
Example 1
A first embodiment of the present invention will be described with reference to FIGS. Fe (NH 3 ) (SO 4 ) 2 was dissolved in H 2 SO 4 aqueous solution to prepare pH 1.5 iron aqueous solution 2 in container 1. As the iron aqueous solution 2, iron aqueous solutions having eight concentrations from 1.5 to 500 mmol / L were prepared.

上記濃度の異なる8種の各鉄水溶液120mL中にそれぞれ活性炭素繊維3を浸漬した。この活性炭素繊維3としては、アドール社製の活性炭素繊維(商品名A−15)をそれぞれ2.0gずつ用いた。最も鉄濃度の高い500mモル/Lの鉄水溶液においても、pH値をpH1.5という低pH値に制御したので、Fe(NH3)(SO42は完全に溶解していた。 The activated carbon fiber 3 was immersed in 120 mL of each of the eight types of iron aqueous solutions having different concentrations. As this activated carbon fiber 3, 2.0 g each of activated carbon fibers (trade name A-15) manufactured by Adol Co., Ltd. were used. Even in an iron aqueous solution having the highest iron concentration of 500 mmol / L, the pH value was controlled to a low pH value of pH 1.5, so that Fe (NH 3 ) (SO 4 ) 2 was completely dissolved.

次に、図2に示すように、前記活性炭素繊維3の多数の微細孔に各鉄水溶液2を十分に浸入させるために、各容器1を減圧環境4の下に置いた。この減圧条件は、〜50mmHg、60分間であった。この間、鉄水溶液2は撹拌により濃度を均一に保った。   Next, as shown in FIG. 2, each container 1 was placed under a reduced pressure environment 4 in order to allow each of the iron aqueous solutions 2 to sufficiently enter the numerous fine holes of the activated carbon fiber 3. This decompression condition was ˜50 mmHg for 60 minutes. During this time, the concentration of the aqueous iron solution 2 was kept uniform by stirring.

次に、鉄水溶液の濃度の異なる各容器1からそれぞれ活性炭素繊維3を取り出し、図3に示すように、吸引濾過装置5を用いて、pH1.5のH2SO4溶液〜360mLにて洗浄した。続いて、図4に示すように、洗浄後の各活性炭素繊維3を減圧乾燥機6中に入れて乾燥させた。減圧、乾燥の条件は、〜50mmHg、70℃、18時間であった。 Next, the activated carbon fibers 3 are taken out from the respective containers 1 having different concentrations of the iron aqueous solution, and washed with a pH 1.5 H 2 SO 4 solution to 360 mL using a suction filtration device 5 as shown in FIG. did. Then, as shown in FIG. 4, each activated carbon fiber 3 after washing was placed in a vacuum dryer 6 and dried. The conditions of decompression and drying were ˜50 mmHg, 70 ° C., and 18 hours.

前記乾燥後の各炭素繊維3を、Ar雰囲気中で、1100℃の温度で、1時間焼成した。   Each dried carbon fiber 3 was fired in an Ar atmosphere at a temperature of 1100 ° C. for 1 hour.

(実施例2)
前記実施例1と同様にして、H2S04水溶液にFe(NH3)(SO42を溶解させてpH1.5の鉄水溶液2を容器1内に調製した。鉄水溶液2としては、1.5〜9mモル/Lまでの4種の濃度の鉄水溶液を調整した。これら濃度の異なる4種の各鉄水溶液120mL中にそれぞれ活性炭素繊維3を浸漬した。ここで用いた活性炭素繊維は、前記実施例1で用いたものと同様であった。すなわち、アドール社製の活性炭素繊維(商品名A−15)をそれぞれ2.0gずつ用いた。
(Example 2)
In the same manner as in Example 1, Fe (NH 3 ) (SO 4 ) 2 was dissolved in an H 2 SO 4 aqueous solution to prepare an aqueous iron solution 2 having a pH of 1.5 in the container 1. As the iron aqueous solution 2, iron aqueous solutions having four concentrations of 1.5 to 9 mmol / L were prepared. The activated carbon fibers 3 were immersed in 120 mL of each of the four types of iron aqueous solutions having different concentrations. The activated carbon fiber used here was the same as that used in Example 1. That is, 2.0 g each of activated carbon fibers (trade name A-15) manufactured by Adol Co. were used.

次に、実施例1と同様に、図2に示すように、前記活性炭素繊維3の多数の微細孔に各鉄水溶液2を十分に浸入させるために、各容器1を減圧環境4の下に置いた。この減圧条件は、〜50mmHg、60分間であった。この間、鉄水溶液2は撹拌により濃度を均一に保った。   Next, in the same manner as in Example 1, as shown in FIG. 2, each container 1 is placed under a reduced pressure environment 4 in order to sufficiently infiltrate each iron aqueous solution 2 into the numerous micropores of the activated carbon fiber 3. placed. This decompression condition was ˜50 mmHg for 60 minutes. During this time, the concentration of the aqueous iron solution 2 was kept uniform by stirring.

次に、実施例1とは異なり、図5に示すように、各容器1内の鉄水溶液2に、濃度2.5%のNH3水溶液7を添加して、鉄水溶液2のpH値をpH4に調整した。pH4に調整の結果、鉄水溶液2中に鉄水酸化物の析出が確認された。pH4に調整後、10分攪拌して、析出物を活性炭素繊維2に担持させた。 Next, unlike Example 1, as shown in FIG. 5, an aqueous NH 3 solution 7 having a concentration of 2.5% is added to the aqueous iron solution 2 in each container 1, and the pH value of the aqueous iron solution 2 is adjusted to pH 4. Adjusted. As a result of adjusting the pH to 4, precipitation of iron hydroxide was confirmed in the aqueous iron solution 2. After adjusting to pH 4, the precipitate was supported on the activated carbon fiber 2 by stirring for 10 minutes.

前記析出促進工程の後の各容器1からそれぞれ活性炭素繊維3を取り出し、吸引濾過装置を用いて、pH4.0のNH3水溶液〜360mLにて洗浄した。続いて、図4に示すように、洗浄後の各活性炭素繊維3を減圧乾燥機6中に入れて乾燥させた。減圧、乾燥の条件は、〜50mmHg、70℃、18時間であった。前記乾燥後の各炭素繊維3を、Ar雰囲気中で、1100℃の温度で、1時間焼成した。 Activated carbon fiber 3 was taken out from each container 1 after the precipitation promoting step, and washed with NH 3 aqueous solution to 360 mL of pH 4.0 using a suction filtration device. Then, as shown in FIG. 4, each activated carbon fiber 3 after washing was placed in a vacuum dryer 6 and dried. The conditions of decompression and drying were ˜50 mmHg, 70 ° C., and 18 hours. Each dried carbon fiber 3 was fired in an Ar atmosphere at a temperature of 1100 ° C. for 1 hour.

(比較例1)
前記実施例1において鉄水溶液2のpH値をpH4.0としたこと以外、実施例1と同様にして、鉄を担持させた活性炭素繊維3を得た。
(Comparative Example 1)
An activated carbon fiber 3 carrying iron was obtained in the same manner as in Example 1 except that the pH value of the aqueous iron solution 2 was adjusted to pH 4.0 in Example 1.

(評価1)
前記実施例1,2および比較例1の鉄水溶液濃度に対する活性炭素繊維における鉄担持量(wt%)は、次のようにして算出した。
(Evaluation 1)
The iron loading (wt%) in the activated carbon fiber with respect to the iron aqueous solution concentrations in Examples 1 and 2 and Comparative Example 1 was calculated as follows.

2S04水溶液にFe(NH3)(SO42を溶解させて調整した鉄水溶液2,吸引濾過工程の濾液及び洗浄液のFe濃度を吸光光度法にて測定し、下記式(1)に示すように、鉄水溶液2のFe含有量減少分、すなわち、鉄水溶液2のFe含有量A(g)から、吸引濾過工程の濾液中のFe含有量B(g)と洗浄液中のFe含有量C(g)の合計を差し引いた分がACFに担持されたものとして、ACF重量W(g)に対する重量比を求め、鉄担持量X(wt%)とした。
X(wt%)={[A−(B+C)/W]}×100 (1)
An iron aqueous solution prepared by dissolving Fe (NH 3 ) (SO 4 ) 2 in an H 2 SO 4 aqueous solution 2, and the Fe concentration in the filtrate and washing solution in the suction filtration step were measured by absorptiometry, and the following formula (1) As shown in Fig. 5, the Fe content decrease in the iron aqueous solution 2, that is, the Fe content A (g) in the iron aqueous solution 2, and the Fe content B (g) in the filtrate of the suction filtration step and the Fe content in the cleaning liquid Assuming that the amount obtained by subtracting the sum of the amount C (g) was supported on the ACF, the weight ratio with respect to the ACF weight W (g) was obtained, and was defined as the iron loading amount X (wt%).
X (wt%) = {[A− (B + C) / W]} × 100 (1)

吸光光度法によるFe濃度の測定は次のようにして行った。測定試料となるFe溶液を濃硫酸でpH1.5以下に調整し,Fe3+の特異的吸収ピーク(290nm)の吸光度を測定した。予め濃度既知のFe溶液で測定した測定値を用いて作成した検量線を用いて、試料の測定値からFe濃度を算出した。測定結果を図6に示した。 The measurement of the Fe concentration by the spectrophotometric method was performed as follows. The Fe solution serving as a measurement sample was adjusted to pH 1.5 or less with concentrated sulfuric acid, and the absorbance of a specific absorption peak (290 nm) of Fe 3+ was measured. The Fe concentration was calculated from the measured value of the sample by using a calibration curve prepared using the measured value measured in advance with an Fe solution having a known concentration. The measurement results are shown in FIG.

(評価2)
次に、前記実施例1,2および比較例1の各サンプルと、鉄未担持の活性炭素繊維とを用いて、活性炭素繊維における鉄担持量(wt%)と、活性炭素繊維を用いた脱硫処理における脱硫率との関係を、ガラス反応管を用いて、測定した。条件は、反応温度:50℃、触媒(活性炭素繊維)量:0.2g、処理ガス量:100sccm、入口S02濃度:1000ppm、酸素濃度:4%、水分濃度:13%相当、窒素バランスであった。測定結果を図7に示した。
(Evaluation 2)
Next, using the samples of Examples 1 and 2 and Comparative Example 1 and activated carbon fibers not loaded with iron, the amount of iron loaded in activated carbon fibers (wt%) and desulfurization using activated carbon fibers The relationship with the desulfurization rate in the treatment was measured using a glass reaction tube. Conditions, reaction temperature: 50 ° C., catalyst (activated carbon fiber) weight: 0.2 g, the process gas amount: 100 sccm, the inlet S0 2 concentration: 1000 ppm, oxygen concentration: 4%, water content: 13% equivalent, with nitrogen balance there were. The measurement results are shown in FIG.

(評価3)
次に、前記実施例1と比較例1の各サンプルを用いて、触媒として使用した場合の流出鉄濃度(mモル/L)を測定した。測定開始時の実施例1サンプルの鉄担持量は、12.5wt%であり、比較例1サンプルの鉄担持量は、2.7wt%であった。測定方法は、ガラス反応管下部に設けた液溜りに捕集した凝集水のFe濃度を前記(評価1)に記載の方法で測定し、流出鉄濃度を算出した。
(Evaluation 3)
Next, using each sample of Example 1 and Comparative Example 1, the effluent iron concentration (mmol / L) when used as a catalyst was measured. The iron carrying amount of the Example 1 sample at the start of measurement was 12.5 wt%, and the iron carrying amount of the Comparative Example 1 sample was 2.7 wt%. The measuring method measured the Fe density | concentration of the condensed water collected by the liquid reservoir provided in the glass reaction tube lower part by the method as described in said (evaluation 1), and computed the outflow iron density | concentration.

前記図6から分かるように、鉄溶液の濃度増加に対する鉄の担持量は、実施例1では、活性炭素繊維を鉄溶液に浸漬した直後で急激に増加した後、緩やかに推移しており、80.0mモル/L濃度でも10.0wt%弱の担持量に留まっている。これに対して、鉄成分を析出して担持させる工程を有する実施例2および比較例1では、濃度に比例して比較的急激に担持量が増加し続け、30.0mモル/Lの鉄水溶液で既に担持量が10.0wt%に到達している。   As can be seen from FIG. 6, in Example 1, the amount of iron supported with respect to the increase in the concentration of the iron solution rapidly increased immediately after the activated carbon fiber was immersed in the iron solution, and then gradually changed. Even at a concentration of 0.0 mmol / L, the supported amount is a little less than 10.0 wt%. On the other hand, in Example 2 and Comparative Example 1 having a step of depositing and supporting an iron component, the supported amount continued to increase relatively rapidly in proportion to the concentration, and a 30.0 mmol / L aqueous iron solution. The loading amount has already reached 10.0 wt%.

前記図7から分かるように、脱硫率が鉄担持量の増加に比例して増加するのは、実施例1のサンプルだけであり、実施例2では、増加傾向は認められるものの、脱硫率が不安定であり、比較例1では、担持量が増加すると、脱硫率が低下してしまう。   As can be seen from FIG. 7, the desulfurization rate increases in proportion to the increase in the iron loading amount only in the sample of Example 1, and in Example 2, although the increase tendency is recognized, the desulfurization rate is low. In Comparative Example 1, the desulfurization rate decreases as the loading amount increases.

前記図8から分かるように、実施例1のサンプルでは、触媒として使用中の鉄分の流出は時間の経過に伴って一定であり、しかも0.1mモル/L以下の微量に抑えられている。これに対して、比較例1のサンプルでは、流出量が0.7mモル/Lという比較的大きな値となっており、時間が経過してもその流出量は低減されない。したがって、実施例1の活性寿命は高くなるが、比較例1の活性寿命はかなり短いものとなる。   As can be seen from FIG. 8, in the sample of Example 1, the outflow of iron during use as a catalyst is constant over time and is suppressed to a very small amount of 0.1 mmol / L or less. On the other hand, in the sample of Comparative Example 1, the outflow amount is a relatively large value of 0.7 mmol / L, and the outflow amount is not reduced even when time passes. Therefore, the active life of Example 1 is high, but the active life of Comparative Example 1 is considerably short.

(評価4)
前記実施例1と実施例2のサンプルを、X線回折による結晶性分析、走査型電子顕微鏡による表面観察、および比表面積測定にかけた。その結果を下記表1に示す。
(Evaluation 4)
The samples of Example 1 and Example 2 were subjected to crystallinity analysis by X-ray diffraction, surface observation by a scanning electron microscope, and specific surface area measurement. The results are shown in Table 1 below.

Figure 2006307373
Figure 2006307373

上記表1に示す結果から次のことが推測される。すなわち、低pH値にて鉄溶液を調製することにより鉄成分を完全に溶解させた金属溶存濃度の高い溶液の活性炭素繊維を浸漬し、十分に溶液を繊維に含浸させることにより、鉄成分を粒子ではなくイオンの状態で活性炭素繊維の微細孔内面に吸着させることができること、溶液の含浸後、洗浄、乾燥させることにより、イオン状態の金属は結晶化せずにアモルファス状態で微細孔内面に担持して容易に剥離しないことが、推測される。一方、中間工程において、アルカリを添加して残りの鉄溶液中に鉄析出物を生じさせる実施例2では、アルカリによる析出物が結晶化して比較的粒径の大きな鉄結晶粒子となり、これら結晶粒子が活性炭素繊維の表面および微細孔に付着するものと思われる。この場合、繊維への担持量は増えるものの、微細孔へ結晶化した後の粒子形状の鉄成分が入り込むため、微細孔が少なくとも部分的に閉塞されることになる。したがって、アルカリ添加量を適宜に調整して、析出量を抑制することにより、微細孔の閉塞を避けるようにすれば、実施例2により、脱硫活性率向上の重要な因子である表面積を低減させることなく、脱硫反応に寄与する鉄分量を増やすことが可能となることが分かる。   The following can be inferred from the results shown in Table 1 above. In other words, by preparing an iron solution at a low pH value, the activated carbon fiber of a solution having a high metal-dissolved concentration in which the iron component is completely dissolved is immersed, and the solution is sufficiently impregnated with the fiber, thereby the iron component is sufficiently impregnated. It can be adsorbed on the inner surface of fine pores of activated carbon fibers in the state of ions instead of particles, and after impregnation with the solution, it is washed and dried, so that the metal in the ionic state is amorphous and does not crystallize on the inner surface of the fine pores It is presumed that it does not easily peel off when supported. On the other hand, in Example 2 in which an alkali is added to generate iron precipitates in the remaining iron solution in the intermediate step, the precipitates due to the alkali crystallize into iron crystal particles having a relatively large particle size. Seems to adhere to the surface and micropores of the activated carbon fiber. In this case, although the amount carried on the fiber increases, the iron component having a particle shape after crystallization into the fine pores enters, so that the fine pores are at least partially blocked. Therefore, if the amount of alkali added is adjusted appropriately and the amount of precipitation is suppressed so as to avoid clogging of micropores, the surface area, which is an important factor for improving the desulfurization activity rate, is reduced by Example 2. It can be seen that the iron content contributing to the desulfurization reaction can be increased.

以上の結果から結論づけられることは、実施例1の担持方法によれば、活性炭素繊維の微細孔にこの微細孔を閉塞することなく鉄成分を吸着担持させることになるため、鉄溶液の濃度増加に伴って急激な担持量の増加はないものの、担持される鉄成分がアモルファス状態で微細かつ均等に担持されることである。これに対して、比較例1では、当初から析出した鉄成分を活性炭素繊維の表面に沈積させて担持させることになるため、鉄溶液の濃度増加に伴って急激な担持量の増加があるが、担持される鉄成分が凝集もしくは結晶化後に成長しており、二次粒子的なバルクとなって、かつ不均等に担持されることである。実施例2では、アルカリによる析出量を高くすると、表面積の低減化が発生し始めるので、析出量を抑制することによって、実施例1における作用効果を維持しつつ、金属担持量を増やすことが可能である。したがって、本発明の調製方法により活性炭素繊維を製造すれば、長寿命かつ高活性特性の脱硫触媒用の活性炭素繊維を得ることができる。   From the above results, it can be concluded that according to the supporting method of Example 1, the iron component is adsorbed and supported in the micropores of the activated carbon fiber without clogging the micropores, so that the concentration of the iron solution increases. Although there is no sudden increase in the amount supported, the supported iron component is supported finely and evenly in an amorphous state. On the other hand, in Comparative Example 1, since the iron component deposited from the beginning is deposited and supported on the surface of the activated carbon fiber, there is an abrupt increase in the amount supported as the concentration of the iron solution increases. The supported iron component grows after aggregation or crystallization, becomes a bulk of secondary particles, and is unevenly supported. In Example 2, when the amount of precipitation due to alkali is increased, surface area reduction begins to occur. Therefore, by suppressing the amount of precipitation, it is possible to increase the amount of metal supported while maintaining the effects of Example 1. It is. Therefore, if activated carbon fibers are produced by the preparation method of the present invention, activated carbon fibers for a desulfurization catalyst having a long life and high activity characteristics can be obtained.

以上のように、本発明に係る脱硫触媒用活性炭素繊維の調製方法は、金属を添着することにより脱硫効率を向上させた活性炭素繊維において、その脱硫効率をさらに向上させるとともに活性寿命の延長を図ることができる。すなわち、本発明によれば、脱硫効率が高く、かつ活性寿命の長い脱硫触媒用活性炭素繊維の調製方法および該方法により得られる脱硫触媒用活性炭素繊維を提供することができる。   As described above, the method for preparing an activated carbon fiber for a desulfurization catalyst according to the present invention further improves the desulfurization efficiency and prolongs the active life in the activated carbon fiber whose desulfurization efficiency is improved by adding metal. Can be planned. That is, according to the present invention, it is possible to provide a method for preparing activated carbon fibers for a desulfurization catalyst having a high desulfurization efficiency and a long active life, and activated carbon fibers for a desulfurization catalyst obtained by the method.

本発明の実施例1を説明するためのもので、担持しようとする金属の溶液に活性炭素繊維を浸漬する過程を示す図である。It is for demonstrating Example 1 of this invention, and is a figure which shows the process in which activated carbon fiber is immersed in the solution of the metal which it is going to carry | support. 本発明の実施例1を説明するためのもので、金属溶液の活性炭素繊維への含浸を高めるために減圧処理を行っている状態を示す図である。It is for demonstrating Example 1 of this invention, and is a figure which shows the state which is performing the pressure reduction process in order to raise the impregnation to the activated carbon fiber of a metal solution. 本発明の実施例1を説明するためのもので、金属溶液を含浸した活性炭素繊維を減圧洗浄している状態を示す図である。It is for demonstrating Example 1 of this invention, and is a figure which shows the state which carries out the vacuum washing | cleaning of the activated carbon fiber which impregnated the metal solution. 本発明の実施例1を説明するためのもので、洗浄後の活性炭素繊維を減圧乾燥している状態を示す図である。It is for demonstrating Example 1 of this invention, and is a figure which shows the state which dried the activated carbon fiber after washing | cleaning under reduced pressure. 本発明の実施例2を説明するためのもので、一旦金属溶液を活性炭素繊維に含浸させた後に、金属溶液のpHを上げて金属成分を析出させる工程を示す図である。FIG. 9 is a diagram for explaining a second embodiment of the present invention, and shows a process of precipitating a metal component by increasing the pH of the metal solution after once impregnating the activated carbon fiber with the metal solution. 本発明の効果を説明するためのもので、鉄溶液の鉄濃度と、活性炭素繊維における鉄担持量との関係を示す図である。It is for demonstrating the effect of this invention, and is a figure which shows the relationship between the iron concentration of an iron solution, and the iron load in activated carbon fiber. 本発明の効果を説明するためのもので、活性炭素繊維における鉄担持量と活性炭素繊維を用いた脱硫率との関係を示す図である。It is for demonstrating the effect of this invention, and is a figure which shows the relationship between the iron carrying amount in activated carbon fiber, and the desulfurization rate using activated carbon fiber. 本発明の効果を説明するためのもので、担持方法の違いによる活性炭素繊維に担持の鉄成分の経時的流出量を示す図である。FIG. 6 is a diagram for explaining the effect of the present invention, and is a view showing the amount of iron component carried over time on the activated carbon fiber depending on the carrying method.

符号の説明Explanation of symbols

1 容器
2 鉄水溶液
3 活性炭素繊維
4 減圧環境
5 吸引濾過装置
6 減圧乾燥機
7 NH3水溶液
1 container 2 an aqueous solution of iron 3 activated carbon fibers 4 vacuum environment 5 suction filtration apparatus 6 vacuum dryer 7 NH 3 aq

Claims (9)

低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記活性炭素繊維を洗浄し、乾燥することによって、前記活性炭素繊維の表面積を低下させることなく、触媒として使用時の金属流出量が低減された脱硫触媒用活性炭素繊維を得ることを特徴とする脱硫触媒用活性炭素繊維の調製方法。   The activated carbon fiber is immersed in a metal solution controlled to a low pH value, and the activated carbon fiber is sufficiently impregnated with the metal solution, and then the activated carbon fiber is washed and dried to thereby obtain the activated carbon fiber. A method for preparing an activated carbon fiber for a desulfurization catalyst, comprising obtaining an activated carbon fiber for a desulfurization catalyst with a reduced metal outflow when used as a catalyst without reducing the surface area of the catalyst. 前記金属溶液を前記活性炭素繊維に十分に含浸させた後に、前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させ、その後、前記活性炭素繊維の洗浄および乾燥を行うことによって、さらに前記活性炭素繊維に対する金属担持量を増加させることを特徴とする請求項1に記載の脱硫触媒用活性炭素繊維の調製方法。   After sufficiently impregnating the activated carbon fiber with the metal solution, an alkali is added to the metal solution to precipitate and settle a metal compound in the solution, and then the activated carbon fiber is washed and dried. The method for preparing activated carbon fibers for a desulfurization catalyst according to claim 1, further comprising increasing the amount of metal supported on the activated carbon fibers. 前記金属溶液の金属含有量を調節することによって前記金属化合物の前記活性炭素繊維に対する担持量を制御することを特徴とする請求項2に記載の脱硫触媒用活性炭素繊維の調製方法。   The method for preparing activated carbon fibers for a desulfurization catalyst according to claim 2, wherein the amount of the metal compound supported on the activated carbon fibers is controlled by adjusting the metal content of the metal solution. 前記活性炭素繊維を前記金属溶液に浸漬した後、前記活性炭素繊維を浸漬したままで前記金属溶液を減圧環境下に置くことによって、前記低pH値の金属溶液を前記活性炭素繊維中に十分に含浸させることを特徴とする請求項1〜3のいずれか1項に記載の脱硫触媒用活性炭素繊維の調製方法。   After immersing the activated carbon fiber in the metal solution, the metal solution is placed in a reduced pressure environment while the activated carbon fiber is immersed, so that the low pH metal solution is sufficiently contained in the activated carbon fiber. The method for preparing activated carbon fibers for a desulfurization catalyst according to any one of claims 1 to 3, wherein the impregnation is performed. 前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させた後、前記活性炭素繊維を浸漬したままで前記金属溶液を減圧環境下に置くことによって、前記金属化合物の析出粒子の前記活性炭素繊維への添着を確実にすることを特徴とする請求項2または3に記載の脱硫触媒用活性炭素繊維の調製方法。   After adding an alkali to the metal solution and precipitating and precipitating the metal compound in the solution, the metal solution is placed in a reduced pressure environment while the activated carbon fiber is immersed, whereby the deposited particles of the metal compound 4. The method of preparing activated carbon fibers for a desulfurization catalyst according to claim 2, wherein the attachment to the activated carbon fibers is ensured. 前記活性炭素繊維に担持させる金属がFeであることを特徴とする請求項1〜5のいずれか1項に記載の脱硫触媒用活性炭素繊維の調製方法。   The method for preparing an activated carbon fiber for a desulfurization catalyst according to any one of claims 1 to 5, wherein the metal supported on the activated carbon fiber is Fe. 前記請求項1〜6のいずれか一項の脱硫触媒用活性炭素繊維の調製方法により得られた脱硫触媒用活性炭素繊維。   An activated carbon fiber for a desulfurization catalyst obtained by the method for preparing an activated carbon fiber for a desulfurization catalyst according to any one of claims 1 to 6. 低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記活性炭素繊維を洗浄し、乾燥することによって得られた脱硫用活性炭素繊維であって、
各活性炭素繊維が有する微細孔の内面に該微細孔を閉塞することなく前記金属の非晶質微粒子が付着していることを特徴とする脱硫触媒用活性炭素繊維。
For desulfurization obtained by immersing activated carbon fiber in a metal solution controlled to a low pH value, sufficiently impregnating the activated carbon fiber with the metal solution, washing the activated carbon fiber, and drying. Activated carbon fiber,
An activated carbon fiber for a desulfurization catalyst, characterized in that amorphous fine particles of the metal adhere to the inner surface of the fine pores of each activated carbon fiber without closing the fine pores.
低pH値に制御した金属溶液中に活性炭素繊維を浸漬し、該活性炭素繊維に前記金属溶液を十分に含浸させた後、前記金属溶液にアルカリを加えて該溶液中に金属化合物を析出、沈降させ、その後、前記活性炭素繊維を洗浄し、乾燥することによって得られた脱硫用活性炭素繊維であって、
各活性炭素繊維が有する微細孔の内部の少なくとも一部に前記金属の結晶性粒子が充填されていることを特徴とする脱硫触媒用活性炭素繊維。
After immersing the activated carbon fiber in a metal solution controlled to a low pH value and sufficiently impregnating the activated carbon fiber with the metal solution, an alkali is added to the metal solution to deposit a metal compound in the solution, Activated carbon fiber for desulfurization obtained by settling and then washing and drying the activated carbon fiber,
An activated carbon fiber for a desulfurization catalyst, wherein at least a part of the inside of the fine pores of each activated carbon fiber is filled with crystalline particles of the metal.
JP2005130460A 2005-04-27 2005-04-27 Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst Expired - Fee Related JP4848135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005130460A JP4848135B2 (en) 2005-04-27 2005-04-27 Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005130460A JP4848135B2 (en) 2005-04-27 2005-04-27 Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst

Publications (2)

Publication Number Publication Date
JP2006307373A true JP2006307373A (en) 2006-11-09
JP4848135B2 JP4848135B2 (en) 2011-12-28

Family

ID=37474575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005130460A Expired - Fee Related JP4848135B2 (en) 2005-04-27 2005-04-27 Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst

Country Status (1)

Country Link
JP (1) JP4848135B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136982A (en) * 2006-12-05 2008-06-19 Chiyoda Corp Carbon-based catalyst for flue-gas desulfurization and its manufacturing method
WO2020031516A1 (en) * 2018-08-10 2020-02-13 株式会社フジタ Method of manufacturing adsorbent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302216A (en) * 1992-04-27 1993-11-16 Kunitaro Kawazoe Modification of carbonaceous fiber
JPH11269763A (en) * 1998-03-18 1999-10-05 Osaka Gas Co Ltd Surface treatment of carbon fiber
JP2004066009A (en) * 2002-08-01 2004-03-04 Mitsubishi Heavy Ind Ltd Carbon material and equipment for treating flue gas
JP2005060877A (en) * 2003-08-11 2005-03-10 Japan Science & Technology Agency Method for producing mesoporous activated carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302216A (en) * 1992-04-27 1993-11-16 Kunitaro Kawazoe Modification of carbonaceous fiber
JPH11269763A (en) * 1998-03-18 1999-10-05 Osaka Gas Co Ltd Surface treatment of carbon fiber
JP2004066009A (en) * 2002-08-01 2004-03-04 Mitsubishi Heavy Ind Ltd Carbon material and equipment for treating flue gas
JP2005060877A (en) * 2003-08-11 2005-03-10 Japan Science & Technology Agency Method for producing mesoporous activated carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136982A (en) * 2006-12-05 2008-06-19 Chiyoda Corp Carbon-based catalyst for flue-gas desulfurization and its manufacturing method
WO2020031516A1 (en) * 2018-08-10 2020-02-13 株式会社フジタ Method of manufacturing adsorbent
JPWO2020031516A1 (en) * 2018-08-10 2021-08-10 株式会社フジタ Manufacturing method of adsorbent
JP7177840B2 (en) 2018-08-10 2022-11-24 株式会社フジタ Method for producing adsorbent that adsorbs phosphorus or arsenic

Also Published As

Publication number Publication date
JP4848135B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2013035743A1 (en) Method for reducing the so2 oxidation ratio increase of denitration catalyst
TW201529160A (en) Ammonia decomposition catalyst
WO2009130934A1 (en) Slurry for produciton of denitration catalyst, process for production of the slurry, process for production of denitration catalyst by using the slurry, and denitration catalyst produced thereby
JP2006305563A (en) Manufacturing method of gas adsorption filter medium and manufacturing method of photocatalyst gas adsorption filter medium
CN108704390B (en) High-temperature denitration and dust removal integrated metal fiber filtering material and preparation method thereof
CN109821569A (en) A kind of honeycomb substrate catalyst and its preparation method and application
JP4848135B2 (en) Method for preparing activated carbon fiber for desulfurization catalyst and activated carbon fiber for desulfurization catalyst
JP2879738B2 (en) Exhaust gas purification method and molded catalyst used therefor
CN111298803A (en) Ozone catalytic oxidation catalyst for treating wastewater and preparation method thereof
CN108993504B (en) Modified activated coke for demercuration of sulfur-containing flue gas and preparation method thereof
JP7257483B2 (en) Catalyst-carrying structure and manufacturing method thereof
CN109529845B (en) Preparation method of cobalt modified porous charcoal catalyst for demercuration
TW562697B (en) A method for preparing a catalyst for selective catalytic reduction of nitrogen oxides at high temperature window
CN113385188A (en) Integral cDPF composite material for diesel vehicle and preparation method thereof
JP2007098197A (en) Manufacturing method of photocatalyst material
US20060178263A1 (en) Carbon material and flue gas treatment apparatus
JP2004066009A (en) Carbon material and equipment for treating flue gas
JP2013180286A (en) Denitration catalyst for treating exhaust gas and method for treating exhaust gas
KR102335494B1 (en) Activated carbon fiber with metal for the removal of harmful material, and method for preparation the same
JP5076471B2 (en) Method for producing carbon-based catalyst for flue gas desulfurization
JP2012245480A (en) Reproduction method for used denitration catalyst
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JPH01258746A (en) Catalytic filter and production thereof
CN107694321B (en) Normal-temperature loaded manganese hydrogen sulfide fine remover, and preparation method and application thereof
JP2007209899A (en) Catalyst for oxidizing metal mercury, exhaust gas cleaning catalyst provided with the same and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees