JP2012245480A - Reproduction method for used denitration catalyst - Google Patents

Reproduction method for used denitration catalyst Download PDF

Info

Publication number
JP2012245480A
JP2012245480A JP2011120301A JP2011120301A JP2012245480A JP 2012245480 A JP2012245480 A JP 2012245480A JP 2011120301 A JP2011120301 A JP 2011120301A JP 2011120301 A JP2011120301 A JP 2011120301A JP 2012245480 A JP2012245480 A JP 2012245480A
Authority
JP
Japan
Prior art keywords
catalyst
aluminum sulfate
water
reproduction method
used denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011120301A
Other languages
Japanese (ja)
Other versions
JP5615228B2 (en
Inventor
Naomi Imada
尚美 今田
Yasuyoshi Kato
泰良 加藤
Keiichiro Kai
啓一郎 甲斐
Kotoe Matsuyama
琴衣 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011120301A priority Critical patent/JP5615228B2/en
Publication of JP2012245480A publication Critical patent/JP2012245480A/en
Application granted granted Critical
Publication of JP5615228B2 publication Critical patent/JP5615228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reproduction method easy to wash out impurities and unnecessary to re-activate active ingredients, in reproducing the catalyst to which aluminum sulfate is added as an active improver.SOLUTION: In a reproduction method for used denitration catalysts which contain titanium oxide, oxides of vanadium, oxides of tungsten or molybdenum, and aluminum sulfate as main ingredients, the reproduction method for used denitration catalysts is characterized by impregnating the used denitration catalyst with water in advance, heat-treating it at ≥50°C and ≤100°C to hydrolyse the aluminum sulfate in the catalyst, and then washing the catalyst with water.

Description

本発明は、酸化チタンを主成分とする使用済脱硝触媒の再生方法に係り、特に、硫酸アルミニウムの添加により、使用済触媒をより低コストで再生することができる使用済脱硝触媒の再生方法に関する。   The present invention relates to a method for regenerating a used denitration catalyst mainly composed of titanium oxide, and more particularly to a method for regenerating a used denitration catalyst that can regenerate a used catalyst at a lower cost by adding aluminum sulfate. .

発電所、各種工場、自動車等から排出される排煙中の窒素酸化物(NOx)は、光化学スモッグや酸性雨の原因物質で有り、その効果的な除去方法として、アンモニア(NH3)を還元剤とした触媒による選択的接触還元脱硝が石炭火力発電所を中心に広く用いられている。特に、石炭焚きボイラ脱硝においては、石炭中に含まれる各種金属、例えばNa、Kなどのアルカリ金属、Ca、Srなどのアルカリ土類金属、Fe、Crなど、第VI族から第VII族の遷移金属などの金属塩や酸化物、リン酸、亜ヒ酸、ヒ酸などの第VB族元素の酸化物などが脱硝触媒に付着し、その性能を低下させる。 Nitrogen oxides (NOx) in smoke emitted from power plants, various factories, automobiles, etc. are the causative substances of photochemical smog and acid rain. As an effective removal method, ammonia (NH 3 ) is reduced. Selective catalytic reduction denitration using a catalyst as a catalyst is widely used mainly in coal-fired power plants. In particular, in coal-fired boiler denitration, various metals contained in coal, such as alkali metals such as Na and K, alkaline earth metals such as Ca and Sr, Fe and Cr, transitions from Group VI to Group VII Metal salts such as metals and oxides, oxides of Group VB elements such as phosphoric acid, arsenous acid, and arsenic acid adhere to the denitration catalyst and reduce its performance.

これに対し、触媒に硫酸や、硫酸アルミニウム、硫酸マンガンなどの硫酸塩を添加し、酸化チタン表面に硫酸根を吸着させることによって、硫酸根の電子吸引効果による触媒活性化や、排ガス中の触媒毒成分の吸着抑制を狙った触媒が知られている(特許文献1および2)。中でも硫酸アルミニウムを活性成分とする触媒(特許文献2)は、アルカリやアルカリ土類金属イオンを硫酸塩として触媒中に固定化し無毒化することで耐久性を高めた、優れた触媒である。   In contrast, sulfuric acid, aluminum sulfate, manganese sulfate, and other sulfates are added to the catalyst, and the sulfate radicals are adsorbed on the titanium oxide surface. Catalysts aimed at suppressing adsorption of poison components are known (Patent Documents 1 and 2). Among them, a catalyst containing aluminum sulfate as an active component (Patent Document 2) is an excellent catalyst having improved durability by fixing alkali and alkaline earth metal ions as sulfates in the catalyst and detoxifying them.

一方、資源の有効利用が製造者の責任であるという意識が定着し、使用済脱硝触媒の再生あるいは有価物の回収技術を持つことが触媒メーカの責務となっている。このため、脱硝触媒の各種再生方法や、有価物の回収について研究が進められ、多くの発明がなされている。しかしながら、再生処理費あるいは廃液の処理費が予想以上に高く、経済的に成立する方法は極めて少なく、現在実用化さているものの多くは、薬液洗浄と活性成分の追加処理とを組み合わせた方法である。   On the other hand, the consciousness that the manufacturer is responsible for the effective use of resources has become established, and it is the responsibility of the catalyst manufacturer to have a technique for regenerating used denitration catalysts or recovering valuable materials. For this reason, research has been advanced on various regeneration methods of denitration catalysts and recovery of valuable materials, and many inventions have been made. However, the cost of regeneration treatment or waste liquid treatment is higher than expected, and there are very few methods that are economically feasible. Many of the methods currently in practical use are a combination of chemical solution washing and additional treatment of active ingredients. .

特開昭55-145532号公報JP 55-145532 A 特開2000-24520号公報Japanese Unexamined Patent Publication No. 2000-24520

上記した従来再生技術には、以下に示す解決すべき課題がある。
(1)アルカリなどの毒物を完全に除くためには、使用済触媒を濃度の高い強酸で処理するなど過酷な条件で洗浄する必要があり、それに伴って活性成分が洗い出されるため、再生後には、不足する活性成分を再担持する工程が必要となるばかりか、高価な活性成分が洗浄廃液として廃棄されるという問題がある。
(2)活性成分の洗い出される量を最小限に抑えようと、使用済触媒を温和な条件で洗浄処理すると、不純物の除去や細孔を埋めている毒物の除去が不十分となり、活性成分の再担時量は減るものの、触媒の十分な活性回復が期待できない。
The above-described conventional reproduction technique has the following problems to be solved.
(1) In order to completely remove poisons such as alkalis, it is necessary to wash the spent catalyst under harsh conditions such as treatment with a strong acid with a high concentration, and the active ingredients are washed out accordingly, so after regeneration However, there is a problem that an expensive active ingredient is discarded as a cleaning waste liquid as well as a process for re-loading the lacking active ingredient.
(2) When the used catalyst is washed under mild conditions in order to minimize the amount of the active ingredient to be washed out, the removal of impurities and the removal of poisons filling the pores become insufficient. Although the amount of recharging of the catalyst decreases, sufficient activity recovery of the catalyst cannot be expected.

本発明の解決しようとする課題は、硫酸アルミニウムを活性向上剤として添加した触媒を再生するに当たり、不純物を洗い出し易く、かつ活性成分の再賦活が不要な再生方法を提供することにある。   The problem to be solved by the present invention is to provide a regeneration method that facilitates washing out impurities and does not require reactivation of active ingredients when regenerating a catalyst to which aluminum sulfate is added as an activity improver.

上記課題は、以下の方法により達成される。
酸化チタン、バナジウムの酸化物、タングステンまたはモリブデンの酸化物、及び硫酸アルミニウムを主成分とする使用済脱硝触媒の再生方法において、該使用済脱硝触媒に予め水を含浸させた後、50℃以上100℃以下で熱処理することによって触媒中の硫酸アルミニウムを加水分解後、該触媒を水洗することによって達成される。
The above-mentioned subject is achieved by the following method.
In the method for regenerating a used denitration catalyst mainly composed of titanium oxide, oxide of vanadium, oxide of tungsten or molybdenum, and aluminum sulfate, the used denitration catalyst is impregnated with water in advance, and then 50 ° C. or more and 100 This is achieved by hydrolyzing the aluminum sulfate in the catalyst by heat treatment at a temperature below 0 ° C. and then washing the catalyst with water.

本発明によれば、実機で劣化した触媒を少ない工数で初期と同等の性能再生することができ、触媒の繰り返し利用回数を高めることができる。また、本発明により、触媒中の有用な活性成分の流出を抑制できることから、高価な資源を無駄にすることもなくなる。   According to the present invention, it is possible to regenerate a catalyst that has deteriorated in an actual machine with the same performance as the initial stage with a small number of man-hours, and to increase the number of times the catalyst is repeatedly used. Further, according to the present invention, since the outflow of useful active components in the catalyst can be suppressed, expensive resources are not wasted.

本発明の使用済脱硝触媒の再生方法のフローシートの説明図。Explanatory drawing of the flow sheet of the regeneration method of the used denitration catalyst of this invention.

[作用]
本発明の原理を以下に説明する。
硫酸アルミニウムを活性向上剤として用いた触媒では、硫酸アルミニウムが可溶性なため、そのままでは洗浄操作中に溶出してしまい、減少した分を含浸等で追加する必要がある。
[Action]
The principle of the present invention will be described below.
In a catalyst using aluminum sulfate as an activity improver, since aluminum sulfate is soluble, it elutes during the washing operation as it is, and it is necessary to add the reduced amount by impregnation or the like.

そこで、本発明者らは、硫酸アルミニウムが50℃以上に加熱すると式1に従って徐々に加水分解することに着目し、これを巧みに利用し、硫酸アルミニウムを含有する使用済の脱硝触媒に水を含浸させた後、50℃以上に加熱することにより、硫酸アルミニウムを加水分解し、その後水洗することにより、容易に使用済脱硝触媒を再生できることを見出し、本発明に到達したものである。   Therefore, the present inventors paid attention to the fact that when aluminum sulfate is heated to 50 ° C. or higher, it gradually hydrolyzes according to Equation 1, and skillfully utilizes this to add water to the used denitration catalyst containing aluminum sulfate. After the impregnation, it was found that the spent denitration catalyst can be easily regenerated by hydrolyzing aluminum sulfate by heating to 50 ° C. or higher and then washing with water, and the present invention has been achieved.

Al2(SO4)3 + 3H2O → Al(OH)3 + 3H+ + SO4 2- (1)
すなわち、予め使用済触媒に水を含浸させ、さらに硫酸アルミニウムの加水分解温度(50℃)以上100℃以下に加温して、硫酸アルミニウムの加水分解を促進することにより、硫酸はイオンとして溶出するが、アルミニウムは水酸化アルミニウムとして触媒中に不溶化することができ、一方、加水分解によって生成した水素イオンによりアルカリの溶出が促進される。
Al 2 (SO 4 ) 3 + 3H 2 O → Al (OH) 3 + 3H + + SO 4 2- (1)
That is, by impregnating a used catalyst with water in advance and further heating the aluminum sulfate to a hydrolysis temperature (50 ° C.) or higher and 100 ° C. or lower to promote the hydrolysis of aluminum sulfate, the sulfuric acid is eluted as ions. However, aluminum can be insolubilized in the catalyst as aluminum hydroxide, while elution of alkali is promoted by hydrogen ions generated by hydrolysis.

さらに、本操作で硫酸根が洗浄液に溶出するため、触媒中の硫酸根が減少するが、硫酸根は排ガスに曝されるため、排ガス中のSO3が触媒中に供給される。これにより、硫酸アルミニウムの加水分解で触媒に残存したアルミニウムが硫酸根の保持材となり、活性向上材として必要なだけの硫酸根を触媒中に保持することができ、触媒に再び活性向上効果をもたせることができる。そのため、再生のため、硫酸アルミニウムを再含浸する必要が無く、さらに、硫酸アルミニウムの加水分解で生成する水素イオン濃度では活性成分の溶出が抑制されるため、VやMoなどの活性成分を再担持する必要も無くなり、簡単な操作のみで使用済触媒を再生することができるようになる。 Furthermore, in this operation, the sulfate radicals are eluted in the cleaning solution, so that the sulfate radicals in the catalyst are reduced. However, since the sulfate radicals are exposed to the exhaust gas, SO 3 in the exhaust gas is supplied into the catalyst. As a result, the aluminum remaining in the catalyst by hydrolysis of aluminum sulfate becomes a sulfate radical retaining material, so that only the sulfate radical necessary as an activity improving material can be retained in the catalyst, and the catalyst has an activity enhancement effect again. be able to. Therefore, it is not necessary to re-impregnate aluminum sulfate for regeneration, and furthermore, the elution of active ingredients is suppressed at the hydrogen ion concentration produced by hydrolysis of aluminum sulfate, so that active ingredients such as V and Mo are re-supported. Therefore, the spent catalyst can be regenerated by simple operation.

本発明の使用済脱硝触媒の再生方法を図1のフローシートによって具体的に説明する。この方法は、酸化チタン、Vの酸化物、WまたはMoの酸化物、および硫酸アルミニウムを含む組成物からなる使用済触媒1を水に含浸する工程2、水含浸後、液切りする液切り工程3、液切り後の触媒を50℃以上、100℃以下で一定時間保持する保持工程4、水洗工程5、液切り工程6、および乾燥工程7からなる。水の含浸工程2は、使用済触媒を水を張ったタンクに浸漬し、数分〜30分程度放置後に引き上げて液切りする方法のほか、触媒にスプレーで水を吹きかける方法でもよい。また、工程2で、触媒の吸水率を測定しておき、それに相当する水のみを含浸する場合には、その後の液切り工程3を省略することができる。保持工程4における保持時間は特に限定されないが、30分以上、好ましくは1時間以上である。保持時間が短すぎると、触媒中の硫酸アルミニウムの加水分解が不十分となり、本発明の目的を達成できないことがある。また、環境湿度が低いと、触媒から水分が蒸発してしまうため、保持工程では一定以上の高湿度(80度以上)であると好結果を与える。   The method for regenerating a used denitration catalyst of the present invention will be specifically described with reference to the flow sheet of FIG. In this method, water is impregnated with a spent catalyst 1 comprising a composition containing titanium oxide, an oxide of V, an oxide of W or Mo, and aluminum sulfate, and a liquid draining step of draining water after impregnation. 3. It consists of a holding step 4, a washing step 5, a draining step 6, and a drying step 7 for holding the catalyst after draining at 50 ° C. or more and 100 ° C. or less for a certain time. The water impregnation step 2 may be a method of immersing a used catalyst in a tank filled with water, leaving it for about several minutes to 30 minutes, then pulling it up and draining it, or spraying the catalyst with water. Further, when the water absorption rate of the catalyst is measured in step 2 and only water corresponding thereto is impregnated, the subsequent liquid draining step 3 can be omitted. The holding time in the holding step 4 is not particularly limited, but is 30 minutes or longer, preferably 1 hour or longer. If the holding time is too short, hydrolysis of aluminum sulfate in the catalyst becomes insufficient, and the object of the present invention may not be achieved. In addition, when the environmental humidity is low, moisture evaporates from the catalyst, so that a high result (80 degrees or higher) in the holding process gives a good result.

以下具体例を用いて本発明を詳細に説明する。
[触媒調製例1]
酸化チタン(石原産業社製、比表面積100m/g)1200kg、三酸化モリブデン21.6kg、メタバナジン酸アンモニウム35.1kg、硫酸アルミニウム13〜14水和物(Al2(SO4)3として56〜59%含有)89.9kg、シリカゾル(日産化学社製、商品名OSゾル、SiO2として20wt%含有)129.7kg、と水とをニーダに入れて60分混練、その後シリカアルミナ系セラミック繊維(ニチアス社製)194.5kgを徐々に添加しながら30分混練して水分27%の触媒ペーストを得た。
Hereinafter, the present invention will be described in detail using specific examples.
[Catalyst Preparation Example 1]
Titanium oxide (made by Ishihara Sangyo Co., Ltd., specific surface area 100 m 2 / g) 1200 kg, molybdenum trioxide 21.6 kg, ammonium metavanadate 35.1 kg, aluminum sulfate 13-14 hydrate (Al 2 (SO4) 3 containing 56-59% ) 89.9 kg, silica sol (manufactured by Nissan Chemical Industries, trade name OS sol, containing 20 wt% as SiO 2 ) 129.7 kg, and water are mixed in a kneader for 60 minutes, then silica alumina ceramic fiber (manufactured by NICHIAS) While gradually adding kg, the mixture was kneaded for 30 minutes to obtain a catalyst paste having a moisture content of 27%.

得られたぺーストを、厚さ0.2mmのSUS430製鋼板をメタルラス加工した厚さ0.7mmの基材の上に置き、これらを2枚のPPC用普通紙の間に挟んで、1対の加圧ローラを通して、メタルラス基材の網目を埋めるように塗布し、これを乾燥後、450℃で二時間焼成して初期触媒を得た。
本触媒の組成は、原子比でTi/Mo/V=100/1/2であり、硫酸アルミニウム(Al2(SO4)3)の添加量は、酸化チタン重量に対して4wt%である。
[触媒調製例2]
触媒調製例1の三酸化モリブデンを、等モルのタングステン酸アンモニウムに変えた以外は同様にして初期触媒を得た。本触媒の組成は、原子比でTi/W/V=100/1/2であり、硫酸アルミニウム(Al2(SO4)3)の添加量は、酸化チタン重量に対して4wt%である。
The obtained paste is placed on a 0.7 mm thick base material obtained by metallizing a SUS430 steel plate with a thickness of 0.2 mm and sandwiched between two sheets of plain paper for PPC. The catalyst was applied through a pressure roller so as to fill the mesh of the metal lath substrate, dried, and calcined at 450 ° C. for 2 hours to obtain an initial catalyst.
The composition of this catalyst is Ti / Mo / V = 100/1/2 in atomic ratio, and the amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) added is 4 wt% with respect to the titanium oxide weight.
[Catalyst Preparation Example 2]
An initial catalyst was obtained in the same manner except that the molybdenum trioxide of Catalyst Preparation Example 1 was changed to equimolar ammonium tungstate. The composition of this catalyst is Ti / W / V = 100/1/2 in atomic ratio, and the amount of aluminum sulfate (Al 2 (SO 4 ) 3 ) added is 4 wt% with respect to the titanium oxide weight.

[比較触媒調製例1]
触媒調製例1の硫酸アルミニウムを添加しない以外は同様にして触媒を調製した。
[劣化試験]
触媒調製例1、2及び比較触媒調製例1の触媒(初期触媒とする)を100mm角に切り出し、これにK2Oとして0.2%になるように硫酸カリウム水溶液を含浸後、乾燥、400℃で2時間焼成し、劣化触媒とした。
[Comparative Catalyst Preparation Example 1]
A catalyst was prepared in the same manner except that the aluminum sulfate of Catalyst Preparation Example 1 was not added.
[Deterioration test]
The catalysts of Catalyst Preparation Examples 1 and 2 and Comparative Catalyst Preparation Example 1 (assumed as initial catalyst) were cut into 100 mm squares, impregnated with potassium sulfate aqueous solution so as to be 0.2% as K 2 O, dried, and then at 400 ° C. Firing was performed for 2 hours to obtain a deteriorated catalyst.

[実施例1]
再生試験として、劣化試験後の触媒調製例1の触媒100mm角-1枚を、純水40mlの入ったシャーレに入れて数分後、触媒を取り出して液切りした。得られた触媒を、50℃に加温した密閉容器内に1時間保持した。その後、容器から取り出した触媒を、水100mlの入ったシャーレにいれて時々液をゆすりながら0.5〜2時間保持し、液切り後150℃、続いて350℃で乾燥した。
[実施例2]
触媒を触媒調製例2にした以外は実施例1と同様にして再生試験を行った。
[Example 1]
As a regeneration test, 100 mm square −1 sheet of the catalyst preparation example 1 after the deterioration test was put in a petri dish containing 40 ml of pure water, and after a few minutes, the catalyst was taken out and drained. The obtained catalyst was kept for 1 hour in a sealed container heated to 50 ° C. Thereafter, the catalyst taken out from the container was placed in a petri dish containing 100 ml of water and held for 0.5 to 2 hours with occasional shaking. After draining, the catalyst was dried at 150 ° C. and then at 350 ° C.
[Example 2]
A regeneration test was conducted in the same manner as in Example 1 except that the catalyst was changed to Catalyst Preparation Example 2.

[比較例1]
比較の再生試験として、触媒調製例1の劣化試験後の触媒100mm角-1枚を、1Nの蓚酸100mlの入ったシャーレにいれて時々液をゆすりながら0.5〜2時間保持し、液切り後150℃、続いて350℃で乾燥した。
[比較例2]
実施例1の劣化触媒を、比較触媒調製例1を劣化試験した触媒にした以外は同様にして、再生試験を行った。
[試験例1]
実施例1及び2及び比較例1及び2後の触媒中のV、K量、及びそれぞれの劣化試験前後の触媒中のV、K量を蛍光X線装置を用いて測定し、初期に対する残存率として算出した。結果を表1に示す。
[Comparative Example 1]
As a comparative regeneration test, the 100 mm square of the catalyst after the deterioration test of Catalyst Preparation Example 1 was placed in a petri dish containing 100 ml of 1N oxalic acid and held for 0.5 to 2 hours with occasional shaking, and after draining 150 C. followed by drying at 350.degree.
[Comparative Example 2]
A regeneration test was conducted in the same manner as in Example 1 except that the deterioration catalyst in Comparative Catalyst Preparation Example 1 was used as the deterioration catalyst.
[Test Example 1]
The amount of V and K in the catalyst after Examples 1 and 2 and Comparative Examples 1 and 2 and the amounts of V and K in the catalyst before and after each deterioration test were measured using a fluorescent X-ray apparatus, and the residual ratio with respect to the initial stage Calculated as The results are shown in Table 1.

実施例1及び2では、再生試験後のK2O量が低減しているが、Vは残存している。本実施例の再生方法で触媒毒のKが溶出されている一方、V量は触媒中に残ることが分かる。一方、蓚酸で洗浄する比較例1では、Kの溶出は実施例1、2と同様であるが、Kと同時にVが溶出していることが分かる。また、硫酸アルミニウムを含まない触媒で、実施例1と同じ再生法を実施する比較例2では、Kの溶出が見られない。このことから、本発明の方法が、硫酸アルミニウムを含む触媒においてKの溶出を促進し、かつVの溶出を抑制する、優れた方法であることが明らかである。
[試験例2]
実施例1、2及び比較例1、2で再生処理した後の触媒、及びそれぞれの劣化試験前後の触媒について、それぞれ100×20mmに切断後流通系の反応管に充填し、表2の条件で脱硝率を測定した。結果を表3に示す。
In Examples 1 and 2, the amount of K 2 O after the regeneration test is reduced, but V remains. It can be seen that the amount of V remains in the catalyst while K of the catalyst poison is eluted in the regeneration method of this example. On the other hand, in Comparative Example 1 washed with oxalic acid, the elution of K is the same as in Examples 1 and 2, but it can be seen that V is eluted simultaneously with K. Further, in Comparative Example 2 in which the same regeneration method as that of Example 1 was carried out using a catalyst containing no aluminum sulfate, no K elution was observed. From this, it is clear that the method of the present invention is an excellent method for promoting K elution and suppressing V elution in a catalyst containing aluminum sulfate.
[Test Example 2]
The catalyst after regeneration treatment in Examples 1 and 2 and Comparative Examples 1 and 2 and the catalyst before and after each deterioration test were each cut to 100 × 20 mm and filled into a reaction tube in a flow system. The denitration rate was measured. The results are shown in Table 3.

実施例の再生試験を行った触媒は、劣化試験前とほぼ同等の脱硝率が得られていることがわかる。これに対し、比較例の触媒は、劣化試験前に比べて脱硝性能が低い。このことから、本発明の触媒再生方法は、高い効果が得られることが分かる。   It can be seen that the catalyst subjected to the regeneration test of the example has a denitration rate substantially equal to that before the deterioration test. On the other hand, the catalyst of the comparative example has lower denitration performance than before the deterioration test. From this, it can be seen that the catalyst regeneration method of the present invention is highly effective.

Figure 2012245480
Figure 2012245480

Figure 2012245480
Figure 2012245480

Figure 2012245480
Figure 2012245480

1 使用済み触媒
2 水含浸工程
3 液切り工程
4 保持工程(50〜100℃)
5 水洗工程
6 液切り工程
7 乾燥工程
1 Used catalyst 2 Water impregnation process 3 Liquid draining process 4 Holding process (50-100 ° C)
5 Washing process 6 Liquid draining process 7 Drying process

Claims (1)

酸化チタン、バナジウムの酸化物、タングステンまたはモリブデンの酸化物、及び硫酸アルミニウムを主成分とする使用済脱硝触媒の再生方法において、該使用済脱硝触媒に予め水を含浸させた後、50℃以上100℃以下で熱処理することによって触媒中の硫酸アルミニウムを加水分解後、該触媒を水洗することを特徴とする使用済脱硝触媒の再生方法。 In the method for regenerating a used denitration catalyst mainly composed of titanium oxide, oxide of vanadium, oxide of tungsten or molybdenum, and aluminum sulfate, the used denitration catalyst is impregnated with water in advance, and then 50 ° C. or more and 100 A method for regenerating a spent denitration catalyst, wherein the catalyst is washed with water after hydrolysis of aluminum sulfate in the catalyst by heat treatment at a temperature not higher than ° C.
JP2011120301A 2011-05-30 2011-05-30 Regeneration method of used denitration catalyst Active JP5615228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120301A JP5615228B2 (en) 2011-05-30 2011-05-30 Regeneration method of used denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120301A JP5615228B2 (en) 2011-05-30 2011-05-30 Regeneration method of used denitration catalyst

Publications (2)

Publication Number Publication Date
JP2012245480A true JP2012245480A (en) 2012-12-13
JP5615228B2 JP5615228B2 (en) 2014-10-29

Family

ID=47466464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120301A Active JP5615228B2 (en) 2011-05-30 2011-05-30 Regeneration method of used denitration catalyst

Country Status (1)

Country Link
JP (1) JP5615228B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475176A (en) * 2014-11-25 2015-04-01 安徽迪诺环保新材料科技有限公司 Method for regenerating out-of-work denitration catalyst
EP2604339B1 (en) * 2010-08-09 2016-04-06 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
KR20170129200A (en) 2015-04-17 2017-11-24 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Method of regenerating used denitration catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126527A (en) * 1986-11-18 1988-05-30 Babcock Hitachi Kk Denitration method
JPH01245852A (en) * 1988-03-29 1989-10-02 Babcock Hitachi Kk Manufacture of denitration catalyst
JPH01317545A (en) * 1988-06-16 1989-12-22 Babcock Hitachi Kk Preparation of denitrification catalyst
JPH08168641A (en) * 1994-12-20 1996-07-02 Babcock Hitachi Kk Plate-shaped catalyst for denitration of exhaust gas, manufacture thereof and exhaust gas denitration method using the plate-shaped catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2005074408A (en) * 2003-09-04 2005-03-24 Babcock Hitachi Kk Method for regenerating denitrification catalyst
JP2009142734A (en) * 2007-12-13 2009-07-02 Babcock Hitachi Kk Method for regenerating used denitrification catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126527A (en) * 1986-11-18 1988-05-30 Babcock Hitachi Kk Denitration method
JPH01245852A (en) * 1988-03-29 1989-10-02 Babcock Hitachi Kk Manufacture of denitration catalyst
JPH01317545A (en) * 1988-06-16 1989-12-22 Babcock Hitachi Kk Preparation of denitrification catalyst
JPH08168641A (en) * 1994-12-20 1996-07-02 Babcock Hitachi Kk Plate-shaped catalyst for denitration of exhaust gas, manufacture thereof and exhaust gas denitration method using the plate-shaped catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2005074408A (en) * 2003-09-04 2005-03-24 Babcock Hitachi Kk Method for regenerating denitrification catalyst
JP2009142734A (en) * 2007-12-13 2009-07-02 Babcock Hitachi Kk Method for regenerating used denitrification catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2604339B1 (en) * 2010-08-09 2016-04-06 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
CN104475176A (en) * 2014-11-25 2015-04-01 安徽迪诺环保新材料科技有限公司 Method for regenerating out-of-work denitration catalyst
KR20170129200A (en) 2015-04-17 2017-11-24 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Method of regenerating used denitration catalyst
US10549264B2 (en) 2015-04-17 2020-02-04 Mitsubishi Hitachi Power Systems, Ltd. Method of regenerating used denitration catalyst

Also Published As

Publication number Publication date
JP5615228B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5495001B2 (en) Catalyst regeneration method
TWI498163B (en) Reduce the SO catalyst 2 Oxidation rate rise method
KR101271105B1 (en) Methods of recycling a catalyst
KR102069959B1 (en) Method of regenerating used denitration catalyst
JP2013056319A5 (en)
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
KR101843214B1 (en) Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP5615228B2 (en) Regeneration method of used denitration catalyst
KR101717319B1 (en) Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
JP2010142688A (en) Catalyst for selective catalytic reduction of nitrogen oxide
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
JP5769814B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment catalyst manufacturing method, and exhaust gas treatment catalyst regeneration method
JP5526369B2 (en) Denitration catalyst regeneration method
JP4905985B2 (en) Recycling of used denitration catalyst
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
JP2012139665A (en) NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME
JP4149760B2 (en) Denitration catalyst regeneration method
JP2016007554A (en) Method for regenerating used denitration catalyst
JP2014213293A (en) Regeneration method of used denitration catalyst
JP2012179543A (en) Method for regenerating denitration catalyst
JP5681989B2 (en) Regeneration method of used denitration catalyst
JP2012152672A (en) Regeneration method for denitration catalyst
JP2014097439A (en) Adsorbent for cumulative catalyst poison
JP2010017687A (en) Catalyst for cleaning exhaust gas and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131121

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5615228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350