JP2014213293A - Regeneration method of used denitration catalyst - Google Patents

Regeneration method of used denitration catalyst Download PDF

Info

Publication number
JP2014213293A
JP2014213293A JP2013094759A JP2013094759A JP2014213293A JP 2014213293 A JP2014213293 A JP 2014213293A JP 2013094759 A JP2013094759 A JP 2013094759A JP 2013094759 A JP2013094759 A JP 2013094759A JP 2014213293 A JP2014213293 A JP 2014213293A
Authority
JP
Japan
Prior art keywords
catalyst
denitration catalyst
sodium hydroxide
denitration
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013094759A
Other languages
Japanese (ja)
Inventor
琴衣 松山
Kotoe Matsuyama
琴衣 松山
加藤 泰良
Yasuyoshi Kato
泰良 加藤
今田 尚美
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2013094759A priority Critical patent/JP2014213293A/en
Publication of JP2014213293A publication Critical patent/JP2014213293A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a used denitration catalyst, which is deteriorated by adhesion or adsorption of oxo acid ions of arsenic and phosphorus, by removing the oxo acid ions from the used denitration catalyst.SOLUTION: A used denitration catalyst containing titanium oxide (TiO) as a main component is regenerated by performing a regeneration method which includes: bringing the used denitration catalyst into contact with a sodium hydroxide aqueous solution in an amount corresponding to 0.9-1.5 times the saturated water absorption amount of the catalyst to make the sodium hydroxide aqueous solution adhere to the used denitration catalyst; leaving the used denitration catalyst, to which the sodium hydroxide aqueous solution has adhered, for a predetermined time at ordinary temperature or in a warmed state; washing the used denitration catalyst with water; and then washing the used denitration catalyst with acid.

Description

本発明は、使用済み脱硝触媒の再生方法に関する。より詳細に、本発明は、ヒ素やリンのオキソ酸イオンなどの付着もしくは吸着により劣化した使用済み脱硝触媒からそれらイオンを除去することによって脱硝触媒活性を再生させる方法に関する。   The present invention relates to a method for regenerating a spent denitration catalyst. More specifically, the present invention relates to a method for regenerating denitration catalyst activity by removing such ions from a spent denitration catalyst that has deteriorated due to adhesion or adsorption of arsenic or phosphorus oxoacid ions.

脱硝触媒の存在下で燃焼排ガス中の窒素酸化物をアンモニア若しくは尿素で接触還元することを含む燃焼排ガス浄化方法が知られている。この浄化方法に用いられる脱硝触媒として、酸化チタンを主成分とするものが、活性が高く耐久性に優れるということで、国内外で広く用いられている。燃焼排ガスにはアルカリ金属やアルカリ土類金属の塩や酸化物、リン酸、亜ヒ酸、ヒ酸などの第15族元素の酸化物などが含まれている。これらが酸化チタンを主成分とする脱硝触媒に付着し蓄積すると該脱硝触媒の活性を低下させる。   A combustion exhaust gas purification method including catalytic reduction of nitrogen oxides in combustion exhaust gas with ammonia or urea in the presence of a denitration catalyst is known. As a denitration catalyst used in this purification method, a catalyst mainly composed of titanium oxide is widely used both at home and abroad because of its high activity and excellent durability. The combustion exhaust gas contains salts and oxides of alkali metals and alkaline earth metals, oxides of Group 15 elements such as phosphoric acid, arsenous acid and arsenic acid. When these adhere to and accumulate on a denitration catalyst containing titanium oxide as a main component, the activity of the denitration catalyst is reduced.

廃棄物の低減などの観点から、劣化した使用済み脱硝触媒を再生して、脱硝触媒として再使用する方法が提案されている。例えば、使用済み脱硝触媒の再生法として、水洗浄法、薬剤洗浄法、アルカリ洗浄法が知られている(特許文献1、2、3)。これらのうちで、アルカリ洗浄法は、他の方法に比べてPやAsの除去率が高く、PやAsの付着量が多い触媒の再生に特に有用である(特許文献3)。   From the viewpoint of reducing waste, a method of regenerating a used spent denitration catalyst and reusing it as a denitration catalyst has been proposed. For example, water regeneration, chemical cleaning, and alkali cleaning are known as regeneration methods for used denitration catalysts (Patent Documents 1, 2, and 3). Among these, the alkali cleaning method is particularly useful for regeneration of a catalyst having a higher P and As removal rate and a larger amount of P and As adhesion than other methods (Patent Document 3).

特公平4−68975公報Japanese Patent Publication No. 4-68975 特開2000−24520公報JP 2000-24520 A 特開2000−37634公報JP 2000-37634 A

従来のアルカリ洗浄法は、ユニット状に組まれた板状触媒やハニカム状の触媒をアルカリ液に沈め浸すことによって行われている。PやAsは、As2O5やP2O5等の酸化物の形態で、TiO2にきわめて強く吸着しているため、非常に高い濃度のアルカリ液を多量に用いる必要がある。アルカリ洗浄法では式(1)および式(2)で表わされる反応によって洗浄が進むと考えられているが、この反応は非常にゆっくりと進むので、長時間の浸漬を要する。
As2O5+6NaOH → 2Na3AsO4+3H2O (1)
P2O5+6NaOH →2Na3PO4+3H2O (2)
アルカリ液の温度を上げることによって式(1)および式(2)で表わされる反応を促進させることができるが、浸漬槽に溜めた多量のアルカリ液を温めるために多くの熱量が必要である。また、高濃度のアルカリ液が蒸散または飛散し人体に付着すると炎症や湿疹などを引き起こすことがある。
本発明の課題は、吸着した難除去性イオンを使用済み脱硝触媒から少量の水酸化ナトリウム水溶液を用いて高効率で除去することができる、使用済み脱硝触媒の再生方法を提供することである。
A conventional alkali cleaning method is performed by immersing a plate-like catalyst or a honeycomb-like catalyst assembled in a unit in an alkaline solution. P and As are in the form of As 2 O 5 and P 2 O oxide such as 5, since the very strongly adsorbed on TiO 2, it is necessary to use an alkali solution of very high concentration in a large amount. In the alkali cleaning method, it is considered that the cleaning proceeds by the reactions represented by the formulas (1) and (2). However, since this reaction proceeds very slowly, it requires long-time immersion.
As 2 O 5 + 6NaOH → 2Na 3 AsO 4 + 3H 2 O (1)
P 2 O 5 + 6NaOH → 2Na 3 PO 4 + 3H 2 O (2)
Although the reaction represented by the formulas (1) and (2) can be promoted by increasing the temperature of the alkaline solution, a large amount of heat is required to warm a large amount of the alkaline solution stored in the immersion tank. In addition, if a high concentration of alkaline liquid is evaporated or scattered and adheres to the human body, it may cause inflammation or eczema.
An object of the present invention is to provide a method for regenerating a used denitration catalyst, which can remove adsorbed difficult-to-removed ions from a used denitration catalyst with high efficiency using a small amount of sodium hydroxide aqueous solution.

本発明者らは上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。   As a result of studies to achieve the above object, the present inventors have completed the present invention including the following modes.

〔1〕酸化チタン(TiO2)を主成分とする使用済脱硝触媒に当該触媒の飽和吸水量の0.9倍〜1.5倍に相当する量の水酸化ナトリウム水溶液を接触させて、該使用済脱硝触媒に水酸化ナトリウム水溶液を付着させ、
水酸化ナトリウム水溶液が付着した前記使用済脱硝触媒を、常温で若しくは加温した状態で、所定時間放置し、
その後、水洗浄し、次いで酸洗浄することを含む
使用済み脱硝触媒の再生方法。
〔2〕酸洗浄の後に、触媒活性成分を担持することをさらに含む、〔1〕に記載の使用済み脱硝触媒の再生方法。
[1] Contacting a spent denitration catalyst mainly composed of titanium oxide (TiO 2 ) with an aqueous sodium hydroxide solution in an amount corresponding to 0.9 to 1.5 times the saturated water absorption amount of the catalyst, A sodium hydroxide aqueous solution is attached to the
The spent denitration catalyst to which an aqueous sodium hydroxide solution is attached is allowed to stand at room temperature or in a heated state for a predetermined time,
Thereafter, a method for regenerating a used denitration catalyst comprising washing with water and then washing with acid.
[2] The method for regenerating a used denitration catalyst according to [1], further comprising supporting a catalytically active component after the acid washing.

本発明の再生方法は、使用済み脱硝触媒の飽和吸水量の0.9倍〜1.5倍に相当する量だけの水酸化ナトリウム水溶液を使用することで、多量のアルカリ液に沈め浸すことによる従来の方法と同程度の再生効果が得られる。本発明の再生方法では、使用する水酸化ナトリウム水溶液の量が少ないので、加温に要するエネルギが少なく、水酸化ナトリウム水溶液の蒸散または飛散による作業環境への影響も低い。脱硝触媒の大きさに合わせた浸漬槽を設ける必要がないので、本発明の再生方法を適用できる使用済み脱硝触媒は、その形や大きさによって制限されない。その結果、再生することができる使用済み脱硝触媒の範囲が広がり、産業廃棄物の発生量を大幅に減らすことができる。   The regeneration method of the present invention uses a sodium hydroxide aqueous solution in an amount corresponding to 0.9 to 1.5 times the saturated water absorption amount of the used denitration catalyst, thereby submerging and immersing in a large amount of alkaline solution. A similar reproduction effect can be obtained. In the regeneration method of the present invention, since the amount of the sodium hydroxide aqueous solution used is small, the energy required for heating is small, and the influence on the working environment due to the evaporation or scattering of the sodium hydroxide aqueous solution is low. Since there is no need to provide a dipping tank that matches the size of the denitration catalyst, the used denitration catalyst to which the regeneration method of the present invention can be applied is not limited by its shape or size. As a result, the range of used denitration catalysts that can be regenerated is expanded, and the amount of industrial waste generated can be greatly reduced.

本発明の使用済み脱硝触媒の再生方法は、酸化チタン(TiO2)を主成分とする使用済脱硝触媒に、当該触媒の飽和吸水量の0.9倍〜1.5倍に相当する量の水酸化ナトリウム水溶液を接触させて、該使用済脱硝触媒に水酸化ナトリウム水溶液を付着させ、 水酸化ナトリウム水溶液が付着した前記使用済脱硝触媒を、常温で若しくは加温した状態で、所定時間放置し、 その後、水洗浄し、次いで酸洗浄することを含むものである。 The method for regenerating a used denitration catalyst according to the present invention comprises a used sodium denitration catalyst mainly composed of titanium oxide (TiO 2 ) and an aqueous sodium hydroxide solution in an amount corresponding to 0.9 to 1.5 times the saturated water absorption amount of the catalyst. Is contacted, and a sodium hydroxide aqueous solution is adhered to the used denitration catalyst, and the used denitration catalyst to which the sodium hydroxide aqueous solution is adhered is allowed to stand at room temperature or in a heated state for a predetermined time, Washing and then acid washing.

本発明においては、まず、酸化チタン(TiO2)を主成分とする使用済脱硝触媒に、水酸化ナトリウム水溶液を接触させる。接触に使用される水酸化ナトリウム水溶液の量は、当該触媒の飽和吸水量の、0.9倍〜1.5倍に相当する量、好ましくは1倍〜1.5倍に相当する量、より好ましくは1倍〜1.2倍に相当する量である。接触に使用される水酸化ナトリウム水溶液の量が多すぎると、該水溶液の加温のために必要なエネルギが多くなり、また、触媒に残存するNa量が多くなるので、それを除去するために水洗浄において多量の水と時間を要するようになる。さらに、接触に使用される水酸化ナトリウム水溶液の量をこの範囲よりも多くしても除去効率がほとんど変わらないので、多く使用した分だけ水酸化ナトリウムが無駄になる。逆に接触に使用される水酸化ナトリウム水溶液の量が少なすぎると、触媒毒成分の除去効率が低くなる。なお、飽和吸水量は、単位乾燥重量当たりに吸収する水の標準状態における体積である。この接触によって水酸化ナトリウム水溶液が使用済脱硝触媒の外表面および細孔内表面に付着する。また、済脱硝触媒の細孔内は水酸化ナトリウム水溶液で満たされることが好ましい。 In the present invention, first, an aqueous sodium hydroxide solution is brought into contact with a used denitration catalyst mainly composed of titanium oxide (TiO 2 ). The amount of the sodium hydroxide aqueous solution used for the contact is an amount corresponding to 0.9 to 1.5 times the saturated water absorption amount of the catalyst, preferably an amount corresponding to 1 to 1.5 times, more preferably 1 to 1.2 times. The amount is equivalent to double. If the amount of sodium hydroxide aqueous solution used for the contact is too large, more energy is required for heating the aqueous solution, and the amount of sodium remaining in the catalyst increases. Water washing requires a lot of water and time. Furthermore, even if the amount of the sodium hydroxide aqueous solution used for the contact is increased beyond this range, the removal efficiency hardly changes, so that the amount of sodium hydroxide used is wasted. Conversely, when the amount of the sodium hydroxide aqueous solution used for the contact is too small, the removal efficiency of the catalyst poison component is lowered. The saturated water absorption is the volume of water that is absorbed per unit dry weight in a standard state. This contact causes the aqueous sodium hydroxide solution to adhere to the outer surface and the inner surface of the pores of the used denitration catalyst. The pores of the finished denitration catalyst are preferably filled with an aqueous sodium hydroxide solution.

接触によって付着させる水酸化ナトリウム水溶液に含まれるNaOHのモル量は、使用済み脱硝触媒に蓄積している触媒毒成分であるAsおよびPの合計モル量に対して、3倍以上であることが好ましく、3.5倍以上であることがより好ましい。   The molar amount of NaOH contained in the aqueous sodium hydroxide solution deposited by contact is preferably at least 3 times the total molar amount of As and P, which are catalyst poison components accumulated in the used denitration catalyst. More preferably, it is 3.5 times or more.

水酸化ナトリウム水溶液のNaOH濃度は、接触させる当該水溶液の量と触媒毒成分の除去に要するNaOHのモル量との関係から、決定することができる。例えば、NaOH濃度は、好ましくは10〜30重量%、より好ましくは10〜20重量%にすることができる。   The NaOH concentration of the aqueous sodium hydroxide solution can be determined from the relationship between the amount of the aqueous solution to be contacted and the molar amount of NaOH required for removing the catalyst poison component. For example, the NaOH concentration can be preferably 10 to 30% by weight, more preferably 10 to 20% by weight.

使用済み脱硝触媒に水酸化ナトリウム水溶液を接触させる方法は、特に限定されない。例えば、前述した量の水酸化ナトリウム水溶液を溜めた槽に使用済み脱硝触媒を浸けて該脱硝触媒に該水溶液を浸み込ませることを含む方法(1);使用済み脱硝触媒に前述した量量の水酸化ナトリウム水溶液を霧にして吹きかけて浸み込ませることを含む方法(2);使用済み脱硝触媒に前述した量の水酸化ナトリウム水溶液を液滴にして降り掛けて浸み込ませることを含む方法(3);などが挙げられる。方法(1)においては、再生効率を高め且つ再生時間を短くするという観点から、水溶液に浸けて浸み込ませる時間を、数分間以内、好ましくは10秒間〜60秒間程度にすることが好ましい。   The method for bringing the used denitration catalyst into contact with an aqueous sodium hydroxide solution is not particularly limited. For example, a method (1) including immersing a used denitration catalyst in a tank in which the amount of aqueous sodium hydroxide solution is stored and immersing the aqueous solution in the denitration catalyst (1); Including spraying and soaking the aqueous sodium hydroxide solution in a mist (2); dropping the above-described amount of the aqueous sodium hydroxide solution into the used denitration catalyst as a droplet Including method (3); In the method (1), from the viewpoint of increasing the regeneration efficiency and shortening the regeneration time, the time for soaking in the aqueous solution is preferably within a few minutes, preferably about 10 seconds to 60 seconds.

次に、水酸化ナトリウム水溶液が付着した脱硝触媒を、常温で若しくは加温した状態で所定時間放置する。この放置の間に触媒毒成分と水酸化ナトリウムとが反応し触媒毒成分(AsやPのオキソ酸イオン)が脱硝触媒から引き離され水溶液に溶出する。ここで常温とは日本における年平均気温、一般的には10〜20℃を言う。また、加温した状態とは、常温よりも高い温度にした状態を言う。加温によって反応が促進され、再生操作の時間を短縮できる。ただし、脱硝触媒に付着した水酸化ナトリウム水溶液が蒸発して無くなってしまうことを避けるために、高くても60℃程度であることが好ましく、反応促進と水溶液の蒸発との観点から40〜60℃が好ましい。この放置は、通常、水酸化ナトリウム水溶液が付着した脱硝触媒を大気にさらした状態で行うが、他の雰囲気、例えば、不活性ガス雰囲気などにさらした状態で行ってもよい。
放置時間は、水酸化ナトリウム水溶液の濃度、放置時の温度などによって変わるが、再生効率を高め且つ再生操作の時間を短くするという観点から、10分間〜1時間程度であることが好ましい。
Next, the denitration catalyst to which the aqueous sodium hydroxide solution is attached is left at room temperature or in a heated state for a predetermined time. During this period, the catalyst poison component reacts with sodium hydroxide, and the catalyst poison component (As and P oxoacid ions) is separated from the denitration catalyst and eluted into the aqueous solution. Here, normal temperature means the annual average temperature in Japan, generally 10 to 20 ° C. Moreover, the state which heated is the state made into temperature higher than normal temperature. The reaction is accelerated by heating, and the regeneration operation time can be shortened. However, in order to avoid the sodium hydroxide aqueous solution adhering to the denitration catalyst from evaporating and disappearing, it is preferably at most about 60 ° C., and 40 to 60 ° C. from the viewpoint of reaction promotion and aqueous solution evaporation. Is preferred. This standing is usually performed in a state where the denitration catalyst to which an aqueous sodium hydroxide solution is attached is exposed to the atmosphere, but may be performed in a state where it is exposed to another atmosphere, for example, an inert gas atmosphere.
The standing time varies depending on the concentration of the aqueous sodium hydroxide solution, the standing temperature, etc., but is preferably about 10 minutes to 1 hour from the viewpoint of enhancing the regeneration efficiency and shortening the regeneration operation time.

所定時間放置した後、水洗浄する。水洗浄によって、溶出した触媒毒成分と水酸化ナトリウムとを触媒から除去することができる。水洗浄は、槽に溜めた洗浄水に脱硝触媒を沈め浸すことによって行うことが好ましい。沈め浸している間に、洗浄水をバブリングなどによって撹拌したり、洗浄水をポンプで循環させたりして、洗浄水と脱硝触媒との間の境界層の厚さを小さくすることが好ましい。水洗浄において使用される洗浄水の量は、廃水の処理コストの観点から、脱硝触媒の重量の10倍程度までの重量が好ましい。また、水洗浄の時間は、触媒毒成分および水酸化ナトリウムを溶出させるのに十分な時間であれば、特に限定されないが、好ましくは10分間〜24時間、より好ましくは10分間〜1時間である。水洗浄の操作は1回または複数回行うことができる。   After standing for a predetermined time, wash with water. The eluted catalyst poison component and sodium hydroxide can be removed from the catalyst by washing with water. The water washing is preferably performed by immersing the denitration catalyst in the washing water stored in the tank. It is preferable to reduce the thickness of the boundary layer between the cleaning water and the denitration catalyst by stirring the cleaning water by bubbling or the like while circulating the water with a pump during submerging. The amount of washing water used in the water washing is preferably about 10 times the weight of the denitration catalyst from the viewpoint of wastewater treatment costs. Further, the water washing time is not particularly limited as long as it is sufficient to elute the catalyst poison component and sodium hydroxide, but is preferably 10 minutes to 24 hours, more preferably 10 minutes to 1 hour. . The water washing operation can be performed once or multiple times.

本発明においては、水洗浄の後に、酸洗浄を行う。酸洗浄を水洗浄の前に行うと、水酸化ナトリウム水溶液で溶出した触媒毒成分(AsO4 3-やPO4 3-など)が再び触媒に吸着してしまうからである。酸洗浄によって、水洗浄だけでは取り除けなかったナトリウムイオンなどを、除去することができる。酸洗浄に使用される酸としては、硫酸、硝酸、塩酸などの無機酸や、シュウ酸などの有機酸が挙げられる。これらのうち、Naの除去効率を高める観点から、pHを非常に低くすることができる、硫酸、硝酸、塩酸などの強酸が好ましく、硫酸がより好ましい。酸のモル量は、残存するNaのモル量に対して、好ましくは1倍以上、より好ましくは1.5倍以上である。酸洗浄は、好ましくは、槽に溜めた酸溶液に脱硝触媒を沈め浸すことによって行うことが好ましい。沈め浸している間に、酸溶液をバブリングなどによって撹拌したり、酸溶液をポンプで循環させたりして、酸溶液と脱硝触媒との間の境界層の厚さを小さくすることが好ましい。酸洗浄において使用される酸溶液の量は、廃溶液の処理コストの観点から、脱硝触媒の重量の10倍程度までの重量が好ましい。また、酸洗浄の時間は、ナトリウムイオンを溶出させるのに十分な時間であれば、特に限定されないが、好ましくは10分間〜24時間、より好ましくは10分間〜1時間である。酸洗浄の操作は1回または複数回行うことができる。 In the present invention, acid cleaning is performed after water cleaning. This is because if the acid cleaning is performed before the water cleaning, catalyst poison components (AsO 4 3− , PO 4 3−, etc.) eluted with the sodium hydroxide aqueous solution are adsorbed to the catalyst again. By acid cleaning, sodium ions and the like that could not be removed only by water cleaning can be removed. Examples of the acid used for the acid cleaning include inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid, and organic acids such as oxalic acid. Of these, strong acids such as sulfuric acid, nitric acid, and hydrochloric acid that can make the pH very low are preferable, and sulfuric acid is more preferable from the viewpoint of increasing the removal efficiency of Na. The molar amount of the acid is preferably at least 1 time, more preferably at least 1.5 times the molar amount of remaining Na. The acid cleaning is preferably performed by immersing the denitration catalyst in an acid solution stored in a tank. It is preferable to reduce the thickness of the boundary layer between the acid solution and the denitration catalyst by stirring the acid solution by bubbling or the like, or circulating the acid solution with a pump during submerging. The amount of the acid solution used in the acid cleaning is preferably about 10 times the weight of the denitration catalyst from the viewpoint of the treatment cost of the waste solution. The acid washing time is not particularly limited as long as it is sufficient to elute sodium ions, but it is preferably 10 minutes to 24 hours, more preferably 10 minutes to 1 hour. The acid washing operation can be performed once or multiple times.

以上のようにして再生された脱硝触媒は、液きりをし、乾燥させて、再び燃焼排ガスの脱硝に使用することができる。   The denitration catalyst regenerated as described above can be drained, dried, and used again for denitration of combustion exhaust gas.

本発明の再生方法に従って、使用済み脱硝触媒に水酸化ナトリウム水溶液を付着させると、触媒毒成分だけでなく触媒活性成分も一部溶出することがある。触媒活性成分の溶出量が多すぎると触媒活性が所望のレベルにまで回復しないことがある。そこで、酸洗浄後に触媒活性成分を新たに担持させることが好ましい。
触媒活性成分としては、バナジウム、モリブデン、タングステンなどの元素を含む化合物が挙げられる。新たに担持させる触媒活性成分として、新たに用意した当該元素を含む化合物を用いてもよいし、水洗浄処理によって生じた廃液から回収された当該元素を含む化合物を用いてもよい。後者の場合には、資源の有効利用と廃液量の低減を図ることができる。
触媒活性成分の担持方法は、特に限定されない。例えば、触媒活性成分を含む溶液に酸洗浄後の脱硝触媒を沈め浸け、該溶液から引き上げて、液きりし、乾燥、必要に応じて焼成することによって; または酸洗浄後の脱硝触媒に触媒活性成分を含む溶液を霧にして吹きかけまたは液滴にして降りかけて、次いで、乾燥、必要に応じて焼成することによって、触媒活性成分を担持させることができる。
When a sodium hydroxide aqueous solution is attached to a used denitration catalyst according to the regeneration method of the present invention, not only the catalyst poison component but also a part of the catalyst active component may be eluted. If the elution amount of the catalytically active component is too large, the catalytic activity may not recover to a desired level. Therefore, it is preferable to newly support the catalytically active component after the acid washing.
Examples of the catalytically active component include compounds containing elements such as vanadium, molybdenum, and tungsten. As the newly supported catalytically active component, a newly prepared compound containing the element may be used, or a compound containing the element recovered from the waste liquid generated by the water washing treatment may be used. In the latter case, it is possible to effectively use resources and reduce the amount of waste liquid.
The method for supporting the catalytically active component is not particularly limited. For example, by submerging the acid-washed denitration catalyst in a solution containing a catalytically active component, pulling up from the solution, draining, drying, and firing if necessary; or catalytic activity in the acid-washed denitration catalyst A catalytically active component can be supported by spraying the solution containing the component in a mist or spraying or dropping the solution, followed by drying and, if necessary, calcining.

以下に実施例を示して本発明をより具体的に説明する。なお、本発明はこれら実施例によって限定されるものではない。   The present invention will be described more specifically with reference to the following examples. In addition, this invention is not limited by these Examples.

(試験用触媒片)
石炭燃焼排ガスの脱硝処理に15000時間使用された脱硝触媒(SUS430製メタルラス基板にチタン、タングステン、バナジウムを主成分とする脱硝触媒成分(Ti/W/V原子比=94.4/5/1)が塗布された板状触媒)を用意した。これから、大きさ100mm×100mm、重さ約10gの試験用触媒片(U)を切り出した。試験用触媒片(U)の飽和吸水量は0.25cc/gであった。使用済み脱硝触媒(U)の脱硝性能(脱硝率)を表2に示す条件にて測定した。脱硝率の測定結果を表1に示す。
(Test catalyst piece)
Denitration catalyst used for denitration treatment of coal combustion exhaust gas (denitration catalyst component (Ti / W / V atomic ratio = 94.4 / 5/1) consisting mainly of titanium, tungsten and vanadium is applied to SUS430 metal lath substrate) Prepared plate-shaped catalyst). From this, a test catalyst piece (U) having a size of 100 mm × 100 mm and a weight of about 10 g was cut out. The saturated water absorption of the test catalyst piece (U) was 0.25 cc / g. The denitration performance (denitration rate) of the used denitration catalyst (U) was measured under the conditions shown in Table 2. Table 1 shows the measurement results of the denitration rate.

実施例1
20重量%の水酸化ナトリウム水溶液2.5cc(飽和吸水量に相当する量)をシャーレに入れ、これに試験用触媒片(U)1枚を置き、水酸化ナトリウム水溶液を浸み込ませた。その後、室温大気中で60秒間放置した。該触媒片を液切りし、室温で100gの水に10分間沈め浸けた。次いで100gの5%硫酸水溶液に10分間沈め浸けた。触媒片を液切りし、150℃で乾燥させて、再生触媒片(A1)を得た。再生触媒片(A1)に含まれるAsの量を蛍光X線分析により定量した。As含有量を表1に示す。
Example 1
A 20 wt% sodium hydroxide aqueous solution (2.5 cc) (an amount corresponding to the saturated water absorption amount) was placed in a petri dish, and a test catalyst piece (U) was placed in the petri dish, and the sodium hydroxide aqueous solution was immersed therein. Then, it was left for 60 seconds in room temperature atmosphere. The catalyst piece was drained and immersed in 100 g of water at room temperature for 10 minutes. Then, it was immersed in 100 g of 5% sulfuric acid aqueous solution for 10 minutes. The catalyst piece was drained and dried at 150 ° C. to obtain a regenerated catalyst piece (A1). The amount of As contained in the regenerated catalyst piece (A1) was quantified by fluorescent X-ray analysis. Table 1 shows the As content.

純水180mlにメタバナジン酸アンモニウム(NH4VO3)5gと三酸化モリブデン(MoO3)5gとを溶解させて黄褐色で透明なMo-V溶液を調製した。この溶液は、示組式(NH4)3Mo2V3O15なる化合物を主成分とするMoとVの複合オキソ酸塩の水溶液である。
この水溶液に再生触媒片(A1)を沈め浸けて30秒間放置した。触媒片を溶液から引き上げ、液切りし、120℃で1時間乾燥させ、次いで350℃で熱処理して、再生触媒片(B1)を得た。
再生触媒片(B1)の脱硝性能(脱硝率)を表2に示す条件にて測定した。脱硝率の測定結果を表1に示す。
In 180 ml of pure water, 5 g of ammonium metavanadate (NH 4 VO 3 ) and 5 g of molybdenum trioxide (MoO 3 ) were dissolved to prepare a yellow-brown transparent Mo-V solution. This solution is an aqueous solution of a complex oxoacid salt of Mo and V mainly composed of a compound of the structural formula (NH 4 ) 3 Mo 2 V 3 O 15 .
The regenerated catalyst piece (A1) was immersed in this aqueous solution and allowed to stand for 30 seconds. The catalyst piece was pulled up from the solution, drained, dried at 120 ° C. for 1 hour, and then heat treated at 350 ° C. to obtain a regenerated catalyst piece (B1).
The denitration performance (denitration rate) of the regenerated catalyst piece (B1) was measured under the conditions shown in Table 2. Table 1 shows the measurement results of the denitration rate.

比較のために未使用の脱硝触媒(V)(SUS430製メタルラス基板にチタン、タングステン、バナジウムを主成分とする脱硝触媒成分(Ti/W/V原子比=94.4/5/1)が塗布された板状触媒)の脱硝性能(脱硝率)を表2に示す条件にて測定した。脱硝率の測定結果を表1に示す。   For comparison, an unused denitration catalyst (V) (denitration catalyst component (Ti / W / V atomic ratio = 94.4 / 5/1) mainly composed of titanium, tungsten and vanadium was applied to a SUS430 metal lath substrate. The denitration performance (denitration rate) of the (plate-like catalyst) was measured under the conditions shown in Table 2. Table 1 shows the measurement results of the denitration rate.

実施例2
20重量%水酸化ナトリウム水溶液を10重量%水酸化ナトリウム水溶液に変えた以外は実施例1と同じ操作を行って再生触媒片(A2)および(B2)を得た。再生触媒片(A2)に含まれるAsの量および再生触媒片(B2)の脱硝性能(脱硝率)を表1に示す。
Example 2
Regenerated catalyst pieces (A2) and (B2) were obtained in the same manner as in Example 1 except that the 20 wt% aqueous sodium hydroxide solution was changed to the 10 wt% aqueous sodium hydroxide solution. Table 1 shows the amount of As contained in the regenerated catalyst piece (A2) and the denitration performance (denitration rate) of the regenerated catalyst piece (B2).

実施例3
20重量%水酸化ナトリウム水溶液を30重量%水酸化ナトリウム水溶液に変えた以外は実施例1と同じ操作を行って再生触媒片(A3)および(B3)を得た。再生触媒片(A3)に含まれるAsの量および再生触媒片(B3)の脱硝性能(脱硝率)を表1に示す。
Example 3
Regenerated catalyst pieces (A3) and (B3) were obtained in the same manner as in Example 1 except that the 20 wt% aqueous sodium hydroxide solution was changed to a 30 wt% aqueous sodium hydroxide solution. Table 1 shows the amount of As contained in the regenerated catalyst piece (A3) and the denitration performance (denitration rate) of the regenerated catalyst piece (B3).

比較例1
20重量%水酸化ナトリウム水溶液を水に変えた以外は実施例1と同じ操作を行って再生触媒片(A4)および(B4)を得た。再生触媒片(A4)に含まれるAsの量および再生触媒片(B4)の脱硝性能(脱硝率)を表1に示す。
Comparative Example 1
Regenerated catalyst pieces (A4) and (B4) were obtained in the same manner as in Example 1 except that the 20 wt% aqueous sodium hydroxide solution was changed to water. Table 1 shows the amount of As contained in the regenerated catalyst piece (A4) and the denitration performance (denitration rate) of the regenerated catalyst piece (B4).

比較例2
20重量%水酸化ナトリウム水溶液を25重量%蓚酸水溶液に変えた以外は実施例1と同じ操作を行って再生触媒片(A5)および(B5)を得た。再生触媒片(A5)に含まれるAsの量および再生触媒片(B5)の脱硝性能(脱硝率)を表1に示す。
Comparative Example 2
Regenerated catalyst pieces (A5) and (B5) were obtained in the same manner as in Example 1 except that the 20 wt% aqueous sodium hydroxide solution was changed to 25 wt% oxalic acid aqueous solution. Table 1 shows the amount of As contained in the regenerated catalyst piece (A5) and the denitration performance (denitration rate) of the regenerated catalyst piece (B5).

比較例3
20重量%の水酸化ナトリウム水溶液100cc(飽和吸水量の40倍に相当する量)をシャーレに入れ、これに試験用触媒片(U)1枚を沈め浸けて、水酸化ナトリウム水溶液を浸み込ませた。その後、水酸化ナトリウム水溶液に浸けた状態のままで、室温で10分間放置した。該触媒片を水酸化ナトリウム水溶液から引き上げ、液切りし、室温で100gの水に10分間沈め浸けた。次いで100gの5%硫酸水溶液に10分間沈め浸けた。触媒片を液切りし、150℃で乾燥させて、再生触媒片(A6)を得た。
再生触媒片(A1)に替えて再生触媒片(A6)を用いた以外が実施例1と同じ操作を行って再生触媒片(B6)を得た。再生触媒片(A6)に含まれるAsの量および再生触媒片(B6)の脱硝性能(脱硝率)を表1に示す。
Comparative Example 3
Put 100cc of 20wt% sodium hydroxide aqueous solution (equivalent to 40 times the saturated water absorption) into a petri dish, immerse one test catalyst piece (U) in it and soak the sodium hydroxide aqueous solution. I didn't. Then, it was left standing at room temperature for 10 minutes while being immersed in an aqueous sodium hydroxide solution. The catalyst piece was pulled up from the aqueous sodium hydroxide solution, drained, and immersed in 100 g of water at room temperature for 10 minutes. Then, it was immersed in 100 g of 5% sulfuric acid aqueous solution for 10 minutes. The catalyst piece was drained and dried at 150 ° C. to obtain a regenerated catalyst piece (A6).
A regenerated catalyst piece (B6) was obtained in the same manner as in Example 1, except that the regenerated catalyst piece (A6) was used instead of the regenerated catalyst piece (A1). Table 1 shows the amount of As contained in the regenerated catalyst piece (A6) and the denitration performance (denitration rate) of the regenerated catalyst piece (B6).

比較例4
0.5重量%の水酸化ナトリウム水溶液100cc(飽和吸水量の40倍に相当する量)をシャーレに入れ、これに試験用触媒片(U)1枚を沈め浸けて、水酸化ナトリウム水溶液を浸み込ませた。その後、水酸化ナトリウム水溶液に浸けた状態のままで、室温で10分間放置した。該触媒片を水酸化ナトリウム水溶液から引き上げ、液切りし、室温で100gの水に10分間沈め浸けた。次いで100gの5%硫酸水溶液に10分間沈め浸けた。触媒片を液切りし、150℃で乾燥させて、再生触媒片(A7)を得た。
再生触媒片(A1)に替えて再生触媒片(A7)を用いた以外が実施例1と同じ操作を行って再生触媒片(B7)を得た。再生触媒片(A7)に含まれるAsの量および再生触媒片(B7)の脱硝性能(脱硝率)を表1に示す。
Comparative Example 4
Place 100 cc of a 0.5 wt% aqueous sodium hydroxide solution (an amount equivalent to 40 times the saturated water absorption) into a petri dish, immerse one test catalyst piece (U) in it, and soak the aqueous sodium hydroxide solution. I didn't. Then, it was left standing at room temperature for 10 minutes while being immersed in an aqueous sodium hydroxide solution. The catalyst piece was pulled up from the aqueous sodium hydroxide solution, drained, and immersed in 100 g of water at room temperature for 10 minutes. Then, it was immersed in 100 g of 5% sulfuric acid aqueous solution for 10 minutes. The catalyst piece was drained and dried at 150 ° C. to obtain a regenerated catalyst piece (A7).
A regenerated catalyst piece (B7) was obtained in the same manner as in Example 1, except that the regenerated catalyst piece (A7) was used instead of the regenerated catalyst piece (A1). Table 1 shows the amount of As contained in the regenerated catalyst piece (A7) and the denitration performance (denitration rate) of the regenerated catalyst piece (B7).

表1は、NaOH濃度が高いほどAsの溶出が促進されることを示している(実施例1〜3参照)。NaOH水溶液による洗浄はシュウ酸水溶液による洗浄よりも短時間でAsを除去できることを示している(実施例1と比較例2との対比)。少量の水酸化ナトリウム水溶液を使用して60秒間放置する本発明の方法(実施例1)は、多量の水酸化ナトリウム水溶液を使用して10分間放置する従来の方法(比較例3)とほとんど変わらないAsの含有量であることがわかる。
さらに、表1は、本発明の方法で使用済み脱硝触媒を再生すると、未使用品に近い脱硝性能にまで回復させることができることを示している。
Table 1 shows that elution of As is promoted as the NaOH concentration increases (see Examples 1 to 3). It was shown that cleaning with NaOH aqueous solution can remove As in a shorter time than cleaning with oxalic acid aqueous solution (contrast with Example 1 and Comparative Example 2). The method of the present invention (Example 1) in which a small amount of sodium hydroxide aqueous solution is left for 60 seconds is almost the same as the conventional method (Comparative Example 3) in which a large amount of sodium hydroxide aqueous solution is left for 10 minutes. It can be seen that there is no As content.
Further, Table 1 shows that when the used denitration catalyst is regenerated by the method of the present invention, the denitration performance close to that of an unused product can be recovered.

Figure 2014213293
Figure 2014213293

Figure 2014213293
Figure 2014213293

Claims (2)

酸化チタンを主成分とする使用済脱硝触媒に、当該触媒の飽和吸水量の0.9倍〜1.5倍に相当する量の水酸化ナトリウム水溶液を接触させて、該使用済脱硝触媒に水酸化ナトリウム水溶液を付着させ、
水酸化ナトリウム水溶液が付着した前記使用済脱硝触媒を、常温で若しくは加温した状態で、所定時間放置し、
その後、水洗浄し、次いで酸洗浄することを含む
使用済み脱硝触媒の再生方法。
An aqueous solution of sodium hydroxide corresponding to 0.9 to 1.5 times the saturated water absorption of the catalyst is brought into contact with the used denitration catalyst mainly composed of titanium oxide, and the aqueous solution of sodium hydroxide is applied to the used denitration catalyst. Attach
The spent denitration catalyst to which an aqueous sodium hydroxide solution is attached is allowed to stand at room temperature or in a heated state for a predetermined time,
Thereafter, a method for regenerating a used denitration catalyst comprising washing with water and then washing with acid.
酸洗浄の後に、触媒活性成分を担持することをさらに含む、請求項1に記載の使用済み脱硝触媒の再生方法。   The method for regenerating a used denitration catalyst according to claim 1, further comprising supporting a catalytically active component after the acid washing.
JP2013094759A 2013-04-26 2013-04-26 Regeneration method of used denitration catalyst Pending JP2014213293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094759A JP2014213293A (en) 2013-04-26 2013-04-26 Regeneration method of used denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094759A JP2014213293A (en) 2013-04-26 2013-04-26 Regeneration method of used denitration catalyst

Publications (1)

Publication Number Publication Date
JP2014213293A true JP2014213293A (en) 2014-11-17

Family

ID=51939584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094759A Pending JP2014213293A (en) 2013-04-26 2013-04-26 Regeneration method of used denitration catalyst

Country Status (1)

Country Link
JP (1) JP2014213293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047381A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Regeneration method for denitration catalyst
CN115445639A (en) * 2022-09-14 2022-12-09 北京科技大学 Solid super acidic catalyst, preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197038A (en) * 1984-10-17 1986-05-15 ゼネラル モーターズ コーポレーシヨン Regeneration of poisoned catalyst for car
JPS61153139A (en) * 1984-12-27 1986-07-11 Babcock Hitachi Kk Regeneration method of denitrating catalyst
JPS63126527A (en) * 1986-11-18 1988-05-30 Babcock Hitachi Kk Denitration method
JP2000037634A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2007160268A (en) * 2005-12-16 2007-06-28 Tokyo Electric Power Co Inc:The Regeneration method of denitration catalyst
JP2008073687A (en) * 2006-08-25 2008-04-03 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, method for recycling catalyst, and method for manufacturing hydrocarbon from synthesis gas
JP2011078962A (en) * 2009-08-11 2011-04-21 Mitsubishi Chemicals Corp Method for regenerating catalyst
JP2011516686A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogenation method using regenerated supported hydrogenation catalyst
JP2011131122A (en) * 2009-12-22 2011-07-07 Babcock Hitachi Kk Method of cleaning used denitration catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197038A (en) * 1984-10-17 1986-05-15 ゼネラル モーターズ コーポレーシヨン Regeneration of poisoned catalyst for car
JPS61153139A (en) * 1984-12-27 1986-07-11 Babcock Hitachi Kk Regeneration method of denitrating catalyst
JPS63126527A (en) * 1986-11-18 1988-05-30 Babcock Hitachi Kk Denitration method
JP2000037634A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2007160268A (en) * 2005-12-16 2007-06-28 Tokyo Electric Power Co Inc:The Regeneration method of denitration catalyst
JP2008073687A (en) * 2006-08-25 2008-04-03 Nippon Steel Corp Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, method for recycling catalyst, and method for manufacturing hydrocarbon from synthesis gas
JP2011516686A (en) * 2008-04-11 2011-05-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogenation method using regenerated supported hydrogenation catalyst
JP2011078962A (en) * 2009-08-11 2011-04-21 Mitsubishi Chemicals Corp Method for regenerating catalyst
JP2011131122A (en) * 2009-12-22 2011-07-07 Babcock Hitachi Kk Method of cleaning used denitration catalyst

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047381A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Regeneration method for denitration catalyst
WO2018047380A1 (en) * 2016-09-12 2018-03-15 中国電力株式会社 Regeneration method for denitration catalyst
JPWO2018047381A1 (en) * 2016-09-12 2018-11-22 中国電力株式会社 Denitration catalyst regeneration method
JPWO2018047380A1 (en) * 2016-09-12 2018-11-29 中国電力株式会社 Denitration catalyst regeneration method
US10385750B2 (en) 2016-09-12 2019-08-20 The Chugoku Electric Power Co., Inc. Denitration catalyst and method for producing the same
US10519837B2 (en) 2016-09-12 2019-12-31 Chugoku Electric Power Co., Inc. Combustion system
US10550747B2 (en) 2016-09-12 2020-02-04 The Chugoku Electric Power Co., Inc. Combustion system for ships
US10746074B2 (en) 2016-09-12 2020-08-18 The Chugoku Electric Power Co., Inc. Method for recycling denitration catalyst
US10746073B2 (en) 2016-09-12 2020-08-18 The Chugoku Electric Power Co., Inc. Denitration catalyst and method for producing the same
US10767535B2 (en) 2016-09-12 2020-09-08 The Chugoku Electric Power Co., Inc. Method for recycling denitration catalyst
US10865684B2 (en) 2016-09-12 2020-12-15 The Chugoku Electric Power Co., Inc. Combustion system
CN115445639A (en) * 2022-09-14 2022-12-09 北京科技大学 Solid super acidic catalyst, preparation method and application thereof
CN115445639B (en) * 2022-09-14 2023-08-22 北京科技大学 Solid super acidic catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5495001B2 (en) Catalyst regeneration method
KR101271105B1 (en) Methods of recycling a catalyst
TWI498163B (en) Reduce the SO catalyst 2 Oxidation rate rise method
JP6619948B2 (en) Regeneration method of used denitration catalyst
JP2013056319A5 (en)
JP5643905B2 (en) Method for treating an SCR catalyst with accumulated iron compounds
CN109092328A (en) A kind of method of SCR denitration spent catalyst recovery
JP4264643B2 (en) Regeneration method of deteriorated catalyst
JP2012024669A (en) Method for regenerating denitration catalyst
JP3059137B2 (en) Reprocessing method for denitration catalyst
CN106238070B (en) The regeneration method of regenerated liquid of denitrating catalyst and preparation method thereof and denitrating catalyst
JP2014213293A (en) Regeneration method of used denitration catalyst
JP5615228B2 (en) Regeneration method of used denitration catalyst
CN103492075B (en) Method for regenerating exhaust gas purifying catalyst
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
JP5769814B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment catalyst manufacturing method, and exhaust gas treatment catalyst regeneration method
JP5526369B2 (en) Denitration catalyst regeneration method
JP2016007554A (en) Method for regenerating used denitration catalyst
JP4149760B2 (en) Denitration catalyst regeneration method
JP5701066B2 (en) NOx removal catalyst and its regeneration method
JP2012179543A (en) Method for regenerating denitration catalyst
JP2005087900A (en) Regeneration method for thermally deteriorated catalyst
JP6446186B2 (en) Regeneration method of used denitration catalyst
JP7471863B2 (en) Method for cleaning an oxidation catalyst device for a diesel vehicle
JP2006167526A (en) Chemical for regenerating denitration catalyst and regeneration method using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801