JP2008136982A - Carbon-based catalyst for flue-gas desulfurization and its manufacturing method - Google Patents

Carbon-based catalyst for flue-gas desulfurization and its manufacturing method Download PDF

Info

Publication number
JP2008136982A
JP2008136982A JP2006328329A JP2006328329A JP2008136982A JP 2008136982 A JP2008136982 A JP 2008136982A JP 2006328329 A JP2006328329 A JP 2006328329A JP 2006328329 A JP2006328329 A JP 2006328329A JP 2008136982 A JP2008136982 A JP 2008136982A
Authority
JP
Japan
Prior art keywords
carbon
based catalyst
iodine
catalyst
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006328329A
Other languages
Japanese (ja)
Other versions
JP5076471B2 (en
Inventor
Masaru Takeda
大 武田
Eiji Awai
英司 粟井
Kazushige Kawamura
和茂 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2006328329A priority Critical patent/JP5076471B2/en
Priority to TW97120942A priority patent/TWI436825B/en
Publication of JP2008136982A publication Critical patent/JP2008136982A/en
Application granted granted Critical
Publication of JP5076471B2 publication Critical patent/JP5076471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon-based catalyst for flue-gas desulfurization which can maintain stable desulfurization performance continuously for a long period of time and significantly reduce the quantity of a highly active catalyst required for exhaust gas treatment, and a manufacturing method of the carbon-based catalyst for flue-gas desulfurization. <P>SOLUTION: In applying this carbon-based catalyst for flue-gas desulfurization to an exhaust gas containing at least, sulfur dioxide, oxygen and steam, the sulfur dioxide is subjected to a chemical reaction with the oxygen and steam into sulfuric acid, which is, in turn, recovered. Consequently, the carbon-based catalyst has iodine, bromine or its chemical compound loaded, undergoing an ion exchange or carried by the catalyst surface and further, receives water-repellent treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排ガス中に含まれる硫黄酸化物を、接触硫酸化反応によって硫酸として回収除去するための排煙脱硫用炭素系触媒および排煙脱硫用炭素系触媒の製造方法に関するものである。   The present invention relates to a carbon catalyst for flue gas desulfurization for recovering and removing sulfur oxides contained in exhaust gas as sulfuric acid by catalytic sulfation reaction, and a method for producing a carbon catalyst for flue gas desulfurization.

一般に、排ガス中に含まれる亜硫酸ガス等の硫黄酸化物を、低温で共存する酸素によって酸化することにより最終的に硫酸として回収する排煙脱硫プロセスが知られている。
このような、排ガス中の亜硫酸ガス等を酸化させる触媒として、例えばアルミナ、シリカ、チタニア、ゼオライトのようなセラミックス系担体を用いた場合には、それだけでは活性が不足するために、これに触媒種として金属或いは金属酸化物を加える必要があるうえに、これらの触媒種は、生成する硫酸の攻撃を受け、溶解または変質してしまうために、長時間にわたって安定した活性を維持することができないという欠点がある。
In general, a flue gas desulfurization process is known in which sulfur oxides such as sulfurous acid gas contained in exhaust gas are finally recovered as sulfuric acid by oxidation with oxygen coexisting at low temperature.
As a catalyst for oxidizing sulfurous acid gas or the like in exhaust gas, for example, when a ceramic carrier such as alumina, silica, titania, zeolite is used, the activity is insufficient by itself. In addition, it is necessary to add a metal or a metal oxide as a catalyst, and these catalyst species are dissolved or altered by the attack of the sulfuric acid produced, so that they cannot maintain a stable activity for a long time. There are drawbacks.

このため、従来、上記触媒としては、耐酸性に優れ、よって長時間劣化せずに安定した活性が持続するという特長を有する活性炭が最も好適に用いられている。
しかしながら、市販の活性炭を上記触媒としてそのまま用いた場合には、接触硫酸化反応における触媒活性が低く、かつ生成した硫酸の排出が円滑に行われない結果、所望の脱硫効果を得るためには触媒充填量が大きくなるとともに、定期的に再生処理が必要となり、よって経済性に劣るという問題点があった。
For this reason, conventionally, activated carbon having the feature that it has excellent acid resistance and thus maintains stable activity without deterioration for a long time is most preferably used.
However, when commercially available activated carbon is used as it is as the catalyst, the catalytic activity in the catalytic sulfation reaction is low, and the generated sulfuric acid is not smoothly discharged. There is a problem that the filling amount is increased, and a regenerating process is required periodically, which is inferior in economic efficiency.

そこで、例えば下記特許文献1においては、被処理ガスを、相対湿度100%を越えるように調湿した後、活性炭含有ハニカムまたは更に処理効率を著しく向上できるヨウ素、臭素、酸、白金属化合物などの薬品を担持した薬品担持活性炭含有ハニカムに接触させることにより、ガス中の臭気成分、大気汚染成分等を長時間にわたり、繰り返し処理できるガス処理方法が提案されている。   Thus, for example, in Patent Document 1 below, after the gas to be treated is conditioned to exceed a relative humidity of 100%, the activated carbon-containing honeycomb or iodine, bromine, acid, white metal compound, etc. that can remarkably improve the treatment efficiency. There has been proposed a gas treatment method capable of repeatedly treating an odor component, an air pollutant component, etc. in a gas over a long period of time by contacting with a chemical-supporting activated carbon-containing honeycomb carrying a chemical.

そして、上記ガス処理方法によれば、被処理ガスの相対湿度を過飽和状態、すなわち100%を越えるように調湿することにより、活性炭含有ハニカムとの接触において活性炭含有ハニカムの表面に薄い水の被膜が均一に生じ、臭気成分および大気汚染成分が活性炭含有ハニカムの表面で酸化されて水に溶解する化合物を生成し、これらの水溶性反応生成物が活性炭含有ハニカムの表面から水の被膜を通して徐々に溶出して、活性炭含有ハニカムから脱離することにより、活性炭含有ハニカムが自己再生され、処理寿命が大幅に延長される、とされている。
特開2005−288380号公報
According to the above gas treatment method, a thin water film is formed on the surface of the activated carbon-containing honeycomb in contact with the activated carbon-containing honeycomb by adjusting the relative humidity of the gas to be treated in a supersaturated state, that is, exceeding 100%. Occurs uniformly, and odorous components and air pollution components are oxidized on the surface of the activated carbon-containing honeycomb to form a compound that dissolves in water, and these water-soluble reaction products gradually pass through the water coating from the surface of the activated carbon-containing honeycomb. It is said that the activated carbon-containing honeycomb is self-regenerated by elution and detachment from the activated carbon-containing honeycomb, and the treatment life is greatly extended.
JP 2005-288380 A

しかしながら、上記ガス処理方法においては、別途、被処理ガスに水又は水溶液を散水や噴霧し、あるいは水溶液の中に被処理ガスをバブリングし、さらには加湿装置を用いるなどして、被処理ガスの相対湿度が100%を超えるように調湿する必要があるために、ガス処理に要するエネルギー消費量が大きくなるという欠点がある。   However, in the above gas treatment method, separately, water or an aqueous solution is sprayed or sprayed on the gas to be treated, or the gas to be treated is bubbled into the aqueous solution, and further, a humidifier is used. Since it is necessary to adjust the humidity so that the relative humidity exceeds 100%, there is a disadvantage that the energy consumption required for the gas treatment increases.

また、相対湿度が100%を超えるように調湿するのは、活性炭含有ハニカムの表面に薄い水の皮膜を均一に生じさせるためのものであるために、逆に処理ガスと活性炭含有ハニカムとの直接接触が妨げられることになり、よって活性炭の触媒性能が発揮され難くなるために、所望の脱硫効果を得るために必要な活性炭含有ハニカムの量が多くなるという問題点もある。   In addition, the humidity is adjusted so that the relative humidity exceeds 100% in order to uniformly form a thin water film on the surface of the activated carbon-containing honeycomb. Since the direct contact is hindered, and the catalytic performance of the activated carbon is difficult to be exhibited, there is also a problem that the amount of the activated carbon-containing honeycomb necessary for obtaining a desired desulfurization effect is increased.

さらに、同文献に、長期間使用して処理性能が低下した活性炭含有ハニカムは、散水することで繰り返し処理が可能となる、と記載されているように、当該活性炭含有ハニカム自体は、依然として一定期間毎に散水による再生処理が必要になるという欠点もあり、より高活性の触媒の開発が望まれている。   Furthermore, as described in the same document, the activated carbon-containing honeycomb whose processing performance has been deteriorated after being used for a long time can be repeatedly treated by watering, the activated carbon-containing honeycomb itself still remains for a certain period of time. There is a drawback that a regeneration process by watering is required every time, and development of a catalyst having higher activity is desired.

本発明は、かかる事情に鑑みてなされたもので、長期間にわたり連続して安定した脱硫性能を維持することができ、かつ高活性であって排ガス処理に要する触媒量を大幅に減じさせることが可能となる排煙脱硫用炭素系触媒および排煙脱硫用炭素系触媒の製造方法を提供することを課題とするものである。   The present invention has been made in view of such circumstances, can maintain a stable desulfurization performance continuously over a long period of time, and is highly active and can greatly reduce the amount of catalyst required for exhaust gas treatment. An object of the present invention is to provide a carbon-based catalyst for flue gas desulfurization and a method for producing the carbon-based catalyst for flue gas desulfurization.

上記課題を解決するために、請求項1に記載の発明は、少なくとも亜硫酸ガス、酸素および水蒸気を含む排ガスと接触させることにより、上記亜硫酸ガスを上記酸素、水蒸気と反応させて硫酸とし、当該硫酸を回収する排煙脱硫用炭素系触媒であって、炭素系触媒の表面に、ヨウ素、臭素あるいはその化合物が添着、イオン交換または担持されるとともに撥水化処理が施されてなることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 is made to react with the exhaust gas containing at least sulfurous acid gas, oxygen and water vapor, to react the sulfurous acid gas with the oxygen and water vapor to obtain sulfuric acid. A carbon-based catalyst for flue gas desulfurization, which is characterized in that iodine, bromine or a compound thereof is attached, ion-exchanged or supported on the surface of the carbon-based catalyst and subjected to water repellency treatment. To do.

ここで、請求項2に記載の発明は、請求項1に記載の炭素系触媒が、活性炭または活性炭素繊維であることを特徴とするものである。
また、請求項3に記載の発明は、請求項1または2に記載の発明において、上記ヨウ素または臭素の化合物が、ヨウ素または臭素のアルカリ金属塩、アルカリ土類金属塩、遷移金属塩、水素化物、オキソ酸および有機化合物のいずれかであることを特徴とするものである。
Here, the invention according to claim 2 is characterized in that the carbon-based catalyst according to claim 1 is activated carbon or activated carbon fiber.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the iodine or bromine compound is an alkali metal salt, alkaline earth metal salt, transition metal salt or hydride of iodine or bromine. , An oxo acid and an organic compound.

さらに、請求項4に記載の発明は、請求項1〜3のいずれかに記載の発明において、上記炭素系触媒に対する上記ヨウ素またはその化合物の添着、イオン交換または担持量が、ヨウ素として0.020wt%以上、60wt%以下の範囲であることを特徴とするものである。   Furthermore, the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the iodine, the compound thereof, or the ion exchange or the supported amount of the carbon-based catalyst is 0.020 wt as iodine. % Or more and 60 wt% or less.

また、請求項5に記載の発明は、請求項1〜3のいずれかに記載の発明において、上記炭素系触媒に対する上記臭素またはその化合物の添着、イオン交換または担持量が、臭素として0.010wt%以上、60wt%以下の範囲であることを特徴とするものである。   The invention according to claim 5 is the invention according to any one of claims 1 to 3, wherein the addition, ion exchange or loading amount of the bromine or a compound thereof to the carbon-based catalyst is 0.010 wt as bromine. % Or more and 60 wt% or less.

請求項6に記載の発明は、請求項1〜5のいずれかに記載の発明において、上記撥水化処理が、上記炭素系触媒に水に対する接触角が90度以上の樹脂を含有させること、または上記炭素系触媒に熱処理を施してその表面の親水基を除去することにより施されていることを特徴とするものである。   Invention of Claim 6 WHEREIN: In the invention in any one of Claims 1-5, the said water-repellent treatment makes the said carbon-type catalyst contain resin whose contact angle with respect to water is 90 degree | times or more, Alternatively, the carbon-based catalyst is subjected to a heat treatment to remove hydrophilic groups on the surface thereof.

請求項7に記載の発明は、少なくとも亜硫酸ガス、酸素および水蒸気を含む排ガスと接触させることにより、上記亜硫酸ガスを上記酸素、水蒸気と反応させて硫酸とし、当該硫酸を回収する排煙脱硫用炭素系触媒の製造方法であって、炭素系触媒を湿潤させてその細孔内を塞いだ後に、当該炭素系触媒にヨウ素、臭素あるいはその化合物を含有する溶液を噴霧または散布し、あるいは上記炭素系触媒を上記溶液に浸漬させることにより、上記炭素系触媒の表面に、上記ヨウ素、臭素あるいはその化合物を添着、イオン交換または担持させてなることを特徴とするものである。   The invention according to claim 7 is a flue gas desulfurization carbon that recovers the sulfuric acid by reacting the sulfurous acid gas with the oxygen and water vapor to make sulfuric acid by contacting with an exhaust gas containing at least sulfurous acid gas, oxygen and water vapor. A method for producing a carbon-based catalyst, wherein the carbon-based catalyst is wetted to close the pores, and then the carbon-based catalyst is sprayed or sprayed with a solution containing iodine, bromine or a compound thereof, or the carbon-based catalyst By immersing the catalyst in the solution, the iodine, bromine or a compound thereof is attached, ion exchanged or supported on the surface of the carbon-based catalyst.

また、請求項8に記載の発明は、請求項7に記載の炭素系触媒が、活性炭または活性炭素繊維であることを特徴とするものである。
ここで、請求項9に記載の発明は、請求項7または8に記載の発明において、上記炭素系触媒に、ヨウ素として0.020wt%以上、60wt%以下の範囲の上記ヨウ素またはその化合物を添着、イオン交換または担持させることを特徴とするものである。
The invention according to claim 8 is characterized in that the carbon-based catalyst according to claim 7 is activated carbon or activated carbon fiber.
The invention according to claim 9 is the invention according to claim 7 or 8, wherein the iodine or the compound thereof in the range of 0.020 wt% or more and 60 wt% or less is added as iodine to the carbon-based catalyst. , Ion exchange or support.

また、請求項10に記載の発明は、請求項7または8に記載の発明において、上記炭素系触媒に、臭素として0.010wt%以上、60wt%以下の範囲の上記臭素またはその化合物を添着、イオン交換または担持させることを特徴とするものである。
さらに、請求項11に記載の発明は、請求項7〜10のいずれかに記載の発明において、上記炭素系触媒に撥水化処理を施すことを特徴とするものである。
The invention according to claim 10 is the invention according to claim 7 or 8, wherein the bromine or a compound thereof in a range of 0.010 wt% or more and 60 wt% or less as bromine is attached to the carbon-based catalyst. It is characterized by ion exchange or support.
Furthermore, the invention according to claim 11 is characterized in that, in the invention according to any one of claims 7 to 10, the carbon-based catalyst is subjected to a water repellent treatment.

また、請求項12に記載の発明は、容器内に上記炭素系触媒と水とを入れ、当該容器内を減圧して一定時間保持した後に大気圧に戻すことにより、上記炭素系触媒の細孔内を上記水で塞ぐことを特徴とするものである。
他方、請求項13に記載の発明は、請求項7〜11のいずれかに記載の発明において、上記炭素系触媒に、水蒸気と空気との混合ガスを通気させて上記水蒸気を凝縮させることにより、上記炭素系触媒の細孔内を凝縮した水で塞ぐことを特徴とするものである。
The invention according to claim 12 is characterized in that the carbon-based catalyst and water are placed in a container, the interior of the container is decompressed and held for a certain period of time, and then returned to atmospheric pressure, whereby the pores of the carbon-based catalyst are reduced. The inside is closed with the water.
On the other hand, the invention according to claim 13 is the invention according to any one of claims 7 to 11, wherein the mixed gas of water vapor and air is passed through the carbon-based catalyst to condense the water vapor. The pores of the carbon-based catalyst are closed with condensed water.

請求項1〜6のいずれかに記載の排煙脱硫用炭素系触媒においては、炭素系触媒の表面に、ヨウ素、臭素あるいはその化合物が添着、イオン交換または担持されている。
このため、少なくとも亜硫酸ガス、酸素および水蒸気を含む排ガスが接触した際に、上記炭素系触媒上において、例えばヨウ素について示すと以下のような反応が起きる。
4I- +4H+ +O2 → 2I2 +2H2O (式1)
2 +SO3 2- +H2O → 2I- +H2SO4 (式2)
In the carbon-based catalyst for flue gas desulfurization according to any one of claims 1 to 6, iodine, bromine or a compound thereof is impregnated, ion-exchanged or supported on the surface of the carbon-based catalyst.
For this reason, when exhaust gas containing at least sulfurous acid gas, oxygen, and water vapor comes into contact, the following reaction occurs, for example, regarding iodine on the carbon-based catalyst.
4I + 4H + + O 2 → 2I 2 + 2H 2 O (Formula 1)
I 2 + SO 3 2− + H 2 O → 2I + H 2 SO 4 (Formula 2)

これにより、上記炭素系触媒上のヨウ素等が助触媒的に作用し、脱硫性能が向上する。
加えて、炭素系触媒には撥水化処理が施されているために、上記式2において生成した硫酸が、連続的かつ円滑に当該炭素系触媒から排出されて行くために、長期間にわたって散水等の再生処理を行うことなく、連続して安定した脱硫性能を維持することができる。
Thereby, the iodine etc. on the said carbon type catalyst act like a promoter, and desulfurization performance improves.
In addition, since the carbon-based catalyst has been subjected to a water repellency treatment, the sulfuric acid produced in the above formula 2 is continuously and smoothly discharged from the carbon-based catalyst, so that water is sprayed over a long period of time. The desulfurization performance can be maintained continuously without performing the regeneration treatment.

すなわち、既述の特許文献1においては、触媒表面に水の皮膜を均一に生じさせることが重要であり、そのために排ガス中の相対湿度を100%より高くなるように調湿している。
これに対して、請求項1〜6のいずれかに記載の発明においては、炭素系触媒に撥水化処理を施しているために、触媒表面に水の皮膜が均一に形成されず、よって炭素系触媒の表面上にドライな部分が生じている。これにより、排ガス中の亜硫酸ガスを、水の皮膜を介せずに、炭素系触媒と直接接触させることができ、よって反応を促進させ、かつ生成した硫酸水溶液をスムーズに合一させて、触媒から自然に脱離させることができる。
That is, in the above-described Patent Document 1, it is important to uniformly form a water film on the catalyst surface. For this reason, the humidity is adjusted so that the relative humidity in the exhaust gas is higher than 100%.
On the other hand, in the invention according to any one of claims 1 to 6, since the water repellent treatment is applied to the carbon-based catalyst, a water film is not uniformly formed on the catalyst surface. A dry portion is formed on the surface of the system catalyst. As a result, the sulfurous acid gas in the exhaust gas can be brought into direct contact with the carbon-based catalyst without passing through the water film, thereby promoting the reaction and smoothly uniting the generated aqueous sulfuric acid solution. Can be naturally desorbed.

さらに、上記炭素系触媒上のドライな部分においては、ヨウ素および臭素の効果が大きく発現するので、高い脱硫性能を得ることができ、しかも排ガス中の相対湿度が100%を超えない範囲においても、十分に高く、かつ経時的に劣化しない脱硫性能を得ることができる。この結果、上記特許文献1に記載の発明にあっては、生成した硫酸が触媒に蓄積するため、長期間の使用によって処理性能が低下した際には、散水によって上記硫酸を除去する処理を繰り返して使用する必要があるのに対して、本願発明においては、かかる性能の低下が無いため再生処理の必要がない。   Furthermore, in the dry part on the carbon-based catalyst, since the effect of iodine and bromine is greatly expressed, high desulfurization performance can be obtained, and the relative humidity in the exhaust gas does not exceed 100%, A sufficiently high desulfurization performance that does not deteriorate with time can be obtained. As a result, in the invention described in Patent Document 1, since the produced sulfuric acid accumulates in the catalyst, when the treatment performance deteriorates due to long-term use, the treatment for removing the sulfuric acid by watering is repeated. On the other hand, in the present invention, there is no need for reproduction processing because there is no such performance degradation.

すなわち、活性炭を用いる脱硫方法では水蒸気の存在が不可欠であり、かつその水蒸気の濃度が高い程、高性能である。ちなみに、相対湿度が80%以下になると実用性がなくなる程、性能が低くなることが知られている。これに対して、本発明では、上記特許文献1に見られる先行技術と異なり、相対湿度が30%以上、好ましくは60%以上あれば、実用性のある性能を確保できるため、上記調湿操作が不要、もしくは水スプレー等による簡単な冷却・加湿操作でよく、また散水による再生を実施することなく安定した高い脱硫性能を得ることができる。   That is, in the desulfurization method using activated carbon, the presence of water vapor is indispensable, and the higher the water vapor concentration, the higher the performance. Incidentally, it is known that when the relative humidity is 80% or less, the performance decreases as the practicality is lost. On the other hand, in the present invention, unlike the prior art shown in Patent Document 1, practical performance can be secured if the relative humidity is 30% or more, preferably 60% or more. Or a simple cooling / humidifying operation by water spray or the like, and stable high desulfurization performance can be obtained without performing regeneration by watering.

また、本願発明においては、上述したように、炭素系触媒に対して、ヨウ素および臭素の添着、イオン交換または担持を行うとともに、撥水化処理を行っているので、長期間の使用においても当該炭素系触媒上の硫酸の蓄積量が少なく、一方的に増加することがないため、安定した脱硫性能が維持でき、再生処理が不要にできる。   In the invention of the present application, as described above, iodine and bromine are adsorbed, ion exchanged or supported on the carbon-based catalyst, and the water repellent treatment is performed. Since the accumulated amount of sulfuric acid on the carbon-based catalyst is small and does not increase unilaterally, stable desulfurization performance can be maintained and regeneration treatment can be made unnecessary.

このように、上記炭素系触媒に撥水化処理が施されているため、当該触媒を工水や硫酸水溶液で常に湿潤状態にしても、ドライな部分を保持することができ、よって安定した性能が得られるために、例えば、上記炭素系触媒に、常時工水や硫酸水溶液等を散水しながら使用することもできる。   As described above, since the carbon-based catalyst is subjected to water repellency treatment, the catalyst can be kept wet even if it is always moistened with industrial water or sulfuric acid aqueous solution. Therefore, for example, it is also possible to use the carbon-based catalyst while constantly spraying industrial water, aqueous sulfuric acid solution or the like.

また、請求項7〜13のいずれかに記載の排煙脱硫用炭素系触媒の製造方法においても、得られた排煙脱硫用炭素系触媒は、炭素系触媒の表面に、ヨウ素、臭素あるいはその化合物が添着、イオン交換または担持されているために、亜硫酸ガス、酸素および水蒸気を含む排ガスが接触した際に、上記式1、2において示したように、同様に上記炭素系触媒上のヨウ素等が助触媒的に作用することにより脱硫性能を向上させることができる。   Further, in the method for producing a carbon catalyst for flue gas desulfurization according to any one of claims 7 to 13, the obtained carbon catalyst for flue gas desulfurization has iodine, bromine or its Since the compound is impregnated, ion-exchanged or supported, when the exhaust gas containing sulfurous acid gas, oxygen and water vapor comes into contact, as shown in the above formulas 1 and 2, iodine on the carbon-based catalyst similarly The desulfurization performance can be improved by acting as a promoter.

ところで、単に炭素系触媒に上記ヨウ素等を添着、イオン交換または担持させた場合には、当該ヨウ素等は上記炭素系触媒のミクロ細孔内にまで添着、イオン交換または担持される。しかしながら、上記排ガスに対する脱硫の開始後早期に、炭素系触媒の細孔内は生成した硫酸によって埋まってしまい、以降の反応には寄与しなくなる。   By the way, when the above-mentioned iodine or the like is simply impregnated, ion-exchanged or supported on the carbon-based catalyst, the iodine or the like is impregnated, ion-exchanged or supported up to the micropores of the carbon-based catalyst. However, the pores of the carbon-based catalyst are filled with the generated sulfuric acid early after the start of desulfurization of the exhaust gas, and do not contribute to the subsequent reaction.

この点、本発明に係る製造方法においては、予め上記炭素系触媒を湿潤させてその細孔内を水等で埋めて塞いだ後に、上記ヨウ素等の添着、イオン交換または担持工程を行っているために、連続的に接触硫酸化反応が生じる炭素系触媒の表面近傍に、上記ヨウ素等を重点的に添着、イオン交換または担持させることができ、これらヨウ素等の添加物をより一層有効に利用することができる。   In this regard, in the production method according to the present invention, the carbon-based catalyst is wetted in advance and the pores are filled with water or the like, and then the iodine is added, ion-exchanged or supported. Therefore, it is possible to concentrate, ion exchange or support the above iodine etc. in the vicinity of the surface of the carbon-based catalyst where the catalytic sulfation reaction occurs continuously, and to use these additives such as iodine more effectively. can do.

なお、請求項7〜11のいずれかに記載の発明において、炭素系触媒を湿潤させてその細孔内を塞ぐに際しては、炭素系触媒の細孔内の空気が抜け難く、しかも当該炭素系触媒自体もある程度の撥水性を有することから、上記炭素系触媒を、相当長い時間、液中に強制的に浸漬しておくか、あるいは放置しておく必要がある。このため、例えば請求項12に記載の発明のような、いわゆる減圧含浸方法や、請求項13に記載の発明のような、スチーム添加方法を用いることが好適である。   In the invention according to any one of claims 7 to 11, when the carbon-based catalyst is wetted to close the pores, air in the pores of the carbon-based catalyst is difficult to escape, and the carbon-based catalyst Since it itself has a certain degree of water repellency, it is necessary to forcibly immerse the carbon-based catalyst in the liquid for a considerably long time or to leave it alone. For this reason, it is preferable to use a so-called reduced pressure impregnation method such as the invention described in claim 12 and a steam addition method such as the invention described in claim 13.

また、この場合においても、請求項11に記載の発明のように、上記炭素系触媒に撥水化処理を施せば、請求項1〜6のいずれかに記載の排煙脱硫用炭素系触媒と同様に、生成した硫酸を早期に当該炭素系触媒上から排出させることが可能になる。この際に、上記炭素系触媒に対する、撥水化処理工程は、上記炭素系触媒の細孔内の湿潤化工程および上記ヨウ素等の添着、イオン交換または担持工程の前処理として実施することもでき、あるいは後処理として実施することもできる。   Also in this case, if the carbon-based catalyst is subjected to water repellency treatment as in the invention described in claim 11, the carbon-based catalyst for flue gas desulfurization according to any one of claims 1 to 6 Similarly, the generated sulfuric acid can be discharged from the carbon catalyst at an early stage. At this time, the water repellency treatment step for the carbon-based catalyst can also be carried out as a pre-treatment of the wetting step in the pores of the carbon-based catalyst and the addition, ion exchange or loading step of the iodine. Alternatively, it can be implemented as a post-processing.

ただし、上記ヨウ素または臭素の添着、イオン交換または担持工程を行った後に、撥水化処理工程を行い、次いで上記炭素系触媒の細孔内を塞ぐ工程を採用した場合には、撥水処理工程や成形工程によっては過熱によるヨウ素の揮発や、ヨウ素の再溶解脱着が生じて効果的でなく、このため十分なヨウ素担持量を確保しようとすると撥水化が十分ではなくなって、結果として性能低下を招く虞がある。
そこで、上記撥水化処理工程および成形工程を行った後に、上記炭素系触媒の細孔内を塞ぐ工程を実施し、次いでヨウ素または臭素の添着、イオン交換または担持工程を行うことが好ましい。
However, the water-repellent treatment step is performed when the water-repellent treatment step is performed after the iodine or bromine deposition, ion exchange or supporting step, and then the pores of the carbon-based catalyst are closed. Depending on the molding process, the volatilization of iodine due to overheating and the re-dissolution / desorption of iodine may not be effective. For this reason, attempting to secure a sufficient amount of iodine will result in insufficient water repellency, resulting in reduced performance. There is a risk of inviting.
Therefore, it is preferable to perform a step of closing the pores of the carbon-based catalyst after performing the water repellency treatment step and the molding step, and then perform an iodine or bromine deposition, ion exchange or loading step.

ところが、上記撥水化処理を行った後に、上記炭素系触媒の細孔内を塞ぐ工程を実施しようとすると、当該炭素系触媒が水を弾く。このため、請求項11に記載の発明のように、前処理として炭素系触媒に撥水化処理を施す場合には、特に請求項12および請求項13に示した減圧含浸方法またはスチーム添加方法を用いることが好適である。   However, after performing the water repellency treatment, when the step of closing the pores of the carbon-based catalyst is performed, the carbon-based catalyst repels water. Therefore, when the water-repellent treatment is performed on the carbon-based catalyst as a pretreatment as in the invention described in claim 11, the reduced pressure impregnation method or steam addition method shown in claims 12 and 13 is particularly used. It is preferable to use it.

さらに、上記炭素系触媒自体が高い撥水性を有していることを考慮すると、請求項12に記載の減圧含浸方法を用いた場合においても、上記細孔内を水によって十分に塞ぐためには、相応の時間を要することになる。このため、請求項13に記載の発明のような、スチーム添加方法を用いることがより一層好適である。この際に、炭素系触媒への混合ガスの通気方法は、ガスの分散を考慮するとアップフローが好ましい。   Furthermore, considering that the carbon-based catalyst itself has high water repellency, even when the reduced pressure impregnation method according to claim 12 is used, in order to sufficiently close the pores with water, Appropriate time will be required. For this reason, it is still more suitable to use the steam addition method like the invention of Claim 13. At this time, the flow of the mixed gas to the carbon-based catalyst is preferably an upflow in consideration of gas dispersion.

なお、請求項4および請求項9において、上記炭素系触媒に対する上記ヨウ素またはその化合物の添着、イオン交換または担持量を、ヨウ素として0.020wt%以上、60wt%以下の範囲に限定し、また請求項5および請求項10において、上記炭素系触媒に対する上記臭素またはその化合物の添着、イオン交換または担持量を、臭素として0.010wt%以上、60wt%以下の範囲に限定した理由は、後述するように、ヨウ素または臭素が上記範囲を逸脱すると、いずれも脱硫活性比が低下するからである。   In addition, in claim 4 and claim 9, the iodine, the compound thereof, the ion exchange, or the supported amount to the carbon-based catalyst is limited to a range of 0.020 wt% or more and 60 wt% or less as iodine. The reason why the addition, ion exchange, or loading amount of the bromine or its compound to the carbon-based catalyst in the items 5 and 10 is limited to a range of 0.010 wt% to 60 wt% as bromine will be described later. In addition, when iodine or bromine deviates from the above range, the desulfurization activity ratio is decreased.

以下、本発明の排煙脱硫用炭素系触媒の実施形態について説明する。
上記排煙脱硫用炭素系触媒は、最終的に粒状、ペレット状、ハニカム構造等の亜硫酸ガス、酸素および水蒸気を含む排ガスおよび当該排ガスに同伴したダストが通過可能な形状に成形されたものである。そして、その主体となる炭素系触媒としては、熱分解炭素やフラーレン媒等の炭素原料を用いることができるが、特に活性炭または活性炭素繊維を用いることが好適である。ここで、上記活性炭としては、粒状、繊維状、コークスを原料として加工されたもの等が好適である。また、上記の活性炭などを熱処理して脱硫活性を高めたものを使用することもできる。
Hereinafter, embodiments of the carbon-based catalyst for flue gas desulfurization of the present invention will be described.
The flue gas desulfurization carbon-based catalyst is finally formed into a shape that allows particulates, pellets, honeycomb-structured sulfurous acid gas, exhaust gas containing oxygen and water vapor, and dust accompanying the exhaust gas to pass through. . And as a carbon-type catalyst which becomes the main, although carbon raw materials, such as pyrolysis carbon and a fullerene medium, can be used, it is especially suitable to use activated carbon or activated carbon fiber. Here, the activated carbon is preferably granular, fibrous, or processed using coke as a raw material. Moreover, what activated heat processing said activated carbon etc. and improved desulfurization activity can also be used.

そして、上記炭素系触媒の表面には、水に対する接触角が90度以上であるポリテトラフルオロエチレン等のフッ素樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の撥水性樹脂によって撥水化処理が施されている。さらに、当該炭素系触媒の表面には、ヨウ素、臭素あるいはその化合物が添着、イオン交換または担持されている。ここで、上記炭素系触媒に対する上記ヨウ素またはその化合物の添着、イオン交換または担持量は、ヨウ素として0.020wt%以上、60wt%以下の範囲であることが好ましい。   The surface of the carbon catalyst is subjected to a water repellent treatment with a water repellent resin such as polytetrafluoroethylene, such as polytetrafluoroethylene, a polypropylene resin, a polyethylene resin, or a polystyrene resin having a contact angle with water of 90 degrees or more. Has been. Furthermore, iodine, bromine or a compound thereof is impregnated, ion exchanged or supported on the surface of the carbon-based catalyst. Here, the amount of iodine or its compound attached to the carbon-based catalyst, ion exchange, or supported amount is preferably in the range of 0.020 wt% or more and 60 wt% or less as iodine.

また、上記炭素系触媒に対する上記臭素またはその化合物の添着、イオン交換または担持量は、臭素として0.010wt%以上、60wt%以下の範囲であることが好ましい。
さらに、後述するように、上記炭素系触媒に対するヨウ素、臭素またはこれらの化合物のより好ましい添着、イオン交換または担持量は、ヨウ素または臭素として0.1wt%〜10wt%の範囲であり、0.1wt%〜5%の範囲であることが最適である。
Further, the amount of bromine or its compound attached to the carbon-based catalyst, ion exchange, or supported amount is preferably in the range of 0.010 wt% or more and 60 wt% or less as bromine.
Furthermore, as will be described later, the more preferable addition, ion exchange or loading amount of iodine, bromine or these compounds to the carbon-based catalyst is in the range of 0.1 wt% to 10 wt% as iodine or bromine, It is optimal to be in the range of 5% to 5%.

また、上記ヨウ素または臭素の化合物としては、ヨウ素または臭素のアルカリ金属塩、アルカリ土類金属塩、遷移金属塩、水素化物、オキソ酸および有機化合物のいずれかが適用可能である。   As the iodine or bromine compound, any one of alkali metal salt, alkaline earth metal salt, transition metal salt, hydride, oxo acid and organic compound of iodine or bromine is applicable.

より具体的に、上記ヨウ素化合物としては、ヨウ化鉛、ヨウ化ニッケル、ヨウ化マグネシウム、ヨウ化鉄、ヨウ化リン等のヨウ化物、ヨウ素酸およびヨウ素塩、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル等のハロゲン化アルキル、ヨウ化アリル、ヨウ化メチレン等が使用可能である。   More specifically, the iodine compounds include iodides such as lead iodide, nickel iodide, magnesium iodide, iron iodide and phosphorus iodide, iodic acid and iodine salts, methyl iodide, ethyl iodide, iodine Alkyl halides such as propyl iodide, allyl iodide, methylene iodide and the like can be used.

また、臭素化合物としては、臭化リン、臭化ヨウ素、臭化マグネシウム、臭化鉄等の臭化物、臭素酸および臭素塩、臭化メチル、臭化エチル等のハロゲン化アルキル、臭化アリル、臭化メチレンや臭化エチレン等が使用可能である。   Bromine compounds include bromides such as phosphorus bromide, iodine bromide, magnesium bromide and iron bromide, bromide and bromide salts, alkyl halides such as methyl bromide and ethyl bromide, allyl bromide, odor Methylene chloride or ethylene bromide can be used.

次いで、上記排煙脱硫用炭素系触媒の製造方法の実施形態について説明すると、先ず前処理として、上記炭素系触媒に対する撥水化処理工程を行って所定形状に成形した後に、上記炭素系触媒を水等の水溶液中に浸漬するなどして、当該炭素系触媒の細孔内を湿潤にし、上記水溶液で埋めておく。
そして次に、およびヨウ素または臭素の添着、イオン交換または担持工程を行う。なお、これらの3工程を実施する順序は、適宜選択することができる。
Next, an embodiment of the method for producing a carbon-based catalyst for flue gas desulfurization will be described. First, as a pretreatment, a water-repellent treatment process is performed on the carbon-based catalyst, and the carbon-based catalyst is formed into a predetermined shape. The pores of the carbon-based catalyst are moistened by immersing in an aqueous solution such as water and filled with the aqueous solution.
And then, an iodine, bromine, ion exchange or loading step is performed. In addition, the order which implements these 3 processes can be selected suitably.

先ず、上記炭素系触媒の表面に対して撥水化処理を施す材料としては、水に対する接触角が90度以上の撥水性樹脂を用いる。具体的には、ポリスチレン、ポリエチレン、ポリプロピレン等の樹脂やポリクロロトリフルオロエチレン、ポリトリフルオロエチレン、ポリテトラフルオロエチレン等のフッ素樹脂である。   First, a water repellent resin having a contact angle with respect to water of 90 degrees or more is used as a material for subjecting the surface of the carbon catalyst to a water repellent treatment. Specific examples include resins such as polystyrene, polyethylene, and polypropylene, and fluororesins such as polychlorotrifluoroethylene, polytrifluoroethylene, and polytetrafluoroethylene.

なお、上記炭素系触媒の表面に撥水化処理を施す方法としては、上記炭素系触媒とフッ素樹脂等の撥水性樹脂の分散液や粉末と混合する方法や、炭素系触媒と撥水性樹脂とをせん断力を付加しながら混練することにより、当該撥水性樹脂を炭素系触媒の表面に添着または担持させる方法等を用いることができる。また特にフッ素樹脂の場合は、せん断力を付加することにより、当該炭素系触媒表面上で繊維化し、その繊維が折り重なり網目状になるため、触媒表面をフッ素樹脂で完全に塞ぐことなく、少量のフッ素樹脂によって撥水化処理を施すことができる。   In addition, as a method of performing a water repellency treatment on the surface of the carbon-based catalyst, a method of mixing the carbon-based catalyst with a dispersion or powder of a water-repellent resin such as a fluororesin, a carbon-based catalyst and a water-repellent resin, A method of attaching or supporting the water-repellent resin on the surface of the carbon-based catalyst by kneading with a shearing force can be used. In particular, in the case of a fluororesin, by adding a shearing force, the carbon-based catalyst surface is fibrillated, and the fibers are folded to form a network, so that the catalyst surface is not completely blocked with the fluororesin and a small amount. The water-repellent treatment can be performed with the fluororesin.

次いで、上記成形工程は、炭素系触媒と一般的な有機系バインダー(熱可塑性樹脂、熱硬化性樹脂等)とを混練して、加圧成形することにより、容易に上述した粒状、ペレット状、ハニカム構造等に成形することができる。この際に、上記フッ素樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の撥水性樹脂やこれらを含む耐酸性樹脂を混合したバインダーを用いることにより、上記撥水化処理も同時に行うことができる。また、上記耐酸性樹脂を含む芯材シートや不織布等を加えれば、上記炭素系触媒の原料削減や強度向上を図ることもできる。   Next, in the molding step, a carbon catalyst and a general organic binder (thermoplastic resin, thermosetting resin, etc.) are kneaded and pressure-molded, so that the above-described granules, pellets, It can be formed into a honeycomb structure or the like. At this time, the water-repellent treatment can be performed at the same time by using a water-repellent resin such as the fluororesin, polypropylene resin, polyethylene resin or polystyrene resin or a binder mixed with an acid-resistant resin containing these. Moreover, if the core material sheet, nonwoven fabric, etc. containing the said acid-resistant resin are added, the raw material reduction of the said carbon-type catalyst and an intensity | strength improvement can also be aimed at.

さらに、上記成形工程を経た炭素系触媒の細孔内を上記水で塞ぐには、減圧含浸方法やスチーム添加方法を好適に用いることができる。
この減圧含浸方法は、容器内に上記炭素系触媒を入れるとともに、さらに水を入れ、次いで上記容器内を所定温度に制御しながら、内部の空気を排気用ポンプで排気して、0.05気圧以下に減圧し、この状態を一定時間保持した後に、上記容器内の圧力を大気圧に戻すものである。
Furthermore, in order to block the pores of the carbon-based catalyst that has undergone the molding step with the water, a vacuum impregnation method or a steam addition method can be suitably used.
In this vacuum impregnation method, the carbon-based catalyst is put in a container, water is further added, and then the inside air is exhausted with an exhaust pump while controlling the inside of the container at a predetermined temperature. The pressure is reduced below, and after maintaining this state for a certain period of time, the pressure in the container is returned to atmospheric pressure.

他方、スチーム添加方法は、空気に水蒸気を添加した混合ガス中に、上記炭素系触媒を曝すことにより上記細孔内を水で満たすものである。この際に、空気中の水蒸気圧は高いほど良く、また例えば135℃の水蒸気と空気を混合した後に、100℃まで温度が低下したところで、上記混合ガス中の水蒸気が凝縮するように水蒸気量と空気量を調整することが好ましい。   On the other hand, in the steam addition method, the pores are filled with water by exposing the carbon-based catalyst to a mixed gas obtained by adding water vapor to air. At this time, the higher the water vapor pressure in the air, the better. For example, when the temperature drops to 100 ° C. after mixing the water vapor and air at 135 ° C., the amount of water vapor is adjusted so that the water vapor in the mixed gas is condensed. It is preferable to adjust the amount of air.

また、次工程である上記炭素系触媒の表面に、ヨウ素またはその化合物を添着または担持させる方法としては、これらを親水性溶媒(例えば、水やアルコール類)に溶解・分散させて、上記炭素系触媒に噴霧・散布・含浸、浸漬する方法や、ヨウ素またはその化合物を微粉末やその溶液の形で、上記炭素系触媒と練合する方法が適用可能である。
また、臭素またはその化合物を添着または担持させる方法としては、同様に親水性溶媒に溶解・分散させて上記炭素系触媒に噴霧等する方法や、気体状の臭素を上記炭素系触媒に接触させる方法が適用可能である。
In addition, as a method of attaching or supporting iodine or a compound thereof on the surface of the carbon-based catalyst, which is the next step, these are dissolved and dispersed in a hydrophilic solvent (for example, water or alcohols), and the carbon-based catalyst is added. A method of spraying, spraying, impregnating, or immersing in a catalyst, or a method of kneading iodine or a compound thereof in the form of a fine powder or a solution thereof with the carbon-based catalyst is applicable.
In addition, as a method of attaching or supporting bromine or a compound thereof, a method of dissolving and dispersing in a hydrophilic solvent and spraying the carbon-based catalyst, or a method of contacting gaseous bromine with the carbon-based catalyst Is applicable.

以下、本発明に係る排煙脱硫用炭素系触媒の実施例について説明する。
先ず、上記炭素系触媒として、以下のヨウ素吸着量がほぼ等しい3種の市販粒状活性炭ならびに2種の活性炭素繊維を用意した。
原料 ヨウ素吸着量(mg/g)
活性炭A 石炭系 1220
活性炭B 椰子殻系 1100
活性炭C 木炭系 1180
活性炭素繊維E ピッチ系 1250
活性炭素繊維F PAN系 1130
Hereinafter, examples of the carbon-based catalyst for flue gas desulfurization according to the present invention will be described.
First, as the above carbon-based catalyst, the following three types of commercially available activated carbon and two types of activated carbon fibers having substantially the same iodine adsorption amount were prepared.
Raw material Iodine adsorption (mg / g)
Activated carbon A coal-based 1220
Activated carbon B coconut shell system 1100
Activated carbon C Charcoal 1180
Activated carbon fiber E Pitch system 1250
Activated carbon fiber F PAN system 1130

先ず、以下の実施例1、2、3,4、8と対比する比較例1の排煙脱硫用炭素系触媒として、上記活性炭A〜Cおよび活性炭素繊維E、Fを用いて、これらに撥水化処理のみを行った排煙脱硫用炭素系触媒を製造した。
先ず、平均粒子径20〜200μmに粉砕した活性炭A〜Cおよび3mm以下に裁断した活性炭素繊維E、Fの90重量部に対し、ポリテトラフルオロエチレン水分散液(樹脂固形分60重量%:ダイキン工業製)を固形分濃度で10重量部になるように混合し、加圧ニーダを用いて混練した後、ロールを用いて厚さ0.8mmの平板状シートを作成した。
First, the activated carbon A to C and the activated carbon fibers E and F are used as the carbon-based catalyst for flue gas desulfurization of Comparative Example 1 in comparison with Examples 1, 2, 3, 4, and 8 below. A carbon-based catalyst for flue gas desulfurization that was only hydrated was produced.
First, polytetrafluoroethylene aqueous dispersion (resin solid content: 60% by weight: Daikin) with respect to 90 parts by weight of activated carbon fibers E and F pulverized to an average particle size of 20 to 200 μm and activated carbon fibers E and F cut to 3 mm or less. Kogyo) was mixed to a solid content concentration of 10 parts by weight, kneaded using a pressure kneader, and then a flat sheet having a thickness of 0.8 mm was prepared using a roll.

次いで、この平板状シートの半量を歯車状ロールで波型に加工し、上記平板状シートと交互に積層することにより、ハニカム状の排煙脱硫用炭素系触媒を得た。
そして、得られたハニカム状の排煙脱硫用活性炭触媒0.001m3を50mm×50mmの角型触媒充填塔に充填し、その触媒層に、亜硫酸ガス1000容量ppm、酸素濃度5容量%、炭酸ガス10容量%および湿度80%からなる温度50℃の模擬排ガス1m3/hを通過させ、各排煙脱硫用炭素系触媒の脱硫性能を求めた。
Next, half of the flat sheet was processed into a corrugated shape with a gear-shaped roll, and alternately laminated with the flat sheet, thereby obtaining a honeycomb-shaped carbon catalyst for flue gas desulfurization.
Then, 0.001 m 3 of the obtained honeycomb-shaped activated carbon catalyst for flue gas desulfurization is packed in a 50 mm × 50 mm square catalyst packed tower, and the catalyst layer has a sulfur dioxide gas of 1000 vol ppm, an oxygen concentration of 5 vol%, and carbonic acid. A simulated exhaust gas 1 m 3 / h composed of 10% by volume of gas and 80% humidity at a temperature of 50 ° C. was passed through to determine the desulfurization performance of each carbon catalyst for flue gas desulfurization.

この脱硫性能の評価方法は、排ガス中の亜硫酸ガス濃度に対して1次の反応とし、以下の式で見かけの速度定数を算出し、本条件で求めた脱硫性能を各触媒の基準値(=脱硫活性比1.0)とした。
基準条件における見かけの速度定数 K0=−(ガス量/触媒量)×Ln(1−脱硫率)
脱硫率=1−(出口亜硫酸ガス濃度÷入口亜硫酸ガス濃度)
This evaluation method of desulfurization performance is a first-order reaction with respect to the concentration of sulfurous acid gas in the exhaust gas, the apparent rate constant is calculated by the following equation, and the desulfurization performance obtained under these conditions is used as the reference value (= The desulfurization activity ratio was 1.0).
Apparent rate constant under standard conditions K 0 = − (gas amount / catalyst amount) × Ln (1−desulfurization rate)
Desulfurization rate = 1-(Outlet sulfurous acid gas concentration / Inlet sulfurous acid gas concentration)

(第1の実施例)
実施例1に係る排煙脱硫用炭素系触媒として、上記活性炭Aおよび活性炭素繊維Eを用いて、これらにヨウ素化合物であるKIを担持させるとともに撥水化処理を行った、本発明に係る排煙脱硫用炭素系触媒を製造した。
先ず、平均粒子径20〜200μmに粉砕した活性炭Aおよび3mm以下に裁断した活性炭素繊維Eに、KI水溶液を減圧含浸して担持させた。この時、担持するKI量を溶解し、担持量を調製した。次いで、KIが担持された活性炭Cおよび活性炭素繊維Eの90重量部に対し、ポリテトラフルオロエチレン水分散液(樹脂固形分60重量%:ダイキン工業製)を固形分濃度で10重量部になるように混合し、加圧ニーダを用いて混練した後、ロールを用いて厚さ0.8mmの平板状シートを作成した。
(First embodiment)
As the carbon-based catalyst for flue gas desulfurization according to Example 1, the activated carbon A and the activated carbon fiber E were used to carry KI, which is an iodine compound, and the water-repellent treatment was performed according to the present invention. A carbon-based catalyst for smoke desulfurization was produced.
First, activated carbon A ground to an average particle size of 20 to 200 μm and activated carbon fiber E cut to 3 mm or less were impregnated with an aqueous KI solution under reduced pressure and supported. At this time, the amount of KI to be supported was dissolved to prepare a supported amount. Next, with respect to 90 parts by weight of activated carbon C and activated carbon fiber E on which KI is supported, a polytetrafluoroethylene aqueous dispersion (resin solid content: 60% by weight: manufactured by Daikin Industries) is 10 parts by weight in solid content concentration. After mixing in such a manner and kneading using a pressure kneader, a flat sheet having a thickness of 0.8 mm was prepared using a roll.

そして、この平板状シートから、上記比較例1と同様の方法を用いてKIをヨウ素で5wt%担持したハニカム状の排煙脱硫用活性炭触媒を得た。
次いで、得られたハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
From this flat sheet, a honeycomb activated carbon catalyst for flue gas desulfurization carrying 5 wt% of KI with iodine was obtained using the same method as in Comparative Example 1.
Subsequently, the obtained honeycomb-shaped activated carbon catalyst for flue gas desulfurization was subjected to a desulfurization test under the same test conditions as in Comparative Example 1 to obtain the desulfurization performance.

実施例2に係る排煙脱硫用炭素系触媒として、上記活性炭Aおよび活性炭素繊維Eを用いて、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKIを担持させるとともに撥水化処理を行った、本発明に係る排煙脱硫用炭素系触媒を製造した。
すなわち、先ず平均粒子径20〜200μmに粉砕した活性炭Aおよび3mm以下に裁断した活性炭素繊維Eに、減圧含浸方法によって水を含浸させ、活性炭Aおよび活性炭素繊維Eの細孔内を水で満たした。
As the carbon-based catalyst for flue gas desulfurization according to Example 2, the activated carbon A and the activated carbon fiber E are used to impregnate water in these pores in advance, and then the KI that is an iodine compound is supported and repellent. A carbon-based catalyst for flue gas desulfurization according to the present invention which was subjected to hydration treatment was produced.
That is, first, activated carbon A pulverized to an average particle size of 20 to 200 μm and activated carbon fiber E cut to 3 mm or less are impregnated with water by a vacuum impregnation method, and the pores of activated carbon A and activated carbon fiber E are filled with water. It was.

なお、上記減圧含浸方法を、活性炭Aの場合を例に詳述すると、先ず減圧容器内に活性炭Aを入れ、次にこの活性炭容量に対し、約5倍容量の水を投入した。次いで、上記容器内の温度を25℃の一定となるように制御しながら、上記容器内の空気を排気用ポンプで排気して0.05気圧以下に減圧した。そして、その状態を約12時間保持し、その後上記容器内の圧力を大気圧(1気圧)へ戻した。   The above-mentioned reduced pressure impregnation method will be described in detail by taking the case of activated carbon A as an example. First, activated carbon A was put in a vacuum vessel, and then about 5 times the volume of water was added to the activated carbon capacity. Next, while controlling the temperature in the container to be constant at 25 ° C., the air in the container was exhausted by an exhaust pump to reduce the pressure to 0.05 atm or less. The state was maintained for about 12 hours, and then the pressure in the container was returned to atmospheric pressure (1 atm).

次いで、上記活性炭にKI水溶液を減圧含浸して担持させた。この時、担持するKI量を溶解し、担持量を調製した。次いで、KIが担持された活性炭Aおよび活性炭素繊維Eの90重量部に対し、ポリテトラフルオロエチレン水分散液(樹脂固形分60重量%:ダイキン工業製)を固形分濃度で10重量部になるように混合し、加圧ニーダを用いて混練した後、ロールを用いて厚さ0.8mmの平板状シートを作成した。   Next, the activated carbon was impregnated with an aqueous KI solution under reduced pressure and supported. At this time, the amount of KI to be supported was dissolved to prepare a supported amount. Next, with respect to 90 parts by weight of activated carbon A and activated carbon fiber E carrying KI, the polytetrafluoroethylene aqueous dispersion (resin solid content: 60% by weight: manufactured by Daikin Industries) is 10 parts by weight in terms of solid content. After mixing in such a manner and kneading using a pressure kneader, a flat sheet having a thickness of 0.8 mm was prepared using a roll.

そして、この平板状シートから、上記比較例1と同様の方法を用いてKIをヨウ素で5wt%担持したハニカム状の排煙脱硫用活性炭触媒を得た。次いで、得られたハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1および実施例1の排煙脱硫用活性炭触媒と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。   From this flat sheet, a honeycomb activated carbon catalyst for flue gas desulfurization carrying 5 wt% of KI with iodine was obtained using the same method as in Comparative Example 1. Next, the obtained honeycomb-shaped activated carbon catalyst for flue gas desulfurization was subjected to a desulfurization test under the same test conditions as the activated carbon catalysts for flue gas desulfurization of Comparative Example 1 and Example 1 to determine the desulfurization performance. Asked.

図1は、上記脱硫試験の結果得られた、上記実施例1および実施例2に示した排煙脱硫用炭素系触媒と、比較例1の排煙脱硫用炭素系触媒との脱硫活性比を対比して示すものである。
同図から、単に活性炭や活性炭素繊維に撥水化処理のみを施した比較例1に対して、上記活性炭等に撥水化処理を施すとともに、ヨウ素化合物KIを担持させた実施例1の触媒の方が、1.5倍前後の高い脱硫性能が得られるとともに、事前に上記活性炭等の細孔内を水で塞いだ実施例2の触媒によれば、2〜2.5倍強の一層高い脱硫性能が得られることが判る。
FIG. 1 shows the desulfurization activity ratio of the flue gas desulfurization carbon catalyst shown in Example 1 and Example 2 and the flue gas desulfurization carbon catalyst of Comparative Example 1 obtained as a result of the desulfurization test. This is shown in comparison.
From the same figure, the catalyst of Example 1 in which the activated carbon or the like was subjected to the water repellent treatment and the iodine compound KI was supported on the comparative example 1 in which only the activated carbon or activated carbon fiber was subjected to the water repellent treatment. According to the catalyst of Example 2 in which the inside of the pores of the activated carbon or the like was previously filled with water, the higher desulfurization performance of about 1.5 times was obtained, and a further 2 to 2.5 times more It can be seen that high desulfurization performance can be obtained.

(第2の実施例)
次に、上記活性炭等にヨウ素またはその化合物を担持させた場合と、臭素またはその化合物を担持させた場合とにおいて、脱硫性能の向上効果に差異があるか否かを検証するために、以下の実施例3および実施例4の排煙脱硫用活性炭触媒を用いた検証を行った。
先ず、実施例3の排煙脱硫用活性炭触媒として、上記活性炭A〜Cおよび活性炭素繊維E、Fについて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKIを担持させるとともに撥水化処理を行うことにより、KIをヨウ素で5wt%担持した本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造した。
(Second embodiment)
Next, in order to verify whether there is a difference in the effect of improving the desulfurization performance between the case where iodine or its compound is supported on the activated carbon or the like and the case where bromine or its compound is supported, Verification using the activated carbon catalyst for flue gas desulfurization of Example 3 and Example 4 was performed.
First, as the activated carbon catalyst for flue gas desulfurization in Example 3, the activated carbons A to C and the activated carbon fibers E and F were impregnated with water in advance in the pores by the same production method as in Example 2. The honeycomb-shaped activated carbon catalyst for flue gas desulfurization according to the present invention in which KI was supported by 5 wt% of iodine was prepared by supporting KI, which is an iodine compound, and performing water repellency treatment.

また、同様に実施例4の排煙脱硫用活性炭触媒として、上記活性炭A〜Cおよび活性炭素繊維E、Fについて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、臭素化合物であるKBrを担持させるとともに撥水化処理を行うことにより、KBrを臭素で5wt%担持した本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造した。   Similarly, as the activated carbon catalyst for flue gas desulfurization in Example 4, the activated carbons A to C and the activated carbon fibers E and F are impregnated with water in advance in the pores by the same production method as in Example 2. Thereafter, KBr as a bromine compound was supported and water repellent treatment was performed, whereby a honeycomb-shaped activated carbon catalyst for flue gas desulfurization according to the present invention in which KBr was supported by 5 wt% with bromine was produced.

そして、上記実施例3および実施例4のハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
図2は、上記脱硫試験の結果得られた、上記実施例3および実施例4に示した排煙脱硫用炭素系触媒と、比較例1の排煙脱硫用炭素系触媒との脱硫活性比を対比して示すものである。これらの図から、ヨウ素化合物KIを担持させた触媒と、臭素化合物KBrを担持させた触媒とは、いずれも比較例1に対して、ほぼ同等の脱硫効果の向上が見られることが判る。
The honeycomb-shaped activated carbon catalyst for flue gas desulfurization in Example 3 and Example 4 was subjected to a desulfurization test under the same test conditions as in Comparative Example 1 to obtain the desulfurization performance.
FIG. 2 shows the desulfurization activity ratio between the carbon catalyst for flue gas desulfurization shown in Example 3 and Example 4 and the carbon catalyst for flue gas desulfurization of Comparative Example 1 obtained as a result of the desulfurization test. This is shown in comparison. From these figures, it can be seen that the catalyst supporting the iodine compound KI and the catalyst supporting the bromine compound KBr both show substantially the same desulfurization effect as compared with Comparative Example 1.

(第3の実施例)
次に、活性炭に対するヨウ素、臭素またはこれらの化合物の担持量が、脱硫性能の向上にどのような影響を与えるかを、下記実施例5および実施例6の排煙脱硫用活性炭触媒を用いて検証した。
先ず、実施例5の排煙脱硫用活性炭触媒として、上記活性炭Aについて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKIの量を変えて、ヨウ素で0.01wt%〜80wt%の範囲で担持させるとともに撥水化処理を行った20種類の本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造した。
(Third embodiment)
Next, it is verified by using the activated carbon catalyst for flue gas desulfurization of Example 5 and Example 6 below how the loading amount of iodine, bromine or these compounds on the activated carbon affects the improvement of the desulfurization performance. did.
First, as the activated carbon catalyst for flue gas desulfurization of Example 5, after the above activated carbon A was impregnated with water in advance in the pores by the same production method as in Example 2, the amount of KI which is an iodine compound was determined. Instead, 20 types of activated carbon catalysts for honeycomb flue gas desulfurization according to the present invention were manufactured, which were supported in the range of 0.01 wt% to 80 wt% with iodine and subjected to water repellency treatment.

また、同様に実施例6の排煙脱硫用活性炭触媒として、上記活性炭Aについて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、臭素化合物であるKBrの量を変えて、臭素で0.01wt%〜80wt%担持させるとともに撥水化処理を行った5種類の本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造した。   Similarly, as the activated carbon catalyst for flue gas desulphurization of Example 6, after the above activated carbon A was impregnated with water in advance in the pores by the same production method as in Example 2, the bromine compound KBr Five types of activated carbon catalysts for honeycomb flue gas desulfurization according to the present invention were manufactured according to the present invention in which the amount was changed to 0.01 wt% to 80 wt% with bromine and subjected to water repellency treatment.

そして、実施例5および実施例6の複数のハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
図3は、これら実施例5および実施例6のKIまたはKBrの担持量を変化させた複数の触媒における脱硫試験の結果を示すものである。
Then, a desulfurization test was performed on the plurality of honeycomb-shaped activated carbon catalysts for flue gas desulfurization of Example 5 and Example 6 under the same test conditions as in Comparative Example 1 to determine their desulfurization performance.
FIG. 3 shows the results of a desulfurization test on a plurality of catalysts in which the amount of KI or KBr supported in Examples 5 and 6 was changed.

同図によれば、ヨウ素および臭素ともに、それぞれの担持量に対してほぼ同等の脱硫性能の向上効果が得られるとともに、さらに活性炭Aに、ヨウ素として0.020wt%〜60wt%の範囲のヨウ素化合物KIを担持させるか、あるいは臭素として0.010wt%〜60wt%の範囲の臭素化合物KBrを担持させることにより、脱硫性能の向上効果が得られることが判る。   According to the figure, both iodine and bromine have almost the same effect of improving the desulfurization performance with respect to the respective loading amounts, and further, the activated carbon A has iodine compounds in the range of 0.020 wt% to 60 wt% as iodine. It can be seen that the effect of improving the desulfurization performance can be obtained by supporting KI or by supporting a bromine compound KBr in the range of 0.010 wt% to 60 wt% as bromine.

ここで、活性炭Aにおけるヨウ素、臭素あるいはその化合物の担持量が、ヨウ素または臭素で10wt%を超えた場合には、所望の効果を得ることができるものの、担持量の増加に比例した向上効果が得られず、逆に0.1wt%に満たないと、上記効果が比較的急激に低くなる。また、特に5wt%〜10wt%の範囲においては、担持量の増加率に対して、効果が向上する率は大きいとはいえない。   Here, when the supported amount of iodine, bromine or a compound thereof on the activated carbon A exceeds 10 wt% with iodine or bromine, the desired effect can be obtained, but the improvement effect proportional to the increase in the supported amount can be obtained. On the contrary, if the amount is less than 0.1 wt%, the above effect is relatively rapidly reduced. In particular, in the range of 5 wt% to 10 wt%, it cannot be said that the rate of improvement of the effect is large with respect to the increase rate of the supported amount.

したがって、上記炭素系触媒に対するヨウ素、臭素またはこれらの化合物のより好ましい添着、イオン交換または担持量は、0.1wt%〜10wt%の範囲であり、0.1wt%〜5%の範囲であることが最適であることが判る。   Therefore, the more preferable addition, ion exchange or loading amount of iodine, bromine or these compounds to the carbon-based catalyst is in the range of 0.1 wt% to 10 wt%, and is in the range of 0.1 wt% to 5%. Is found to be optimal.

(第4の実施例)
次に、上記活性炭等にヨウ素化合物を担持させる場合に、当該ヨウ素化合物の相違によって、脱硫性能の向上効果に差異が生じるか否かについて、下記実施例7の排煙脱硫用活性炭触媒を用いて検証を行った。
上記実施例7の排煙脱硫用活性炭触媒として、上記活性炭Aを用いて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKI、MgI2、AlI3、CuIをそれぞれヨウ素で0.5wt%担持させるとともに撥水化処理を行った複数の本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造した。
(Fourth embodiment)
Next, when an iodine compound is supported on the activated carbon or the like, whether or not a difference in the effect of improving the desulfurization performance is caused by the difference in the iodine compound, using the activated carbon catalyst for flue gas desulfurization of Example 7 below. Verification was performed.
As the activated carbon catalyst for flue gas desulfurization in Example 7, the activated carbon A was used to impregnate water into these pores in advance by the same production method as in Example 2, and then the iodine compounds KI, MgI 2. A plurality of honeycomb-shaped activated carbon catalysts for flue gas desulfurization according to the present invention were prepared, each carrying 0.5 wt% of AlI 3 and CuI with iodine and subjected to water repellency treatment.

そして、得られた異なるヨウ素化合物を担持した複数のハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
図4は、この試験結果を示すものであり、ヨウ素化合物が異なる場合においても、これを担持させない比較例1に対して、優れた脱硫性能の向上効果が得られるとともに、当該化合物の相違によっては、上記向上効果に大きな差異を生じないことが判る。
And the desulfurization performance was calculated | required by the test conditions similar to the said Comparative Example 1 with respect to the several honeycomb-shaped activated carbon catalyst for flue gas desulfurization which carry | supported the different iodine compound obtained.
FIG. 4 shows the results of this test. Even when the iodine compounds are different, an excellent improvement effect of desulfurization performance is obtained with respect to Comparative Example 1 in which this is not supported, and depending on the difference of the compounds It can be seen that there is no significant difference in the improvement effect.

(第5の実施例)
次に、下記実施例8の排煙脱硫用活性炭触媒を用いて、本発明に係る排煙脱硫用活性炭触媒が、どの程度の期間にわたって脱硫性能を維持し得るかを検証した。
先ず、上記実施例8の排煙脱硫用活性炭触媒として、上記活性炭Aを用いて、実施例2と同様の製法により、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKIをヨウ素で0.5wt%担持させるとともに撥水化処理を行った本発明に係るハニカム状の排煙脱硫用活性炭触媒を製造し、上記比較例1と同様の試験条件にて長時間にわたる脱硫試験を行った。
図5は、この試験結果を示すものであり、本実施例8の排煙脱硫用活性炭触媒によれば、少なくとも700時間まで、比較例1の2倍以上の脱硫性能を維持し得ることが判る。
(Fifth embodiment)
Next, using the activated carbon catalyst for flue gas desulfurization of Example 8 below, it was verified how long the activated carbon catalyst for flue gas desulfurization according to the present invention can maintain the desulfurization performance.
First, the activated carbon A is used as the activated carbon catalyst for flue gas desulfurization in Example 8 above, and after impregnating water into these pores in advance by the same production method as in Example 2, KI which is an iodine compound. Was produced with a honeycomb-like activated carbon catalyst for flue gas desulfurization according to the present invention, in which 0.5 wt% was supported with iodine and subjected to a water repellency treatment, and a desulfurization test over a long period of time under the same test conditions as in Comparative Example 1 above. Went.
FIG. 5 shows the test results, and it can be seen that the activated carbon catalyst for flue gas desulfurization of Example 8 can maintain the desulfurization performance twice or more that of Comparative Example 1 for at least 700 hours. .

(第6の実施例)
次いで、上記活性炭等に、予め細孔内に水を含浸させた後に、ヨウ素等を担持させるとともに撥水化処理を行った本発明に係る排煙脱硫用炭素系触媒が、撥水性の低い樹脂をバインダーとして用いた活性炭、単に活性炭にヨウ素を担持させた触媒、および活性炭に撥水化処理のみを施した触媒に対して、一層顕著な脱硫性能を示すことを検証した。
(Sixth embodiment)
Next, the carbon catalyst for flue gas desulfurization according to the present invention, in which the activated carbon or the like is impregnated with water in advance and then supported with iodine or the like and subjected to water repellency treatment, is a resin having low water repellency. It was verified that the activated carbon was used as a binder, a catalyst in which iodine was simply supported on activated carbon, and a catalyst in which activated carbon was only subjected to water repellency treatment, exhibiting a more remarkable desulfurization performance.

先ず、比較例2に係る排煙脱硫用炭素系触媒として、平均粒子径20〜200μmに粉砕した活性炭Aの90重量部に対し、成形助剤としてアミド系樹脂を10重量部になるように混合し、加圧ニーダを用いて混練した後、加熱ロールを用いて厚さ0.8mmの平板状シートを作成し、この平板状シートの半量を歯車状ロールで波型に加工して、他の平板状シートと交互に積層することにより、ハニカム状の排煙脱硫用活性炭触媒を得た。   First, as a carbon catalyst for flue gas desulfurization according to Comparative Example 2, 90 parts by weight of activated carbon A pulverized to an average particle diameter of 20 to 200 μm is mixed with amide resin as a molding aid so as to be 10 parts by weight. Then, after kneading using a pressure kneader, a flat sheet having a thickness of 0.8 mm is prepared using a heating roll, half the amount of the flat sheet is processed into a corrugated shape with a gear-shaped roll, By alternately laminating the flat sheet, a honeycomb-shaped activated carbon catalyst for flue gas desulfurization was obtained.

また、比較例3に係る排煙脱硫用炭素系触媒を得るために、平均粒子径20〜200μmに粉砕した活性炭Aに水を減圧含浸し、活性炭Aの細孔内を水で満たした後に、KI水溶液を減圧含浸して担持させた。この時、担持するKI量を溶解し、担持量を調製した。次いで、KIが担持された活性炭Aの90重量部に対し、成形助剤としてアミド系樹脂を10重量部になるように混合し、加圧ニーダを用いて混練した後、加熱ロールを用いて厚さ0.8mmの平板状シートを作成し、この平板状シートから、上記比較例2と同様の方法を用いてKIをヨウ素で5wt%担持したハニカム状の排煙脱硫用活性炭触媒を得た。   Moreover, in order to obtain the carbon-based catalyst for flue gas desulfurization according to Comparative Example 3, the activated carbon A pulverized to an average particle size of 20 to 200 μm was impregnated with water under reduced pressure, and the pores of the activated carbon A were filled with water. A KI aqueous solution was impregnated under reduced pressure and supported. At this time, the amount of KI to be supported was dissolved to prepare a supported amount. Next, 90 parts by weight of activated carbon A on which KI is supported is mixed with 10 parts by weight of an amide resin as a molding aid, kneaded using a pressure kneader, and then thickened using a heating roll. A flat sheet having a thickness of 0.8 mm was prepared, and from this flat sheet, a honeycomb-shaped activated carbon catalyst for flue gas desulfurization carrying 5 wt% of KI with iodine was obtained using the same method as in Comparative Example 2 above.

次いで、比較例2および比較例3のハニカム状の排煙脱硫用活性炭触媒に対して、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
図6は、上記脱硫試験の結果得られた、上記比較例2および比較例3に示した排煙脱硫用炭素系触媒、ならびに比較例1および実施例2の排煙脱硫用炭素系触媒の脱硫活性比を対比して示すものである。
Next, a desulfurization test was performed on the honeycomb-shaped activated carbon catalysts for flue gas desulfurization of Comparative Example 2 and Comparative Example 3 under the same test conditions as in Comparative Example 1 to determine their desulfurization performance.
FIG. 6 shows the desulfurization of the flue gas desulfurization carbon catalysts shown in Comparative Example 2 and Comparative Example 3 and the flue gas desulfurization carbon catalysts of Comparative Examples 1 and 2 obtained as a result of the desulfurization test. The activity ratio is shown in comparison.

同図から、ヨウ素等を担持せず、かつ撥水化処理も行っていない比較例2の触媒に対して、撥水化処理は行わないものの、細孔内を水で塞ぐとともにヨウ素化合物KIを担持させた比較例3の触媒は、約1.5倍の脱硫性能の向上が見られ、撥水化処理のみを行った比較例1の触媒は、約10倍の脱硫性能の向上効果が見られたのに過ぎない。   From the figure, the catalyst of Comparative Example 2 that does not carry iodine or the like and is not subjected to water repellent treatment is not subjected to water repellent treatment, but the pores are blocked with water and iodine compound KI is added. The supported catalyst of Comparative Example 3 shows an improvement of desulfurization performance of about 1.5 times, and the catalyst of Comparative Example 1 subjected only to the water repellency treatment shows an improvement effect of desulfurization performance of about 10 times. It was only done.

これに対して、予めこれらの細孔内に水を含浸させた後に、ヨウ素化合物であるKIを担持させるとともに撥水化処理を行った、本発明に係る実施例2の排煙脱硫用活性炭触媒は、事前の細孔内への水の含浸効果と、ヨウ素化合物の担持効果と、さらに撥水化処理による効果との相乗効果によって、上記比較例2の触媒に対して、約26倍といった極めて高い脱硫性能の向上効果を得ることができる。   In contrast, the activated carbon catalyst for flue gas desulfurization of Example 2 according to the present invention, in which the pores were impregnated with water in advance, and then KI, which is an iodine compound, was supported and subjected to water repellency treatment. Is approximately 26 times that of the catalyst of Comparative Example 2 due to a synergistic effect of the effect of impregnating water in the pores in advance, the effect of supporting the iodine compound, and the effect of the water repellent treatment. A high desulfurization performance improvement effect can be obtained.

(第7の実施例)
次に、上記撥水化処理を上記炭素系触媒の細孔内の湿潤化工程および上記ヨウ素等の添着、イオン交換または担持工程の前処理として実施した場合および後処理として実施した場合について、それぞれ当該湿潤化工程を減圧含浸方法によって行った場合とスチーム添加方法によって行った場合との、処理に要する時間および脱硫活性比に与える影響を検証した。
(Seventh embodiment)
Next, when the water repellency treatment is carried out as a pretreatment of the wetting step in the pores of the carbon-based catalyst and the addition of iodine, the ion exchange or the loading step, and the posttreatment, respectively. The effect on the time required for the treatment and the desulfurization activity ratio between the case where the moistening step was performed by the reduced pressure impregnation method and the case of the steam addition method was verified.

(1)湿潤化工程を減圧含浸方法により、撥水化処理の前処理として行った場合
この場合の排煙脱硫用活性炭触媒として、上述した実施例2のハニカム状の排煙脱硫用活性炭触媒、およびこれに加えて、容器内における減圧状態を6時間保持したもの、20時間保持したもの、並びに上記容器内の温度を25℃でなく、60℃に昇温させて上記容器内の空気を排気用ポンプで排気して0.05気圧以下に減圧し、その状態を10時間保持したものの、合計4種類の排煙脱硫用活性炭触媒を準備した。
(1) When the wetting step is performed as a pretreatment for water repellency by a reduced pressure impregnation method As the activated carbon catalyst for flue gas desulfurization in this case, the honeycomb activated carbon catalyst for flue gas desulfurization of Example 2 described above, In addition to this, the decompressed state in the container was maintained for 6 hours, the one maintained for 20 hours, and the temperature in the container was raised to 60 ° C. instead of 25 ° C., and the air in the container was exhausted. A total of four types of activated carbon catalysts for flue gas desulfurization were prepared although the state was maintained for 10 hours by exhausting with a pump for use.

(2)湿潤化工程をスチーム添加方法により、撥水化処理の前処理として行った場合
先ず、135℃の水蒸気と空気を混合した後、100℃まで降温したところで混合ガス中の水蒸気が凝縮するようにスチーム量と空気量を調整した。次いで、通気ダクトを活性炭の粒子サイズより小さいメッシュで仕切り、その中へ平均粒子径20〜200μmに粉砕した上記活性炭Aを充填した。
(2) When the wetting step is performed as a pretreatment for water repellency by the steam addition method. First, after mixing the steam and air at 135 ° C, the water vapor in the mixed gas condenses when the temperature is lowered to 100 ° C. The amount of steam and the amount of air were adjusted. Next, the ventilation duct was partitioned with a mesh smaller than the particle size of the activated carbon, and the activated carbon A pulverized to an average particle size of 20 to 200 μm was filled therein.

そして、実施例9の排煙脱硫用活性炭触媒として、GHSV(=ガス量(m3/h)÷活性炭(m3))が5〜10h-1となるように上記混合ガスを2時間通気したもの、5時間通気したもの、およびGHSVが15〜20h-1となるように上記混合ガスを1時間通気したもの、2時間通気したものの合計4種類を準備した。なお、この時水蒸気の添加位置を調整することで、活性炭層入口でのガス温度が100℃となるように制御した。この際に、活性炭へのガスの通気方法は、アップフローによって行った。 And as the activated carbon catalyst for flue gas desulfurization of Example 9, the mixed gas was aerated for 2 hours so that GHSV (= gas amount (m 3 / h) ÷ activated carbon (m 3 )) was 5 to 10 h −1 . A total of four types were prepared: one that was aerated for 5 hours, and one that was aerated for 1 hour so that the GHSV was 15 to 20 h −1, and one that was aerated for 2 hours. At this time, the gas temperature at the inlet of the activated carbon layer was controlled to 100 ° C. by adjusting the addition position of water vapor. At this time, the method for venting the gas to the activated carbon was performed by upflow.

次いで、上記活性炭にKI水溶液を減圧含浸して担持させた。この時、担持するKI量を溶解し、担持量を調製した。次いで、KIが担持された活性炭Aおよび活性炭素繊維Eの90重量部に対し、ポリテトラフルオロエチレン水分散液(樹脂固形分60重量%:ダイキン工業製)を固形分濃度で10重量部になるように混合し、加圧ニーダを用いて混練した後、ロールを用いて厚さ0.8mmの平板状シートを作成した。そして、この平板状シートから、上記比較例1と同様の方法を用いてKIをヨウ素で5wt%担持したハニカム状の4種類の実施例9の排煙脱硫用活性炭触媒を得た。   Next, the activated carbon was impregnated with an aqueous KI solution under reduced pressure and supported. At this time, the amount of KI to be supported was dissolved to prepare a supported amount. Next, with respect to 90 parts by weight of activated carbon A and activated carbon fiber E carrying KI, the polytetrafluoroethylene aqueous dispersion (resin solid content: 60% by weight: manufactured by Daikin Industries) is 10 parts by weight in terms of solid content. After mixing in such a manner and kneading using a pressure kneader, a flat sheet having a thickness of 0.8 mm was prepared using a roll. From this flat sheet, four types of honeycomb activated carbon catalysts for flue gas desulfurization of Example 9 carrying 5 wt% of KI with iodine were obtained using the same method as in Comparative Example 1 above.

(3)湿潤化工程を減圧含浸方法により、撥水化処理の後処理として行った場合
先ず、比較例1と同様な方法によってハニカム状の活性炭触媒を得た後に、当該ハニカム状の活性触媒を減圧容器内に入れ、さらに当該ハニカム状の活性炭触媒の容積に対して約5倍容量の水を投入した。次いで、上記容器内の温度を25℃の一定となるように温度制御しつつ、容器内の空気を排気用ポンプで排気しながら0.05気圧以下に減圧した。
(3) When the wetting step is performed as a post-treatment of water repellency by the reduced pressure impregnation method First, after obtaining a honeycomb-like activated carbon catalyst by the same method as in Comparative Example 1, the honeycomb-like active catalyst is The vessel was placed in a vacuum vessel, and about 5 times the volume of water was added to the volume of the honeycomb-like activated carbon catalyst. Next, the temperature in the container was controlled to be constant at 25 ° C., and the pressure in the container was reduced to 0.05 atm or less while the air in the container was exhausted by the exhaust pump.

そして、この状態を12時間維持した後に容器内の圧力を大気圧(1気圧)へと戻したもの、30時間保持した後に容器内の圧力を大気圧へと戻したもの、並びに上記容器内の温度を25℃でなく、60℃に昇温させて上記容器内の空気を排気用ポンプで排気して0.05気圧以下に減圧し、その状態を25時間保持した後に容器内の圧力を大気圧へと戻したもの、計3種類のハニカム状の活性炭触媒を準備した。   Then, after maintaining this state for 12 hours, the pressure in the container is returned to atmospheric pressure (1 atmosphere), the pressure in the container is returned to atmospheric pressure after being held for 30 hours, and the inside of the container The temperature is raised to 60 ° C. instead of 25 ° C., the air in the container is exhausted by an exhaust pump to reduce the pressure to 0.05 atm or less, and the state is maintained for 25 hours, and then the pressure in the container is increased. A total of three types of honeycomb activated carbon catalysts were prepared which had been returned to atmospheric pressure.

次いで、上記ハニカム状の活性炭触媒に、KI水溶液をスプレーもしくは減圧浸漬して担持させた。この時、担持するKI量を溶解し、担持量を調整して、KIをヨウ素で5wt%担持したハニカム状の3種類の実施例10に係る排煙脱硫活性炭触媒を得た。   Next, the KI aqueous solution was sprayed or immersed under reduced pressure on the honeycomb-shaped activated carbon catalyst and supported. At this time, the amount of KI to be supported was dissolved, and the amount supported was adjusted to obtain three types of flue gas desulfurization activated carbon catalysts according to Example 10 in which KI was supported by 5 wt% of iodine.

(4)湿潤化工程をスチーム添加方法により、撥水化処理の後処理として行った場合
先ず、比較例1と同様な方法によってハニカム状の活性炭触媒を得た後に、当該ハニカム状の活性触媒を、上記実施例9と同様の通気ダクト内に収納し、135℃の水蒸気と空気を混合した後、100℃まで降温したところで水蒸気が凝縮するようにスチーム量と空気量を調整した混合ガスをアップフローによって通気した。この際に、活性炭層入口でのガス温度が100℃となるように制御した。
(4) When the wetting step is performed as a post-treatment of the water repellency treatment by the steam addition method First, after obtaining a honeycomb-like activated carbon catalyst by the same method as in Comparative Example 1, , Housed in the same air duct as in Example 9 above, mixed with steam and air at 135 ° C, and then mixed gas with steam and air adjusted so that the water vapor is condensed when the temperature is lowered to 100 ° C Aerated by flow. At this time, the gas temperature at the inlet of the activated carbon layer was controlled to be 100 ° C.

そして、GHSVが5〜10h-1となるように上記混合ガスを3時間通気したもの、5時間通気したもの、およびGHSVが15〜20h-1となるように上記混合ガスを1時間通気したもの、2時間通気したもの、計4種類のハニカム状の活性炭触媒を準備した。 Then, the gas mixture was aerated for 3 hours so that the GHSV was 5 to 10 h −1 , the gas was aerated for 5 hours, and the gas mixture was aerated for 1 hour so that the GHSV was 15 to 20 h −1. A total of four types of honeycomb-like activated carbon catalysts that had been aerated for 2 hours were prepared.

次いで、上記ハニカム状の活性炭触媒に、KI水溶液をスプレーもしくは減圧浸漬して担持させた。この時、担持するKI量を溶解し、担持量を調整して、KIをヨウ素で5wt%担持したハニカム状の4種類の実施例11に係る排煙脱硫活性炭触媒を得た。   Next, the KI aqueous solution was sprayed or immersed under reduced pressure on the honeycomb-shaped activated carbon catalyst and supported. At this time, the amount of KI to be supported was dissolved, and the amount supported was adjusted to obtain four types of flue gas desulfurization activated carbon catalysts according to Example 11 in which KI was supported by 5 wt% of iodine.

(5)処理時間および脱硫試験の結果
次いで、これら実施例2、実施例9〜11の排煙脱硫用活性炭触媒を用いて、上記比較例1と同様の試験条件により、脱硫試験を行ってこれらの脱硫性能を求めた。
図7および図8は、これらの排煙脱硫用活性炭触媒を製造するに際して要した湿潤化工程の処理時間および脱硫性能の結果を対比して示すものである。
(5) Results of treatment time and desulfurization test Next, using these activated carbon catalysts for flue gas desulfurization of Example 2 and Examples 9 to 11, desulfurization tests were performed under the same test conditions as in Comparative Example 1 above. The desulfurization performance was determined.
FIG. 7 and FIG. 8 show the results of the treatment time and the desulfurization performance of the wetting step required for producing these activated carbon catalysts for flue gas desulfurization.

これらの図から、湿潤化工程を行った場合には、当該湿潤化工程が撥水化処理の前後を問わず、また減圧含浸方法によるかスチーム添加方法によるかを問わず、いずれも湿潤化工程を行わなかった実施例1の排煙脱硫用活性炭触媒(脱硫活性比1.6)よりも高い脱硫性能が得られることが判る。
また、上記湿潤化工程を行うに際しては、スチーム添加方法を用いることにより、減圧含浸方法を用いた場合と比較して、より短い処理時間によって、同等の脱硫性能を有する排煙脱硫用活性炭触媒を得られることが判る。
From these figures, when the wetting process is performed, the wetting process is performed regardless of whether the wetting process is performed before or after the water repellent treatment, and whether it is performed by the reduced pressure impregnation method or the steam addition method. It can be seen that a higher desulfurization performance can be obtained than the activated carbon catalyst for flue gas desulfurization (desulfurization activity ratio 1.6) of Example 1 that was not performed.
Further, when performing the above-mentioned wetting step, by using a steam addition method, an activated carbon catalyst for flue gas desulfurization having equivalent desulfurization performance can be obtained in a shorter processing time compared to the case of using a vacuum impregnation method. It turns out that it is obtained.

本発明に係る第1の実施例における実施例1および2と従来の比較例1との脱硫試験の結果を示すグラフである。It is a graph which shows the result of the desulfurization test of Example 1 and 2 in the 1st Example which concerns on this invention, and the conventional comparative example 1. FIG. 同、第2の実施例における実施例3および4と従来の比較例1との脱硫試験の結果を示すグラフである。It is a graph which shows the result of the desulfurization test of Example 3 and 4 in a 2nd Example, and the conventional comparative example 1 similarly. 同、第3の実施例における実施例5および6の脱硫試験の結果を示すグラフである。It is a graph which shows the result of the desulfurization test of Example 5 and 6 in a 3rd Example similarly. 同、第4の実施例における実施例7の脱硫試験の結果を示すグラフである。It is a graph which shows the result of the desulfurization test of Example 7 in a 4th Example similarly. 同、第5の実施例における実施例8と従来の比較例1の長時間脱硫試験の結果を示すグラフである。It is a graph which shows the result of the long-time desulfurization test of Example 8 in a 5th Example, and the conventional comparative example 1 similarly. 同、第6の実施例における比較例1、2、3および本発明に係る実施例2の脱硫試験の結果を示すグラフである。It is a graph which shows the result of the desulfurization test of Comparative Example 1, 2, 3 in a 6th Example, and Example 2 which concerns on this invention. 同、第7の実施形態における実施例2、実施例9〜11における撥水化処理の所要時間と脱硫性能とを対比して示すグラフである。It is a graph which compares and shows the required time and the desulfurization performance of the water-repellent treatment in Example 2 and Examples 9 to 11 in the seventh embodiment. 第7の実施例における実施例2、実施例9〜11の撥水化処理条件および脱硫活性比を示す図表である。It is a graph which shows the water-repellent treatment conditions and desulfurization activity ratio of Example 2 and Examples 9 to 11 in the seventh example.

Claims (13)

少なくとも亜硫酸ガス、酸素および水蒸気を含む排ガスと接触させることにより、上記亜硫酸ガスを上記酸素、水蒸気と反応させて硫酸とし、当該硫酸を回収する排煙脱硫用炭素系触媒であって、
炭素系触媒の表面に、ヨウ素、臭素あるいはその化合物が添着、イオン交換または担持されるとともに撥水化処理が施されてなることを特徴とする排煙脱硫用炭素系触媒。
A carbon-based catalyst for flue gas desulfurization which recovers the sulfuric acid by reacting the sulfurous acid gas with the oxygen and water vapor to make sulfuric acid by contacting with exhaust gas containing at least sulfurous acid gas, oxygen and water vapor,
A carbon-based catalyst for flue gas desulfurization, characterized in that iodine, bromine or a compound thereof is impregnated, ion-exchanged or supported on the surface of the carbon-based catalyst and subjected to water repellency treatment.
上記炭素系触媒は、活性炭または活性炭素繊維であることを特徴とする請求項1に記載の排煙脱硫用炭素系触媒。   The carbon-based catalyst for flue gas desulfurization according to claim 1, wherein the carbon-based catalyst is activated carbon or activated carbon fiber. 上記ヨウ素または臭素の化合物は、ヨウ素または臭素のアルカリ金属塩、アルカリ土類金属塩、遷移金属塩、水素化物、オキソ酸および有機化合物のいずれかであることを特徴とする請求項1または2に記載の排煙脱硫用炭素系触媒。   The iodine or bromine compound is any one of an alkali metal salt, an alkaline earth metal salt, a transition metal salt, a hydride, an oxo acid, and an organic compound of iodine or bromine. The carbon-based catalyst for flue gas desulfurization described. 上記炭素系触媒に対する上記ヨウ素またはその化合物の添着、イオン交換または担持量が、ヨウ素として0.020wt%以上、60wt%以下の範囲であることを特徴とする請求項1ないし3のいずれかに記載の排煙脱硫用炭素系触媒。   4. The iodine, ion exchange, or loading amount of the iodine or its compound to the carbon-based catalyst is in the range of 0.020 wt% or more and 60 wt% or less as iodine. Carbon-based catalyst for flue gas desulfurization. 上記炭素系触媒に対する上記臭素またはその化合物の添着、イオン交換または担持量が、臭素として0.010wt%以上、60wt%以下の範囲であることを特徴とする請求項1ないし3のいずれかに記載の排煙脱硫用炭素系触媒。   The addition, ion exchange, or loading of the bromine or its compound to the carbon-based catalyst is in the range of 0.010 wt% or more and 60 wt% or less as bromine. Carbon-based catalyst for flue gas desulfurization. 上記炭素系触媒に水に対する接触角が90度以上の樹脂を含有させること、または上記炭素系触媒に熱処理を施してその表面の親水基を除去することにより、上記炭素系触媒の表面に上記撥水化処理が施されていることを特徴とする請求項1ないし5のいずれかに記載の排煙脱硫用炭素系触媒。   The carbon-based catalyst is allowed to contain a resin having a contact angle with water of 90 ° or more, or the carbon-based catalyst is subjected to a heat treatment to remove hydrophilic groups on the surface thereof, whereby the surface of the carbon-based catalyst is repelled. The carbon-based catalyst for flue gas desulfurization according to any one of claims 1 to 5, wherein a hydration treatment is performed. 少なくとも亜硫酸ガス、酸素および水蒸気を含む排ガスと接触させることにより、上記亜硫酸ガスを上記酸素、水蒸気と反応させて硫酸とし、当該硫酸を回収する排煙脱硫用炭素系触媒の製造方法であって、
炭素系触媒を湿潤させてその細孔内を塞いだ後に、当該炭素系触媒にヨウ素、臭素あるいはその化合物を含有する溶液を噴霧または散布し、あるいは上記炭素系触媒を上記溶液に浸漬させることにより、上記炭素系触媒の表面に、上記ヨウ素、臭素あるいはその化合物を添着、イオン交換または担持させてなることを特徴とする排煙脱硫用炭素系触媒の製造方法。
A method for producing a carbon-based catalyst for flue gas desulfurization, wherein the sulfurous acid gas is reacted with the oxygen and water vapor to make sulfuric acid by contacting with an exhaust gas containing at least sulfurous acid gas, oxygen and water vapor, and the sulfuric acid is recovered.
After wetting the carbon-based catalyst and closing the pores, the carbon-based catalyst is sprayed or sprayed with a solution containing iodine, bromine or a compound thereof, or the carbon-based catalyst is immersed in the solution. A method for producing a carbon-based catalyst for flue gas desulfurization, wherein the surface of the carbon-based catalyst is impregnated, ion-exchanged or supported with iodine, bromine or a compound thereof.
上記炭素系触媒は、活性炭または活性炭素繊維であることを特徴とする請求項7に記載の排煙脱硫用炭素系触媒の製造方法。   The method for producing a carbon-based catalyst for flue gas desulfurization according to claim 7, wherein the carbon-based catalyst is activated carbon or activated carbon fiber. 上記炭素系触媒に、ヨウ素として0.020wt%以上、60wt%以下の範囲の上記ヨウ素またはその化合物を添着、イオン交換または担持させることを特徴とする請求項7または8に記載の排煙脱硫用炭素系触媒の製造方法。   9. The exhaust gas desulfurization according to claim 7 or 8, wherein the carbon catalyst is impregnated, ion-exchanged or supported with iodine in the range of 0.020 wt% or more and 60 wt% or less as iodine. A method for producing a carbon-based catalyst. 上記炭素系触媒に、臭素として0.010wt%以上、60wt%以下の範囲の上記臭素またはその化合物を添着、イオン交換または担持させることを特徴とする請求項7または8に記載の排煙脱硫用炭素系触媒の製造方法。   9. The exhaust gas desulfurization according to claim 7 or 8, wherein the bromine or its compound in the range of 0.010 wt% or more and 60 wt% or less as bromine is impregnated, ion exchanged or supported on the carbon-based catalyst. A method for producing a carbon-based catalyst. 上記炭素系触媒に撥水化処理を施すことを特徴とする請求項7ないし10のいずれかに記載の排煙脱硫用炭素系触媒の製造方法。   The method for producing a carbon-based catalyst for flue gas desulfurization according to any one of claims 7 to 10, wherein the carbon-based catalyst is subjected to water repellency treatment. 容器内に上記炭素系触媒と水とを入れ、当該容器内を減圧して一定時間保持した後に大気圧に戻すことにより、上記炭素系触媒の細孔内を上記水で塞ぐことを特徴とする請求項7ないし11のいずれかに記載の排煙脱硫用炭素系触媒の製造方法。   The carbon-based catalyst and water are placed in a container, and the interior of the container is decompressed and held for a certain period of time, and then returned to atmospheric pressure, thereby closing the pores of the carbon-based catalyst with the water. A method for producing a carbon-based catalyst for flue gas desulfurization according to any one of claims 7 to 11. 上記炭素系触媒に、水蒸気と空気との混合ガスを通気させて上記水蒸気を凝縮させることにより、上記炭素系触媒の細孔内を凝縮した水で塞ぐことを特徴とする請求項7ないし11のいずれかに記載の排煙脱硫用炭素系触媒の製造方法。   12. The pores of the carbon-based catalyst are closed with condensed water by allowing a gas mixture of water vapor and air to flow through the carbon-based catalyst to condense the water vapor. The manufacturing method of the carbon-type catalyst for flue gas desulfurization in any one.
JP2006328329A 2006-12-05 2006-12-05 Method for producing carbon-based catalyst for flue gas desulfurization Active JP5076471B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006328329A JP5076471B2 (en) 2006-12-05 2006-12-05 Method for producing carbon-based catalyst for flue gas desulfurization
TW97120942A TWI436825B (en) 2006-12-05 2008-06-05 Carbon catalyst for exhaust gas desulfurization and its manufacturing method and use for enhancing mercury in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328329A JP5076471B2 (en) 2006-12-05 2006-12-05 Method for producing carbon-based catalyst for flue gas desulfurization

Publications (2)

Publication Number Publication Date
JP2008136982A true JP2008136982A (en) 2008-06-19
JP5076471B2 JP5076471B2 (en) 2012-11-21

Family

ID=39598995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328329A Active JP5076471B2 (en) 2006-12-05 2006-12-05 Method for producing carbon-based catalyst for flue gas desulfurization

Country Status (1)

Country Link
JP (1) JP5076471B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
CN107774240A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 The preparation method of flue gas reduction and desulfurization catalyst
WO2021231336A1 (en) * 2020-05-12 2021-11-18 W.L. Gore & Associates, Inc. Sorbent polymer composites including phophonium halides, flue gas treatment devices and flue gas treatment methods utilizing the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090306A (en) * 1965-09-16 1967-11-08 Bergwerksverband Gmbh Improvements in or relating to the removal of sulphur dioxide from gases
JPS62283866A (en) * 1986-05-29 1987-12-09 ぺんてる株式会社 Manufacture of active carbon formed body
JPH0153087B2 (en) * 1982-02-01 1989-11-13 Takeda Chemical Industries Ltd
JPH07289844A (en) * 1994-04-28 1995-11-07 Takeda Chem Ind Ltd Deodorizing method of malodorous gas
JP2638215B2 (en) * 1988-08-17 1997-08-06 日立プラント建設株式会社 Air purifier
JPH10314588A (en) * 1997-05-21 1998-12-02 Chiyoda Corp Active carbon catalyst and flue gas desulfurization process
JP2001276198A (en) * 2000-03-28 2001-10-09 Kurita Water Ind Ltd Deodorant
JP2003010688A (en) * 2001-06-29 2003-01-14 Hokutan Kasei Kogyo Kk Removing agent for removing harmful sulfur oxide or sulfur oxide/hydrogen sulfide mixed gas in air and removing method using the same
JP2005246252A (en) * 2004-03-04 2005-09-15 Chiyoda Corp Exhaust gas desulfurization method
JP2005288380A (en) * 2004-04-02 2005-10-20 Eco Works:Kk Gas processing method
JP2006061804A (en) * 2004-08-26 2006-03-09 Tsurumi Coal Co Ltd Deodorization active carbon and its manufacturing method
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1090306A (en) * 1965-09-16 1967-11-08 Bergwerksverband Gmbh Improvements in or relating to the removal of sulphur dioxide from gases
JPH0153087B2 (en) * 1982-02-01 1989-11-13 Takeda Chemical Industries Ltd
JPS62283866A (en) * 1986-05-29 1987-12-09 ぺんてる株式会社 Manufacture of active carbon formed body
JP2638215B2 (en) * 1988-08-17 1997-08-06 日立プラント建設株式会社 Air purifier
JPH07289844A (en) * 1994-04-28 1995-11-07 Takeda Chem Ind Ltd Deodorizing method of malodorous gas
JPH10314588A (en) * 1997-05-21 1998-12-02 Chiyoda Corp Active carbon catalyst and flue gas desulfurization process
JP2001276198A (en) * 2000-03-28 2001-10-09 Kurita Water Ind Ltd Deodorant
JP2003010688A (en) * 2001-06-29 2003-01-14 Hokutan Kasei Kogyo Kk Removing agent for removing harmful sulfur oxide or sulfur oxide/hydrogen sulfide mixed gas in air and removing method using the same
JP2005246252A (en) * 2004-03-04 2005-09-15 Chiyoda Corp Exhaust gas desulfurization method
JP2005288380A (en) * 2004-04-02 2005-10-20 Eco Works:Kk Gas processing method
JP2006061804A (en) * 2004-08-26 2006-03-09 Tsurumi Coal Co Ltd Deodorization active carbon and its manufacturing method
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
CN107774240A (en) * 2016-08-31 2018-03-09 中国石油化工股份有限公司 The preparation method of flue gas reduction and desulfurization catalyst
CN107774240B (en) * 2016-08-31 2019-10-15 中国石油化工股份有限公司 The preparation method of flue gas reduction and desulfurization catalyst
WO2021231336A1 (en) * 2020-05-12 2021-11-18 W.L. Gore & Associates, Inc. Sorbent polymer composites including phophonium halides, flue gas treatment devices and flue gas treatment methods utilizing the same

Also Published As

Publication number Publication date
JP5076471B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
CA2718703C (en) Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
KR102615619B1 (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
WO2015099024A1 (en) Ammonia decomposition catalyst
Zeng et al. Removal of NO by carbonaceous materials at room temperature: A review
CN102099115B (en) Deodorizing catalyst, deodorizing method using same and method for regenerating the catalyst
CA2550875A1 (en) Method and device for decontamination air for fuel cell, and fuel cell
JP5076471B2 (en) Method for producing carbon-based catalyst for flue gas desulfurization
CN108993504B (en) Modified activated coke for demercuration of sulfur-containing flue gas and preparation method thereof
Ondarts et al. Removal of ozone by activated carbons modified by oxidation treatments
JP6349736B2 (en) Acid gas adsorption / removal filter
WO2005054126A1 (en) Carbon material and flue gas treatment apparatus
JP2005288380A (en) Gas processing method
TWI436825B (en) Carbon catalyst for exhaust gas desulfurization and its manufacturing method and use for enhancing mercury in exhaust gas
JP2004066009A (en) Carbon material and equipment for treating flue gas
JP2009149460A (en) Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber
JP2702870B2 (en) NOx removing agent, method for regenerating the same, and NOx removing device
KR101395548B1 (en) High effectiveness molybdenum-nickel based catalyst-sorbent for simultaneous removing H2S and NH3 and Manufacturing method thereof
CN1772340A (en) Flue-gas processing technique based on adsorbent-polymer composite material
JP6235705B2 (en) Method for treating gas containing zero-valent mercury and mercury separation system
JP4861618B2 (en) Dioxin adsorption remover
JPH11347364A (en) Exhaust gas desulfurizer
CN115155523A (en) Composite adsorption catalyst for synergistically removing mercury and sulfur dioxide in flue gas and preparation method and application thereof
KR20240057456A (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JPH07163837A (en) Method for removing nitrogen oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250