JPH10314588A - Active carbon catalyst and flue gas desulfurization process - Google Patents

Active carbon catalyst and flue gas desulfurization process

Info

Publication number
JPH10314588A
JPH10314588A JP9147203A JP14720397A JPH10314588A JP H10314588 A JPH10314588 A JP H10314588A JP 9147203 A JP9147203 A JP 9147203A JP 14720397 A JP14720397 A JP 14720397A JP H10314588 A JPH10314588 A JP H10314588A
Authority
JP
Japan
Prior art keywords
activated carbon
active carbon
water
repellent
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9147203A
Other languages
Japanese (ja)
Other versions
JP3562551B2 (en
Inventor
Yoichi Umehara
洋一 梅原
Masaru Takeda
大 武田
Ataru Wakabayashi
中 若林
Osamu Tokari
脩 戸河里
Takashi Kimura
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP14720397A priority Critical patent/JP3562551B2/en
Publication of JPH10314588A publication Critical patent/JPH10314588A/en
Application granted granted Critical
Publication of JP3562551B2 publication Critical patent/JP3562551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an active carbon catalyst of superior desulfurization efficiency for carrying out the flue gas desulfurization of superior economic efficiency by applying water-repellent treatment to active carbon composed of coal as a main raw material. SOLUTION: This active carbon catalyst is used for oxidizing sulfurous acid gas in flue gas by coexisting oxygen in flue gas and recovering and removing the gas as sulfuric acid, and the catalyst is prepared by applying water repellency treatment to active carbon composed of coal as a main material. In the case of water repellency treatment, it is preferable to select a water-repellent polymer substance not modifying micropores of active carbon for the purpose of developing high activities. As the repellent substance, polyethylene, polypropylene, polystyrene, fluororesin or the like can be used. As for the repellency treatment for the active carbon of coal family, a process of melting the repellent substance in an organic solvent and impregnating the active carbon of coal family with the solvent and deposit the solvent on the active carbon or a process of impregnating active carbon of coal family with a dispersion of repellent substance of average particle diameter of 15-100 nm and deposit the dispersion on the active carbon is utilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中に含まれ
る硫黄酸化物を、接触硫酸化反応によって硫酸として回
収除去するための活性炭触媒およびこれを用いた排煙脱
硫方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated carbon catalyst for recovering and removing sulfur oxides contained in exhaust gas as sulfuric acid by a catalytic sulfation reaction, and to a flue gas desulfurization method using the same.

【0002】[0002]

【従来の技術】従来より、排ガス中に含まれる亜硫酸ガ
ス等の硫黄酸化物を、低温で共存する酸素によって酸化
することにより最終的に硫酸とし、これをそのまま硫酸
として、或いはこれとカルシウム化合物とを反応させる
ことにより石膏として回収するプロセスは周知である。
このような、排ガス中の亜硫酸ガス等を酸化させる触媒
としては、活性炭が最もこのましいとされている。すな
わち、上記触媒として、例えばアルミナ、シリカ、チタ
ニア、ゼオライトのようなセラミックス系担体を用いた
場合には、それだけでは活性が不足するために、これに
触媒種として金属或いは金属酸化物を加える必要があ
る。ところが、これらの触媒種は、生成する硫酸の攻撃
を受け、溶解または変質してしまうために、長時間にわ
たって安定した活性を維持することができないという欠
点がある。これに対して、上記活性炭にあっては、何の
触媒種も担持することなく活性が発現し、かつそれが長
時間劣化することなく持続するという特長を有するから
である。
2. Description of the Related Art Heretofore, sulfur oxides such as sulfurous acid gas contained in exhaust gas have been oxidized by coexisting oxygen at a low temperature to finally produce sulfuric acid, which can be used as it is as sulfuric acid, or can be combined with calcium compounds. The process of recovering as gypsum by reacting is known.
Activated carbon is said to be the most preferable catalyst for oxidizing sulfurous acid gas and the like in exhaust gas. That is, when a ceramic-based carrier such as alumina, silica, titania, or zeolite is used as the above catalyst, the activity alone is insufficient, so it is necessary to add a metal or metal oxide as a catalyst species to this. is there. However, these catalyst species have a drawback that they cannot maintain stable activity for a long period of time because they are attacked by generated sulfuric acid and are dissolved or deteriorated. On the other hand, the activated carbon has a feature that the activity is exhibited without carrying any catalyst species and the activity is maintained without deterioration for a long time.

【0003】しかしながら、排煙脱硫装置としての工業
的使用にあたって、市販の活性炭をそのまま用いた場合
には、接触硫酸化反応における触媒活性が低いために、
所望の脱硫効果を得るためには触媒充填量が極端に大き
くなってしまい、よって湿式排煙脱硫プロセス等の他の
脱硫プロセスと比較して経済的に太刀打ちすることがで
きないという問題点がある。そこで、従来このような排
煙脱硫プロセスに用いられる活性炭の触媒活性を高める
方策として、大別して2つのアプローチがある。その一
方は、亜硫酸ガスの吸着、酸化反応活性点を増大させよ
うとするものであり、他方は、活性炭の細孔内に生成す
る硫酸を出来る限り早く細孔外に排出させようとするも
のである。
However, in the case of industrial use as a flue gas desulfurization apparatus, when commercially available activated carbon is used as it is, the catalytic activity in the catalytic sulfation reaction is low.
In order to obtain a desired desulfurization effect, the amount of catalyst charged becomes extremely large, and therefore, there is a problem that it cannot be economically competitive as compared with other desulfurization processes such as a wet flue gas desulfurization process. Therefore, there are roughly two approaches for increasing the catalytic activity of activated carbon used in such a flue gas desulfurization process. One is to increase the active sites of adsorption and oxidation reaction of sulfurous acid gas, and the other is to discharge the sulfuric acid generated in the pores of activated carbon out of the pores as soon as possible. is there.

【0004】上記前者のアプローチにおいては、前提と
して活性炭の亜硫酸ガスに対する吸着、酸化反応の活性
点が何であるかを決定する必要がある。この点に付き、
例えば日本化学会誌(1975年)No.10,P1705〜1712にお
いては塩基性表面化合物であるとの示唆があり、またAp
plied Catalysis B:Environmental 3(1994)P229〜23
8においては、活性炭上の強塩基性点の数が亜硫酸ガス
の吸着、酸化活性と比例関係にあり、かつこの塩基性点
は含酸素官能基であることが示唆されている。そして、
特に前者の文献においては、活性炭をアンモニアガスに
より800℃で賦活処理することにより、亜硫酸ガスの
吸着、酸化活性を大きくし得ることが述べられている。
しかしながら、両文献とも、どのような活性炭を選択す
れば高活性を発現し得るかについては全く触れられてお
らず、よって当該アプローチは、現実的な適用までには
未だ到達していない。
In the former approach, it is necessary to determine what the active sites of adsorption and oxidation of activated carbon to sulfur dioxide gas are. In this regard,
For example, the Chemical Society of Japan (1975) No. 10, P1705-1712 suggests that it is a basic surface compound.
plied Catalysis B: Environmental 3 (1994) P229-23
In No. 8, it is suggested that the number of strong basic points on the activated carbon is proportional to the adsorption and oxidation activities of sulfurous acid gas, and that the basic points are oxygen-containing functional groups. And
In particular, the former document describes that the activation and activation of sulfur dioxide gas can be increased by activating activated carbon at 800 ° C. with ammonia gas.
However, neither document describes at all what activated carbon can be selected to achieve high activity, and thus the approach has not yet reached a practical application.

【0005】また、上記他方のアプローチについてみる
と、本来活性炭の亜硫酸ガス吸着、酸化活性(以下、単
に活性と略す。)は、排ガス中に水分がなければ非常に
大きい。しかしながら、生成物である硫酸は、吸湿性が
非常に大きいため、水蒸気の存在下では活性炭表面上で
水分を吸収して希硫酸を生成し、これが活性炭の細孔内
に充満して亜硫酸ガスの拡散および接触を妨害する結
果、活性炭の表面活性が充分に発揮されないことにな
る。そこで、活性炭に撥水性を付与して、生成した硫酸
を速やかに活性炭の細孔から排出することにより、当該
活性炭の高活性を維持させようとする各種の方法が提案
されている。
Regarding the other approach, the activity of sulfur dioxide adsorption and oxidation of activated carbon (hereinafter simply referred to as activity) is very large unless the exhaust gas contains moisture. However, the product sulfuric acid has a very high hygroscopicity, so in the presence of water vapor, it absorbs water on the activated carbon surface to generate dilute sulfuric acid, which fills the pores of the activated carbon to form sulfurous acid gas. As a result of impeding the diffusion and contact, the surface activity of the activated carbon is not sufficiently exerted. Therefore, various methods have been proposed for imparting water repellency to activated carbon and quickly discharging the generated sulfuric acid from the pores of the activated carbon to maintain the high activity of the activated carbon.

【0006】例えば、Chem. Eng. Comm. Vol.60(1987)、
P253には、平均直径0.78mmの活性炭にポリテトラ
フルオロエチレン(以下、PTFEと略す。)の分散液
を吹掛けることにより、PTFEの添加量8〜20%の
領域において亜硫酸ガスの吸着、酸化反応の速度定数が
3倍に上昇したとの事例が開示されている。また、特開
昭59−36531号公報には、活性炭に撥水化処理を
施すことで亜硫酸ガスの吸着、酸化活性が上昇するこ
と、具体的には5〜10mmの粒状活性炭にPTFE分
散液を含浸させ、200℃で2時間加熱処理することに
より、活性炭単味の触媒に比べて遥かに高い活性を示す
ことが開示されている。
For example, Chem. Eng. Comm. Vol. 60 (1987),
P253 is sprayed with a dispersion of polytetrafluoroethylene (hereinafter abbreviated as PTFE) on activated carbon having an average diameter of 0.78 mm, thereby adsorbing and oxidizing sulfurous acid gas in a region where the amount of PTFE added is 8 to 20%. An example is disclosed in which the rate constant of the reaction has increased three-fold. Japanese Unexamined Patent Publication (Kokai) No. 59-36531 discloses that a water-repellent treatment is applied to activated carbon to increase the activity of adsorbing and oxidizing sulfurous acid gas. Specifically, a PTFE dispersion liquid is applied to granular activated carbon of 5 to 10 mm. It is disclosed that by impregnating and heat-treating at 200 ° C. for 2 hours, the catalyst exhibits a much higher activity than activated carbon alone.

【0007】[0007]

【発明が解決しようとする課題】本発明者等は、このよ
うな従来の触媒としての活性炭の活性を高める2方向の
アプローチについて検証すべく、以下の確認実験を行な
った。先ず、一方のアプローチである活性炭上の亜硫酸
ガス吸着、酸化点を増大させる試みとして、塩基性点を
付与するといった限定的な考えに囚われることなく、活
性炭に何等かの表面変性をもたらすような種々の表面処
理を試みてみた。ここで、表面処理剤として、酸または
アルカリを用いた場合には、それと活性炭とを煮沸処理
した。また、高温のHBr、HCl、アンモニア等によ
るガス処理も試みた。さらに、スチーム、CO2 のよう
なガス中に、少量の還元性ガス(水素)や酸化性ガス
(弗素、塩素、酸素)を混ぜて、800℃の高温処理を
行なう方法などを検討した。この結果、アンモニアガス
による高温処理が最も高活性を発揮したが、数百時間の
運転により、その活性は未処理の活性炭と同等の程度ま
で低下してしまった。これに対して、スチーム、CO2
等の賦活ガス中に酸素を少量混ぜて高温処理する方法
は、活性向上効果が長時間持続したが、活性の向上幅が
小さく、当初の目標に到達し得なかった。
The present inventors conducted the following confirmation experiments in order to verify such a two-way approach for increasing the activity of activated carbon as a conventional catalyst. First, one approach is to adsorb sulfur dioxide on activated carbon and try to increase the oxidation point, without being bound by the limited idea of adding a basic point. I tried surface treatment. Here, when an acid or an alkali was used as the surface treatment agent, it and the activated carbon were boiled. Further, gas treatment with high-temperature HBr, HCl, ammonia or the like was also attempted. Further, a method was studied in which a small amount of a reducing gas (hydrogen) or an oxidizing gas (fluorine, chlorine, oxygen) was mixed into a gas such as steam or CO 2 to perform a high-temperature treatment at 800 ° C. As a result, the high temperature treatment with ammonia gas exhibited the highest activity, but after several hundred hours of operation, the activity was reduced to a level equivalent to that of untreated activated carbon. In contrast, steam, CO 2
In the method in which a small amount of oxygen is mixed in an activation gas such as that described above and the high-temperature treatment is carried out, the activity improving effect is maintained for a long time, but the activity improving width is small and the initial target could not be attained.

【0008】次に、本発明者等は、他方のアプローチで
ある活性炭の撥水化についての検証を行なった。先ず、
上述した従来の撥水化技術に基づいて、吸着、酸化活性
点の多い活性炭を撥水化処理することが最も接触硫酸化
反応の活性の向上に効果的であると考え、2.8〜4.
0mmφの粒径範囲にある各種市販の活性炭に、スプレ
ー法或いは含浸法によってPTFEを担持させ、その活
性を測定したところ、活性炭単味の触媒と比較してある
程度の活性の向上とその長時間の持続性が認められた。
しかしながら、大規模な工業的実施を考慮した場合に
は、他の競合する排煙脱硫プロセスに勝るためには、依
然として触媒としてこの程度の活性では充分とは言え
ず、より一層の触媒活性の向上が必要であるとの認識に
達した。
Next, the present inventors conducted verification on the other approach, that is, water repellency of activated carbon. First,
Based on the above-mentioned conventional water-repellent technology, it is considered that the water-repellent treatment of activated carbon having many active sites for adsorption and oxidation is most effective for improving the activity of the catalytic sulfation reaction. .
PTFE was supported on various types of commercially available activated carbon having a particle size range of 0 mmφ by the spray method or the impregnation method, and the activity was measured. Persistence was observed.
However, considering large-scale industrial practice, this level of activity as a catalyst is still not sufficient to surpass other competing flue gas desulfurization processes, and further improvement in catalytic activity Recognized that it is necessary.

【0009】ところで、この種の触媒として用いられる
活性炭としては、木材、褐炭などを活性化剤としての薬
品で処理したり、或いは木炭などを水蒸気で活性化処理
したもの、石炭を原料とするもの、椰子殻を用いたも
の、さらにはピートや石油系ピッチを原料とするもの等
各種の活性炭が知られている。そこで、本発明者等は、
上記アプローチとは視点を変えて、前提となる活性炭自
体が、その原料の相違によって撥水化処理した場合の活
性化効果に相違が生じるか否かを確認すべく、18種類
の活性炭について撥水化処理前後における活性の変化を
比較してみた。その結果、上記撥水化処理により、特に
石炭を主原料とする活性炭触媒が、のきなみ高活性を発
現したのに対して、他の椰子殻あるいはピート、石油系
ピッチなどを原料とする活性炭触媒は、それに比べてか
なり低い活性しか示さないという事実が判明した。この
ように、石炭を原料とする活性炭が、撥水化処理した場
合に優位性を示す理由については定かではないが、現段
階においては以下のように推定することができる。
As the activated carbon used as this type of catalyst, wood, lignite, etc. are treated with a chemical as an activator, or charcoal is activated with steam, or coal is used as a raw material. Various types of activated carbon, such as those using coconut shells and those using peat or petroleum pitch as a raw material, are known. Therefore, the present inventors,
By changing the viewpoint from the above approach, the activated carbon itself was used as a prerequisite for confirming whether or not the activation effect would be different when the water-repellent treatment was performed due to the difference in the raw materials. The change in activity before and after the chemical treatment was compared. As a result, by the water repellent treatment, the activated carbon catalyst using coal as a main raw material, in particular, exhibited high activity, while activated carbon using other coconut shells, peat, petroleum pitch, etc. as the raw material. It has been found that the catalyst has a much lower activity. As described above, it is not clear why activated carbon using coal as a raw material shows superiority when subjected to a water-repellent treatment, but it can be estimated as follows at this stage.

【0010】すなわち、石炭系の活性炭は、本来他の原
料からなる活性炭と比較して、亜硫酸ガスの吸着、酸化
活性点の数が多いと考えられる。ところが、石炭系の活
性炭は、他の原料からなる活性炭よりも疎水性において
劣るため、生成された硫酸の排出が遅く、この結果総括
活性がそれ程高い値を示さないものと思われる。したが
って、これに撥水化処理を施した場合には、活性点の数
のみによって活性炭の優劣が決まることになり、よって
本来の石炭系の活性炭における優れた活性が顕著に現れ
たものと考えられる。以上のことから、石炭を主原料と
する活性炭に撥水処理を施した活性炭触媒を用いること
により、排ガス中の硫黄酸化物の酸化除去性能に優れた
排煙脱硫プロセスを開発することができるという本発明
を完成するに至ったのである。
That is, it is considered that activated carbon of coal system has a larger number of active sites for adsorption and oxidation of sulfurous acid gas than activated carbon originally made of other raw materials. However, coal-based activated carbon is inferior in hydrophobicity to activated carbon made of other raw materials, so that the generated sulfuric acid is discharged slowly, and as a result, the overall activity is not considered to be so high. Therefore, when water-repellent treatment is applied to this, the superiority of activated carbon is determined only by the number of active points, and it is considered that the excellent activity in the original coal-based activated carbon was remarkably exhibited. . From the above, it can be said that a flue gas desulfurization process excellent in the performance of oxidizing and removing sulfur oxides in exhaust gas can be developed by using an activated carbon catalyst obtained by performing water repellent treatment on activated carbon made of coal as a main raw material. The present invention has been completed.

【0011】そこで次に、本発明者等は、石炭を主原料
とする活性炭に限らず一般的な各種の活性炭において、
撥水化により上記活性炭の活性向上をより一層発揮させ
るには、当該活性炭のどの部分を撥水化すれば効果的で
あるかを調べてみた。先ず、活性炭にPTFE分散液を
スプレー担持、或いは含浸担持する従来の方法で作成し
た活性炭触媒における弗素の分布をEPMAで面分析し
た。その結果、PTFE粒子は、活性炭の粒子内部には
全く侵入しておらず、すべて粒子外表面に付着している
ことが判明した。これは、市販の活性炭には、1μm以
上の細孔が殆ど存在しないため、直径が0.2〜0.4
μmの範囲にあるPTFE粒子が上記細孔内に侵入する
には、抵抗が大き過ぎるためと考えられる。ちなみに、
PTFE分散液に代えて、平均粒径が0.3μmのポリ
スチレン粒子の分散液を用いた場合についても、同様の
実験結果を得た。そして、これら2種類の撥水性粒子を
担持した活性炭触媒について活性試験を行なったとこ
ろ、PTFEを担持したものの方が、ポリスチレン粒子
を担持した活性炭触媒よりも僅かに活性が高いという知
見は得られたものの、いずれも期待するほどの高活性を
発現することはなかった。
[0011] Then, the present inventors, in addition to the activated carbon using coal as a main raw material, in general various activated carbon,
In order to further enhance the activity of the activated carbon by making it water-repellent, it was examined which part of the activated carbon was effective to make it water-repellent. First, the distribution of fluorine in the activated carbon catalyst prepared by the conventional method of spray-supporting or impregnating the PTFE dispersion on activated carbon was analyzed by EPMA. As a result, it was found that the PTFE particles did not penetrate into the activated carbon particles at all, and were all attached to the outer surfaces of the particles. This is because commercially available activated carbon hardly has pores of 1 μm or more, and thus has a diameter of 0.2 to 0.4.
It is considered that the resistance is too large for the PTFE particles in the range of μm to enter the pores. By the way,
Similar experimental results were obtained when a dispersion of polystyrene particles having an average particle size of 0.3 μm was used instead of the PTFE dispersion. Then, when an activity test was performed on the activated carbon catalyst supporting these two types of water-repellent particles, it was found that the activated carbon catalyst supporting PTFE had slightly higher activity than the activated carbon catalyst supporting polystyrene particles. However, none of them exhibited the expected high activity.

【0012】本発明者等はそこで、活性点近傍を含めた
活性炭の全表面を一様に撥水化することにより、生成硫
酸の排出が大幅に促進されることを期待し、活性炭にお
ける5nm以下の細孔直径を有する孔(以下、ミクロポ
アと略称する。)を含めた全表面の撥水化処理を行なう
ことにした。第1の方法として、活性炭に、100〜4
00℃の弗素ガスを適量流すことにより、表面弗素化度
の異なる種々の活性炭触媒を調製した。また、第2の方
法として、分子量の小さい撥水性物質であるステアリン
酸、スチレンオリゴマー(平均分子量約320)、弗素
含有油(平均分子量約500)等を適当な低沸点溶媒に
溶解させた後、これに活性炭を減圧下で浸漬し、細孔内
にこれらの溶液を充分浸透させた後に減圧乾燥して溶媒
を飛ばすことにより、撥水性物質で活性炭の細孔内をコ
ーティングした。このようにして調製した活性炭触媒の
比表面積は、撥水性物質の担持に伴う重量増加によるみ
かけ上の減少範囲内に収まっており、これらの担持物が
細孔を閉塞したり、破壊したりしていないことが確認さ
れた。
The inventors of the present invention hope that uniform discharge of the entire surface of the activated carbon including the vicinity of the active point will greatly promote the discharge of the produced sulfuric acid. The entire surface including the pores having a pore diameter of (hereinafter abbreviated as micropores) is subjected to a water-repellent treatment. As a first method, 100 to 4
Various activated carbon catalysts having different surface fluorination degrees were prepared by flowing an appropriate amount of fluorine gas at 00 ° C. As a second method, stearic acid, a styrene oligomer (average molecular weight of about 320), a fluorine-containing oil (average molecular weight of about 500) and the like, which are small water-repellent substances, are dissolved in a suitable low-boiling solvent, Activated carbon was immersed under reduced pressure, the solution was sufficiently penetrated into the pores, and then dried under reduced pressure to evaporate the solvent, thereby coating the inside of the activated carbon pores with a water-repellent substance. The specific surface area of the activated carbon catalyst prepared in this manner is within an apparent decrease range due to an increase in weight due to the support of the water-repellent substance, and these supports may block or destroy the pores. Not confirmed.

【0013】次いで、第1の方法によって得られた1〜
20%の弗素化率を有する種々の活性炭触媒を用いて、
亜硫酸ガス反応活性試験を行なったところ、弗素化率が
上昇するのに伴って、水をはじく性質が徐々に大きくな
ることが水面浮遊時間テスト(これは、撥水化処理した
活性炭粒子を水面に静かに浮かべ、その沈降開始時間と
沈降終了時間の平均値をとるもので、撥水性の相対比較
のための簡便法である。)から明らかになったものの、
亜硫酸ガスの吸着、酸化活性は、むしろ弗素化率の上昇
と逆比例して、低下して行くことが判った。また、第2
の方法によって得られたステアリン酸、スチレンオリゴ
マー、弗素化油等を担持した活性炭触媒にあっては、い
ずれも担持量が増加するのに伴って、同様に水面浮遊時
間テストによる撥水性の増大が認められるものの、亜硫
酸ガスの吸着、酸化活性については、0.5〜2%の添
加領域において活性炭単味の触媒活性を僅かに上回るの
みで、添加量の増大とともに活性が急速に低下して行く
ことが判った。
[0013] Next, 1 to 3 obtained by the first method
Using various activated carbon catalysts having a fluorination rate of 20%,
As a result of the sulfur dioxide gas reaction activity test, it was found that the water repelling property gradually increased as the fluorination rate increased. It floats gently and takes the average value of the sedimentation start time and sedimentation end time, which is a simple method for relative comparison of water repellency.)
It was found that the sulfuric acid gas adsorption and oxidation activities decreased rather in inverse proportion to the increase in the fluorination rate. Also, the second
In the activated carbon catalyst supporting stearic acid, styrene oligomer, fluorinated oil, and the like obtained by the method described above, the water repellency was similarly increased by the water surface floating time test as the supported amount increased. Although observed, the sulfur dioxide adsorption and oxidation activity only slightly exceeded the catalytic activity of activated carbon alone in the addition region of 0.5 to 2%, and the activity rapidly decreased as the amount of addition increased. It turns out.

【0014】以上のことから、活性炭のミクロポアを含
めた全面的な撥水化は、活性炭の吸着、酸化活性点を被
覆或いは破壊するために、充分な活性向上の効果が得ら
れなくなるものと推定した。そこで、本発明者等は、活
性炭のミクロポアは撥水化せずに、マクロポア(5nm
を超える細孔直径を有する孔)のみを撥水化することを
試みた。先ず、分子量が10万以上のポリエチレン、ポ
リスチレン粉末を60〜70℃に加熱したトルエンに数
%溶解させ、これに活性炭粒子を減圧下で浸漬した後
に、加熱しながら減圧乾燥してトルエンを徹底的に飛散
させた。このようにして得られた活性炭触媒は、撥水物
質が原料活性炭に対して0.3〜1.5wt%の担持範囲
において、かなり活性の向上を示した。これは、分子量
が10万以上のポリエチレン、ポリスチレンが仮に球状
でトルエン溶媒中に分散しているとすると、その直径は
溶媒に膨潤していないとしても7nm以上となり、これ
は到底活性炭のミクロポアに侵入できるサイズではな
い。したがって、この活性炭触媒は、活性炭粒子のマク
ロポアと外表面とを撥水化していると考えるべきであ
る。そして、上述したように、本反応系では、活性炭の
外表面の撥水化は、反応活性の向上にそれ程大きく寄与
していないことから、結局活性炭のマクロポアの撥水化
こそが、最も活性向上に寄与するものであることが推論
される。
From the above, it is presumed that the full water repellency of activated carbon, including the micropores, would not be able to obtain a sufficient activity improving effect because it would cover or destroy active sites for adsorption and oxidation of activated carbon. did. Therefore, the present inventors have proposed that the activated carbon micropores are not made water-repellent, but are macropores (5 nm).
(Pores having a pore diameter exceeding) was attempted to be water-repellent. First, a polyethylene or polystyrene powder having a molecular weight of 100,000 or more is dissolved in toluene heated to 60 to 70 ° C. by several percent, and activated carbon particles are immersed under reduced pressure. Scattered. The activated carbon catalyst thus obtained showed a considerable improvement in activity when the water-repellent substance was loaded in the range of 0.3 to 1.5% by weight based on the raw material activated carbon. This is because if polyethylene or polystyrene having a molecular weight of 100,000 or more is spherical and dispersed in a toluene solvent, its diameter becomes 7 nm or more even if it does not swell in the solvent. Not the size you can do. Therefore, it should be considered that the activated carbon catalyst makes the macropores and the outer surface of the activated carbon particles water-repellent. And, as described above, in this reaction system, the water repellency of the outer surface of the activated carbon does not significantly contribute to the improvement of the reaction activity. It is inferred that it contributes to

【0015】したがって、上述した石炭を主原料とする
活性炭に撥水化処理を施した活性炭触媒を用いた場合に
おいても、さらに当該撥水化処理として、原料活性炭に
おけるミクロポアを除くマクロポアを撥水化することに
より、より一層硫黄酸化物の酸化除去性能に優れた排煙
脱硫プロセスを開発することができるとの知見を得るに
至った。本発明は、かかる知見に基づいてなされたもの
で、他の排煙脱硫プロセスと比べて脱硫効率において遜
色が無く、よって経済性に優れる排煙脱硫を可能にする
活性炭触媒およびこれを用いた排煙脱硫方法を提供する
ことを目的とするものである。
Therefore, even in the case where the activated carbon catalyst obtained by subjecting the above-described activated carbon made of coal as a main raw material to a water-repellent treatment is used, the macropores other than the micropores in the activated carbon raw material are further treated as the water-repellent treatment. This led to the finding that it is possible to develop a flue gas desulfurization process that is more excellent in the performance of removing sulfur oxides by oxidation. The present invention has been made on the basis of such knowledge, and the activated carbon catalyst which enables flue gas desulfurization which is comparable in desulfurization efficiency as compared with other flue gas desulfurization processes and is therefore more economical, and a flue gas using the same. It is an object of the present invention to provide a smoke desulfurization method.

【0016】[0016]

【課題を解決するための手段】請求項1に記載の本発明
に係る活性炭触媒は、硫黄酸化物を含む排ガスと接触さ
せることにより、上記硫黄酸化物を吸着、酸化させて硫
酸として回収除去するための活性炭触媒であって、石炭
を主原料とする活性炭に、撥水化処理を施してなること
を特徴とするものである。ここで、請求項2に記載の発
明は、上記活性炭が、そのミクロポアを除いて撥水化処
理されていることを特徴とするものである。
According to the first aspect of the present invention, an activated carbon catalyst according to the present invention is brought into contact with an exhaust gas containing a sulfur oxide to adsorb and oxidize the sulfur oxide to recover and remove the sulfur oxide as sulfuric acid. Activated carbon using coal as a main raw material is subjected to a water-repellent treatment. Here, the invention according to claim 2 is characterized in that the activated carbon has been subjected to a water-repellent treatment except for its micropores.

【0017】また、請求項3〜5に記載の発明は、それ
ぞれ請求項2に記載の発明における撥水化処理の実施形
態であり、請求項3に記載の発明は、上記撥水化処理
が、分子量が1万以上の高分子撥水性物質を有機溶媒に
溶解して、上記活性炭に含浸担持させてなることを特徴
とするものであり、また請求項4に記載の発明は、上記
撥水化処理が、平均粒径15〜100nmの撥水性物質
の分散液を、上記活性炭に含浸担持させてなることを特
徴とするものである。さらに、請求項5に記載の発明
は、活性炭粉末と、平均粒径0.1〜1.0μmの弗素
樹脂の粒子またはその分散液とを混練成形してなること
を特徴とするものである。そして、請求項6に記載の本
発明に係る排煙脱硫方法は、上記請求項1〜5のいずれ
かに記載の活性炭触媒に、硫黄酸化物を含む排ガスを接
触させることにより、当該排ガス中の上記硫黄酸化物を
上記活性炭触媒に吸着、酸化させて硫酸として回収除去
することを特徴とするものである。
Further, the inventions according to claims 3 to 5 are embodiments of the water repellent treatment in the invention described in claim 2, respectively. 5. A method according to claim 4, wherein a high molecular weight water repellent substance having a molecular weight of 10,000 or more is dissolved in an organic solvent and impregnated and supported on the activated carbon. In the activating treatment, the activated carbon is impregnated and supported with a dispersion of a water-repellent substance having an average particle size of 15 to 100 nm. Further, the invention according to claim 5 is characterized in that the activated carbon powder is kneaded and formed with fluororesin particles having an average particle diameter of 0.1 to 1.0 μm or a dispersion thereof. And the flue gas desulfurization method according to the present invention according to claim 6 is characterized in that the activated carbon catalyst according to any one of claims 1 to 5 is brought into contact with an exhaust gas containing a sulfur oxide, whereby The method is characterized in that the sulfur oxide is adsorbed and oxidized on the activated carbon catalyst, and is recovered and removed as sulfuric acid.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る活性炭触媒の
実施形態について具体的に説明する。本発明に係る活性
炭触媒は、排ガス中の亜硫酸ガスを共存する酸素によっ
て酸化して硫酸として回収除去するためのものであっ
て、石炭を主原料とする活性炭に、撥水化処理を施した
ものである。ここで、上記撥水化処理を行なう場合に
は、高い活性を発現させるために、上述したように当該
活性炭のミクロポアを修飾しないような高分子の撥水性
物質を選定することが好ましい。このような撥水化物質
としては、ポリエチレン、ポリプロピレン、ポリスチレ
ン、弗素樹脂等を挙げることができる。また、石炭系の
活性炭に対する撥水化処理としては、原料活性炭の形状
をそのまま活かし、上記撥水性物質を有機溶媒に溶解し
て、上記石炭系の活性炭に含浸担持させる方法や、平均
粒径が15〜100nmの上記撥水性物質の分散液を、
上記石炭系の活性炭に含浸担持させる方法がある。上記
原料活性炭の形状をそのまま活かして撥水化処理する場
合には、特に後者の方法が最も高活性を得ることがで
き、その際の撥水化物質の好ましい添加量は、原料活性
炭に対して、0.2〜3wt%である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an activated carbon catalyst according to the present invention will be specifically described. The activated carbon catalyst according to the present invention is used for recovering and removing sulfuric acid as sulfuric acid by oxidizing sulfurous acid gas in exhaust gas by coexisting oxygen, and is obtained by subjecting activated carbon mainly made of coal to a water-repellent treatment. It is. Here, when performing the above-mentioned water-repellent treatment, it is preferable to select a high-molecular-weight water-repellent substance that does not modify the micropores of the activated carbon as described above in order to exhibit high activity. Examples of such a water-repellent substance include polyethylene, polypropylene, polystyrene, and fluorine resin. Further, as the water-repellent treatment for the coal-based activated carbon, a method of dissolving the water-repellent substance in an organic solvent and impregnating and supporting the coal-based activated carbon while utilizing the shape of the raw activated carbon as it is, 15 to 100 nm of the dispersion of the water-repellent substance,
There is a method of impregnating and supporting the above-mentioned coal-based activated carbon. In the case of performing the water-repellent treatment by utilizing the shape of the raw material activated carbon as it is, the latter method can obtain the highest activity, and the preferable addition amount of the water-repellent substance at that time is based on the raw material activated carbon. , 0.2 to 3% by weight.

【0019】さらに、原料活性炭に対して直接撥水化処
理を行なわずに、活性炭粉末を用い、この活性炭粉末
に、平均粒径0.1〜1.0μmの弗素樹脂の粒子また
はその分散液とを混練成形して撥水化された活性炭触媒
を得ることもできる。この場合に、使用する弗素樹脂と
しては、上述したPTFEの他、パーフルオロアルコキ
シ樹脂(PFA)、4弗化エチレン6弗化プロピレン共
重合体(FEP)、3弗化塩化エチレン樹脂(PCTE
F)等が好適である。これらの弗素樹脂は、ポリスチレ
ンやポリエチレン等よりも撥水性が大きく、しかも分散
液中におけるこれらの弗素樹脂の平均粒径は、0.2〜
0.4μmと比較的大きいために活性炭粉末のミクロポ
ア内に侵入することがなく、よってこれらを混練成形す
ることにより、マクロポアまでが撥水化された所望の活
性炭触媒を得ることができる。また、本方法によれば、
活性炭粉末を原料として任意形状のものを作ることがで
き、上述した活性の向上と併せて製造コストの観点から
も好適である。なお、上記触媒形状としては、ハニカム
状、板状、球状、円柱状、サドル状などを挙げられ、触
媒層の耐閉塞性が大きく、かつ触媒層の圧力損失が小さ
いものが好ましい。
Further, the raw activated carbon is not directly subjected to the water-repellent treatment, but the activated carbon powder is used, and the activated carbon powder is mixed with fluororesin particles having an average particle size of 0.1 to 1.0 μm or a dispersion thereof. Can be kneaded and molded to obtain a water-repellent activated carbon catalyst. In this case, as the fluororesin used, in addition to the above-mentioned PTFE, a perfluoroalkoxy resin (PFA), a tetrafluoroethylene hexafluoropropylene copolymer (FEP), and a trifluorinated ethylene chloride resin (PCTE)
F) and the like are preferred. These fluororesins have higher water repellency than polystyrene, polyethylene and the like, and the average particle size of these fluororesins in the dispersion is from 0.2 to
Since it is relatively large at 0.4 μm, it does not enter the micropores of the activated carbon powder, and therefore, by kneading and molding these, it is possible to obtain a desired activated carbon catalyst in which even macropores are made water-repellent. According to the method,
Activated carbon powder can be used as a raw material to make an arbitrary shape, which is suitable from the viewpoint of production cost in addition to the above-mentioned improvement in activity. Examples of the shape of the catalyst include a honeycomb shape, a plate shape, a spherical shape, a columnar shape, a saddle shape, and the like. A catalyst shape having a high blocking resistance and a small pressure loss of the catalyst layer is preferable.

【0020】[0020]

【実施例】次に、本発明を実施例により更に具体的に説
明する。 (実施例1)先ず、市販の石炭、椰子殻、ピート、木
材、石油ピッチ等原料を異にする活性炭18種を粗砕機
にかけて粉砕し、ステンレス製の篩にて2.8〜4.0
mmφの粒状触媒各50gを得た。但し、石油ピッチを
原料とする活性炭は、市販品として入手できるものが一
炭種しかなかったため、粒子径の異なる0.71〜1m
mφの粒状触媒を用いた。次に、この18種の活性炭
を、それぞれ窒素気流中、800℃で1時間焼成した。
以下、これを未処理触媒と呼ぶ。次に、市販の球状ポリ
スチレン(平均粒子径28nm)の水分散液(10wt
%)に脱イオン水を加えて50倍に希釈し、得られた球
状ポリスチレン分散液各100ccに、ポリスチレン未
担持触媒各20gを浸漬して、ロータリーエバボレータ
ーで減圧乾燥した後に、さらに45〜50℃の乾燥機中
にて12hr乾燥した。なお、球状ポリスチレンの担持
量は、ポリスチレン担持前後の活性炭の乾燥重量の差よ
り求めた。その値は、いずれも約1wt%程度となった。
Next, the present invention will be described more specifically with reference to examples. (Example 1) First, 18 kinds of activated carbons having different raw materials such as commercially available coal, coconut shell, peat, wood, and petroleum pitch were pulverized in a coarse crusher, and 2.8 to 4.0 with a stainless steel sieve.
50 g of each of the granular catalysts of mmφ were obtained. However, the activated carbon using petroleum pitch as a raw material had a particle diameter of 0.71 to 1 m, because only one type of activated carbon was available as a commercial product.
A mφ granular catalyst was used. Next, each of the 18 types of activated carbon was fired at 800 ° C. for 1 hour in a nitrogen stream.
Hereinafter, this is referred to as an untreated catalyst. Next, an aqueous dispersion of a commercially available spherical polystyrene (average particle diameter 28 nm) (10 wt.
%) With deionized water to dilute it 50-fold, immerse 20 g of each unsupported polystyrene catalyst in 100 cc of each of the obtained spherical polystyrene dispersions, and dry under reduced pressure with a rotary evaporator. For 12 hours. The amount of spherical polystyrene carried was determined from the difference in dry weight of activated carbon before and after carrying polystyrene. The values were all about 1 wt%.

【0021】次に、未処理活性炭及び球状ポリスチレン
担持活性炭を、接触硫酸化反応試験装置にかけてその活
性試験を行った。各触媒とも各々内径16mmφのジャ
ケット付き硝子製反応器に40ml充填し、SO2 ;10
00 vol ppm、O2 ;4 vol%、CO2 ;10 vol%、
2 ;balance、相対湿度100%の組成のガスをこの
反応器に50℃、165dm3/hrで流し、SO2 計(紫外
式・赤外式)により出口SO2 濃度を測定し触媒活性を
評価した。図2は、各触媒の試験開始後100hrにおけ
るの脱硫性能を示すものである(試料名:A1〜G1)。
同図から、撥水処理を行った石炭を原料とする活性炭が
比較的高い脱硫性能を示し、接触硫酸化反応に適当であ
ることを見い出した。
Next, the untreated activated carbon and the activated carbon carrying spherical polystyrene were subjected to a catalytic sulfation reaction test apparatus to conduct an activity test. Each catalyst was filled in a jacketed glass reactor having an inner diameter of 16 mmφ with a capacity of 40 ml, and SO 2 ;
00 vol ppm, O 2 ; 4 vol%, CO 2 ; 10 vol%,
A gas having a composition of N 2 : balance and relative humidity of 100% was passed through this reactor at 50 ° C. and 165 dm 3 / hr, and the outlet SO 2 concentration was measured by a SO 2 meter (ultraviolet / infrared) to determine the catalytic activity. evaluated. FIG. 2 shows the desulfurization performance of each catalyst 100 hours after the start of the test (sample names: A1 to G1).
From this figure, it has been found that activated carbon made from water-repellent coal has a relatively high desulfurization performance and is suitable for a catalytic sulfation reaction.

【0022】(実施例2)市販されている6種の活性炭
(石炭系:A1,F2/椰子殻系:A2/ピート系:C2/
木材系:A4/石油ピッチ系:G1)を、それぞれ窒素気
流中、800℃で1時間焼成した。次に、上記活性炭を
それぞれ市販されている粉砕器にて粉砕した後、活性炭
(約100g/1回)をステンレス製の篩(106μm
以上212μm以下)を用いて、篩振盪器にて2時間の
分級操作を行った。この様な操作を繰り返すことにより
得た活性炭を以下微粉活性炭と呼び、得られた微粉活性
炭粒子の代表径(以下粉砕粒子径と呼ぶ)は、組合せた
各篩のメッシュの平均値とした。すなわち、上記操作の
場合には、得られた微粉活性炭の粉砕粒子径は159μ
mとなる。次に、市販のPTFE分散液(60wt%)に
水を加えて6倍に希釈し、上記微粉活性炭をそれぞれ該
PTFE分散液と混練した後、圧縮成形機にて成形し
(成形圧500kgf/cm2 )、PTFEを10wt%含有す
る触媒を得た。次いで、この混合成形触媒を45〜50
℃にて、12hr乾燥した後、粗砕・分級して、2.8〜
4.0mmφの粒状触媒を得た。
(Example 2) Six types of commercially available activated carbon (coal: A1, F2 / coconut shell: A2 / peat: C2 /
Wood-based: A4 / petroleum pitch-based: G1) was fired at 800 ° C. for 1 hour in a nitrogen stream. Next, the activated carbon was pulverized by a commercially available pulverizer, and then activated carbon (about 100 g / time) was passed through a stainless steel sieve (106 μm).
(212 μm or less), a classification operation was performed for 2 hours with a sieve shaker. The activated carbon obtained by repeating such an operation is hereinafter referred to as fine activated carbon, and the representative diameter of the obtained fine activated carbon particles (hereinafter referred to as a crushed particle diameter) is an average value of the mesh of each combined sieve. That is, in the case of the above operation, the pulverized particle size of the obtained pulverized activated carbon was 159 μm.
m. Next, water was added to a commercially available PTFE dispersion (60 wt%) to dilute it 6-fold, and the fine powdered activated carbon was kneaded with each of the PTFE dispersions, followed by molding with a compression molding machine (forming pressure 500 kgf / cm). 2 ) A catalyst containing 10% by weight of PTFE was obtained. Next, the mixed molded catalyst was used for 45 to 50 times.
After drying at 12 ° C for 12 hours, it was crushed and classified,
A 4.0 mmφ granular catalyst was obtained.

【0023】(実施例3)また、上記実施例2で取り上
げた6種の活性炭を、それぞれ窒素気流中、800℃で
1時間焼成した。次に、市販のポリエチレン0.5gを
各々60〜70℃に温めたトルエン約100ccに溶解さ
せ、上記活性炭50gを該ポリエチレン溶液に浸漬し、
ロータリーエバボレーターで減圧含浸および乾燥を行っ
た。その後、100〜110℃の乾燥機中にて12hr減
圧乾燥を行い、ポリエチレンの担持量が約1wt%の触媒
を調製した。
Example 3 The six types of activated carbons taken in Example 2 were fired at 800 ° C. for 1 hour in a nitrogen stream. Next, 0.5 g of commercially available polyethylene was dissolved in about 100 cc of toluene each heated to 60 to 70 ° C., and 50 g of the activated carbon was immersed in the polyethylene solution.
Vacuum impregnation and drying were performed with a rotary evaporator. Thereafter, drying was performed under reduced pressure in a dryer at 100 to 110 ° C. for 12 hours to prepare a catalyst having a polyethylene loading of about 1 wt%.

【0024】そして、上記実施例2および実施例3にお
いて調製した触媒を、実施例1に記載された反応試験装
置を用いて同じ条件で活性試験を行い、それぞれの触媒
活性を評価した。図1は、このようにして得られた各触
媒における試験開始後100hrの脱硫性能を、実施例1
の結果も含めて示したものである。図1により、原料活
性炭のうちでは、特に石炭系活性炭が椰子殻系活性炭や
ピッチ系活性炭よりも一段と高い脱硫性能を示すことが
明らかであり、さらに市販されている炭種(石炭、椰子
殻、ピート、木材、石油ピッチ)の異なる活性炭に対し
実施した上記実施例1〜実施例3のミクロポアを除いた
撥水化方法は、いずれも非常に有効であったことが判
る。
The catalysts prepared in Examples 2 and 3 were subjected to an activity test using the reaction test apparatus described in Example 1 under the same conditions to evaluate the respective catalyst activities. FIG. 1 shows the desulfurization performance of each catalyst obtained in this manner for 100 hours after the start of the test.
It is shown including the result of the above. From FIG. 1, it is clear that among the activated carbon raw materials, coal-based activated carbon in particular exhibits a much higher desulfurization performance than coconut shell-based activated carbon and pitch-based activated carbon, and furthermore, commercially available coal types (coal, coconut shell, It can be seen that the water-repellent methods except for micropores in Examples 1 to 3 above, which were performed on activated carbons having different peats, woods, and oil pitches, were all very effective.

【0025】[0025]

【発明の効果】以上説明したように、請求項1〜5のい
ずれかに記載の活性炭触媒にあっては、原料活性炭とし
て石炭を主原料とする活性炭を用い、これに撥水化処理
を施しているので、石炭系の活性炭が有する吸着、酸化
活性点の数が多いという特性を活かし、かつ生成硫酸の
排出性能を向上させることにより、他の原料からなる活
性炭触媒と比較して、より優れた硫黄酸化物に対する活
性を得ることができる。特に請求項2に記載の発明によ
うに、最も接触硫酸化反応に寄与するミクロポアを除い
て、生成硫酸の流路となるマクロポアの撥水化処理を行
なうことにより、一層顕著な活性の向上効果を得ること
ができる。したがって、請求項1〜5のいずれかに記載
の活性炭触媒を用いた請求項6に記載の排煙脱硫方法に
よれば、他の排煙脱硫プロセスと比べて脱硫効率におい
て遜色が無く、よって経済性に優れる排煙脱硫が可能に
なる。
As described above, in the activated carbon catalyst according to any one of the first to fifth aspects, activated carbon using coal as a main raw material is used as a raw activated carbon, and the activated carbon is subjected to a water-repellent treatment. Therefore, taking advantage of the properties of coal-based activated carbon that it has a large number of adsorption and oxidation active sites, and by improving the emission performance of generated sulfuric acid, it is more excellent than activated carbon catalysts made from other raw materials. Activity against sulfur oxides. Particularly, as in the invention according to claim 2, by excluding the micropores that contribute most to the catalytic sulfation reaction, the macropores serving as the flow path for the generated sulfuric acid are subjected to the water-repellent treatment, whereby the activity is more significantly improved. Can be obtained. Therefore, according to the flue gas desulfurization method according to claim 6 using the activated carbon catalyst according to any one of claims 1 to 5, there is no inferiority in desulfurization efficiency as compared with other flue gas desulfurization processes, and therefore economical Exhaust gas desulfurization with excellent performance is enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における活性試験の結果を示す
グラフである。
FIG. 1 is a graph showing the results of an activity test in Examples of the present invention.

【図2】実施例1の活性試験の結果を示す図表である。FIG. 2 is a table showing the results of an activity test of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若林 中 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 戸河里 脩 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naka Wakabayashi 2-1-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Chiyoda Kako Construction Co., Ltd. (72) Inventor Osamu Togawa Tsurumi-ku, Tsurumi-ku, Yokohama, Kanagawa Prefecture Chuo 2-chome No. 1 Chiyoda Kako Construction Co., Ltd. (72) Inventor Takashi Kimura 2-1-1 Tsurumi Chuo Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Chiyoda Kako Construction Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物を含む排ガスと接触させるこ
とにより、上記硫黄酸化物を吸着、酸化させて硫酸とし
て回収除去するための活性炭触媒であって、石炭を主原
料とする活性炭に、撥水化処理を施してなることを特徴
とする活性炭触媒。
An activated carbon catalyst for adsorbing and oxidizing the sulfur oxide to recover and remove it as sulfuric acid by contacting with an exhaust gas containing a sulfur oxide. Activated carbon catalyst characterized by being subjected to hydration treatment.
【請求項2】 上記活性炭は、5nm以下の細孔直径を
有する孔を除いて撥水化処理されていることを特徴とす
る請求項1に記載の活性炭触媒。
2. The activated carbon catalyst according to claim 1, wherein the activated carbon has been subjected to a water-repellent treatment except for pores having a pore diameter of 5 nm or less.
【請求項3】 上記撥水化処理は、分子量が1万以上の
高分子撥水性物質を有機溶媒に溶解して、上記活性炭に
含浸担持させてなることを特徴とする請求項2に記載の
活性炭触媒。
3. The method according to claim 2, wherein the water-repellent treatment is performed by dissolving a polymer water-repellent substance having a molecular weight of 10,000 or more in an organic solvent and impregnating and supporting the activated carbon. Activated carbon catalyst.
【請求項4】 上記撥水化処理は、平均粒径15〜10
0nmの撥水性物質の分散液を、上記活性炭に含浸担持
させてなることを特徴とする請求項2に記載の活性炭触
媒。
4. The water repellent treatment according to claim 1, wherein the average particle diameter is 15 to 10.
The activated carbon catalyst according to claim 2, wherein a dispersion of a water-repellent substance having a thickness of 0 nm is impregnated and supported on the activated carbon.
【請求項5】 活性炭粉末と、平均粒径0.1〜1.0
μmの弗素樹脂の粒子またはその分散液とを混練成形し
てなることを特徴とする請求項2に記載の活性炭素触
媒。
5. An activated carbon powder having an average particle size of 0.1 to 1.0.
3. The activated carbon catalyst according to claim 2, wherein the activated carbon catalyst is formed by kneading and molding a particle of a fluororesin having a particle diameter of μm or a dispersion thereof.
【請求項6】 請求項1ないし5のいずれかに記載の活
性炭触媒に、硫黄酸化物を含む排ガスを接触させること
により、当該排ガス中の上記硫黄酸化物を上記活性炭触
媒に吸着、酸化させて硫酸として回収除去することを特
徴とする排煙脱硫方法。
6. An activated carbon catalyst according to claim 1, which is contacted with an exhaust gas containing a sulfur oxide to adsorb and oxidize the sulfur oxide in the exhaust gas on the activated carbon catalyst. A flue gas desulfurization method comprising collecting and removing sulfuric acid.
JP14720397A 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method Expired - Lifetime JP3562551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14720397A JP3562551B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14720397A JP3562551B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPH10314588A true JPH10314588A (en) 1998-12-02
JP3562551B2 JP3562551B2 (en) 2004-09-08

Family

ID=15424902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14720397A Expired - Lifetime JP3562551B2 (en) 1997-05-21 1997-05-21 Activated carbon catalyst and flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JP3562551B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077985A1 (en) * 2006-01-06 2007-07-12 Cataler Corporation Activated carbon and canister using the same
JP2008136982A (en) * 2006-12-05 2008-06-19 Chiyoda Corp Carbon-based catalyst for flue-gas desulfurization and its manufacturing method
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
CN103551117A (en) * 2013-09-25 2014-02-05 蚌埠首创滤清器有限公司 N-capric acid modified cocoanut active charcoal adsorbent and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU93013B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Process for the removal of heavy metals from fluids
LU93014B1 (en) 2016-04-04 2017-10-05 Ajo Ind S A R L Catalyst mixture for the treatment of waste gas
LU93012B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Sulfur dioxide removal from waste gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077985A1 (en) * 2006-01-06 2007-07-12 Cataler Corporation Activated carbon and canister using the same
US7967899B2 (en) 2006-01-06 2011-06-28 Cataler Corporation Activated carbon and canister using the same
JP4880619B2 (en) * 2006-01-06 2012-02-22 株式会社キャタラー Activated carbon, molded activated carbon and canister using the same
JP2008136982A (en) * 2006-12-05 2008-06-19 Chiyoda Corp Carbon-based catalyst for flue-gas desulfurization and its manufacturing method
JP2009226254A (en) * 2008-03-19 2009-10-08 Chiyoda Kako Kensetsu Kk Mercury adsorbent and method of treating gas using the same
US8524186B2 (en) 2008-03-19 2013-09-03 Chiyoda Corporation Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
CN103551117A (en) * 2013-09-25 2014-02-05 蚌埠首创滤清器有限公司 N-capric acid modified cocoanut active charcoal adsorbent and preparation method thereof

Also Published As

Publication number Publication date
JP3562551B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP4697638B2 (en) Activated carbon with catalytic activity
JP6845359B2 (en) Exhaust gas purification system and method using adsorbent polymer composite material
CN111479630B (en) Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof
JP3777123B2 (en) Method for producing spherical activated carbon
CN105188910B (en) Nitrogenous acticarbon and use its method
JP4277065B2 (en) Molded activated carbon
US20070000385A1 (en) Adsorbents for removing H2S, other odor causing compounds, and acid gases from gas streams and methods for producing and using these adsorbents
JPH08332376A (en) Preparation of sorbent composition
JP4491793B2 (en) Activated carbon production method, activated carbon fine particles produced thereby, and use thereof.
CN111712316A (en) Chemisorption oxidation process and sorbents prepared therefrom
JPH08239279A (en) Nitrogen-containing molecular sieve activated carbon, production and use thereof
JP3562551B2 (en) Activated carbon catalyst and flue gas desulfurization method
WO1992004104A1 (en) Method for removing organochlorine compound from combustion exhaust gas
Bagreev et al. Wood-based activated carbons as adsorbents of hydrogen sulfide: a study of adsorption and water regeneration processes
CN114746175A (en) Molecular polar substance adsorption carbon
JP3556085B2 (en) Activated carbon material and flue gas desulfurization method using this activated carbon material
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
CN110201661A (en) A kind of manganese base charcoal of porous array structure and its preparation method and application
JPH01236941A (en) Gaseous ammonia adsorbent
JP3896639B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP5076471B2 (en) Method for producing carbon-based catalyst for flue gas desulfurization
JP7212053B2 (en) How to remove heavy metals from liquids
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP2721509B2 (en) Adsorbent for aldehydes
JPH10314585A (en) Active carbon catalyst and flue gas denitrification process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term