JPH10314585A - Active carbon catalyst and flue gas denitrification process - Google Patents

Active carbon catalyst and flue gas denitrification process

Info

Publication number
JPH10314585A
JPH10314585A JP9147200A JP14720097A JPH10314585A JP H10314585 A JPH10314585 A JP H10314585A JP 9147200 A JP9147200 A JP 9147200A JP 14720097 A JP14720097 A JP 14720097A JP H10314585 A JPH10314585 A JP H10314585A
Authority
JP
Japan
Prior art keywords
activated carbon
water
carbon catalyst
catalyst
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9147200A
Other languages
Japanese (ja)
Inventor
Masaru Takeda
大 武田
Yoichi Umehara
洋一 梅原
Mamoru Iwasaki
守 岩▲崎▼
Osamu Tokari
脩 戸河里
Takashi Kimura
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP9147200A priority Critical patent/JPH10314585A/en
Publication of JPH10314585A publication Critical patent/JPH10314585A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flue gas denitrification process of being not inferior to other flue gas denitrification processes in respect of the denitrification efficiency and, therefore, carrying out the flue denitrification process of superior economic efficiency by using an active carbon catalyst for treating pores of desired diameter and providing them with repellency to demonstrate high activities. SOLUTION: An active carbon catalyst is used for adsorbing and oxidizing sulfur oxide and recovering and removing the same by bringing the sulfur oxide into contact with exhaust gas containing the sulfur oxide, and a repellent substance having the diameter equivalent to a ball in the range of 10-100 nm, preferably 10-70 nm is carried on granular active carbon in the range of 0.2-3.0 wt.%, preferably 0.5-1.5 wt.%. to the granular active carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中に含まれ
る硫黄酸化物を、接触硫酸化反応によって硫酸として回
収除去するための活性炭触媒およびこれを用いた排煙脱
硫方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated carbon catalyst for recovering and removing sulfur oxides contained in exhaust gas as sulfuric acid by a catalytic sulfation reaction, and to a flue gas desulfurization method using the same.

【0002】[0002]

【従来の技術】従来より、排ガス中に含まれる亜硫酸ガ
ス等の硫黄酸化物を、低温で共存する酸素によって酸化
することにより最終的に硫酸とし、これをそのまま硫酸
として、或いはこれとカルシウム化合物とを反応させる
ことにより石膏として回収するプロセスは周知である。
このような、排ガス中の亜硫酸ガス等を酸化させる触媒
としては、活性炭が最も好ましいとされている。すなわ
ち、上記触媒として、例えばアルミナ、シリカ、チタニ
ア、ゼオライトのようなセラミックス系担体を用いた場
合には、それだけでは活性が不足するために、これに触
媒種として金属或いは金属酸化物を加える必要がある。
ところが、これらの触媒種は、生成する硫酸の攻撃を受
け、溶解または変質してしまうために、長時間にわたっ
て安定した活性を維持することができないという欠点が
ある。これに対して、上記活性炭にあっては、何の触媒
種も担持することなく活性が発現し、かつそれが長時間
劣化することなく持続するという特長を有するからであ
る。
2. Description of the Related Art Heretofore, sulfur oxides such as sulfurous acid gas contained in exhaust gas have been oxidized by coexisting oxygen at a low temperature to finally produce sulfuric acid, which can be used as it is as sulfuric acid, or can be combined with calcium compounds. The process of recovering as gypsum by reacting is known.
Activated carbon is considered to be the most preferable as such a catalyst for oxidizing sulfurous acid gas or the like in exhaust gas. That is, when a ceramic-based carrier such as alumina, silica, titania, or zeolite is used as the above catalyst, the activity alone is insufficient, so it is necessary to add a metal or metal oxide as a catalyst species to this. is there.
However, these catalyst species have a drawback that they cannot maintain stable activity for a long period of time because they are attacked by generated sulfuric acid and are dissolved or deteriorated. On the other hand, the activated carbon has a feature that the activity is exhibited without carrying any catalyst species and the activity is maintained without deterioration for a long time.

【0003】しかしながら、排煙脱硫装置としての工業
的使用にあたって、市販の活性炭をそのまま用いた場合
には、触媒活性が低いために、所望の脱硫効果を得るた
めには触媒充填量が極端に大きくなってしまい、よって
湿式排煙脱硫プロセス等の他の脱硫プロセスと比較して
経済的に太刀打ちすることができないという問題点があ
る。ところで、本来活性炭の亜硫酸ガス吸着、酸化活性
(以下、単に活性と略す。)は、排ガス中に水分がなけ
れば非常に大きい。しかしながら、生成物である硫酸
は、吸湿性が非常に大きいため、水蒸気の存在下では活
性炭表面上で水分を吸収して希硫酸を生成し、これが活
性炭の細孔内に充満して亜硫酸ガスの拡散および接触を
妨害する結果、活性炭の表面活性が充分に発揮されない
ことになる。そこで、活性炭に撥水性を付与して、生成
した硫酸を速やかに活性炭の細孔から排出することによ
り、当該活性炭の高活性を維持させようとする各種の方
法が提案されている。
However, in the case of industrial use as a flue gas desulfurization device, when commercially available activated carbon is used as it is, the catalyst activity is low, so that the catalyst loading is extremely large to obtain a desired desulfurization effect. As a result, there is a problem that compared with other desulfurization processes such as a wet flue gas desulfurization process, it cannot be economically competitive. By the way, the sulfur dioxide adsorption and oxidation activity (hereinafter simply abbreviated as activity) of activated carbon is very large unless the exhaust gas contains moisture. However, the product sulfuric acid has a very high hygroscopicity, so in the presence of water vapor, it absorbs water on the activated carbon surface to generate dilute sulfuric acid, which fills the pores of the activated carbon to form sulfurous acid gas. As a result of impeding the diffusion and contact, the surface activity of the activated carbon is not sufficiently exerted. Therefore, various methods have been proposed for imparting water repellency to activated carbon and quickly discharging the generated sulfuric acid from the pores of the activated carbon to maintain the high activity of the activated carbon.

【0004】例えば、Chem. Eng. Comm. Vol.60(1987)、
P253には、平均直径0.78mmの活性炭にポリテトラ
フルオロエチレン(以下、PTFEと略す。)の分散液
を吹掛けることにより、PTFEの添加量8〜20%の
領域において亜硫酸ガスの吸着、酸化反応の速度定数が
3倍に上昇したとの事例が開示されている。また、特開
昭59−36531号公報には、活性炭に撥水化処理を
施すことで亜硫酸ガスの吸着、酸化活性が上昇するこ
と、具体的には5〜10mmの粒状活性炭にPTFE分
散液を含浸させ、200℃で2時間加熱処理することに
より、活性炭単味の触媒に比べて遥かに高い活性を示す
ことが開示されている。
For example, Chem. Eng. Comm. Vol. 60 (1987),
P253 is sprayed with a dispersion of polytetrafluoroethylene (hereinafter abbreviated as PTFE) on activated carbon having an average diameter of 0.78 mm, thereby adsorbing and oxidizing sulfurous acid gas in a region where the amount of PTFE added is 8 to 20%. An example is disclosed in which the rate constant of the reaction has increased three-fold. Japanese Unexamined Patent Publication (Kokai) No. 59-36531 discloses that a water-repellent treatment is applied to activated carbon to increase the activity of adsorbing and oxidizing sulfurous acid gas. Specifically, a PTFE dispersion liquid is applied to granular activated carbon of 5 to 10 mm. It is disclosed that by impregnating and heat-treating at 200 ° C. for 2 hours, the catalyst exhibits a much higher activity than activated carbon alone.

【0005】[0005]

【発明が解決しようとする課題】本発明者等は、このよ
うな従来の触媒としての活性炭の活性を高める方策の有
効性を検証すべく、以下の確認実験を行なった。先ず、
上述した従来の撥水化技術に基づいて、2.8〜4.0
mmφの粒径範囲にある各種市販の活性炭に、スプレー
法或いは含浸法によってPTFEを担持させ、その活性
を測定したところ、活性炭単味の触媒と比較して、ある
程度の活性の向上とその長時間の持続性が認められた。
しかしながら、大規模な工業的実施を考慮した場合に
は、他の競合する排煙脱硫プロセスに勝るためには、依
然として触媒としてこの程度の活性では充分とは言え
ず、より一層の触媒活性の向上が必要であるとの認識に
達した。
The present inventors conducted the following confirmation experiments in order to verify the effectiveness of such a conventional measure for increasing the activity of activated carbon as a catalyst. First,
2.8 to 4.0 based on the above-mentioned conventional water repellent technology.
PTFE was supported on various types of commercially available activated carbon having a particle size range of mmφ by the spray method or the impregnation method, and the activity was measured. Was observed.
However, considering large-scale industrial practice, this level of activity as a catalyst is still not sufficient to surpass other competing flue gas desulfurization processes, and further improvement in catalytic activity Recognized that it is necessary.

【0006】そこで、本発明者等は、撥水化により上記
活性炭の活性向上をより一層発揮させるためには、当該
活性炭のどの部分を撥水化すれば効果的であるかを調べ
てみた。先ず、活性炭にPTFE分散液をスプレー担
持、或いは含浸担持する従来の方法で作成した活性炭触
媒における弗素の分布をEPMAで面分析した。その結
果、PTFE粒子は、活性炭の粒子内部には全く侵入し
ておらず、すべて粒子外表面に付着していることが判明
した。これは、市販の活性炭には、1μm以上の細孔が
殆ど存在しないため、直径が0.2〜0.4μmの範囲
にあるPTFE粒子が上記細孔内に侵入するには、抵抗
が大き過ぎるためと考えられる。ちなみに、PTFE分
散液に代えて、平均粒径が0.3μmのポリスチレン粒
子の分散液を用いた場合についても、同様の実験結果を
得た。そして、これら2種類の撥水性粒子を担持した活
性炭触媒について活性試験を行なったところ、PTFE
を担持したものの方が、ポリスチレン粒子を担持した活
性炭触媒よりも僅かに活性が高いという知見は得られた
ものの、いずれも期待するほどの高活性を発現すること
はなかった。
Therefore, the present inventors have examined which portion of the activated carbon is more effective in making the activated carbon water-repellent in order to further enhance the activity of the activated carbon by imparting water repellency. First, the distribution of fluorine in the activated carbon catalyst prepared by the conventional method of spray-supporting or impregnating the PTFE dispersion on activated carbon was analyzed by EPMA. As a result, it was found that the PTFE particles did not penetrate into the activated carbon particles at all, and were all attached to the outer surfaces of the particles. This is because commercially available activated carbon hardly has pores of 1 μm or more, so that the resistance is too large for PTFE particles having a diameter in the range of 0.2 to 0.4 μm to enter the pores. It is thought to be. Incidentally, similar experimental results were obtained when a dispersion of polystyrene particles having an average particle diameter of 0.3 μm was used instead of the PTFE dispersion. When an activity test was performed on the activated carbon catalyst supporting these two types of water-repellent particles, PTFE was obtained.
Was found to be slightly higher in activity than the activated carbon catalyst supporting polystyrene particles, but none of them exhibited the expected high activity.

【0007】本発明者等はそこで、活性点近傍を含めた
活性炭の全表面を一様に撥水化することにより、生成硫
酸の排出が大幅に促進されることを期待し、活性炭にお
ける5nm以下の細孔直径を有する孔(以下、ミクロポ
アと略称する。)を含めた全表面の撥水化処理を行なう
ことにした。第1の方法として、活性炭に、100〜4
00℃の弗素ガスを適量流すことにより、表面弗素化度
の異なる種々の活性炭触媒を調製した。また、第2の方
法として、分子量の小さい撥水性物質であるステアリン
酸、スチレンオリゴマー(平均分子量約320)、弗素
含有油(平均分子量約500)等を適当な低沸点溶媒に
溶解させた後、これに活性炭を減圧下で浸漬し、細孔内
にこれらの溶液を充分浸透させた後に減圧乾燥して溶媒
を飛ばすことにより、撥水性物質で活性炭の細孔内をコ
ーティングした。このようにして調製した活性炭触媒の
比表面積は、撥水性物質の担持に伴う重量増加によるみ
かけ上の減少範囲内に収まっており、これらの担持物が
細孔を閉塞したり、破壊したりしていないことが確認さ
れた。
[0007] The inventors of the present invention hope that the uniform surface of the activated carbon including the vicinity of the active point is made water-repellent to greatly promote the discharge of the produced sulfuric acid. The entire surface including the pores having a pore diameter of (hereinafter abbreviated as micropores) is subjected to a water-repellent treatment. As a first method, 100 to 4
Various activated carbon catalysts having different surface fluorination degrees were prepared by flowing an appropriate amount of fluorine gas at 00 ° C. As a second method, stearic acid, a styrene oligomer (average molecular weight of about 320), a fluorine-containing oil (average molecular weight of about 500) and the like, which are small water-repellent substances, are dissolved in a suitable low-boiling solvent, Activated carbon was immersed under reduced pressure, the solution was sufficiently penetrated into the pores, and then dried under reduced pressure to evaporate the solvent, thereby coating the inside of the activated carbon pores with a water-repellent substance. The specific surface area of the activated carbon catalyst prepared in this manner is within an apparent decrease range due to an increase in weight due to the support of the water-repellent substance, and these supports may block or destroy the pores. Not confirmed.

【0008】次いで、第1の方法によって得られた1〜
20wt%の弗素化率を有する種々の活性炭触媒を用い
て、亜硫酸ガス反応活性試験を行なったところ、弗素化
率が上昇するのに伴って、水をはじく性質が徐々に大き
くなることが水面浮遊時間テスト(これは、撥水化処理
した活性炭粒子を水面に静かに浮かべ、その沈降開始時
間と沈降終了時間の平均値をとるもので、撥水性の相対
比較のための簡便法である。)から明らかになったもの
の、亜硫酸ガスの吸着、酸化活性は、むしろ弗素化率の
上昇と逆比例して、低下して行くことが判った。また、
第2の方法によって得られたステアリン酸、スチレンオ
リゴマー、弗素化油等を担持した活性炭触媒にあって
は、いずれも担持量が増加するのに伴って、同様に水面
浮遊時間テストによる撥水性の増大が認められるもの
の、亜硫酸ガスの吸着、酸化活性については、0.5〜
2%の添加領域において活性炭単味の触媒活性を僅かに
上回るのみで、添加量の増大とともに活性が急速に低下
して行くことが判った。
[0008] Next, 1 to 4 obtained by the first method
A sulfur dioxide gas reaction activity test was carried out using various activated carbon catalysts having a fluorination rate of 20 wt%. As the fluorination rate increased, the water repelling property gradually increased. Time test (this is a simple method for relative comparison of water repellency, in which the activated carbon particles subjected to water repellency treatment are gently floated on the water surface, and the average value of the sedimentation start time and sedimentation end time is calculated.) However, it was found that the sulfurous acid gas adsorption and oxidation activities decreased in inverse proportion to the increase in the fluorination rate. Also,
In the activated carbon catalyst supporting stearic acid, styrene oligomer, fluorinated oil, and the like obtained by the second method, the water repellency was similarly measured by the water surface floating time test as the supported amount increased. Although the increase is observed, the sulfuric acid gas adsorption and oxidation activity are 0.5 to
It was found that in the 2% addition region, the activity slightly increased only slightly over the catalytic activity of the activated carbon alone, and the activity rapidly decreased with an increase in the added amount.

【0009】以上のことから、活性炭のミクロポアを含
めた全面的な撥水化は、活性炭の吸着、酸化活性点を被
覆或いは破壊するために、充分な活性向上の効果が得ら
れなくなるものと推定した。そこで、本発明者等は、活
性炭において最も活性に寄与すると考えられるミクロポ
アは撥水化せずに、もっぱら生成硫酸の排出流路となる
マクロポア(5nmを超える細孔直径を有する孔)のみ
を撥水化することを試みた。先ず、分子量が10万以上
のポリエチレン、ポリスチレン粉末を60〜70℃に加
熱したトルエンに数%溶解させ、これに活性炭粒子を減
圧下で浸漬した後に、加熱しながら減圧乾燥してトルエ
ンを徹底的に飛散させた。このようにして得られた活性
炭触媒は、撥水性物質が原料活性炭に対して0.3〜
1.5wt%の担持範囲において、かなり活性の向上を示
した。
From the above, it is presumed that the full water repellency of activated carbon, including the micropores, covers or destroys active sites for adsorption and oxidation of activated carbon, so that it is not possible to obtain a sufficient activity improving effect. did. Therefore, the present inventors have found that micropores, which are considered to most contribute to the activity of activated carbon, do not become water-repellent, but repel only macropores (pores having a pore diameter of more than 5 nm) which serve as a discharge channel for generated sulfuric acid. Tried to hydrate. First, a polyethylene or polystyrene powder having a molecular weight of 100,000 or more is dissolved in toluene heated to 60 to 70 ° C. by several percent, and activated carbon particles are immersed under reduced pressure. Scattered. The activated carbon catalyst thus obtained has a water-repellent substance of 0.3 to
In the 1.5 wt% loading range, the activity was significantly improved.

【0010】これは、分子量が10万以上のポリエチレ
ン、ポリスチレンが仮に球状でトルエン溶媒中に分散し
ているとすると、その直径は溶媒に膨潤していないとし
ても7nm以上となり、これは到底活性炭のミクロポア
に侵入できるサイズではない。したがって、この活性炭
触媒は、活性炭粒子のマクロポアと外表面とを撥水化し
ていると考えるべきである。そして、上述したように、
本反応系では、活性炭の外表面の撥水化は、反応活性の
向上にそれ程大きく寄与していないことから、結局活性
炭のマクロポアの撥水化こそが、最も活性向上に寄与す
るものであることが推論される。
[0010] If polyethylene and polystyrene having a molecular weight of 100,000 or more are supposed to be spherical and dispersed in a toluene solvent, their diameter becomes 7 nm or more even if they do not swell in the solvent. It is not a size that can penetrate the micropore. Therefore, it should be considered that the activated carbon catalyst makes the macropores and the outer surface of the activated carbon particles water-repellent. And, as mentioned above,
In this reaction system, the water repellency of the outer surface of the activated carbon does not contribute much to the improvement of the reaction activity, so that the water repellency of the macropores of the activated carbon contributes most to the improvement of the activity. Is inferred.

【0011】そこで次に、原料活性炭におけるマクロポ
アの内の、どの程度の細孔径のものを撥水化すること
が、最も活性向上に寄与するのかの知見を得るため、そ
れぞれのポリスチレン(以下、PSと略す。)粒子の平
均直径が10、28、55、102、300nmと異な
る5種のラテックス(サイズが比較的均一なPS球状粒
子を10wt%程度、水に分散させたもの)を準備し、こ
れらを全て0.1〜5wt%に希釈して、各々に原料活性
炭を減圧下で浸漬した後に、減圧乾燥することにより活
性炭触媒を調製し、それぞれ活性試験に供した。その結
果、いずれの活性炭触媒においても、最高の活性を発現
するPSの最適添加量は、1wt%付近にあること、平均
直径が28nmおよび55nmのものが高い活性を示
し、10nmと102nmのものはそれよりも若干活性
が低くなり、さらに平均直径300nmのものは、その
活性において未処理の活性炭と大差がないことが判明し
た。この5種類の活性炭触媒につき、触媒粒子破断面を
SEM観察したところ、平均直径が55nm以下のPS
粒子は、万遍なく活性炭粒子の内部まで侵入しているの
に対して、102nmのPS粒子は活性炭粒子の表面近
傍に多く存在しており、さらに300nmのPS粒子は
活性炭の粒子外表面にのみ付着していた。
[0011] Then, in order to obtain the knowledge that the degree of pore repellency of the macropores in the raw material activated carbon contributes most to the improvement of the activity, each polystyrene (hereinafter, referred to as PS) was used. 5 types of latexes (average particle diameters of 10, 28, 55, 102, and 300 nm) (PS spherical particles having a relatively uniform size of about 10 wt% dispersed in water) are prepared. These were all diluted to 0.1 to 5% by weight, and each of them was immersed in a raw material activated carbon under reduced pressure, and then dried under reduced pressure to prepare an activated carbon catalyst, which was subjected to an activity test. As a result, in any of the activated carbon catalysts, the optimum addition amount of PS exhibiting the highest activity is around 1 wt%, those with average diameters of 28 nm and 55 nm show high activity, and those with 10 nm and 102 nm show high activity. It was found that the activity was slightly lower than that, and that the average diameter of 300 nm was not much different from the untreated activated carbon in the activity. SEM observation of catalyst particle fracture surfaces of these five types of activated carbon catalysts revealed that the average diameter of PS was 55 nm or less.
The particles uniformly penetrate into the inside of the activated carbon particles, whereas the 102 nm PS particles are abundant near the surface of the activated carbon particles, and the 300 nm PS particles are located only on the outer surface of the activated carbon particles. Had adhered.

【0012】平均直径10nmのPS粒子を含浸した活
性炭触媒が、55nmおよび102nmのPS粒子を含
浸したものよりも活性が低くなった理由については、推
定の域を出ないが、PS粒子が細径になる程、原料活性
炭のミクロポアを閉塞し易くなるためであると考えられ
る。したがって、上記実験結果から、平均直径が28n
mのPS粒子が侵入できる最小径以上のマクロポアを全
て撥水化すれば良いことを示しているものと思われる。
これを確認すべく、上記PS粒子に代えて、平均粒子径
30nmのPTFE分散液を入手し、これを上述したP
Sラテックスと同様の方法で活性炭に含浸して活性炭触
媒を調製した。そして、この活性炭触媒についても活性
試験を行なった結果、平均粒子径が28nmのPS粒子
を担持した上記活性炭触媒に勝るとも劣らない活性を示
した。
The reason why the activated carbon catalyst impregnated with PS particles having an average diameter of 10 nm is lower in activity than those impregnated with PS particles of 55 nm and 102 nm does not fall within the estimated range, but the PS particles have a small diameter. This is considered to be due to the fact that the micropores of the raw material activated carbon are more likely to be clogged. Therefore, from the above experimental results, the average diameter is 28n.
This indicates that it is necessary to make all the macropores having a diameter not less than the minimum diameter into which the m PS particles can penetrate water-repellent.
To confirm this, a PTFE dispersion having an average particle diameter of 30 nm was obtained in place of the PS particles,
Activated carbon was impregnated in the same manner as S latex to prepare an activated carbon catalyst. An activity test was also performed on this activated carbon catalyst. As a result, the activated carbon catalyst showed an activity not inferior to that of the activated carbon catalyst loaded with PS particles having an average particle diameter of 28 nm.

【0013】このようにして、マクロポアを撥水化する
ことが活性の向上に大きく寄与することが上記活性試験
によって確認された。また、同時に上記PS粒子を用い
た実験において、以下のような知見も得るに至った。す
なわち、PSを有機溶剤等に溶融させて細孔内に含浸す
るよりも、10〜100nmの球状PSの形で含浸させ
た方がかなり高い活性が得られるという知見である。こ
れは、前者の方法で担持したPSは平面状に担持される
のに対して、後者の方法によれば表面に凹凸のあるPS
膜が生成され、この結果液体に対する見かけの接触角が
大きくなるためであると推測される。このようにして、
当初目標としていた高活性を有する活性炭触媒を得るこ
とができ、本発明を完成するに至ったのである。
[0013] The above activity test confirmed that making the macropores water repellent greatly contributed to the improvement of the activity. At the same time, the following findings were obtained in an experiment using the PS particles. That is, it is a finding that considerably higher activity can be obtained by impregnating PS in the form of a spherical PS of 10 to 100 nm than by melting PS in an organic solvent or the like and impregnating the pores. This is because, while the PS carried by the former method is carried in a planar shape, the PS carried by the latter method has an uneven surface.
It is presumed that a film is formed, and as a result, the apparent contact angle with the liquid increases. In this way,
It was possible to obtain an activated carbon catalyst having high activity, which was initially targeted, and completed the present invention.

【0014】本発明は、かかる知見に基づいてなされた
もので、所望の径の細孔を撥水化処理することができて
高活性を発現することができる活性炭触媒、およびこれ
を用いることにより、他の排煙脱硫プロセスと比べて脱
硫効率において遜色が無く、よって経済性に優れる排煙
脱硫を可能にする排煙脱硫方法を提供することを目的と
するものである。
The present invention has been made on the basis of the above findings, and an activated carbon catalyst capable of exhibiting high activity by allowing water-repellent treatment of pores having a desired diameter, and the use of the activated carbon catalyst. It is another object of the present invention to provide a flue gas desulfurization method that is comparable in desulfurization efficiency as compared with other flue gas desulfurization processes, and is thus capable of performing flue gas desulfurization with excellent economic efficiency.

【0015】[0015]

【課題を解決するための手段】請求項1に記載の本発明
に係る活性炭触媒は、硫黄酸化物を含む排ガスと接触さ
せることにより、上記硫黄酸化物を吸着、酸化させて硫
酸として回収除去するための活性炭触媒であって、粒状
活性炭に、10〜100nmの球相当直径を有する撥水
性物質を、上記活性炭に対して0.2〜3.0wt%担持
してなることを特徴とするものである。ここで、請求項
2に記載の発明は、上記撥水性物質の球相当直径が、1
0〜70nmの範囲であることを特徴とするものであ
り、また請求項3に記載の発明は、上記撥水性物質を、
上記活性炭に対して0.5〜1.5wt%担持することを
特徴とするものである。
According to the first aspect of the present invention, an activated carbon catalyst according to the present invention is brought into contact with an exhaust gas containing a sulfur oxide to adsorb and oxidize the sulfur oxide to recover and remove the sulfur oxide as sulfuric acid. Activated carbon catalyst for supporting a water-repellent substance having a sphere equivalent diameter of 10 to 100 nm on granular activated carbon in an amount of 0.2 to 3.0 wt% based on the activated carbon. is there. Here, in the invention according to claim 2, the sphere equivalent diameter of the water-repellent substance is 1
It is characterized in that it is in the range of 0 to 70 nm, and the invention according to claim 3 is characterized in that the water-repellent substance is
It is characterized in that 0.5 to 1.5 wt% is supported on the activated carbon.

【0016】また、請求項4に記載の発明は、請求項1
ないし3に記載の撥水性物質が、ポリエチレン、ポリス
チレン、ポリプロピレン、ポリテトラフルオロエチレ
ン、パーフルオロアルコキシ樹脂、4弗化エチレン6弗
化プロピレン共重合体、または3弗化塩化エチレン樹脂
であることを特徴とするものである。そして、請求項5
に記載の本発明に係る排煙脱硫方法は、請求項1ないし
4のいずれかに記載の活性炭触媒に、硫黄酸化物を含む
排ガスを接触させることにより、当該排ガス中の上記硫
黄酸化物を上記活性炭触媒に吸着、酸化させて硫酸とし
て回収除去することを特徴とするものである。
The invention described in claim 4 is the first invention.
3. The water-repellent substance according to any one of Items 1 to 3, wherein the water-repellent substance is polyethylene, polystyrene, polypropylene, polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene hexafluoropropylene copolymer, or trifluoroethylene chloride resin. It is assumed that. And Claim 5
In the flue gas desulfurization method according to the present invention described in the above, by contacting the activated carbon catalyst according to any one of claims 1 to 4 with an exhaust gas containing a sulfur oxide, the sulfur oxide in the exhaust gas It is characterized in that it is adsorbed and oxidized on an activated carbon catalyst and recovered and removed as sulfuric acid.

【0017】[0017]

【発明の実施の形態】以下、本発明に係る活性炭触媒の
実施形態について具体的に説明する。本発明に係る活性
炭触媒は、排ガス中の亜硫酸ガスを共存する酸素によっ
て酸化して硫酸として回収除去するためのものであっ
て、粒状活性炭の活性に寄与するミクロポアを除いたマ
クロポアを撥水化処理したことを主たる特長とするもの
である。ここで、使用する活性炭としては、一般に市販
されている各種の活性炭が適用可能であるが、その粒径
は、活性炭触媒を充填する充填槽の形式によって適宜選
択すべきである。ちなみに、一般的な充填槽の場合に
は、粒径が小さい程活性が高くなるが、逆に煤塵等によ
って閉塞し易くなるため、通常球相当直径として1〜1
0mm、望ましくは3〜6mmのものを採用すれば好適
である。また、その他の形状として、板状、ハニカム状
等の各種形状のものが自由に選択可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an activated carbon catalyst according to the present invention will be specifically described. The activated carbon catalyst according to the present invention is for oxidizing sulfurous acid gas in exhaust gas by coexisting oxygen to recover and remove it as sulfuric acid.The macropores excluding micropores that contribute to the activity of the granular activated carbon are subjected to water repellent treatment. The main feature is that it has been done. Here, as the activated carbon to be used, various commercially available activated carbons can be applied, and the particle size thereof should be appropriately selected depending on the type of a filling tank filled with the activated carbon catalyst. By the way, in the case of a general filling tank, the smaller the particle size, the higher the activity.
It is preferable to adopt a thickness of 0 mm, preferably 3 to 6 mm. As other shapes, various shapes such as a plate shape and a honeycomb shape can be freely selected.

【0018】上記活性炭の撥水化による活性向上に大き
な影響を与える第1の重要な点は、活性炭において活性
の大きく寄与するミクロポアを除いたマクロポアを撥水
化させるべく、特定の直径範囲にある撥水化物質の粒子
を当該活性炭に含浸させる点にある。なお、この撥水性
物質の粒子は、通常球状であるが、球状以外の形状であ
っても良い。この撥水化物質の粒子の平均直径(球以外
の形状においては球相当直径の平均値)の範囲は、10
〜100nmであることが必要であり、より好ましくは
10〜70nmの範囲である。このような撥水化物質の
粒子の粒径を制御、調製するために適用可能な技術とし
ては、例えば医療用ラテックスの製造技術が挙げられ
る。これは、PSの乳化重合時に分散系の粒子サイズを
均一にする技術として公知のものであり、28nm以上
の球状粒子の製造は、習熟した当業者にとって容易な技
術であるとともに、10nmの粒子の製造も可能であ
る。通常、上記技術によって得られたラテックス粒子の
粒径分布は、極めてシャープであり、95%以上の粒子
が平均粒子径をγとすると、γ±0.1γに収まる。ま
た、他の例としては、市販のPTFE分散液を用いる技
術がある。この場合に、市販のPTFE分散液は、平均
粒径0.3μmのPTFE粒子を含むものであるが、乳
化条件を適当に調節することにより、平均粒径を20〜
400nmの範囲において自由に調製することができ
る。
The first important point that has a great effect on the improvement of the activity by making the activated carbon water-repellent is that it is in a specific diameter range in order to make the macropores excluding the micropores that greatly contribute to the activity of the activated carbon water-repellent. The point is that the activated carbon is impregnated with particles of a water repellent substance. The particles of the water-repellent substance are usually spherical, but may have a shape other than spherical. The average diameter of the particles of the water-repellent substance (the average value of the equivalent sphere diameter in a shape other than a sphere) is 10
It is necessary that the thickness be in the range of 10 to 70 nm, and more preferably in the range of 10 to 70 nm. As a technique applicable for controlling and preparing the particle size of such water-repellent substance particles, for example, there is a technique for producing a medical latex. This is known as a technique for making the particle size of the dispersion system uniform during the emulsion polymerization of PS, and the production of spherical particles of 28 nm or more is an easy technique for a skilled person skilled in the art, and the production of spherical particles of 10 nm Manufacturing is also possible. Usually, the particle size distribution of latex particles obtained by the above technique is extremely sharp, and if 95% or more of the particles has an average particle diameter of γ, it falls within γ ± 0.1γ. Another example is a technique using a commercially available PTFE dispersion. In this case, the commercially available PTFE dispersion contains PTFE particles having an average particle size of 0.3 μm, and the average particle size can be adjusted to 20 to 30 μm by appropriately adjusting the emulsification conditions.
It can be freely prepared in the range of 400 nm.

【0019】次いで、重要な点は、活性炭への上記撥水
化物質の粒子の担持量には、最適な範囲がある点であ
る。すなわち、当該担持量が多すぎると、活性炭の表面
に複数層にわたって撥水化物質がコーティングされるこ
とになり、この結果余分な撥水化物質の粒子が生成硫酸
の排出路となるマクロポアを狭めたり、あるいは閉塞し
たりして活性化を阻害するからであり、他方上記担持量
が少なすぎると、本来予定していた撥水化効果、すなわ
ち生成硫酸の排出効果が十分に得られなくなって、いず
れも不適当だからである。本発明者等の知見によれば、
担持量の最適値は撥水化物質の粒子径によって若干異な
るものの、最適範囲は、通常0.2〜3wt%、好ましく
は0.5〜1.5wt%の範囲である。
An important point is that the amount of the particles of the water-repellent substance carried on the activated carbon has an optimum range. That is, if the amount is too large, the surface of the activated carbon will be coated with the water-repellent substance over a plurality of layers, and as a result, particles of the extra water-repellent substance will narrow the macropores serving as a discharge path for the generated sulfuric acid. This is because or, or block the activation to inhibit the activation, on the other hand, if the supported amount is too small, the originally intended effect of water repellency, that is, the sufficient effect of discharging the generated sulfuric acid will not be obtained, Both are inappropriate. According to the findings of the present inventors,
Although the optimum value of the supported amount slightly varies depending on the particle size of the water-repellent substance, the optimum range is usually 0.2 to 3 wt%, preferably 0.5 to 1.5 wt%.

【0020】このような撥水性物質を活性炭に含浸させ
るための好適な方法としては、例えば、操作が容易なロ
ータリーエバポレーター等の容器に、活性炭と当該活性
炭をほぼ浸す程度の撥水性物質の粒子分散液とを収納
し、減圧下において溶媒(この場合は、水)を飛ばしな
がら、活性炭に上記撥水性物質の粒子を担持する方法が
ある。この際に、水が蒸発した後は、撥水性物質の融点
以下の温度、通常は60℃以下で3〜12時間乾燥す
る。なお、撥水性物質の粒子分散液を減圧下で含浸した
後、これをそのまま箱型の乾燥機に入れる方法も有る
が、当該方法にあっては、ロータリーエバポレーターを
用いた方法と比較して、担持が不均一になりかねないの
で好ましくない。
As a preferable method for impregnating the activated carbon with such a water-repellent substance, for example, a method of dispersing the activated carbon and the water-repellent substance to such an extent that the activated carbon is substantially immersed in a container such as a rotary evaporator which is easy to operate. There is a method in which a liquid and a water-repellent substance are supported on activated carbon while a solvent (water in this case) is blown off under reduced pressure. At this time, after the water evaporates, it is dried at a temperature lower than the melting point of the water-repellent substance, usually at 60 ° C. or lower for 3 to 12 hours. Incidentally, after impregnating the particle dispersion of the water-repellent substance under reduced pressure, there is also a method of directly putting this in a box-shaped dryer, but in the method, compared with a method using a rotary evaporator, It is not preferable because the loading may be uneven.

【0021】次に、本発明における上記撥水性物質とし
ては、上述したPSやPTFEの他に、以下のような各
種の撥水性物質が適用可能である。ここで、撥水性物質
とは、水との接触角が90゜以上のものであり、このよ
うな撥水性を有し、かつ平均直径が上述した10〜10
0nm、好ましくは10〜70nmの粒子であって、水
あるいは硫酸溶液に安定なものであれば使用することが
可能である。これらの要件を満たす撥水性物質として
は、一般的に炭化水素系の樹脂、あるいは弗素樹脂等が
ある。具体的には、炭化水素系の樹脂としては、既に例
示したPSの他、ポリスチレンやポリプロピレンなどが
好適である。また、上記弗素樹脂としては、一般に市販
されているものを使用することができるが、弗素の含有
率の高いもの、すなわち撥水性に優れるものを選択する
ことが好ましい。このような弗素樹脂としては、上記P
TFEの他に、パーフルオロアルコキシ樹脂(PF
A)、4弗化エチレン6弗化プロピレン共重合体(FE
P)あるいは3弗化塩化エチレン樹脂(PCTEF)な
どが好適である。
Next, as the above-mentioned water-repellent substance in the present invention, in addition to the above-mentioned PS and PTFE, the following various water-repellent substances can be applied. Here, the water-repellent substance has a contact angle of 90 ° or more with water, has such water repellency, and has an average diameter of 10 to 10 as described above.
Particles of 0 nm, preferably 10 to 70 nm, can be used as long as they are stable in water or sulfuric acid solution. As the water-repellent substance satisfying these requirements, there is generally a hydrocarbon-based resin or a fluorine resin. Specifically, as the hydrocarbon resin, polystyrene, polypropylene, and the like are preferable in addition to PS, which has already been exemplified. Further, as the above-mentioned fluorine resin, a commercially available resin can be used, but it is preferable to select a resin having a high fluorine content, that is, a resin having excellent water repellency. Examples of such a fluorine resin include the above P
In addition to TFE, perfluoroalkoxy resin (PF
A) Tetrafluoroethylene 6-propylene copolymer (FE)
P) or trifluoroethylene chloride resin (PCTEF) is preferred.

【0022】以上のようにして調製された活性炭触媒を
用いて、これに硫黄酸化物を含む排ガスを接触させて、
当該排ガス中の上記硫黄酸化物を上記活性炭触媒に吸
着、酸化させて硫酸として回収除去することにより、他
の排煙脱硫プロセスと比べて脱硫効率において遜色が無
く、よって経済性に優れる排煙脱硫を行うことが可能に
なる。
Using the activated carbon catalyst prepared as described above, an exhaust gas containing sulfur oxide is brought into contact with the activated carbon catalyst,
By adsorbing and oxidizing the sulfur oxides in the exhaust gas on the activated carbon catalyst and recovering the sulfur oxides as sulfuric acid, there is no inferiority in desulfurization efficiency as compared with other flue gas desulfurization processes, and thus the flue gas desulfurization is excellent in economy. Can be performed.

【0023】[0023]

【実施例】次に、本発明を、粒状活性炭に球状PSおよ
び球状PTFEを担持した本発明に係る実施例によって
更に具体的に説明する。 (実施例1)市販されている6種の活性炭(A〜F)
を、それぞれ窒素気流中、800℃で1時間焼成した。
以下、これを球状ポリスチレン未担持触媒と呼ぶ。次
に、平均粒子径28nmの市販の球状ポリスチレンの水
分散液(10wt%)に脱イオン水を加えて50倍に希釈
し、ポリスチレン未担持触媒各20gをこの球状ポリス
チレン分散液各100ccに浸漬し、ロータリーエバボ
レーターで減圧乾燥した後に、これを45〜50℃の乾
燥機中にて12hr乾燥した。次いで、得られた活性炭触
媒におけるポリスチレンの担持量は担持前後の活性炭の
乾燥重量の差より求めたところ、球状ポリスチレンの担
持量は、いずれも約1wt%程度となった。
Next, the present invention will be described more specifically with reference to examples according to the present invention in which granular activated carbon carries spherical PS and spherical PTFE. (Example 1) Six types of commercially available activated carbons (AF)
Were fired in a nitrogen stream at 800 ° C. for 1 hour.
Hereinafter, this is referred to as a spherical polystyrene unsupported catalyst. Next, deionized water was added to an aqueous dispersion (10 wt%) of a commercially available spherical polystyrene having an average particle diameter of 28 nm to dilute it 50-fold, and 20 g of each unsupported polystyrene catalyst was immersed in 100 cc of the spherical polystyrene dispersion. After drying under reduced pressure with a rotary evaporator, this was dried in a dryer at 45 to 50 ° C. for 12 hours. Next, the amount of polystyrene supported on the obtained activated carbon catalyst was determined from the difference between the dry weights of the activated carbon before and after the loading, and the amount of spherical polystyrene supported was about 1 wt%.

【0024】次いで、このようにして調製した活性炭触
媒(平均粒子径28nm・担持量約1wt%)と、比較の
ための球状ポリスチレン未担持触媒とを接触硫酸化反応
試験装置にて活性試験に供した。各触媒をそれぞれ内径
16mmφのジャケット付き硝子製反応器に40ml充
填し、SO2;1000 vol ppm、O2;4 vol%、CO
2;10vol%、N2;balance、相対湿度100%の組成
のガスを、この反応器に50℃、200dm3/hrで流し
(SV=5000hr-1)、SO2 計(紫外式・赤外式)
により出口SO2濃度を測定し触媒活性を評価した。図
1は、試験開始後100hrにおける各触媒の脱硫性能
を示すものである。図1より、6種の活性炭に平均粒子
径28nmの球状ポリスチレンを約1wt%担持した触媒
は、球状ポリスチレン未担持触媒に比べ、いずれも脱硫
性能が大幅に向上したことが判る。
Next, the activated carbon catalyst (average particle size 28 nm, supported amount: about 1 wt%) thus prepared and a catalyst not supported on spherical polystyrene for comparison were subjected to an activity test using a contact sulfation reaction test apparatus. did. 40 ml of each catalyst was charged into a jacketed glass reactor having an inner diameter of 16 mmφ, SO 2 ; 1000 vol ppm, O 2 ; 4 vol%, CO 2
2 ; 10 vol%, N 2 ; balance, and a relative humidity of 100% gas were passed through this reactor at 50 ° C. and 200 dm 3 / hr (SV = 5000 hr −1 ), and a SO 2 meter (ultraviolet / infrared) was used. formula)
The SO 2 concentration at the outlet was measured to evaluate the catalytic activity. FIG. 1 shows the desulfurization performance of each catalyst 100 hours after the start of the test. From FIG. 1, it can be seen that the desulfurization performance of each of the catalysts in which about 1 wt% of spherical polystyrene having an average particle diameter of 28 nm was supported on six types of activated carbon was significantly improved as compared to the catalyst not supporting spherical polystyrene.

【0025】(実施例2)実施例1と同様の活性炭A
を、窒素気流中、800℃で1時間焼成した。次に、市
販の球状ポリスチレン(平均粒子径が10、28、5
5、102、305nmの計5種類)の水分散液(10
wt%)に脱イオン水を加えて希釈し、種々の濃度(0〜
5wt%)に調製し、上記活性炭20gを濃度の異なる上
記球状ポリスチレン分散液各100ccに浸漬し、ロー
タリーエバボレーターで減圧乾燥した。その後、45〜
50℃の乾燥機中にて12hr乾燥を行い、球状ポリスチ
レンの平均粒子径および担持量の異なる種々の触媒を調
製した。
(Example 2) Activated carbon A similar to that in Example 1
Was fired at 800 ° C. for 1 hour in a nitrogen stream. Next, commercially available spherical polystyrene (having an average particle diameter of 10, 28, 5
5, 102, 305 nm total 5 types) aqueous dispersion (10
wt%) and diluted with deionized water to obtain various concentrations (0 to 0%).
5% by weight), and 20 g of the activated carbon was immersed in 100 cc of the spherical polystyrene dispersions having different concentrations, and dried with a rotary evaporator under reduced pressure. Then 45-
Drying was performed in a dryer at 50 ° C. for 12 hours to prepare various catalysts having different average particle diameters and supported amounts of spherical polystyrene.

【0026】このようにして調製した活性炭触媒および
球状ポリスチレン担持触媒を、実施例1に記載された反
応試験装置を用いて同じ条件で活性試験を行い触媒活性
を評価した。図2は、試験開始後100hrにおける各触
媒の脱硫性能を示すものであり、また、図3は、図2の
結果に基づき、脱硫性能に対する球状ポリスチレン担持
量1wt%時における球状ポリスチレンの粒子径の影響を
示すものである。先ず図2から判るように、平均粒子径
102nm以下の球状ポリスチレンを担持した活性炭触
媒は高い脱硫性能を示し、球状ポリスチレン未担持触媒
に比べて脱硫性能が大幅に向上した。また、球状ポリス
チレンの最適量は0.2〜3wt%程度であることが判明
した。更に、図3より、担持する球状ポリスチレンの粒
子径の最適径は、5〜100nm(好ましくは、10〜
70nm)の範囲にあることが判る。
The activated carbon catalyst and the spherical polystyrene supported catalyst thus prepared were subjected to an activity test using the reaction test apparatus described in Example 1 under the same conditions to evaluate the catalytic activity. FIG. 2 shows the desulfurization performance of each catalyst 100 hours after the start of the test. FIG. 3 shows, based on the results of FIG. It shows the effect. First, as can be seen from FIG. 2, the activated carbon catalyst loaded with spherical polystyrene having an average particle diameter of 102 nm or less showed high desulfurization performance, and the desulfurization performance was greatly improved as compared with the catalyst not loaded with spherical polystyrene. It was also found that the optimal amount of spherical polystyrene was about 0.2 to 3% by weight. Further, from FIG. 3, the optimal diameter of the spherical polystyrene to be supported is 5 to 100 nm (preferably, 10 to 100 nm).
70 nm).

【0027】(実施例3)実施例1と同様の活性炭A
を、窒素気流中、800℃で1時間焼成した。次に、平
均粒子径が50、300nmの2種類の市販の球状PT
FE分散液(60wt%)に脱イオン水を加えて希釈し、
上記活性炭20gを該各球状PTFE分散液100cc
に浸漬し、ロータリーエバボレーターで減圧乾燥した。
その後、45〜50℃の乾燥機中にて12hr乾燥を行
い、球状PTFEの担持量が1wt%で、かつ平均粒子径
が異なる活性炭触媒を調製した。次いで、得られた活性
炭触媒を、実施例1に記載された反応試験装置を用いて
同じ条件で活性試験を行い触媒活性を評価した。図3
は、試験開始後100hrにおける上記活性炭触媒の脱
硫性能を示すものである。図3より、球状PTFEは球
状ポリスチレンと同様な挙動を示すが、同一粒径、且つ
同一担持量で比較した場合、球状PTFEを担持した方
が、より高い脱硫性能を示すことが判る。
Example 3 Activated carbon A similar to that of Example 1
Was fired at 800 ° C. for 1 hour in a nitrogen stream. Next, two types of commercially available spherical PTs having average particle diameters of 50 and 300 nm were used.
Dilute the FE dispersion (60 wt%) by adding deionized water,
20 g of the above activated carbon was added to each spherical PTFE dispersion 100 cc.
And dried under reduced pressure with a rotary evaporator.
Thereafter, drying was performed in a dryer at 45 to 50 ° C. for 12 hours to prepare an activated carbon catalyst having a spherical PTFE support amount of 1 wt% and different average particle diameters. Next, the obtained activated carbon catalyst was subjected to an activity test using the reaction test apparatus described in Example 1 under the same conditions to evaluate the catalyst activity. FIG.
Shows the desulfurization performance of the activated carbon catalyst 100 hours after the start of the test. From FIG. 3, it can be seen that spherical PTFE exhibits the same behavior as spherical polystyrene, but when compared with the same particle size and the same amount of support, supporting spherical PTFE exhibits higher desulfurization performance.

【0028】(比較例1)さらに、活性炭に担持する撥
水性物質として、球状ポリスチレンと溶解ポリスチレン
との差異を確認するために、同様の活性炭Aを、窒素気
流中、800℃で1時間焼成するとともに、市販のポリ
スチレン(0、0.15、0.3、0.6、1、1.5
g)を各々50〜70℃に温めたトルエン約100cc
に溶解させ、ポリスチレン濃度が異なる溶液を調製し
て、上記活性炭50gを各々濃度の異なる該ポリスチレ
ン溶液に浸漬し、ロータリーエバボレーターで減圧含浸
および乾燥を行った。その後、同様に45〜50℃の乾
燥機中にて12hr減圧乾燥を行い、ポリスチレンの担持
量の異なる種々の触媒(0〜3wt%)を調製した。以
下、この触媒を溶解ポリスチレン担持触媒と呼ぶ。次い
で、得られた溶解ポリスチレン担持触媒と、実施例2に
おいて調製した活性炭触媒を、実施例1に記載された反
応試験装置を用いて同じ条件で活性試験を行い触媒活性
を評価した。図4は、試験開始後100hrにおける各触
媒の脱硫性能を示すものである。同図より、同一担持量
である0.2〜3wt%の範囲において、球状ポリスチレ
ン担持触媒の方が溶解ポリスチレン担持触媒より高い脱
硫性能を示した。
Comparative Example 1 Further, in order to confirm the difference between spherical polystyrene and dissolved polystyrene as the water-repellent substance carried on activated carbon, the same activated carbon A was fired at 800 ° C. for 1 hour in a nitrogen stream. Together with commercially available polystyrene (0, 0.15, 0.3, 0.6, 1, 1.5
g) about 100 cc of toluene each heated to 50-70 ° C
Were prepared, solutions having different polystyrene concentrations were prepared, and 50 g of the activated carbon were immersed in the polystyrene solutions having different concentrations, and impregnated with a rotary evaporator under reduced pressure and dried. Thereafter, drying was similarly performed under reduced pressure in a dryer at 45 to 50 ° C. for 12 hours to prepare various catalysts (0 to 3 wt%) having different polystyrene loading amounts. Hereinafter, this catalyst is referred to as a dissolved polystyrene supported catalyst. Next, the obtained dissolved polystyrene-supported catalyst and the activated carbon catalyst prepared in Example 2 were subjected to an activity test under the same conditions using the reaction test apparatus described in Example 1 to evaluate the catalytic activity. FIG. 4 shows the desulfurization performance of each catalyst 100 hours after the start of the test. As shown in the figure, the spherical polystyrene-supported catalyst exhibited higher desulfurization performance than the dissolved polystyrene-supported catalyst in the range of the same supported amount of 0.2 to 3 wt%.

【0029】[0029]

【発明の効果】以上説明したように、請求項1〜4のい
ずれかに記載の活性炭触媒にあっては、粒状活性炭に、
10〜100nm、好ましくは10〜70nmの範囲の
球相当直径を有する撥水性物質を、粒状活性炭に対して
0.2〜3.0wt%、好ましくは0.5〜1.5wt%担
持することによって構成しているので、上記活性炭の最
も接触硫酸化反応に寄与するミクロポアを除いて、生成
硫酸の流路となるマクロポアが効率的に撥水化処理され
た極めて活性の高い活性炭触媒を得ることができる。し
たがって、請求項1〜4のいずれかに記載の活性炭触媒
を用いた請求項5に記載の排煙脱硫方法によれば、他の
排煙脱硫プロセスと比べて脱硫効率において遜色が無
く、よって経済性に優れる排煙脱硫が可能になる。
As described above, in the activated carbon catalyst according to any one of claims 1 to 4, the granular activated carbon is
By supporting a water-repellent substance having a sphere equivalent diameter in the range of 10 to 100 nm, preferably 10 to 70 nm, based on the granular activated carbon in an amount of 0.2 to 3.0 wt%, preferably 0.5 to 1.5 wt%. With the exception of the micropores that contribute to the most catalytic sulfation reaction of the activated carbon, it is possible to obtain a highly active activated carbon catalyst in which macropores serving as flow paths for the generated sulfuric acid are efficiently water-repellent. it can. Therefore, according to the flue gas desulfurization method according to claim 5 using the activated carbon catalyst according to any one of claims 1 to 4, there is no inferiority in desulfurization efficiency as compared with other flue gas desulfurization processes, and thus economical Exhaust gas desulfurization with excellent performance is enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における活性試験の結果を示
すグラフである。
FIG. 1 is a graph showing the results of an activity test in Example 1 of the present invention.

【図2】同、実施例2の活性試験の結果を示すグラフで
ある。
FIG. 2 is a graph showing the results of an activity test of Example 2.

【図3】同、実施例3(2)の活性試験の結果を示すグ
ラフである。
FIG. 3 is a graph showing the results of an activity test of Example 3 (2).

【図4】同、実施例4の活性試験の結果を示すグラフで
ある。
FIG. 4 is a graph showing the results of an activity test of Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩▲崎▼ 守 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 戸河里 脩 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Iwa ▲ saki ▼ Mamoru 2-1-1, Tsurumichuo, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Chiyoda Kako Construction Co., Ltd. (72) Inventor Osamu Togawa, Yokohama-shi, Kanagawa 2-1-1, Tsurumi-Chuo, Tsurumi-ku Chiyoda Chemical Works, Ltd. (72) Inventor Takashi Kimura 2-1-1, Tsurumi-Chuo 2-chome, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Chiyoda Chemical Works, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫黄酸化物を含む排ガスと接触させるこ
とにより、上記硫黄酸化物を吸着、酸化させて硫酸とし
て回収除去するための活性炭触媒であって、粒状活性炭
に、10〜100nmの球相当直径を有する撥水性物質
を、上記活性炭に対して0.2〜3.0wt%担持してな
ることを特徴とする活性炭触媒。
An activated carbon catalyst for adsorbing and oxidizing the sulfur oxide by contacting with an exhaust gas containing the sulfur oxide to recover and remove the sulfur oxide as sulfuric acid. An activated carbon catalyst comprising a water-repellent substance having a diameter of 0.2 to 3.0% by weight based on the activated carbon.
【請求項2】 上記撥水性物質の球相当直径は、10〜
70nmの範囲であることを特徴とする請求項1に記載
の活性炭触媒。
2. The sphere equivalent diameter of the water-repellent substance is 10 to 10.
2. The activated carbon catalyst according to claim 1, wherein the range is 70 nm.
【請求項3】 上記撥水性物質を、上記活性炭に対して
0.5〜1.5wt%担持することを特徴とする請求項1
または2に記載の活性炭触媒。
3. The method according to claim 1, wherein the water-repellent substance is supported in an amount of 0.5 to 1.5% by weight based on the activated carbon.
Or the activated carbon catalyst according to 2.
【請求項4】 上記撥水性物質は、ポリエチレン、ポリ
スチレン、ポリプロピレン、ポリテトラフルオロエチレ
ン、パーフルオロアルコキシ樹脂、4弗化エチレン6弗
化プロピレン共重合体、または3弗化塩化エチレン樹脂
であることを特徴とする請求項1ないし3のいずれかに
記載の活性炭触媒。
4. The water-repellent substance is polyethylene, polystyrene, polypropylene, polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene hexafluoropropylene copolymer, or trifluoroethylene chloride resin. The activated carbon catalyst according to any one of claims 1 to 3, characterized in that:
【請求項5】 請求項1ないし4のいずれかに記載の活
性炭触媒に、硫黄酸化物を含む排ガスを接触させること
により、当該排ガス中の上記硫黄酸化物を上記活性炭触
媒に吸着、酸化させて硫酸として回収除去することを特
徴とする排煙脱硫方法。
5. An activated carbon catalyst according to claim 1, which is brought into contact with an exhaust gas containing a sulfur oxide to adsorb and oxidize the sulfur oxide in the exhaust gas on the activated carbon catalyst. A flue gas desulfurization method comprising collecting and removing sulfuric acid.
JP9147200A 1997-05-21 1997-05-21 Active carbon catalyst and flue gas denitrification process Pending JPH10314585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9147200A JPH10314585A (en) 1997-05-21 1997-05-21 Active carbon catalyst and flue gas denitrification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9147200A JPH10314585A (en) 1997-05-21 1997-05-21 Active carbon catalyst and flue gas denitrification process

Publications (1)

Publication Number Publication Date
JPH10314585A true JPH10314585A (en) 1998-12-02

Family

ID=15424829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9147200A Pending JPH10314585A (en) 1997-05-21 1997-05-21 Active carbon catalyst and flue gas denitrification process

Country Status (1)

Country Link
JP (1) JPH10314585A (en)

Similar Documents

Publication Publication Date Title
KR102615619B1 (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JP5380446B2 (en) Dehydrochlorination of hydrochlorofluorocarbons using pretreated activated carbon catalyst
US4158643A (en) Catalytic carbon for oxidation of carbon monoxide in the presence of sulfur dioxide
JP2007169152A (en) Activated carbon having catalytic activity
JPH08332376A (en) Preparation of sorbent composition
JPH04180834A (en) Deodorizing activated carbon and its preparation
WO1999051337A1 (en) Desulfurization of exhaust gases using activated carbon catalyst
JP3562551B2 (en) Activated carbon catalyst and flue gas desulfurization method
JPH10314585A (en) Active carbon catalyst and flue gas denitrification process
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP2018103102A (en) Low-temperature oxidation catalyst
JP3556085B2 (en) Activated carbon material and flue gas desulfurization method using this activated carbon material
WO2018123787A1 (en) Method for manufacturing low-temperature oxidation catalyst
JP3896639B2 (en) Activated carbon catalyst and flue gas desulfurization method
JPH01236941A (en) Gaseous ammonia adsorbent
JP5076471B2 (en) Method for producing carbon-based catalyst for flue gas desulfurization
JP2004313844A (en) Harmful substance decomposing method
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP2000044214A (en) Porous carbon material, its production and treatment of waste gas using same
JPH07299319A (en) Deodorizing filter and its production
JP4946466B2 (en) Gas adsorbent
JP4156076B2 (en) Method for desulfurization of exhaust gas using catalyst
EP2399662A1 (en) Pyrolysis methods, catalysts, and apparatuses for treating and/or detecting contaminated gases
JPH0947628A (en) Absorbent for nitrogen oxide and sulfur oxide and its preparation
RU2207903C2 (en) Respiratory apparatus protection means adsorbent