JP3556085B2 - Activated carbon material and flue gas desulfurization method using this activated carbon material - Google Patents

Activated carbon material and flue gas desulfurization method using this activated carbon material Download PDF

Info

Publication number
JP3556085B2
JP3556085B2 JP03867798A JP3867798A JP3556085B2 JP 3556085 B2 JP3556085 B2 JP 3556085B2 JP 03867798 A JP03867798 A JP 03867798A JP 3867798 A JP3867798 A JP 3867798A JP 3556085 B2 JP3556085 B2 JP 3556085B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
carbon material
material according
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03867798A
Other languages
Japanese (ja)
Other versions
JPH11236207A (en
Inventor
和茂 川村
大 武田
洋一 梅原
脩 戸河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP03867798A priority Critical patent/JP3556085B2/en
Publication of JPH11236207A publication Critical patent/JPH11236207A/en
Application granted granted Critical
Publication of JP3556085B2 publication Critical patent/JP3556085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、撥水性の活性炭材料に関し、特に排煙脱硫プロセスに使用する酸化触媒として有用な活性炭材料に関する。
【0002】
【従来の技術】
活性炭は、触媒や吸着剤などに広く使用されている。活性炭を用いた触媒としては、活性炭自体の触媒活性を利用したものと、活性炭を触媒活性のある遷移金属等の担体として用いたものがある。一方、活性炭を吸着剤として用いたものとしては、気相では重金属や凝縮性ガスの除去、液相では糖液の脱色や水中の微量有機物の除去あるいは各種排水処理などに用いた例がよく知られている。
【0003】
活性炭が触媒(担体)や吸着剤として有用である理由の1つは、その比表面積が大きいことである。活性炭粒子はその内部にサブナノメータ乃至サブミクロンにわたる種々の大きさの細孔を多数有しており、これらが網の目のように複雑に入り組んだ構造を形成している。そうした細孔の内表面を含めた全表面積は、活性炭1g当たり1000m にも達するといわれており、このような広い表面積に触媒活性点や吸着活性点が多数分布していると思われる。
【0004】
ある種の排煙脱硫プロセス(以下において「接触硫酸化プロセス」と呼ぶ)においては、活性炭が酸化触媒として用いられ、排ガス中に含まれる亜硫酸ガス等の硫黄酸化物は、共存する酸素によって最終的に硫酸にまで酸化される。これは水蒸気分圧等の条件によって、そのまま硫酸(希硫酸)として回収されたり、あるいはカルシウム化合物と反応して石膏の形で回収される。活性炭触媒は、ゼオライト等のセラミックス系触媒と異なり、それ自体が上記酸化触媒としてある程度大きな活性を有するので、遷移金属等の触媒種を担持する必要がなく、生成した硫酸によってそのような金属の触媒種が侵されるという問題がない点、有利である。
【0005】
しかしながら、実用的な見地からすると、上記接触硫酸化プロセスにおける活性炭触媒の性能は必ずしも十分であるとはいえず、触媒種を担持する必要がないという上記利点は生かしたままに、より高い活性を有する活性炭触媒が求められている。この点に関し調べてみると、活性炭触媒の性能が十分でない原因は、触媒活性点の量やその活性度が小さいことにあるのではなく、反応分子の粒内拡散が制限されることにあるということがわかってきた。そして、さらに調べてみると、接触硫酸化反応では触媒活性点で生成した無水硫酸が雰囲気中の水蒸気と反応して直ちに硫酸水溶液になって細孔内に留まり、これが反応分子の粒子内部への拡散をブロックするため、内部の触媒活性点が有効に利用されないということもわかってきた。すなわち、もし生成した硫酸水溶液が触媒内に留まらないようにすることができれば、触媒活性は大きく改善されることが期待できるわけであり、そのためには活性炭触媒表面の撥水性を向上させることが重要であるということがわかってきたのである。
【0006】
例えば、Chem. Eng. Comm. vol. 60 (1987) p. 253には、平均粒径0.78mmの粒状活性炭にミクロンサイズのポリテトラフルオロエチレン(PTFE)粒子の分散液を吹きかけることにより、PTFE添加量8〜20%の領域において亜硫酸ガスの吸着酸化反応の速度定数が3倍に上昇したとの事例が示されている。また、特開昭59−36531号公報には、亜硫酸ガスを吸収した吸収液中に蓄積した亜硫酸イオンを酸化するため、その吸収液中に粒状活性炭を添加する場合に、当該活性炭に撥水化処理を施すと亜硫酸イオンの吸着酸化活性が上昇することが示されている。具体的には、粒径5〜10mmの粒状活性炭にPTFE分散液を含浸させ、200℃で2時間加熱処理することにより、活性炭単味の触媒に比べてはるかに高い活性を示すことが示されている。なお、上記事例において撥水化された活性炭は、通常市販されているPTFE分散液のPTFE粒子サイズが直径0.2〜0.4μm程度であり、この粒子サイズは活性炭粒子内部にまで浸透するには大きすぎると考えられることから、活性炭の外表面及びマクロポアの極く一部のみが撥水化された活性炭であったと思われる。
【0007】
以上のように、接触硫酸化触媒としての用途に関しては、当該活性炭表面の撥水性が重要な要請になることがわかってきたのであるが、同様な要請は他の用途例えば吸着剤としての用途に関してもあり得るわけであり、特に凝縮性ガスを含む気相吸着等においては、凝縮したガスの粒内拡散の難易が実質的な吸着容量に大きく影響するであろうことは、十分に予想される。したがって、活性炭材料表面の撥水性を向上させることは、当該活性炭材料の粒内拡散が考慮される各種用途に関して要請されるところである。
【0008】
【発明が解決しようとする課題】
本発明者らは、活性炭表面の撥水性を向上させる目的で、すでに、活性炭粒子に撥水性物質を含浸担持させたもの、活性炭粉末と撥水性物質とを混合して成形したもの、及び予め撥水化処理した活性炭粉末と撥水性物質とを混合して成形したものを開発した。ここで、活性炭粒子に撥水性物質を含浸担持させるとは、フッ素樹脂や一部の炭化水素樹脂などの撥水性有機物質の微粒子を含む分散液(ゾル)を含浸させて当該微粒子を活性炭粒子表面に保持させるものであり、活性炭粉末に撥水性物質を混合して成形するとは、そのような撥水性物質の微粒子と活性炭粉末とを混合し、圧縮、造粒等を行って所定形状に成形するものである。また撥水化処理とは、上記撥水性物質の微粒子分散液や撥水性物質の溶液で当該活性炭粉末を処理するものである。しかしながら、こうして得られた活性炭材料には、次のような問題があることがわかった。
【0009】
まず、活性炭粒子に撥水性物質を含浸担持させたものでは、触媒活性や吸着活性があまり高くならないという問題がある。これはそれらの活性の向上には活性炭(成形活性炭を含む)のマクロポア(直径が0.05μm以上の細孔)を粒子外表面部から内部にわたって満遍なく撥水化するのが有効であるのに対し、撥水性物質を活性炭粒子に含浸担持させた場合には活性炭粒子内部のマクロポアが十分に撥水化されず、触媒内部の液体の排出が十分でないからであると思われる。また、活性炭粉末と撥水性物質の微粒子を混合して所定形状に成形したものでは、活性炭粒子に撥水性物質を含浸担持させたものよりは高活性であるが、やはり触媒活性や吸着活性が十分に高くはならないという問題がある。これは活性炭粉末と撥水性物質とを単に混合しただけでは、広範囲な孔径分布を示すマクロポア全体の均一な撥水化やマクロポア入口部の液による閉塞を防止するために必要な粒子外表面部の均一な撥水化が十分でないからであると思われる。さらに、予め撥水化処理した活性炭粉末と撥水性物質とを混合して粒状に成形したものでは、すぐれた性能を有する触媒を安定して得ることが難しいという問題がある。これは、活性炭粉末表面への撥水性物質の均一な付着が難しく、また撥水性物質の量を増やして撥水化処理を行うと活性点が撥水性物質に覆われてしまい、利用できる活性点の数自体が減少してしまうため、活性炭粉末の外表面を均一かつ十分に撥水化することが困難であることによるものである。本発明は、これらの問題を克服し、活性炭粒子の最適な撥水化を実現しようとするものである。
【0010】
【課題を解決するための手段】
本発明は、活性炭粉末と撥水性物質とを混合し、これを所定形状に成形した後、撥水化処理を施すことにより、活性炭材料内部のマクロポア表面を満遍なく撥水化するとともに、外表面部をより強く撥水化し、かくして粒内拡散が考慮される各種用途、特に排煙脱硫用酸化触媒としての用途に有用な活性炭材料を提供するものであり、これにより上記課題を解決するものである。
【0011】
本発明により提供される活性炭材料は、粒子内で不均一な撥水性を有するものである。すなわち、本発明の活性炭材料は、粒子の外表面部がより強く撥水化されており、粒子の内部は相対的に弱く比較的均一に撥水化されている。これにより、粒子表面における水膜の形成を妨げ、マクロポア入口部の液による閉塞を防止し、外部から内部への水蒸気や水溶液の侵入を強く阻害する。かくして、粒子内部の活性点が有効に利用され、高い触媒性能が得られる。
【0012】
上記の不均一な撥水化は、活性炭粉末と撥水性物質との混合成形後に撥水化処理を行うことにより達成される。混合成形前の活性炭粉末は撥水性物質により予め撥水化処理されるわけではないので、粒子内部の活性点が必要以上に撥水性物質によって覆われることはない。活性炭粉末は撥水性物質との混合、好ましくは混錬によって全体がほぼ均一に撥水化され、これが成形後にさらに撥水化処理を受けることによって粒子表面が強く撥水化されることになる。
【0013】
【発明の実施の形態】
本発明の活性炭材料を製造するには、まず活性炭粉末と撥水性物質とを緊密に混合して成形する。用いる活性炭粉末はその平均粒子径が10〜1000μmであることが好ましい。平均粒径がこの範囲より小さいと成形粒子が緻密になり過ぎ、成形粒子を構成する粉末粒子間に形成される間隙が微細になり過ぎる傾向がある。逆に、平均粒径がこの範囲より大きいと細孔内が十分に撥水化されず、また上記粉末粒子間の間隙が大きくなりすぎて成形粒子の外表面積が小さくなる傾向がある。より好ましい平均粒子径の範囲は15〜400μmであり、最も好ましくは20〜300μmである。また、活性炭粉末はその原料によって石炭系、椰子殻系、石油ピッチ系などの炭種に分けられる。触媒活性は一般に石炭系が高いが、本発明では特に炭種を問わずに使用できる。さらに、活性炭粉末は金属を担持させたり焼成を行ったりしたものを使用してもよい。
【0014】
一方、撥水性物質としては、ポリスチレン(PS)、ポリエチレン(PE)などの炭化水素樹脂、あるいはポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシ樹脂(PFA)、四フッ化エチレン六フッ化プロピレン共重合体(FEP)、三フッ化塩化エチレン樹脂(PCTEF)などのフッ素樹脂が好適に使用できる。これらの撥水性物質は、各種粒径に調整された微粒子分散液が市販されており、そのような微粒子分散液と活性炭粉末とを一緒に混錬した後、押し出し、圧延、打ち抜きなどにより、球状、シリンダー状、板状、ハニカム状等の所定形状に成形すればよい。フッ素樹脂は、撥水性が高く活性炭粉末との密着性が強いため、安定な撥水性を維持できる点、及び、練り込むと変形しバインダーとなって強い密着性が発現され、強度の高い成形粒子が得られる点で、特に好ましい。撥水性物質は、1〜30重量%、好ましくは2〜20重量%添加すれば、よい結果が得られる。
【0015】
得られた成形粒子には、必要ならば粉砕して適当な粒度に調整した後、続いて撥水化処理を施す。この撥水化処理の方法としては、撥水性物質の微粒子の分散液、あるいは撥水性物質をトルエン等の有機溶媒に溶解した溶液を、スプレー法或いは浸漬法等により成形粒子に含浸させればよい。この場合、撥水性物質としては、フッ素樹脂が高密着性、高撥水性を発現する点で好ましい。一方、有機溶媒溶液を用いる場合には、分子量が1万以上の高分子撥水性物質を溶解して用いることが好ましい。分子量がこれより小さいものを用いると、活性点が必要以上に撥水性物質で覆われて有効な活性点の数が低下する。撥水性物質は、0.1〜3.5重量%、好ましくは0.2〜3重量%含浸させることが好ましい。
【0016】
【実施例】
以下において、本発明を実施例により更に具体的に説明する。
【0017】
実施例1
石炭系、椰子殻系、ビート系など原料の異なる市販粒状活性炭について、窒素気流中、800℃で1時間焼成したもの及び焼成しないもの6種類(A〜F)を準備した。各粒状活性炭をそれぞれ粉砕器にて破砕した後、ステンレス製の篩を用いて篩振盪器で2時間の分級操作を行い、粒子径106〜212μmの微粉活性炭をそれぞれ約200g採取した。こうして得られた微粉活性炭粒子の代表径を組み合わせた各篩のメッシュの平均値で表し、これを「平均粒子径」とよぶことにする。すなわち、上記で得られた各微粉活性炭の平均粒子径は159μmとなる。
【0018】
次に、市販の球状PTFE(粒子サイズ0.2〜0.4μm)水分散液(10重量%)を上記微粉活性炭各50gにそれぞれ56gずつ加えて混錬した後、圧縮成形機で成形(成形圧500kgf/cm )して成形体を得た。こうして得られた各成形体を乾燥機中45〜50℃で12時間乾燥した後、粗砕及び分級することにより、粒子径2.8〜4.0mmの成形粒状物(混合成形触媒)を得た。この成形粒状物のPTFE含有量は約10重量%である。
【0019】
次に、市販の球状PTFE(粒子サイズ0.2〜0.4μm)水分散液(10重量%)を脱イオン水で50倍に希釈し、この希釈分散液各100ccに上記各成形粒状物をそれぞれ20gずつ浸漬した。これをロータリーエバポレータで減圧含浸乾燥した後、乾燥機中45〜50℃で12時間乾燥して、球状PTFE担持成形粒状物(PTFE担持混合成形触媒)を得た。こうして得られた各球状PTFE担持成形粒状物のPTFE担持量を、担持前後の成形粒状物の乾燥重量の差から求めたところ、PTFE担持量はいずれも約1重量%であった。
【0020】
上記で調製した各球状PTFE担持成形粒状物と、それぞれの製造に用いた6種類の粒状活性炭を、接触硫酸化反応試験装置において触媒として用い、それぞれ触媒活性の試験を行った。各触媒とも、内径16mmのジャケット付き硝子製反応器に40mlずつ充填し、以下の組成のガスを50℃、600dm /hr(SV=15000hr−1)で流し、
SO 1000容量ppm
4容量%
CO 10容量%
残部
相対湿度 100%
SO 計(紫外式、赤外式)により出口SO 濃度を測定することにより評価した。各触媒の脱硫性能(試験開始後250hr)を図1に示す。図1より、6種類とも、破砕したものを球状PTFEと混合して成形した後に球状PTFEを含浸担持させたもの(PTFE担持混合成形触媒)は、球状PTFEを含浸担持させなかったもの(混合成形触媒)に比べて脱硫性能が大幅に向上したことがわかる。
【0021】
実施例2
実施例1の活性炭Aを実施例1と同様な方法で粉砕して分級した。このとき、メッシュの異なる篩の組合せ(0〜20μm、20〜53μm、53〜106μm、106〜212μm、212〜300μm、2800〜4000μm)を用いることによって、平均粒子径が異なる6種(10μm、36.5μm、79.5μm、159μm、256μm、3400μm)の微粉活性炭を得た。以下、実施例1と同様にして、球状PTFEを約10重量%含有し、球状PTFEを約1重量%担持した球状PTFE担持成形粒状物を得た。
【0022】
上記で調製した各球状PTFE担持成形粒状物につき、実施例1に記載した反応試験装置を用い、同一条件にて触媒活性を評価した。各触媒の試験開始250時間後の脱硫性能を図2に示す。図2より、平均粒子径10〜1000μmの微粉活性炭を用いたときに脱硫率60%以上が得られ、平均粒子径15〜400μm(より好ましくは20〜300μm)の微粉活性炭を用いたときに得られる脱硫性能が最も高いことがわかる。
【0023】
実施例3
実施例1の活性炭Aを用い、実施例1と同様にしてPTFEを約10重量%含有する成形粒状物を得た。次いで、市販の球状PTFE水分散液(10重量%)を脱イオン水で希釈して種々の濃度(0〜5重量%)に調整し、この希釈分散液各100ccに上記成形粒状物各20gをそれぞれ浸漬した。これをロータリーエバポレータで減圧含浸乾燥した後、乾燥機中45〜50℃で12時間乾燥して、球状PTFEの担持量が異なる種々の担持成形粒状物(PTFE担持混合成形触媒)を得た。
【0024】
別に、球状PS水分散液を種々の濃度(0〜5重量%)に調整し、この希釈分散液各100ccに上記成形粒状物各20gをそれぞれ浸漬した。これをロータリーエバポレータで減圧含浸乾燥した後、乾燥機中45〜50℃で12時間乾燥して、球状PSの担持量が異なる種々の担持成形粒状物(PS担持混合成形触媒)を得た。
【0025】
上記で調製した担持又は未担持成形粒状物につき、実施例1に記載した反応試験装置を用い、同一条件にて触媒活性を評価した。各触媒の試験開始250時間後の脱硫性能を図3に示す。図3より、球状PS又は球状PTFE担持成形粒状物の、脱硫性能に関する最適担持量はいずれも0.2〜3重量%である。また、PTFEを担持したものの方がPSを担持したものよりも脱硫性能が高いことがわかる。
【0026】
比較例1
実施例1の活性炭Aを用い、実施例1の手順に従って平均粒子径が159μmの微粉活性炭を得た。次に、市販の球状PTFE(粒子サイズ0.2〜0.4μm)水分散液(10重量%)を脱イオン水で50倍に希釈し、この希釈分散液各100ccに上記微粉活性炭20gを浸漬した。これをロータリーエバポレータで減圧含浸乾燥した後、乾燥機中45〜50℃で12時間乾燥して、球状PTFE担持量が約1重量%のPTFE担持微粉活性炭を得た。
【0027】
次に、市販の球状PTFE(粒子サイズ0.2〜0.4μm)水分散液(10重量%)56gを上記PTFE担持微粉活性炭50gに加えて混錬した後、圧縮成形機で成形(成形圧500kgf/cm )して成形体を得た。こうして得られた成形体を乾燥機中45〜50℃で12時間乾燥した後、粗砕及び分級することにより、粒子径2.8〜4.0mmの成形粒状物を得た。これを球状PTFE前担持成形粒状物(PTFE前担持混合成形触媒)とよぶことにするが、これは担持によるPTFEを約1重量%、混練によるPTFEを約10重量%含有する。
【0028】
上記の球状PTFE前担持成形粒状物について、実施例1に記載した反応試験装置を用い、実施例1と同一条件にて接触硫酸化触媒としての触媒活性を評価した。試験開始250時間後の脱硫性能を、実施例1の球状PTFE担持成形粒状物(PTFE担持混合成形触媒)及び未担持成形粒状物(混合成形触媒)(いずれも活性炭Aを用いたもの)と比較して、図4に示す。図4より、球状PTFE担持成形粒状物の方が球状PTFE前担持成形粒状物よりも高い脱硫性能を示すことがわかる。これはすなわち、先に撥水性物質と混合成形した後に撥水化処理を行う方が、先に撥水化処理を行った後に撥水性物質と混合成形するよりも、手順として優れていることを示すものである。
【0029】
比較例2
実施例1で用いた市販活性炭Aを、焼成、粗砕及び分級することにより粒子径2.8〜4.0mmの焼成した粒状活性炭を得た。次に、球状PTFE(平均粒子径0.05μm)水分散液(10重量%)を脱イオン水で50倍に希釈し、この希釈分散液各100ccに上記焼成活性炭20gをそれぞれ浸漬した。これをロータリーエバポレータで減圧含浸乾燥した後、乾燥機中45〜50℃で12時間乾燥して、PTFE担持量が約1重量%の活性炭(PTFE担持粒状活性炭触媒)を得た。
【0030】
上記で調製したPTFE担持粒状活性炭触媒を、実施例1と同様にして接触硫酸化触媒として用いたときの脱硫性能について評価した。その結果を図4に示す。図4より、活性炭に球状PTFEを担持させただけのものは、はるかに低い脱硫性能しか示さないことがわかる。
【図面の簡単な説明】
【図1】各種活性炭の粉末に撥水性物質を混合して成形したものと、それらに更に撥水化処理を行ったものの脱硫性能を比較して示す。
【図2】用いる活性炭粉末の平均粒子径(粉砕粒子径)を変えたときの脱硫性能の変化を示す。
【図3】撥水化処理において各種粒子サイズの撥水性物質微粒子を用い、その含浸担持量を変えたときの脱硫性能の変化を示す。
【図4】粉末活性炭に対する混合成形と含浸担持の順序を変えたときの脱硫性能の違いを、粉末活性炭に混合成形のみを行ったもの(混合成形触媒)及び粒状活性炭に含浸担持のみを行ったとき(PTFE担持粒状活性炭触媒)との比較において示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water-repellent activated carbon material, and more particularly to an activated carbon material useful as an oxidation catalyst for use in a flue gas desulfurization process.
[0002]
[Prior art]
Activated carbon is widely used for catalysts and adsorbents. Catalysts using activated carbon include those utilizing the catalytic activity of activated carbon itself and those using activated carbon as a carrier such as a transition metal having catalytic activity. On the other hand, examples of using activated carbon as an adsorbent are well-known examples of removal of heavy metals and condensable gases in the gas phase, decolorization of sugar solution, removal of trace organic substances in water, and various wastewater treatments in the liquid phase. Have been.
[0003]
One of the reasons why activated carbon is useful as a catalyst (support) or adsorbent is that its specific surface area is large. Activated carbon particles have a large number of pores of various sizes ranging from sub-nanometers to sub-microns therein, which form a complex and intricate structure like a mesh. It is said that the total surface area including the inner surface of such pores reaches 1000 m 2 per 1 g of activated carbon, and it is considered that a large number of catalytic active sites and adsorption active sites are distributed over such a large surface area.
[0004]
In some types of flue gas desulfurization processes (hereinafter referred to as "catalyzed sulfation processes"), activated carbon is used as an oxidation catalyst, and sulfur oxides such as sulfur dioxide contained in exhaust gas are ultimately reduced by coexisting oxygen. Is oxidized to sulfuric acid. This is recovered as sulfuric acid (dilute sulfuric acid) as it is depending on conditions such as the partial pressure of water vapor, or is recovered in the form of gypsum by reacting with a calcium compound. Activated carbon catalysts, unlike ceramic-based catalysts such as zeolites, themselves have a certain degree of activity as the above-mentioned oxidation catalysts, so there is no need to carry catalyst species such as transition metals, and the generated sulfuric acid catalyzes such metals. Advantageously, there is no problem of seed infestation.
[0005]
However, from a practical point of view, the performance of the activated carbon catalyst in the above-mentioned catalytic sulfation process is not always sufficient, and a higher activity is obtained while taking advantage of the above-mentioned advantage of not having to carry a catalyst species. Activated carbon catalysts are needed. Examining this point, it is said that the reason why the performance of the activated carbon catalyst is not sufficient is not that the amount and activity of the catalytic active site is small but that the intramolecular diffusion of the reactive molecule is limited. I understand that. Further investigation reveals that in the catalytic sulfation reaction, sulfuric anhydride generated at the catalytically active site reacts with water vapor in the atmosphere and immediately turns into a sulfuric acid aqueous solution and stays in the pores, where the reactive molecules enter the particles. It has also been found that internal catalytic active sites are not effectively utilized to block diffusion. In other words, if the generated sulfuric acid aqueous solution can be prevented from remaining in the catalyst, the catalytic activity can be expected to be greatly improved. For that purpose, it is important to improve the water repellency of the activated carbon catalyst surface. It turned out that it was.
[0006]
For example, Chem. Eng. Comm. vol. 60 (1987) p. 253, a dispersion of micron-sized polytetrafluoroethylene (PTFE) particles is sprayed on granular activated carbon having an average particle diameter of 0.78 mm, thereby performing the adsorption oxidation reaction of sulfurous acid gas in the region of 8 to 20% of PTFE addition. An example is shown in which the rate constant has increased threefold. Japanese Patent Application Laid-Open No. S59-36531 discloses that in order to oxidize sulfite ions accumulated in an absorbing solution that has absorbed sulfur dioxide gas, when granular activated carbon is added to the absorbing solution, the activated carbon is made water-repellent. It is shown that the treatment increases the sulfite ion adsorption oxidation activity. Specifically, it is shown that, by impregnating granular activated carbon having a particle size of 5 to 10 mm with a PTFE dispersion and heating at 200 ° C. for 2 hours, the activated carbon exhibits a much higher activity than that of the activated carbon alone. ing. In the above case, the activated carbon water-repellent has a PTFE particle size of a commercially available PTFE dispersion having a diameter of about 0.2 to 0.4 μm, and this particle size permeates the inside of the activated carbon particles. Is considered to be too large, it is considered that the outer surface of the activated carbon and only a very small portion of the macropores were activated carbon with water repellency.
[0007]
As described above, it has been found that the water repellency of the activated carbon surface is an important requirement for use as a catalytic sulfation catalyst, but the same requirement is applicable to other uses such as an adsorbent. It is fully expected that the difficulty of intragranular diffusion of the condensed gas will greatly affect the substantial adsorption capacity, especially in the case of gas-phase adsorption containing a condensable gas. . Therefore, improving the water repellency of the activated carbon material surface is being demanded for various uses in which intragranular diffusion of the activated carbon material is considered.
[0008]
[Problems to be solved by the invention]
For the purpose of improving the water repellency of the surface of activated carbon, the present inventors have already carried out impregnation of activated carbon particles with a water-repellent substance, mixing of activated carbon powder and a water-repellent substance, and molding in advance. A product formed by mixing hydrated activated carbon powder with a water-repellent substance was developed. Here, impregnating and supporting the activated carbon particles with a water-repellent substance means impregnating a dispersion (sol) containing fine particles of a water-repellent organic substance such as a fluororesin or a part of a hydrocarbon resin, so that the fine particles are surfaced on the activated carbon particles. Mixing a water-repellent substance with activated carbon powder and molding it means mixing fine particles of such a water-repellent substance with activated carbon powder, compressing, granulating, etc. and molding into a predetermined shape. Things. The water-repellent treatment is a treatment of the activated carbon powder with a fine particle dispersion of the water-repellent substance or a solution of the water-repellent substance. However, it was found that the activated carbon material thus obtained had the following problems.
[0009]
First, in the case where the activated carbon particles are impregnated with a water-repellent substance, there is a problem that the catalytic activity and the adsorptive activity are not so high. This is because, in order to improve their activity, it is effective to make the macropores (pores having a diameter of 0.05 μm or more) of activated carbon (including shaped activated carbon) uniformly water-repellent from the outer surface to the inside of the particles. If the water-repellent substance is impregnated and supported on the activated carbon particles, it is considered that the macropores inside the activated carbon particles are not sufficiently water-repellent and the liquid inside the catalyst is not sufficiently discharged. In addition, when activated carbon powder and water-repellent substance fine particles are mixed and molded into a predetermined shape, the activity is higher than that of activated carbon particles impregnated with a water-repellent substance, but still has sufficient catalytic activity and adsorption activity. There is a problem that it does not become high. This is because simply mixing activated carbon powder and a water-repellent substance makes the entire macropore exhibiting a wide pore size distribution uniform water repellency and prevents the macropore inlet from being clogged with liquid. This is probably because uniform water repellency was not sufficient. Further, in the case where the activated carbon powder previously subjected to the water repellent treatment and the water repellent substance are mixed and formed into granules, there is a problem that it is difficult to stably obtain a catalyst having excellent performance. This is because it is difficult to uniformly attach the water-repellent substance to the surface of the activated carbon powder, and when the water-repellent treatment is performed by increasing the amount of the water-repellent substance, the active points are covered with the water-repellent substance, and the available active points are used. This is because it is difficult to make the outer surface of the activated carbon powder uniform and sufficiently water-repellent, because the number itself decreases. The present invention is intended to overcome these problems and realize the optimum water repellency of activated carbon particles.
[0010]
[Means for Solving the Problems]
The present invention mixes activated carbon powder and a water-repellent substance, forms the mixture into a predetermined shape, and then performs a water-repellent treatment, thereby uniformly and highly repelling the macropore surface inside the activated carbon material and the outer surface portion. It is intended to provide an activated carbon material useful for various uses in which intra-granular diffusion is taken into account, and particularly for use as an oxidation catalyst for flue gas desulfurization, thereby solving the above-mentioned problems. .
[0011]
The activated carbon material provided by the present invention has a non-uniform water repellency within the particles. That is, in the activated carbon material of the present invention, the outer surface of the particles is more strongly water-repellent, and the inside of the particles is relatively weak and relatively uniformly water-repellent. This prevents the formation of a water film on the surface of the particles, prevents the macropore inlet from being clogged by the liquid, and strongly inhibits the invasion of water vapor and aqueous solution from the outside to the inside. Thus, the active sites inside the particles are effectively used, and high catalytic performance is obtained.
[0012]
The above-mentioned non-uniform water repellency is achieved by performing a water repellent treatment after mixing and molding the activated carbon powder and the water repellent substance. Since the activated carbon powder before the mixing and molding is not preliminarily subjected to the water-repellent treatment with the water-repellent substance, the active points inside the particles are not covered more than necessary with the water-repellent substance. The activated carbon powder is substantially uniformly water-repellent as a whole by mixing with a water-repellent substance, preferably by kneading, and further subjected to a water-repellent treatment after molding, whereby the particle surface is strongly water-repelled.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to produce the activated carbon material of the present invention, first, activated carbon powder and a water-repellent substance are mixed intimately and molded. The activated carbon powder used preferably has an average particle diameter of 10 to 1000 μm. If the average particle size is smaller than this range, the molded particles tend to be too dense, and the gap formed between the powder particles constituting the molded particles tends to be too fine. Conversely, if the average particle size is larger than this range, the inside of the pores will not be sufficiently water-repellent, and the gap between the powder particles will be too large and the outer surface area of the molded particles will tend to be small. A more preferred range of the average particle size is 15 to 400 μm, most preferably 20 to 300 μm. Activated carbon powder is classified into coal type, coconut shell type, petroleum pitch type, etc. according to its raw material. Although the catalytic activity is generally high in a coal system, it can be used in the present invention irrespective of the type of coal. Further, as the activated carbon powder, a powder carrying a metal or firing may be used.
[0014]
On the other hand, examples of the water repellent substance include hydrocarbon resins such as polystyrene (PS) and polyethylene (PE), or polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), and ethylene tetrafluoride hexafluoropropylene copolymer. Fluororesins such as coalesced (FEP) and ethylene trifluorochloride resins (PCTEF) can be suitably used. These water-repellent substances are commercially available as fine particle dispersions adjusted to various particle sizes, and after kneading such fine particle dispersion and activated carbon powder together, extruding, rolling, punching, etc. What is necessary is just to shape | mold into predetermined shapes, such as a cylinder shape, a plate shape, and a honeycomb shape. Fluororesin has high water repellency and strong adhesion to activated carbon powder, so it can maintain stable water repellency. Is particularly preferred in that is obtained. Good results can be obtained if the water-repellent substance is added in an amount of 1 to 30% by weight, preferably 2 to 20% by weight.
[0015]
If necessary, the obtained shaped particles are pulverized to adjust to an appropriate particle size, and then subjected to a water-repellent treatment. As a method of the water-repellent treatment, a dispersion of fine particles of the water-repellent substance or a solution in which the water-repellent substance is dissolved in an organic solvent such as toluene may be impregnated into the molded particles by a spray method or an immersion method. . In this case, as the water repellent substance, a fluororesin is preferable in that it exhibits high adhesion and high water repellency. On the other hand, when an organic solvent solution is used, it is preferable to dissolve a polymer water-repellent substance having a molecular weight of 10,000 or more before use. If the molecular weight is smaller than this, the active sites are unnecessarily covered with the water-repellent substance, and the number of effective active sites decreases. It is preferable that the water-repellent substance is impregnated with 0.1 to 3.5% by weight, preferably 0.2 to 3% by weight.
[0016]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0017]
Example 1
Six types (A to F) of commercially available granular activated carbons such as coal-based, coconut-shell-based, beet-based, and the like, which were fired at 800 ° C. for 1 hour in a nitrogen stream and not fired, were prepared. After each granular activated carbon was crushed by a pulverizer, a classification operation was performed for 2 hours with a sieve shaker using a stainless steel sieve, and about 200 g of each fine activated carbon having a particle diameter of 106 to 212 μm was collected. The average value of the mesh of each sieve obtained by combining the representative diameters of the fine activated carbon particles thus obtained is referred to as “average particle diameter”. That is, the average particle diameter of each of the fine powdered activated carbons obtained above is 159 μm.
[0018]
Next, a commercially available aqueous PTFE (particle size: 0.2 to 0.4 μm) aqueous dispersion (10% by weight) was added to 50 g of each of the fine powder activated carbons in an amount of 56 g each and kneaded, followed by molding with a compression molding machine. A pressure of 500 kgf / cm 2 ) was obtained. After drying each molded body thus obtained in a dryer at 45 to 50 ° C. for 12 hours, it is crushed and classified to obtain molded granules (mixed molding catalyst) having a particle size of 2.8 to 4.0 mm. Was. The PTFE content of the shaped granules is about 10% by weight.
[0019]
Next, an aqueous dispersion (10% by weight) of a commercially available spherical PTFE (particle size: 0.2 to 0.4 μm) aqueous solution was diluted 50-fold with deionized water. Each 20 g was immersed. This was vacuum impregnated and dried with a rotary evaporator, and then dried in a dryer at 45 to 50 ° C. for 12 hours to obtain spherical PTFE-supported granules (PTFE-supported mixed-molded catalyst) . The amount of PTFE carried on each of the spherical PTFE-supported molded particles thus obtained was determined from the difference between the dry weight of the molded particles before and after the support, and the amount of PTFE carried was about 1% by weight.
[0020]
Each of the spherical PTFE-supported molded granules prepared above and the six types of granular activated carbon used for the production were used as catalysts in a catalytic sulfation reaction test apparatus, and each was tested for catalytic activity. Each catalyst was charged into a jacketed glass reactor having an inner diameter of 16 mm by 40 ml, and a gas having the following composition was flowed at 50 ° C. and 600 dm 3 / hr (SV = 15000 hr −1 ),
SO 2 1000 ppm by volume
O 2 4% by volume
CO 2 10% by volume
N 2 balance 100% relative humidity
The evaluation was performed by measuring the outlet SO 2 concentration with a SO 2 meter (ultraviolet, infrared). FIG. 1 shows the desulfurization performance of each catalyst (250 hours after the start of the test). From FIG. 1, all of the six types were obtained by mixing crushed materials with spherical PTFE, molding and then impregnating and supporting spherical PTFE (PTFE-supported mixed molding catalyst) , and those not impregnating and supporting spherical PTFE (mixing molding). It can be seen that the desulfurization performance was greatly improved as compared with the catalyst) .
[0021]
Example 2
Activated carbon A of Example 1 was ground and classified in the same manner as in Example 1. At this time, by using a combination of sieves having different meshes (0 to 20 μm, 20 to 53 μm, 53 to 106 μm, 106 to 212 μm, 212 to 300 μm, 2800 to 4000 μm), six types (10 μm, 36 μm) having different average particle diameters are used. 0.5 μm, 79.5 μm, 159 μm, 256 μm, 3400 μm). Hereinafter, in the same manner as in Example 1, a spherical PTFE-supported molded granule containing about 10% by weight of spherical PTFE and about 1% by weight of spherical PTFE was obtained.
[0022]
Using the reaction test apparatus described in Example 1, the catalytic activity of each of the spherical PTFE-supported molded granules prepared above was evaluated under the same conditions. FIG. 2 shows the desulfurization performance of each catalyst 250 hours after the start of the test. As shown in FIG. 2, a desulfurization rate of 60% or more is obtained when fine powdered activated carbon having an average particle diameter of 10 to 1000 μm is used, and is obtained when fine powdered activated carbon having an average particle diameter of 15 to 400 μm (more preferably, 20 to 300 μm) is used. It can be seen that the desired desulfurization performance is the highest.
[0023]
Example 3
Using activated carbon A of Example 1, a molded granular material containing about 10% by weight of PTFE was obtained in the same manner as in Example 1. Then, a commercially available spherical PTFE aqueous dispersion (10% by weight) is diluted with deionized water to adjust various concentrations (0 to 5% by weight), and 20 g of each of the molded particles is added to each 100 cc of the diluted dispersion. Each was immersed. This was impregnated and dried by a rotary evaporator under reduced pressure, and then dried in a dryer at 45 to 50 ° C. for 12 hours to obtain various supported molded granules (PTFE-supported mixed-molded catalyst) having different amounts of spherical PTFE carried.
[0024]
Separately, the aqueous dispersion of the spherical PS was adjusted to various concentrations (0 to 5% by weight), and 20 g of each of the molded particles was immersed in 100 cc of each of the diluted dispersions. This was impregnated and dried by a rotary evaporator under reduced pressure, and then dried in a dryer at 45 to 50 ° C. for 12 hours to obtain various supported molded granules (PS-supported mixed-formed catalyst) having different amounts of spherical PS supported.
[0025]
Using the reaction test apparatus described in Example 1, the catalyst activity was evaluated for the supported or unsupported shaped granules prepared above under the same conditions. FIG. 3 shows the desulfurization performance of each catalyst 250 hours after the start of the test. From FIG. 3, it is found that the optimum amount of the spherical PS or spherical PTFE-supported molded granules with respect to the desulfurization performance is 0.2 to 3% by weight. In addition, it can be seen that those carrying PTFE have higher desulfurization performance than those carrying PS.
[0026]
Comparative Example 1
Using the activated carbon A of Example 1, fine activated carbon having an average particle diameter of 159 μm was obtained in accordance with the procedure of Example 1. Next, a commercially available aqueous dispersion of spherical PTFE (particle size: 0.2 to 0.4 μm) (10% by weight) is diluted 50-fold with deionized water, and 20 g of the fine powder activated carbon is immersed in each 100 cc of the diluted dispersion. did. This was impregnated and dried by a rotary evaporator under reduced pressure, and then dried in a dryer at 45 to 50 ° C. for 12 hours to obtain PTFE-supported fine powder activated carbon having a spherical PTFE support amount of about 1% by weight.
[0027]
Next, 56 g of an aqueous dispersion (10% by weight) of a commercially available spherical PTFE (particle size: 0.2 to 0.4 μm) aqueous dispersion (50% by weight) was added to 50 g of the above-mentioned PTFE-supported fine powdered activated carbon and kneaded, followed by molding with a compression molding machine (molding pressure). 500 kgf / cm 2 ) to obtain a molded body. The molded body thus obtained was dried in a dryer at 45 to 50 ° C. for 12 hours, and then crushed and classified to obtain molded granules having a particle diameter of 2.8 to 4.0 mm. This is referred to as spherical PTFE pre-supported shaped granules (PTFE pre-supported mixed and formed catalyst) , which contains about 1% by weight of supported PTFE and about 10% by weight of kneaded PTFE.
[0028]
Using the reaction test apparatus described in Example 1, the above-mentioned spherical PTFE pre-supported molded granules were evaluated for catalytic activity as a catalytic sulfation catalyst under the same conditions as in Example 1. 250 hours after the start of the test, the desulfurization performance was compared with the spherical PTFE-supported molded granules (PTFE-supported mixed-molded catalyst) and the unsupported molded granules (mixed-molded catalyst) of Example 1 (both using activated carbon A). FIG. FIG. 4 shows that the spherical PTFE-supported molded granules exhibit higher desulfurization performance than the spherical PTFE pre-supported molded granules. That is, it is better to perform the water-repellent treatment after mixing and molding with the water-repellent substance first than the procedure of mixing and molding with the water-repellent substance after performing the water-repellent treatment first. It is shown.
[0029]
Comparative Example 2
The commercially available activated carbon A used in Example 1 was calcined, crushed and classified to obtain calcined granular activated carbon having a particle size of 2.8 to 4.0 mm. Next, an aqueous dispersion (10% by weight) of an aqueous dispersion of spherical PTFE (average particle size: 0.05 μm) was diluted 50 times with deionized water, and 20 g of the calcined activated carbon was immersed in each 100 cc of the diluted dispersion. This was impregnated and dried by a rotary evaporator under reduced pressure, and then dried in a dryer at 45 to 50 ° C. for 12 hours to obtain activated carbon (PTFE-supported granular activated carbon catalyst) having a PTFE support amount of about 1% by weight.
[0030]
The PTFE-supported granular activated carbon catalyst prepared above was evaluated for desulfurization performance when used as a catalytic sulfation catalyst in the same manner as in Example 1. The result is shown in FIG. From FIG. 4, it can be seen that the activated carbon only supporting spherical PTFE shows much lower desulfurization performance.
[Brief description of the drawings]
FIG. 1 shows a comparison of desulfurization performance of various activated carbon powders obtained by mixing a water-repellent substance with a water-repellent substance and then subjected to a water-repellent treatment.
FIG. 2 shows a change in desulfurization performance when the average particle size (crushed particle size) of the activated carbon powder used is changed.
FIG. 3 shows a change in desulfurization performance when water-repellent substance fine particles having various particle sizes are used in the water-repellent treatment and the amount of impregnation carried is changed.
[4] The difference in the desulfurization performance when changing a mixed molding for powdered activated carbon the order of impregnation-supporting, having been subjected only mixed molding powdered activated carbon (mixed molded catalyst) and only impregnation was performed granular activated carbon This is shown in comparison with the time (PTFE-supported granular activated carbon catalyst) .

Claims (14)

活性炭粉末と撥水性物質とを混合し、これを所定形状に成形した後、撥水化処理を施すことによって、外表面部がより強く撥水化されたことを特徴とする活性炭材料。After mixing the activated carbon powder and water repellent material was formed into a predetermined shape, the facilities Succoth water-repellent, activated carbon material, wherein the outer surface is more strongly water-repellent. 該活性炭粉末の平均粒子径が10〜1000μmである請求項1記載の活性炭材料。The activated carbon material according to claim 1, wherein said activated carbon powder has an average particle size of 10 to 1000 µm. 該活性炭粉末の平均粒子径が15〜400μmである請求項2記載の活性炭材料。The activated carbon material according to claim 2, wherein the average particle diameter of the activated carbon powder is 15 to 400 µm. 該活性炭粉末の平均粒子径が20〜300μmである請求項3記載の活性炭材料。The activated carbon material according to claim 3, wherein the average particle size of the activated carbon powder is 20 to 300 µm. 該撥水性物質がフッ素樹脂の微粒子である請求項1〜4のいずれか記載の活性炭材料。The activated carbon material according to any one of claims 1 to 4, wherein the water-repellent substance is fine particles of a fluororesin. 該活性炭粉末と該フッ素樹脂の微粒子が混合後、練り込まれてなる請求項5記載の活性炭材料。The activated carbon material according to claim 5, wherein the activated carbon powder and the fine particles of the fluororesin are mixed and kneaded. 該フッ素樹脂が、ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂、四フッ化エチレン六フッ化プロピレン共重合体、及び三フッ化塩化エチレン樹脂から選ばれる請求項5又は6記載の活性炭材料。7. The activated carbon material according to claim 5, wherein the fluororesin is selected from polytetrafluoroethylene, perfluoroalkoxy resin, ethylene tetrafluoride hexafluoropropylene copolymer, and ethylene trifluoride chloride resin. 該撥水性物質が1〜30重量%含まれる請求項1〜4のいずれか記載の活性炭材料。The activated carbon material according to any one of claims 1 to 4, wherein the water-repellent substance is contained in an amount of 1 to 30% by weight. 該撥水性物質が2〜20重量%含まれる請求項6記載の活性炭材料。The activated carbon material according to claim 6, wherein the water-repellent substance is contained in an amount of 2 to 20% by weight. 該撥水化処理が、フッ素樹脂又はポリスチレンの微粒子を含浸担持させるものである請求項1〜9のいずれか記載の活性炭材料。The activated carbon material according to any one of claims 1 to 9, wherein the water repellent treatment impregnates and supports a fine particle of a fluororesin or polystyrene. 該フッ素樹脂又はポリスチレンの微粒子が0.1〜3.5重量%含浸担持される請求項10記載の活性炭材料。The activated carbon material according to claim 10, wherein the fine particles of the fluororesin or polystyrene are impregnated and supported by 0.1 to 3.5% by weight. 該フッ素樹脂又はポリスチレンの微粒子が0.2〜3重量%含浸担持される請求項11記載の活性炭材料。The activated carbon material according to claim 11, wherein the fluororesin or polystyrene fine particles are impregnated and supported by 0.2 to 3% by weight. 請求項1〜12のいずれか記載の活性炭材料よりなる排煙脱硫用酸化触媒。An oxidation catalyst for flue gas desulfurization, comprising the activated carbon material according to claim 1. 請求項1〜12のいずれか記載の活性炭材料に、硫黄酸化物、酸素及び水蒸気を含む排ガスを接触させることにより、該排ガス中の硫黄酸化物を吸着酸化除去することを特徴とする排煙脱硫方法。13. A flue gas desulfurization system comprising: contacting an activated carbon material according to any one of claims 1 to 12 with an exhaust gas containing sulfur oxides, oxygen and water vapor to adsorb and remove sulfur oxides in the exhaust gas. Method.
JP03867798A 1998-02-20 1998-02-20 Activated carbon material and flue gas desulfurization method using this activated carbon material Expired - Lifetime JP3556085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03867798A JP3556085B2 (en) 1998-02-20 1998-02-20 Activated carbon material and flue gas desulfurization method using this activated carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03867798A JP3556085B2 (en) 1998-02-20 1998-02-20 Activated carbon material and flue gas desulfurization method using this activated carbon material

Publications (2)

Publication Number Publication Date
JPH11236207A JPH11236207A (en) 1999-08-31
JP3556085B2 true JP3556085B2 (en) 2004-08-18

Family

ID=12531918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03867798A Expired - Lifetime JP3556085B2 (en) 1998-02-20 1998-02-20 Activated carbon material and flue gas desulfurization method using this activated carbon material

Country Status (1)

Country Link
JP (1) JP3556085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163816A (en) * 2017-12-29 2018-06-15 山东大学 A kind of charcoal heat-also Primordial Qi coupling reduction SO2The device and method for preparing sulphur

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553966B2 (en) * 2008-03-19 2014-07-23 千代田化工建設株式会社 Mercury adsorbent and smoke treatment method using the adsorbent
LU93013B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Process for the removal of heavy metals from fluids
LU93014B1 (en) 2016-04-04 2017-10-05 Ajo Ind S A R L Catalyst mixture for the treatment of waste gas
LU93012B1 (en) 2016-04-04 2017-11-08 Cppe Carbon Process & Plant Eng S A En Abrege Cppe S A Sulfur dioxide removal from waste gas
CN112320797B (en) * 2020-10-16 2022-08-26 中国科学院山西煤炭化学研究所 Preparation method of activated carbon for desulfurization of tar hydrogenation product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163816A (en) * 2017-12-29 2018-06-15 山东大学 A kind of charcoal heat-also Primordial Qi coupling reduction SO2The device and method for preparing sulphur

Also Published As

Publication number Publication date
JPH11236207A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
EP1341719B1 (en) Activated carbon for odor control and method for making same
US4833113A (en) Denitration catalyst for reducing nitrogen oxides in exhaust gas
CN102170966B (en) Method for manufacturing mesoporous material for a polymer nanopolymerization complex
US5670124A (en) Nitrogen-containing molecular sieving carbon, a process for preparing the same and use thereof
JPH08332376A (en) Preparation of sorbent composition
SE529160C2 (en) A method for preparing agglomerates of precipitated silica material, a microporous material comprising such agglomerates, and use thereof
TW500623B (en) Desulfurization of flue gas using active carbon catalyst
JP3556085B2 (en) Activated carbon material and flue gas desulfurization method using this activated carbon material
JPH01239073A (en) Porous composition and production thereof
Wang et al. Facile synthesis of hierarchical porous solid catalysts with acid–base bifunctional active sites for the conversion of cellulose to 5-hydroxymethylfurfural
JPH09155187A (en) Activated carbon for adsorbing acidic gas and production thereof
Boo et al. Addition of V2O5-MnO2/USY-zeolite catalyst in PTFE fiber for bag filter and its catalytic activity tests for NH3-SCR at low-temperature
Ergenekon et al. A novel method for sulfonation of microporous polystyrene divinyl benzene copolymer using gaseous SO2 in the waste air streams
JP4159647B2 (en) Activated carbon material and manufacturing method thereof
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
CN110201661A (en) A kind of manganese base charcoal of porous array structure and its preparation method and application
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP4523741B2 (en) Removal method of sulfurous acid gas
JP4493813B2 (en) Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP2023546337A (en) Method for manufacturing supported catalyst
JP4156076B2 (en) Method for desulfurization of exhaust gas using catalyst
JP3896639B2 (en) Activated carbon catalyst and flue gas desulfurization method
JPH07116510A (en) Adsorbent and porous adsorbing material
JP7453463B1 (en) Carbonaceous material and its manufacturing method, and adsorption filter

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20031204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term