JP4493813B2 - Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof - Google Patents

Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof Download PDF

Info

Publication number
JP4493813B2
JP4493813B2 JP2000220840A JP2000220840A JP4493813B2 JP 4493813 B2 JP4493813 B2 JP 4493813B2 JP 2000220840 A JP2000220840 A JP 2000220840A JP 2000220840 A JP2000220840 A JP 2000220840A JP 4493813 B2 JP4493813 B2 JP 4493813B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon structure
primary
aggregate particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000220840A
Other languages
Japanese (ja)
Other versions
JP2002035593A (en
Inventor
弘 大岸
逸夫 乗京
誠一 草
和茂 川村
洋一 梅原
大 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Hokuriku Electric Power Co
Original Assignee
Chiyoda Corp
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Hokuriku Electric Power Co filed Critical Chiyoda Corp
Priority to JP2000220840A priority Critical patent/JP4493813B2/en
Publication of JP2002035593A publication Critical patent/JP2002035593A/en
Application granted granted Critical
Publication of JP4493813B2 publication Critical patent/JP4493813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高撥水性及び高通気通液性を有する排煙脱硫用活性炭構造体、並びにその製造方法に関する。より具体的には、本発明は、亜硫酸ガス等の硫黄酸化物を含む排ガスを活性炭触媒と接触させることにより、その排ガスから硫黄酸化物を吸着酸化して除去するのに有効に用いられる、上記活性炭触媒を含む高撥水性及び高通気通液性の排煙脱硫用活性炭構造体及びその製造方法に関する。
【0002】
【従来の技術】
ある種の排煙脱硫プロセス(以下「接触法排煙脱硫プロセス」と呼ぶ)においては、排ガス中に含まれる硫黄酸化物、典型的には亜硫酸ガスは、触媒の存在下に酸素及び湿分と反応して最終的には硫酸にまで酸化される。これは、そのまま硫酸(希硫酸)として回収されたり、あるいはカルシウム化合物と反応して石膏(硫酸カルシウム)の形で回収される。このための触媒としては一般に活性炭が有用であるといわれるが、その理由の1つは、活性炭の比表面積が大きく、そのような広い表面積に活性点が多数分布しているからである。
【0003】
上記接触法排煙脱硫プロセスにおいて活性炭が高い触媒活性を示すためには、活性炭の撥水性が大きいことが重要である。これは、活性炭の外表面や細孔内で凝縮する排ガス中の水分や反応によって生成する硫酸を速やかに除去しないと、当該表面や細孔内の活性点が水分や硫酸に覆われブロックされてしまうからである。本発明者らは、活性炭の撥水性を向上させる目的で、すでに、活性炭に撥水性物質を含浸担持させたもの、活性炭粉末と撥水性物質とを混合混練して成形したもの、及び活性炭粉末と撥水性物質とを混合混練して成形した後に撥水性物質を含浸担持させたものなどを開発した。
【0004】
一方、排ガスと活性炭とを接触させるために、活性炭を充填した塔に排ガスを流通させる場合、粒状活性炭の充填層は、排煙脱硫装置のように大容量のガスを処理するには圧力損失が大きく、経済的でない。圧力損失を小さくするために塔径を大きくすると、塔内のガス分散を均一にすることが難しくなると同時に、装置の敷地面積が大きくなり、やはり経済的でない。活性炭を用いた装置の圧力損失を低減させる手段として、活性炭もしくは炭素材に石油系ピッチやポリプロピレンなどの樹脂をバインダーとして添加し、これをハニカム構造に成形して焼成したものや、金属をハニカム構造に加工したものに活性炭を添着させたものが検討され、あるいは市販されている。
【0005】
ところが、活性炭もしくは炭素材にバインダーを添加してハニカム構造に成形し焼成したものでは、焼成時の歪みのために大型のハニカム構造体の製造は困難かつ高価であり、また金属のハニカム構造基材に活性炭を添着させたものでは、当該基材としてアルミ等が使われるため腐食性の亜硫酸ガスを含む排ガス中では耐久性に乏しい。そこで、本発明者らは、活性炭と撥水性樹脂を含有する混合物を混練し、これを板状あるいは柱状に成形して一次加工品となし、該一次加工品からハニカム構造体を形成することによって、強度及び耐久性にすぐれ、かつシンプルで廉価なハニカム構造活性炭触媒を開発した(平成11年特許出願第26127号)。
【0006】
【発明が解決しようとする課題】
しかしながら、上記の一次加工品内に形成される拡散流路は、高撥水性を有してはいるがサイズが小さく、ガス拡散や液排出の抵抗が大きい。このため、そうした一次加工品から形成されるハニカム構造体では、その外表面近傍の活性炭のみが反応に与り、構造体内部の活性炭が触媒として十分に利用されないことがわかった。これは、活性炭の実効充填量が構造体を形成するのに用いた活性炭の実際量より少なくなり、触媒としての利用効率が低下することを意味する。このことは、結果として、特に長時間経過後の吸着活性や反応活性の低下として現れることになる。すなわち、活性炭構造体の内部領域を有効に活用して触媒としての利用効率を上げ、吸着活性や反応活性を向上させることが所望されるのであり、そのためには、ガス拡散や液排出の抵抗が少ない拡散流路を有する活性炭構造体を提供することが必要なのである。
【0007】
【課題を解決するための手段】
本発明は、活性炭と樹脂からなる一次集合体粒子が集合した二次集合体からなる排煙脱硫用高撥水性活性炭構造体であって、該一次集合体粒子内に形成された一次拡散流路と、該二次集合体を構成する一次集合体粒子の間に形成された二次拡散流路とを有し、ガスや液がこれらの一次及び二次拡散流路を通って構造体内部を拡散することができるように構成されたことを特徴とする活性炭構造体を提供することにより、上記課題を解決するものである。
【0008】
本発明の活性炭構造体は、活性炭と樹脂とを混合混練したものを破砕して一次集合体粒子とし、これを所定の形状に成形して二次集合体とすることにより製造される。すなわち、本発明の活性炭構造体は、活性炭と樹脂とを混合混練したものを直接成形するのではなく、混合混練物を一旦細かく破砕して一次集合体粒子とし、これを加圧成形等により成形して二次集合体とすることにより製造され、二次集合体を構成する一次集合体粒子の間に比較的大きな拡散流路が形成されている点に特徴がある。
【0009】
【作用】
個々の活性炭粒子はきわめて大きな表面積を有し、その表面に多くの触媒活性点を有することから触媒として有効なのであるが、これを接触法排煙脱硫に用いた場合には表面に凝縮した水や生成した硫酸が触媒活性点を覆ってしまう。そこで、水や硫酸を速やかに離脱させるために、このような極性化合物との親和性が小さい樹脂を活性炭と混合混練することにより、活性炭表面を疎水化する。ところで、活性炭がきわめて大きな表面積をもつのは内部に微細な細孔を有するからであるが、こうした細孔はガス拡散や液排出に対する抵抗がきわめて大きい。また、活性炭と樹脂とを混合混練した場合には、活性炭粒子間の空隙が樹脂によって完全に充填されるわけではないため、上記粒子内細孔よりはサイズの大きい拡散流路(一次拡散流路)が形成されるが、活性炭表面の有効な疎水化という要請によりこの拡散流路のサイズは必然的に限定され、ガスや液の拡散速度という点では必ずしも十分とはいえない。したがって、構造体内奥部の活性炭と外部との間のガスや液の移動は容易でなく、このままでは構造体内奥部の活性炭は実質的に触媒として利用されにくい。
【0010】
そこで、構造体内奥部の活性炭と構造体表面との間をガスや液が速やかに移動できるように、本発明では構造体内に活性炭粒子間の空隙からなる拡散流路(一次拡散流路)より大きな拡散流路(二次拡散流路)を形成している。この二次拡散流路は、当該構造体(二次集合体)を活性炭と樹脂からなる一次集合体粒子の集合物として構成することにより、一次集合体粒子間に形成される。この一次集合体粒子は、活性炭と樹脂とを混合混練して破砕することにより得られる。かくして、本発明の活性炭構造体は、一次拡散流路及び二次拡散流路というサイズの異なる2種類の拡散流路を有することとなり、これにより触媒活性点を有する活性炭表面の十分な疎水化とガスや液の速やかな移動という2つの要請を同時に満足するのである。
【0011】
【発明の実施の形態】
本発明の活性炭構造体を製造するには、まず活性炭と樹脂とを混合混練する。活性炭としては一般に粉末活性炭が用いられ、その平均粒径は20〜200μmであることが好ましい。平均粒径がこの範囲より小さいと一次集合体粒子内に形成される一次拡散流路のサイズが小さくなり、一次集合体粒子内におけるガスや液の拡散に対する抵抗が大きくなる。逆に、平均粒径がこの範囲より大きいと細孔内が十分に撥水化されず、また活性炭粒子間の間隙が大きくなりすぎて活性炭構造体の比表面積が小さくなる傾向にある。ここで活性炭の「平均粒径」とは50%粒径、すなわち重量基準の積算篩上50%の粒径をいう。
【0012】
活性炭は、その原料によって石炭系、椰子殻系、石油ピッチ系などの炭種に分けられる。触媒活性は一般に石炭系が高いが、本発明では特に炭種を問わずに使用できる。なお、活性炭としては粉末活性炭として市販されている粒径が20〜200μmのものを用いることが好ましいが、粒径がこれより大きい粒状活性炭を所望の粒径に粉砕して用いてもよい。
【0013】
一方、樹脂としては撥水性付与の観点からフッ素樹脂を用いることが好ましいが、必ずしもフッ素樹脂に限定されるわけではない。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)樹脂、パーフルオロアルコキシ(PFA)樹脂、四フッ化エチレン六フッ化プロピレン(FEP)共重合体、三フッ化塩化エチレン(PCTEF)樹脂などが好適に使用できる。これらのフッ素樹脂は、各種粒径に調整された微粒子分散液が市販されている。樹脂は活性炭に対して1〜30重量%含まれることが好ましい。
【0014】
上記微粒子分散液と活性炭とを緊密に混合混練するには、典型的には加圧ニーダーやバンバリーミキサーが用いられるが、必ずしもこれらに限定されず、材料に剪断や圧縮などの練り込み作用を有効に与えることができるものであれば一般に使用可能である。加圧ニーダーやバンバリーミキサーを用いる場合には、混合混練操作を0.2〜1.0時間程度続けることにより、所望の緊密な混練物が得られる。なお、この混練操作は活性炭と樹脂とを緊密に接触させ、活性炭表面に十分な撥水性を付与するために行うものである。
【0015】
次いで、一次集合体粒子を得るため、混練物(塊状物)を典型的にはピンミルやカッターミルを用いて細かく破砕する。活性炭と樹脂との混練物は樹脂が絡み合った構造を形成していて耐圧壊/耐衝撃強度が大きく、例えば通常、粉砕に使用されているボールミルやロール型粉砕機等では十分に粉砕が行われない。本混練物のように耐圧壊/耐衝撃強度の大きいものの粉砕には、粉砕原理として切断する機能を有した粉砕機を選定する必要がある。そのような切断機能を有した粉砕機としては、回転円盤型粉砕機(ピンミル、インパクトミル等)やカッティングタイプの粉砕機(カッターミル、ナイフミル等)あるいはハンマーミル等が挙げられる。通常の粉砕操作と区別する意味で、本明細書においては「解砕」と呼ぶことにする。
【0016】
活性炭と樹脂との混練物を一旦解砕して一次集合体粒子とした後、あらためて二次集合体に成形する目的は、ガスや液の拡散が容易に進行するようなサイズの二次拡散流路を二次集合体内部に形成することにある。従って、一次集合体粒子の粒径はこのような目的に適合する必要があり、粉末活性炭の平均粒径に比べて大きく、かつ好ましくは50%粒径が0.05〜10mm、より好ましくは0.1〜5mmの範囲とする。50%粒径がこの範囲より小さいと、二次拡散流路のサイズが小さくなり、ガスや液の拡散を容易にする効果が得られにくくなる。逆に、50%粒径が上記範囲より大きいと、形成される二次拡散流路の数が少なくなり、流路に接する活性炭表面が減少するため、二次拡散流路を形成した効果が十分に得られにくくなる。なお、ここでいう「50%粒径」とは、乾式篩分けにより求めた重量基準の積算篩上50%の粒径である。
【0017】
こうして得られた一次集合体粒子を所望の形状に成形することにより、二次集合体が得られる。成形を行うには、押出し成形又は加圧成形が適している。板状に成形するには加圧成形が適しており、一次集合体粒子をそのままロール機に通す方法や、一次集合体粒子を型に均一に敷き詰めてプレス機で加圧する方法がある。プレス機で成形した後でロール機に通すことにより、成形品の厚みの均一化を図ることも可能である。一方、柱状に成形するには、柱状の型に一次集合体粒子を敷き詰めてプレス成形してもよいが、押出し成形機を用いて円形や矩形といった所望の形状の穴から押し出すこともできる。また、波板状の型に一次集合体粒子を充填してプレス機で加圧すれば、ハニカム構造体を形成するための波板状成形体を作ることもできる。
【0018】
一次集合体粒子を押出し成形又は加圧成形することにより形成される二次集合体は、一次拡散流路及び二次拡散流路を適切な割合で有することが好ましい。そのような好ましい二次集合体は、一般にかさ密度が0.10〜0.60g/cm3、好ましくは0.20〜0.40g/cm3程度であり、また空隙率は20〜65%、好ましくは30〜55%程度であった。なお、この空隙率の測定は次のようにして行った。体積既知の活性炭構造体を活性炭細孔等の拡散に使われない空間部の影響を除く目的で亜硫酸ガスを含む模擬排ガスに100時間以上接触させた後、この活性炭構造体を共栓付メスシリンダーに入れ、純水を張り込んで真空ポンプで吸引を行い、減少した液容量(活性炭構造体内に入り込んだ液容量)から空間容積を求め、空隙率を算出した。水分の蒸発量は空試験を実施して補正した。
【0019】
一次集合体粒子はそのままでも成形できるが、成形してできた二次集合体の機械的強度を上げるために結合剤を混合し、必要によっては加熱しながら成形することが好ましい。この方法によれば低圧で加圧成形することができる。結合剤としては、水溶性高分子や熱可塑性樹脂が好適に用いられる。水溶性高分子としては、水溶性のデンプン類、アラビアゴム、ゼラチン、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコールなどが用いられる。また、熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ塩化ビニリデン、フッ素樹脂、ポリメタクリル酸メチル、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンオキシド、熱可塑性ポリウレタン、ポリアセタール等が用いられる。
【0020】
水溶性高分子は、典型的には、一次集合体粒子に噴霧して混合し、これをロール機に通してシート状に成形するのに好適に用いられる。こうして得られたシートを2枚用意し、その間に補強材シートを挟み込んでサンドイッチ構造のパネルを形成すれば、機械的強度が更に高まるため好ましい。こうした補強材シートとしては、ポリエチレンやポリプロピレンのネットが好適に用いられる。一方、熱可塑性樹脂は、典型的には、粉末状のものを一次集合体粒子と混合して平板状や柱状の型に充填し、その熱可塑性樹脂の融点近くまで加熱しながらプレス機で加圧成形するのに好適に用いられる。
【0021】
好適な活性炭構造体として、例えばハニカム構造のものを形成するには、以上のようにして得られた平板状、波板状、柱状等の二次集合体を組み合わせればよい。例えば、二次集合体として平板状の成形品と波板状の成形品を交互に積層したり、角管状の成形品を千鳥に配列したりすることにより、ハニカム構造体を形成することができる。あるいは、一次集合体粒子を直接ハニカム状の型に充填して加圧成形することによりハニカム構造体を形成することもできる。
【0022】
【実施例】
実施例1
活性炭粉末(平均粒径30μmの石炭系粉末活性炭)とフッ素樹脂粉末(平均粒径200nmのPTFE粒子分散液、60重量%)を9:1の比率で加圧ニーダーを用いて混合混練して得た塊状物をカッターミルで解砕し平均粒径0.6mmの一次集合体粒子を得た。この一次集合体粒子に結合剤としてメチルセルロースを一次集合体粒子に対して10重量%噴霧混合し、ロール機で厚さ0.5mmのシート状に成形した。これを厚さ0.3mmのポリエチレン製ネットの両側に圧着して平板状のパネルとし、さらに一部のパネルは波板状に加工した後、平板状のパネルと波板状のパネルを交互に積層することにより、図1に示すハニカム構造体を形成した。こうして得られたハニカム構造体を、断面35mm×40mmの角形反応器に0.8mの高さに充填し、下記組成のガス(45℃)をガス空塔速度4m/sの下向流で流した。
SO2: 800容量ppm
O2: 4容量%
CO2: 10容量%
N2: 残部
相対湿度: 100%
出口ガス中SO2濃度をSO2計(赤外式)で測定して触媒活性を評価したところ、試験開始100時間後において脱硫率22%を得た。
【0023】
実施例2
実施例1と同様にして得た一次集合体粒子に、結合剤としてポリエチレン粉末を一次集合体粒子に対して15重量%混合し、これをハニカム状の型に充填して150℃に加熱しながらプレス機で加圧成形することにより、図1に示すハニカム構造体を形成した。こうして得られたハニカム構造体を用いて実施例1と同様な方法で活性試験を行ったところ、試験開始100時間後において脱硫率25%を得た。
【0024】
比較例1
実施例1で用いたのと同じ活性炭粉末及びフッ素樹脂粉末を、実施例1と同様に9:1の比率で加圧ニーダーを用いて混合混練した後、混練物をそのままロール機で厚さ0.5mmのシート状に成形した。これを厚さ0.3mmのポリエチレン製ネットの両側に圧着して平板状のパネルとした。さらに一部のパネルは波板状に加工し、平板状のパネルと波板状のパネルを交互に積層することにより、図1に示すハニカム構造体を形成した。こうして得られたハニカム構造体を用いて実施例1と同様な方法で活性試験を行ったところ、試験開始100時間後における脱硫率は15%であった。
【図面の簡単な説明】
【図1】本発明の好適な実施態様であるハニカム構造体を示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an activated carbon structure for flue gas desulfurization having high water repellency and high air permeability and a method for producing the same. More specifically, the present invention is used effectively to remove sulfur oxides from the exhaust gas by adsorption oxidation by contacting the exhaust gas containing sulfur oxides such as sulfurous acid gas with an activated carbon catalyst. The present invention relates to a highly water-repellent and highly ventilated activated carbon structure for flue gas desulfurization containing an activated carbon catalyst and a method for producing the same.
[0002]
[Prior art]
In certain types of flue gas desulfurization processes (hereinafter referred to as “catalytic flue gas desulfurization processes”), sulfur oxides, typically sulfurous acid gas, contained in the exhaust gas are combined with oxygen and moisture in the presence of a catalyst. It reacts and is finally oxidized to sulfuric acid. This is recovered as sulfuric acid (dilute sulfuric acid) as it is, or reacted with a calcium compound and recovered in the form of gypsum (calcium sulfate). Activated carbon is generally said to be useful as a catalyst for this purpose. One of the reasons is that activated carbon has a large specific surface area and many active sites are distributed over such a large surface area.
[0003]
In order for the activated carbon to exhibit high catalytic activity in the above-mentioned contact method flue gas desulfurization process, it is important that the activated carbon has a high water repellency. This is because, unless the moisture in the exhaust gas condensed on the outer surface of the activated carbon and the pores and sulfuric acid produced by the reaction are not removed quickly, the active sites in the surface and pores are covered with moisture and sulfuric acid and blocked. Because it ends up. In order to improve the water repellency of activated carbon, the present inventors have already impregnated and supported activated carbon with a water-repellent substance, formed by mixing and kneading activated carbon powder and a water-repellent substance, and activated carbon powder. We have developed products that have been mixed and kneaded with water-repellent substances and then impregnated and supported with water-repellent substances.
[0004]
On the other hand, when exhaust gas is circulated through a column packed with activated carbon in order to bring the exhaust gas into contact with activated carbon, the packed bed of granular activated carbon has a pressure loss to treat a large volume of gas like a flue gas desulfurizer. Big and not economical. If the tower diameter is increased in order to reduce the pressure loss, it becomes difficult to make the gas distribution in the tower uniform, and at the same time, the site area of the apparatus increases, which is also not economical. As a means of reducing the pressure loss of activated carbon equipment, activated carbon or carbon material is added with a resin such as petroleum-based pitch or polypropylene as a binder, and this is molded into a honeycomb structure and fired, or metal with a honeycomb structure A product obtained by adding activated carbon to a product processed into a product has been studied or is commercially available.
[0005]
However, when activated carbon or a carbon material is added to a binder and formed into a honeycomb structure and fired, it is difficult and expensive to produce a large honeycomb structure due to distortion during firing, and a metal honeycomb structure base material. In the case where activated carbon is impregnated with aluminum, aluminum or the like is used as the base material, so that it has poor durability in exhaust gas containing corrosive sulfurous acid gas. Therefore, the present inventors knead a mixture containing activated carbon and a water-repellent resin, form this into a plate shape or a column shape, and form a primary processed product, and form a honeycomb structure from the primary processed product. In addition, a honeycomb-structured activated carbon catalyst having excellent strength and durability and being simple and inexpensive has been developed (Japanese Patent Application No. 26127).
[0006]
[Problems to be solved by the invention]
However, the diffusion flow path formed in the primary processed product has high water repellency but is small in size and has high resistance to gas diffusion and liquid discharge. For this reason, it was found that in the honeycomb structure formed from such a primary processed product, only activated carbon in the vicinity of the outer surface is subjected to the reaction, and activated carbon in the structure is not sufficiently utilized as a catalyst. This means that the effective filling amount of activated carbon is smaller than the actual amount of activated carbon used to form the structure, and the utilization efficiency as a catalyst is reduced. As a result, this particularly appears as a decrease in adsorption activity and reaction activity after a long period of time. That is, it is desired to increase the utilization efficiency as a catalyst by effectively utilizing the internal region of the activated carbon structure, and to improve the adsorption activity and reaction activity. For this purpose, resistance to gas diffusion and liquid discharge is required. There is a need to provide an activated carbon structure with fewer diffusion channels.
[0007]
[Means for Solving the Problems]
The present invention relates to a highly water-repellent activated carbon structure for flue gas desulfurization composed of a secondary assembly in which primary assembly particles made of activated carbon and a resin are assembled, and the primary diffusion channel formed in the primary assembly particles And a secondary diffusion channel formed between the primary aggregate particles constituting the secondary assembly, and the gas or liquid passes through these primary and secondary diffusion channels and flows inside the structure. The above problem is solved by providing an activated carbon structure characterized in that it can be diffused.
[0008]
The activated carbon structure of the present invention is produced by crushing a mixture of activated carbon and resin to form primary aggregate particles, which are then molded into a predetermined shape to form secondary aggregates. That is, the activated carbon structure of the present invention does not directly form a mixture and kneaded of activated carbon and a resin, but finely crushes the mixed kneaded material into primary aggregate particles, which are molded by pressure molding or the like. Thus, there is a feature in that a relatively large diffusion channel is formed between the primary aggregate particles that are manufactured by forming the secondary aggregate and constitute the secondary aggregate.
[0009]
[Action]
Each activated carbon particle has an extremely large surface area and has many catalytic active sites on its surface, so it is effective as a catalyst, but when this is used for catalytic flue gas desulfurization, The generated sulfuric acid covers the catalytic activity point. Therefore, in order to quickly release water and sulfuric acid, the surface of the activated carbon is hydrophobized by mixing and kneading such a resin having a low affinity with the polar compound with the activated carbon. By the way, activated carbon has a very large surface area because it has fine pores inside, and such pores have extremely high resistance to gas diffusion and liquid discharge. In addition, when the activated carbon and the resin are mixed and kneaded, the gap between the activated carbon particles is not completely filled with the resin. Therefore, the diffusion channel (primary diffusion channel) having a size larger than the pores in the particles is used. However, the size of the diffusion channel is inevitably limited due to the demand for effective hydrophobization of the activated carbon surface, which is not necessarily sufficient in terms of gas and liquid diffusion rates. Therefore, the movement of gas and liquid between the activated carbon in the inner part of the structure and the outside is not easy, and the activated carbon in the inner part of the structure is hardly used as a catalyst as it is.
[0010]
Therefore, in the present invention, in order to allow gas and liquid to move quickly between the activated carbon in the inner part of the structure and the surface of the structure, in the present invention, a diffusion channel (primary diffusion channel) consisting of voids between the activated carbon particles in the structure is used. A large diffusion channel (secondary diffusion channel) is formed. The secondary diffusion channel is formed between the primary aggregate particles by configuring the structure (secondary aggregate) as an aggregate of primary aggregate particles made of activated carbon and resin. The primary aggregate particles are obtained by mixing and kneading activated carbon and a resin and crushing them. Thus, the activated carbon structure of the present invention has two types of diffusion channels of different sizes, a primary diffusion channel and a secondary diffusion channel, thereby sufficiently hydrophobizing the activated carbon surface having catalytic active sites. It satisfies the two requirements of rapid gas and liquid movement at the same time.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In order to produce the activated carbon structure of the present invention, first, activated carbon and resin are mixed and kneaded. As the activated carbon, powdered activated carbon is generally used, and the average particle size is preferably 20 to 200 μm. If the average particle size is smaller than this range, the size of the primary diffusion channel formed in the primary aggregate particles is reduced, and the resistance to diffusion of gas and liquid in the primary aggregate particles is increased. On the contrary, if the average particle diameter is larger than this range, the pores are not sufficiently water-repellent, and the gap between the activated carbon particles tends to be too large and the specific surface area of the activated carbon structure tends to be small. Here, the “average particle size” of activated carbon refers to a 50% particle size, that is, a particle size of 50% on a weight-based integrated sieve.
[0012]
Activated carbon is classified into coal types such as coal-based, coconut shell-based, and petroleum pitch-based depending on the raw material. The catalytic activity is generally high in coal-based, but in the present invention, it can be used regardless of the type of coal. In addition, although it is preferable to use the activated carbon having a particle size of 20 to 200 μm that is commercially available as powdered activated carbon, granular activated carbon having a particle size larger than this may be pulverized to a desired particle size.
[0013]
On the other hand, the resin is preferably a fluororesin from the viewpoint of imparting water repellency, but is not necessarily limited to the fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE) resin, perfluoroalkoxy (PFA) resin, tetrafluoroethylene hexafluoropropylene (FEP) copolymer, ethylene trifluoride chloride (PCTEF) resin, etc. are suitable. Can be used. These fluororesins are commercially available as fine particle dispersions adjusted to various particle sizes. It is preferable that 1-30 weight% of resin is contained with respect to activated carbon.
[0014]
In order to mix and knead the fine particle dispersion and activated carbon closely, typically a pressure kneader or a Banbury mixer is used. However, the present invention is not necessarily limited to this, and a kneading action such as shearing or compression is effective for the material. Anything that can be given to can be used in general. When a pressure kneader or a Banbury mixer is used, a desired close kneaded product can be obtained by continuing the mixing and kneading operation for about 0.2 to 1.0 hour. This kneading operation is performed in order to bring the activated carbon and the resin into close contact with each other and to impart sufficient water repellency to the activated carbon surface.
[0015]
Next, in order to obtain primary aggregate particles, the kneaded product (lumps) is typically finely crushed using a pin mill or a cutter mill. The kneaded product of activated carbon and resin forms a structure in which the resin is intertwined and has a high pressure breakdown / impact resistance strength. For example, a ball mill or a roll type pulverizer usually used for pulverization is sufficiently pulverized. Absent. For pulverization of a material having a high pressure breakdown resistance / impact resistance strength such as the kneaded product, it is necessary to select a pulverizer having a function of cutting as a pulverization principle. Examples of the pulverizer having such a cutting function include a rotary disk type pulverizer (pin mill, impact mill, etc.), a cutting type pulverizer (cutter mill, knife mill, etc.), a hammer mill, and the like. In this specification, it will be referred to as “pulverization” in order to distinguish from a normal pulverization operation.
[0016]
Once the kneaded product of activated carbon and resin is crushed into primary aggregate particles, the purpose of forming the secondary aggregate again is a secondary diffusion flow with a size that facilitates diffusion of gas and liquid. The path is to be formed inside the secondary assembly. Accordingly, the particle size of the primary aggregate particles needs to be adapted to such purpose, and is larger than the average particle size of the powdered activated carbon, and preferably the 50% particle size is 0.05 to 10 mm, more preferably 0. The range is 1 to 5 mm. When the 50% particle size is smaller than this range, the size of the secondary diffusion flow path becomes small, and it becomes difficult to obtain the effect of facilitating diffusion of gas and liquid. On the other hand, if the 50% particle size is larger than the above range, the number of secondary diffusion channels formed is reduced, and the activated carbon surface in contact with the channels decreases, so the effect of forming the secondary diffusion channels is sufficient. It becomes difficult to obtain. Here, the “50% particle size” is the particle size of 50% on the weight-based integrated sieve obtained by dry sieving.
[0017]
The secondary aggregate is obtained by forming the primary aggregate particles thus obtained into a desired shape. For forming, extrusion molding or pressure molding is suitable. For forming into a plate shape, pressure molding is suitable, and there are a method in which the primary aggregate particles are passed through a roll machine as it is, and a method in which the primary aggregate particles are uniformly spread on a mold and pressed with a press machine. It is also possible to make the thickness of the molded product uniform by passing it through a roll machine after being molded by a press machine. On the other hand, for forming into a columnar shape, primary aggregate particles may be spread on a columnar mold and press-molded, but it can be extruded from a hole having a desired shape such as a circle or a rectangle using an extrusion molding machine. Further, if the corrugated plate is filled with the primary aggregate particles and pressed by a press, a corrugated plate for forming a honeycomb structure can be produced.
[0018]
The secondary aggregate formed by extruding or pressure-molding the primary aggregate particles preferably has a primary diffusion channel and a secondary diffusion channel at an appropriate ratio. Such a preferable secondary aggregate generally has a bulk density of 0.10 to 0.60 g / cm 3, preferably about 0.20 to 0.40 g / cm 3, and a porosity of 20 to 65%, preferably It was about 30-55%. The porosity was measured as follows. After contacting the activated carbon structure with a known volume with simulated exhaust gas containing sulfurous acid gas for more than 100 hours in order to eliminate the effect of the space not used for the diffusion of activated carbon pores, etc., this activated carbon structure is connected to a measuring cylinder with a stopper. The sample was filled with pure water, suctioned with a vacuum pump, the space volume was determined from the reduced liquid volume (volume of liquid entering the activated carbon structure), and the porosity was calculated. The amount of water evaporation was corrected by performing a blank test.
[0019]
The primary aggregate particles can be molded as they are, but in order to increase the mechanical strength of the molded secondary aggregate, it is preferable to mix a binder and, if necessary, mold while heating. According to this method, pressure molding can be performed at a low pressure. As the binder, a water-soluble polymer or a thermoplastic resin is preferably used. As the water-soluble polymer, water-soluble starches, gum arabic, gelatin, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol and the like are used. As the thermoplastic resin, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin, polymethyl methacrylate, polyamide, polyester, polycarbonate, polyphenylene oxide, thermoplastic polyurethane, polyacetal, and the like are used.
[0020]
The water-soluble polymer is typically suitably used for spraying and mixing the primary aggregate particles, and forming the sheet into a sheet by passing it through a roll machine. It is preferable to prepare two sheets thus obtained and sandwich a reinforcing material sheet between them to form a sandwich-structured panel because the mechanical strength is further increased. As such a reinforcing material sheet, a net of polyethylene or polypropylene is preferably used. On the other hand, a thermoplastic resin is typically mixed with primary aggregate particles in a powder form, filled into a flat plate or columnar mold, and heated with a press while heating to near the melting point of the thermoplastic resin. It is suitably used for pressure forming.
[0021]
As a suitable activated carbon structure, for example, in order to form a honeycomb structure, a secondary aggregate such as a flat plate shape, a corrugated plate shape, and a column shape obtained as described above may be combined. For example, a honeycomb structure can be formed by alternately laminating flat plate shaped products and corrugated plate shaped products as a secondary assembly, or arranging staggered tubular shaped products in a staggered manner. . Alternatively, the honeycomb structure can be formed by directly filling the primary aggregate particles into a honeycomb-shaped mold and performing pressure molding.
[0022]
【Example】
Example 1
Obtained by mixing and kneading activated carbon powder (coal-based powder activated carbon with an average particle size of 30 μm) and fluororesin powder (PTFE particle dispersion with an average particle size of 200 nm, 60% by weight) using a pressure kneader at a ratio of 9: 1. The lump was pulverized with a cutter mill to obtain primary aggregate particles having an average particle diameter of 0.6 mm. Methyl cellulose as a binder was sprayed and mixed with the primary aggregate particles at 10% by weight with respect to the primary aggregate particles, and formed into a sheet having a thickness of 0.5 mm by a roll machine. This is crimped to both sides of a polyethylene net with a thickness of 0.3 mm to form a flat panel, and after some of the panels are processed into a corrugated sheet, the flat panel and the corrugated panel are alternately formed. By laminating, the honeycomb structure shown in FIG. 1 was formed. The honeycomb structure thus obtained was filled in a rectangular reactor having a cross section of 35 mm × 40 mm to a height of 0.8 m, and a gas having the following composition (45 ° C.) was flowed at a gas superficial velocity of 4 m / s. did.
SO2: 800 volume ppm
O2: 4% by volume
CO2: 10% by volume
N2: Remaining relative humidity: 100%
When the catalyst activity was evaluated by measuring the SO2 concentration in the outlet gas with an SO2 meter (infrared type), a desulfurization rate of 22% was obtained 100 hours after the start of the test.
[0023]
Example 2
The primary aggregate particles obtained in the same manner as in Example 1 were mixed with 15% by weight of polyethylene powder as a binder with respect to the primary aggregate particles, filled in a honeycomb-shaped mold and heated to 150 ° C. The honeycomb structure shown in FIG. 1 was formed by pressure forming with a press. Using the honeycomb structure thus obtained, an activity test was conducted in the same manner as in Example 1. As a result, a desulfurization rate of 25% was obtained 100 hours after the start of the test.
[0024]
Comparative Example 1
The same activated carbon powder and fluororesin powder as used in Example 1 were mixed and kneaded at a ratio of 9: 1 using a pressure kneader in the same manner as in Example 1, and the kneaded product was directly treated with a roll machine to a thickness of 0. Molded into a 5 mm sheet. This was crimped to both sides of a 0.3 mm thick polyethylene net to form a flat panel. Further, some of the panels were processed into a corrugated plate, and the honeycomb structure shown in FIG. 1 was formed by alternately laminating flat plate-like panels and corrugated plate-like panels. Using the honeycomb structure thus obtained, an activity test was performed in the same manner as in Example 1. As a result, the desulfurization rate after 15 hours from the start of the test was 15%.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a honeycomb structure according to a preferred embodiment of the present invention.

Claims (11)

平均粒径が20〜200μmである活性炭と極性化合物との親和性が小さい樹脂とを混合混練したものを解砕して得られる一次集合体粒子が集合した二次集合体からなる排煙脱硫用高撥水性活性炭構造体であって、該一次集合体粒子の50%粒径が0.05〜10mmであり、該一次集合体粒子内に形成された一次拡散流路と、該二次集合体を構成する一次集合体粒子の間に形成された二次拡散流路とを有し、ガスや液がこれらの一次及び二次拡散流路を通って構造体内部を拡散することができるように構成されたことを特徴とする活性炭構造体。 For flue gas desulfurization consisting of secondary aggregates of primary aggregate particles obtained by pulverizing a mixture of kneaded activated carbon having an average particle size of 20 to 200 μm and a resin having a low affinity for polar compounds A highly water-repellent activated carbon structure, wherein the primary aggregate particles have a 50% particle size of 0.05 to 10 mm, a primary diffusion channel formed in the primary aggregate particles, and the secondary aggregate A secondary diffusion channel formed between the primary aggregate particles constituting the gas, so that gas and liquid can diffuse inside the structure through the primary and secondary diffusion channels. An activated carbon structure characterized by comprising. 該一次集合体粒子の50%粒径が0.1〜5mmである請求項1記載の活性炭構造体。  The activated carbon structure according to claim 1, wherein the primary aggregate particles have a 50% particle size of 0.1 to 5 mm. 該樹脂が該活性炭に対して1〜30重量%含まれる請求項1または2記載の活性炭構造体。The activated carbon structure according to claim 1 or 2, wherein the resin is contained in an amount of 1 to 30% by weight based on the activated carbon. 該樹脂がフッ素樹脂である請求項1〜のいずれか記載の活性炭構造体。The activated carbon structure according to any one of claims 1 to 3 , wherein the resin is a fluororesin. ハニカム形状に成形された請求項1〜のいずれか記載の活性炭構造体。The activated carbon structure according to any one of claims 1 to 4 , which is formed into a honeycomb shape. 該二次集合体と補強材からなる請求項1〜のいずれか記載の活性炭構造体。The activated carbon structure according to any one of claims 1 to 5 , comprising the secondary assembly and a reinforcing material. 平均粒径が20〜200μmである活性炭と極性化合物との親和性が小さい樹脂とを混合混練したものを解砕して一次集合体粒子とする工程と、これを所定の形状に成形して二次集合体とする工程を含むことを特徴とする請求項1〜のいずれか記載の活性炭構造体の製造方法。 Crushing a kneaded mixture of activated carbon having an average particle size of 20 to 200 μm and a resin having a low affinity with a polar compound to form primary aggregate particles; The method for producing an activated carbon structure according to any one of claims 1 to 6 , further comprising a step of forming a next aggregate. 一次集合体粒子を加圧成形して二次集合体とする請求項記載の方法。The method according to claim 7 , wherein the primary aggregate particles are pressed to form secondary aggregates. 強度を向上させるための添加剤を加えて加圧成形する請求項記載の方法。The method according to claim 8 , wherein an additive for improving the strength is added for pressure molding. 該添加剤が水溶性高分子又は熱可塑性樹脂である請求項記載の方法。The method according to claim 9, wherein the additive is a water-soluble polymer or a thermoplastic resin. 請求項1〜のいずれか記載の活性炭構造体又は請求項7〜10のいずれか記載の方法により製造された活性炭構造体に、酸素及び湿分の存在下で硫黄酸化物を含む排ガスを接触させ、それにより硫黄酸化物を吸着酸化して硫酸とし、これを該活性炭構造体から離脱させて分離することにより、排ガスから硫黄酸化物を除去することを特徴とする排煙脱硫方法。The activated carbon structure according to any one of claims 1 to 6 or the activated carbon structure produced by the method according to any one of claims 7 to 10 is contacted with an exhaust gas containing sulfur oxides in the presence of oxygen and moisture. And removing sulfur oxide from the exhaust gas by separating and separating the sulfur oxide from the activated carbon structure by adsorption and oxidation of the sulfur oxide, thereby removing the sulfur oxide from the exhaust gas.
JP2000220840A 2000-07-21 2000-07-21 Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof Expired - Lifetime JP4493813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220840A JP4493813B2 (en) 2000-07-21 2000-07-21 Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220840A JP4493813B2 (en) 2000-07-21 2000-07-21 Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002035593A JP2002035593A (en) 2002-02-05
JP4493813B2 true JP4493813B2 (en) 2010-06-30

Family

ID=18715372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220840A Expired - Lifetime JP4493813B2 (en) 2000-07-21 2000-07-21 Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4493813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492382A (en) * 2013-12-06 2015-04-08 东华理工大学 Preparation method of carboxylation hydrothermal biomass charcoal for remedying uranium-containing wastewater
US10857515B2 (en) 2014-09-16 2020-12-08 Kuraray Co., Ltd. Process for producing adsorbent including activated carbon
JP7405507B2 (en) * 2019-01-09 2023-12-26 イビデン株式会社 Sulfur-based gas adsorption structure and assembled battery
JP2022533148A (en) * 2019-05-16 2022-07-21 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Adsorbent polymer composite sheet with perforations to enhance mass transit
CN114192114A (en) * 2021-12-28 2022-03-18 山东亮剑环保新材料有限公司 Preparation method of metal ion modified activated carbon desulfurizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290688A (en) * 1998-04-07 1999-10-26 Chiyoda Corp Active carbon catalyst and flue gas desulfurization
JP2000225341A (en) * 1999-02-03 2000-08-15 Chiyoda Corp Production of active carbon catalyst of honeycomb structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562550B2 (en) * 1997-05-21 2004-09-08 千代田化工建設株式会社 Activated carbon catalyst and flue gas desulfurization method
JP4156076B2 (en) * 1998-05-21 2008-09-24 千代田化工建設株式会社 Method for desulfurization of exhaust gas using catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290688A (en) * 1998-04-07 1999-10-26 Chiyoda Corp Active carbon catalyst and flue gas desulfurization
JP2000225341A (en) * 1999-02-03 2000-08-15 Chiyoda Corp Production of active carbon catalyst of honeycomb structure

Also Published As

Publication number Publication date
JP2002035593A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US6573212B2 (en) Method of making shaped activated carbon
US6696384B2 (en) Method of making shaped activated carbon
US6616905B1 (en) Desulfurization of exhaust gases using activated carbon catalyst
US4857243A (en) Process of making microspherules of activated carbon
CN101987294A (en) Method for preparing honeycomb ceramic adsorbent material by utilizing attapulgite clay
EP2978523B1 (en) Granular material for absorption of harmful gases and process for production thereof
CN109603459A (en) A kind of low-temperature dry fume desulfurizing agent and its preparation method and application
AU2013216883A1 (en) Substrates for carbon dioxide capture and methods for making same
Gong et al. Critical review of catalytic degradation of formaldehyde via MnO2: From the perspective of process intensification
JP4493813B2 (en) Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof
US5380594A (en) Microspherules of activated carbon and a process for manufacturing the same
US5209887A (en) Process for manufacturing microspherules of activated carbon
WO2019062448A1 (en) Desulfurizer, and preparation method therefor and application thereof
JP4256514B2 (en) Method for manufacturing honeycomb activated carbon catalyst
JP4523741B2 (en) Removal method of sulfurous acid gas
JP3556085B2 (en) Activated carbon material and flue gas desulfurization method using this activated carbon material
JP2944059B2 (en) Molding material using activated carbon fiber, molded product thereof, and method for producing the same
CN107626281A (en) A kind of adsorbent and its production and use
Wilfong et al. Scale-up of immobilized amine sorbent pellets for landfill gas upgrading, using benchtop and pilot equipment
JP3562551B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP3224117B2 (en) Activated carbon
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
US3174881A (en) Method for making porous contact masses
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP4159647B2 (en) Activated carbon material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4493813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term