JP4256514B2 - Method for manufacturing honeycomb activated carbon catalyst - Google Patents

Method for manufacturing honeycomb activated carbon catalyst Download PDF

Info

Publication number
JP4256514B2
JP4256514B2 JP02612799A JP2612799A JP4256514B2 JP 4256514 B2 JP4256514 B2 JP 4256514B2 JP 02612799 A JP02612799 A JP 02612799A JP 2612799 A JP2612799 A JP 2612799A JP 4256514 B2 JP4256514 B2 JP 4256514B2
Authority
JP
Japan
Prior art keywords
activated carbon
resin
additive
honeycomb structure
reinforcing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02612799A
Other languages
Japanese (ja)
Other versions
JP2000225341A (en
Inventor
洋一 梅原
大 武田
尚紀 曽根原
裕明 西島
和茂 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP02612799A priority Critical patent/JP4256514B2/en
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to AU30564/99A priority patent/AU3056499A/en
Priority to CA002327591A priority patent/CA2327591C/en
Priority to MYPI99001316A priority patent/MY121452A/en
Priority to CN99806511.0A priority patent/CN1117615C/en
Priority to PCT/JP1999/001810 priority patent/WO1999051337A1/en
Priority to US09/647,680 priority patent/US6616905B1/en
Priority to IDW20002276A priority patent/ID26701A/en
Priority to TW088105537A priority patent/TW500623B/en
Publication of JP2000225341A publication Critical patent/JP2000225341A/en
Application granted granted Critical
Publication of JP4256514B2 publication Critical patent/JP4256514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は活性炭触媒構造体の製造に関する。より詳しくは本発明は、亜硫酸ガス等の硫黄酸化物を含む排ガスを活性炭触媒と接触させることにより、硫黄酸化物を吸着酸化して排ガスから除去するのに用いられる、上記活性炭触媒を含む構造体の製造に関する。
【0002】
【従来の技術】
ある種の排煙脱硫プロセス(以下において「接触硫酸化プロセス」と呼ぶ)においては、排ガス中に含まれる硫黄酸化物、典型的には亜硫酸ガスは、共存する酸素により触媒を介して最終的に硫酸にまで酸化される。これは、そのまま硫酸(希硫酸)として回収されたり、あるいはカルシウム化合物と反応して石膏の形で回収される。硫黄酸化物の除去には一般に活性炭が有用であるといわれるが、その理由の1つは、活性炭の比表面積が大きく、そのような広い表面積に触媒活性点が多数分布しているからである。
【0003】
上記接触硫酸化プロセスにおいて活性炭触媒が高い活性を示すためには、活性炭触媒の撥水性が大きいことが重要である。これは、活性炭触媒の表面や細孔内で生成した硫酸がすみやかに流去しないと、当該表面や細孔内の活性点が硫酸に覆われてブロックされてしまうからである。
【0004】
本発明者らは、活性炭の撥水性を向上させるため、すなわち撥水化処理する目的で、すでに、活性炭粒子に撥水性物質を含浸担持させたもの、活性炭粉末と撥水性物質とを混合して成形したもの、予め撥水化処理した活性炭粉末と撥水性物質とを混合して成形したもの、及び活性炭粉末と撥水性物質とを混合して成形した後に撥水性物質を含浸担持させたものを開発した。
【0005】
ところで、排ガスと活性炭とを接触させるために活性炭を充填した塔に排ガスを流通させる場合、粒状活性炭の充填層は排煙脱硫装置のように大容量のガスを処理するには圧力損失が大きく経済的でない。また、圧力損失を低くするために塔径を大きくすると、装置の敷地面積が大きくなり、塔内のガス分散を均一にすることが難しくなる。活性炭を用いた装置の圧力損失を低減させる手段として、活性炭もしくは炭素材を石油ピッチやポリプロピレンなど樹脂をバインダーとしてハニカム構造に成形し焼成したものや、金属をハニカム構造に加工したものに活性炭を添着させたものが検討され、あるいは市販されている。
【0006】
【発明が解決しようとする課題】
しかしながら、活性炭をハニカム構造に成形焼成したものでは焼成時の歪みのために大型のハニカム構造体の製造は困難かつ高価であるという問題があり、また金属のハニカム構造基材に活性炭を添着させたものでは当該基材としてアルミ等が使われるため腐食性の亜硫酸ガスを含む排ガス中では耐久性に乏しいという問題がある。
【0007】
また上記に述べたように、活性炭粉末と樹脂などの撥水性物質、特にフッ素樹脂とを混合して成形することは、活性炭表面の撥水化手段として有効であるが、当該混合物を押出しや加圧により成形したものは、その強度がハニカム構造体を形成するには十分でないという問題もある。
【0008】
以上の問題に鑑み、十分な強度をもつ活性炭を含むハニカム構造を簡易に製造することが要請されている。
【0009】
【課題を解決するための手段】
本発明は、活性炭と樹脂とを含有する混合物を混練し、これを板状または柱状に成形して一次加工品となし、該一次加工品からハニカム構造体を形成させることからなるハニカム構造活性炭触媒の製造方法を提供し、これにより上記課題を解決する。
【0010】
【発明の実施の形態】
本発明では、活性炭と樹脂を含有する混合物を混練し、これを押出し成形またはロール機やプレス機を用いた加圧成形によりハニカム構造体を形成するのに十分な強度をもつ一次加工品とする。混練操作によって一次加工品の強度が向上する理由は明らかではないが、この操作によって樹脂の絡み合いが強まったり、フッ素樹脂の分子が複雑に絡み合った三次元構造をとるからではないかと考えられる。混合ないし混練操作は典型的には加圧ニーダーやバンバリミキサーを用いて行われるが、必ずしもこれに限定されず材料に剪断や圧縮などの練りこみ作用を有効に与えることができるものが一般に使用可能である。
【0011】
活性炭と樹脂との混合物を製造するには、まず活性炭粉末と樹脂とを緊密に混合する。用いる活性炭粉末はその平均粒子径が10〜1000μmであることが好ましい。平均粒径がこの範囲より小さいと混練成形して得られる物が緻密になり過ぎ、当該成形物を構成する粉末粒子間に形成される間隙が微細になり過ぎる傾向がある。逆に、平均粒径がこの範囲より大きいと細孔内が十分に撥水化されず、また上記粉末粒子間の間隙が大きくなりすぎて成形物の外表面積が小さくなる傾向がある。より好ましい平均粒子径の範囲は15〜400μmであり、最も好ましくは20〜300μmである。また活性炭粉末はその原料によって石炭系、椰子殻系、石油ピッチ系などの炭種に分けられる。触媒活性は一般に石炭系が高いが、本発明では特に炭種を問わずに使用できる。さらに、活性炭粉末は金属を担持させたり焼成を行ったりしたものを使用してもよい。
【0012】
一方、樹脂としては撥水性付与の観点からフッ素樹脂の使用が好ましいが、必ずしもフッ素樹脂に限定されるものではない。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシ樹脂(PFA)、四フッ化エチレン六フッ化プロピレン共重合体(FEP)、三フッ化塩化エチレン樹脂(PCTEF)などが好適に使用できる。これらのフッ素樹脂は、各種粒径に調整された微粒子分散液が市販されており、そのような微粒子分散液と活性炭粉末とを合わせて十分に混錬した後、押出し、圧延、打ち抜きなどにより板状または柱状に成形すれば一次加工品を得ることができる。フッ素樹脂は撥水性が高いため混練成形物の表面に安定な撥水性を維持できるとともに、これを練り込むことによって一次加工品の強度が向上する。樹脂は、1〜20重量%、好ましくは2〜20重量%添加すれば、よい触媒成形物が得られる。
【0013】
上記の混練物はそのままでも板状や柱状、さらにはハニカム構造体に成形することが可能であるが、より加工性を向上させるために添加剤を加えることが好ましい。そのような添加剤としては、水溶性高分子またはゴム成形添加剤が好適に用いられる。水溶性添加剤の例としては、水溶性のでんぷん類、アラビアゴム、ゼラチン、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコールなどが挙げられる。また、ゴム成形添加剤としては、クマロン・インデン樹脂、フェノール・ホルムアルデヒド系樹脂、キシレン・ホルムアルデヒド樹脂、ポリテルペン樹脂、石油系炭化水素樹脂、ロジンエステルなどが挙げられる。添加剤は、樹脂の含有量にもよるが、一般には活性炭に対して0.5〜5重量%程度加えればその効果が得られる。
【0014】
活性炭と樹脂を含有する混練物は、押出し成形や加圧成形にかける前に、それらの成形機に均一に供給するため、好ましくはピンミルやカッターミル等により数ミリまで解砕する。
【0015】
混練物の成形には、押出し成形またはロール機やプレス機を用いた加圧成形が適している。板状に成形するには、解砕した混練物をそのままロール機に通す方法や型に均一に敷き詰めてプレス機で加圧する方法がある。プレス機で成形した後でロール機に通すことにより、成形品の厚みの均一化や表面の平滑化を図ることも可能である。また柱状に成形するには、押出し成形機を用いて円形、矩形などの所望の形状の穴から押し出せばよい。
【0016】
成形物の機械的強度を上げるため、混練物を補強材と組み合わせることが好ましい。補強材としては、耐食性の点で金属よりも高分子材料が好ましく用いられる。典型的には、活性炭と樹脂との混練物をシート状に加工したものを2枚用意し、その間に補強材からなるシートを挟み込んだサンドイッチ構造を形成する。あるいは、解砕した混練物とシートを同時にロール機に通す方法や、解砕物を敷き詰めた上にシートを重ね、その上に更に解砕物を敷き詰めてプレス機で加圧する方法を用いてもよい。補強材シートとしてはポリエチレンやポリプロピレンのネットが好適に用いられる。
【0017】
以上のようにして製造した板状または柱状の一次加工品を組み合わせれば、所望のハニカム構造を形成することができる。例えば、平板状の成形物と波板状の成形物を交互に積層したり、角管状の成形物を千鳥に配列したりすることによりハニカム構造が形成できる。
【0018】
【実施例】
実施例1
活性炭粉末(平均粒径30μmの石炭系粉末活性炭)とフッ素樹脂粉末(平均粒径200nmのPTFE粒子分散液、60重量%)を9:1の比率でニーダーを用いて混合混練した後、ロール機で厚さ0.5mmのシート状に成形し、これを厚さ0.3mmのポリプロピレン製ネットの両側に圧着して平板とした。さらに一部のものを波板状に加工し、平板と波板とを交互に積層することにより、図1に示すハニカム構造を形成した。
【0019】
実施例2
活性炭粉末(平均粒径30μmの石炭系粉末活性炭)とフッ素樹脂粉末(平均粒径200nmのPTFE粒子分散液、60重量%)を9:1の比率で混合し、さらに添加剤としてメチルセルロースを上記活性炭に対して1重量%加えたものをニーダーを用いて混合混練した後、ロール機で厚さ0.5mmのシート状に成形し、これを厚さ0.3mmのポリプロピレン製ネットの両側に貼り付けて平板とした。さらに一部のものを波板状に加工し、平板と波板とを交互に積層することにより、図1に示すハニカム構造を形成した。
【0020】
実施例3
実施例1および2で得られたハニカム構造体を、それぞれ断面積35mm×40mmの角形反応器に縦に充填し、下記組成のガス(45℃)をガス空塔速度4m/sの下向流で流した。
SO2: 800容量ppm
O2: 4容量%
CO2: 10容量%
N2: 残部
相対湿度: 100%
反応器入口および出口におけるSO2濃度の差から単位時間当たりのSO2除去量として反応速度γ(mol/L)を求め、これに基づいて下記式より反応速度定数kを求めた。
γ=k×CSO2 n
(CSO2 n: SO2濃度[mol/L])
(n: 定数)
その結果、実施例1の触媒で5.2×10-4、実施例2の触媒で5.0×10-4の反応速度定数が得られた。
【図面の簡単な説明】
【図1】 本発明の方法で得られるハニカム構造体の断面の一例をを示す模式図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production of activated carbon catalyst structures. More specifically, the present invention relates to a structure containing the above activated carbon catalyst, which is used for adsorbing and oxidizing sulfur oxides from the exhaust gas by contacting the exhaust gas containing sulfur oxide such as sulfurous acid gas with the activated carbon catalyst. Related to the manufacture of
[0002]
[Prior art]
In certain types of flue gas desulfurization processes (hereinafter referred to as “catalytic sulfation processes”), sulfur oxides, typically sulfurous acid gas, contained in the exhaust gas are ultimately passed through the catalyst by coexisting oxygen. Oxidized to sulfuric acid. This is recovered as it is as sulfuric acid (dilute sulfuric acid) or reacted with a calcium compound and recovered in the form of gypsum. Activated carbon is generally said to be useful for removing sulfur oxides. One of the reasons is that activated carbon has a large specific surface area, and a large number of catalytic active sites are distributed over such a large surface area.
[0003]
In order for the activated carbon catalyst to exhibit high activity in the catalytic sulfation process, it is important that the activated carbon catalyst has a high water repellency. This is because if the sulfuric acid generated on the surface and pores of the activated carbon catalyst does not flow immediately, the active sites in the surface and pores are covered with sulfuric acid and blocked.
[0004]
In order to improve the water repellency of activated carbon, that is, for the purpose of water repellency treatment, the present inventors have already mixed activated carbon powder with a water-repellent substance in which activated carbon particles are impregnated with a water-repellent substance. Molded, pre-water repellent activated carbon powder mixed with water repellent material and molded, mixed with activated carbon powder and water repellent material and then impregnated with water repellent material developed.
[0005]
By the way, when exhaust gas is circulated through a tower packed with activated carbon in order to bring the exhaust gas into contact with activated carbon, the packed bed of granular activated carbon has a large pressure loss and is economical to process a large volume of gas like a flue gas desulfurizer. Not right. Further, if the tower diameter is increased in order to reduce the pressure loss, the site area of the apparatus increases and it becomes difficult to make the gas distribution in the tower uniform. As a means to reduce the pressure loss of activated carbon equipment, activated carbon is attached to activated carbon or carbon material that has been molded and fired into a honeycomb structure using a resin such as petroleum pitch or polypropylene, or processed into a honeycomb structure. The ones that have been allowed to be studied or are commercially available.
[0006]
[Problems to be solved by the invention]
However, when activated carbon is formed and fired into a honeycomb structure, there is a problem that manufacturing a large honeycomb structure is difficult and expensive due to distortion during firing, and activated carbon is impregnated on a metal honeycomb structure base material. However, since aluminum or the like is used as the base material, there is a problem that durability is poor in exhaust gas containing corrosive sulfurous acid gas.
[0007]
As described above, mixing and molding activated carbon powder and a water-repellent substance such as a resin, particularly a fluororesin, is effective as a means for water repellency of the activated carbon surface, but the mixture is extruded or added. There is also a problem that those molded by pressure are not strong enough to form a honeycomb structure.
[0008]
In view of the above problems, it is required to easily manufacture a honeycomb structure including activated carbon having sufficient strength.
[0009]
[Means for Solving the Problems]
The present invention relates to a honeycomb structure activated carbon catalyst comprising kneading a mixture containing activated carbon and a resin, forming the mixture into a plate shape or a column shape to form a primary processed product, and forming a honeycomb structure from the primary processed product. This method solves the above-mentioned problems.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a mixture containing activated carbon and a resin is kneaded, and this is formed into a primary processed product having sufficient strength to form a honeycomb structure by extrusion molding or pressure molding using a roll machine or a press. . The reason why the strength of the primary processed product is improved by the kneading operation is not clear, but it is thought that this operation increases the entanglement of the resin or takes a three-dimensional structure in which the molecules of the fluororesin are intricately entangled. The mixing or kneading operation is typically performed using a pressure kneader or a Banbury mixer. However, the present invention is not necessarily limited to this, and materials that can effectively impart a kneading action such as shearing or compression to the material can be generally used. It is.
[0011]
In order to produce a mixture of activated carbon and resin, first, activated carbon powder and resin are intimately mixed. The activated carbon powder used preferably has an average particle size of 10 to 1000 μm. When the average particle size is smaller than this range, the product obtained by kneading and molding tends to be too dense, and the gap formed between the powder particles constituting the molded product tends to be too fine. On the contrary, if the average particle size is larger than this range, the pores are not sufficiently water-repellent, and the gap between the powder particles tends to be too large and the outer surface area of the molded product tends to be small. A more preferable range of the average particle diameter is 15 to 400 μm, and most preferably 20 to 300 μm. Activated carbon powders are classified into coal types such as coal-based, coconut shell-based, and petroleum pitch-based depending on the raw materials. The catalytic activity is generally high in coal-based, but in the present invention, it can be used regardless of the type of coal. Further, the activated carbon powder may be a metal-supported or fired powder.
[0012]
On the other hand, the resin is preferably a fluororesin from the viewpoint of imparting water repellency, but is not necessarily limited to a fluororesin. As the fluororesin, polytetrafluoroethylene (PTFE), perfluoroalkoxy resin (PFA), tetrafluoroethylene hexafluoropropylene copolymer (FEP), trifluoroethylene chloride resin (PCTEF), etc. are preferably used. it can. These fluororesins are commercially available as fine particle dispersions adjusted to various particle sizes. After such fine particle dispersions and activated carbon powders are sufficiently kneaded and mixed, they are extruded, rolled, punched, etc. A primary processed product can be obtained by molding into a columnar shape. Since the fluororesin has a high water repellency, it can maintain a stable water repellency on the surface of the kneaded molded product, and by kneading it, the strength of the primary processed product is improved. If the resin is added in an amount of 1 to 20% by weight, preferably 2 to 20% by weight, a good catalyst molded product can be obtained.
[0013]
The kneaded material can be formed into a plate shape, a columnar shape, or a honeycomb structure as it is, but it is preferable to add an additive in order to further improve the workability. As such an additive, a water-soluble polymer or a rubber molding additive is preferably used. Examples of water-soluble additives include water-soluble starches, gum arabic, gelatin, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol and the like. Examples of the rubber molding additive include coumarone / indene resin, phenol / formaldehyde resin, xylene / formaldehyde resin, polyterpene resin, petroleum hydrocarbon resin, rosin ester, and the like. Although depending on the content of the resin, the additive is generally obtained by adding about 0.5 to 5% by weight with respect to the activated carbon.
[0014]
The kneaded product containing activated carbon and resin is preferably crushed to several millimeters by a pin mill, a cutter mill or the like in order to uniformly supply the molding machine before extrusion molding or pressure molding.
[0015]
For forming the kneaded product, extrusion molding or pressure molding using a roll machine or a press machine is suitable. In order to form into a plate shape, there are a method in which the crushed kneaded material is passed through a roll machine as it is, and a method in which the crushed kneaded material is uniformly spread on a mold and pressed by a press machine. It is possible to make the thickness of the molded product uniform and smooth the surface by passing it through a roll machine after being molded by a press machine. Further, in order to form a columnar shape, it may be extruded from a hole having a desired shape such as a circle or a rectangle using an extrusion molding machine.
[0016]
In order to increase the mechanical strength of the molded product, it is preferable to combine the kneaded material with a reinforcing material. As the reinforcing material, a polymer material is preferably used rather than a metal in terms of corrosion resistance. Typically, two sheets obtained by processing a mixture of activated carbon and resin into a sheet are prepared, and a sandwich structure is formed in which a sheet made of a reinforcing material is sandwiched therebetween. Alternatively, a method in which the crushed kneaded material and the sheet are simultaneously passed through a roll machine, or a method in which the crushed material is spread and the sheet is stacked, and the crushed material is further laid on the crushed material and pressed by a press machine may be used. A polyethylene or polypropylene net is suitably used as the reinforcing material sheet.
[0017]
A desired honeycomb structure can be formed by combining the plate-like or columnar primary products manufactured as described above. For example, a honeycomb structure can be formed by alternately laminating flat plate-shaped products and corrugated plate-shaped products, or arranging staggered tube-shaped products in a staggered manner.
[0018]
【Example】
Example 1
After mixing and kneading the activated carbon powder (coal-based powder activated carbon with an average particle size of 30 μm) and fluororesin powder (PTFE particle dispersion with an average particle size of 200 nm, 60% by weight) using a kneader at a ratio of 9: 1, a roll machine Was formed into a sheet having a thickness of 0.5 mm, and this was crimped to both sides of a polypropylene net having a thickness of 0.3 mm to form a flat plate. Further, a part was processed into a corrugated plate shape, and a honeycomb structure shown in FIG. 1 was formed by alternately laminating flat plates and corrugated plates.
[0019]
Example 2
Activated carbon powder (coal-based powder activated carbon with an average particle size of 30 μm) and fluororesin powder (PTFE particle dispersion with an average particle size of 200 nm, 60% by weight) are mixed at a ratio of 9: 1, and methyl cellulose as an additive is added to the activated carbon. After mixing and kneading 1% by weight with respect to the kneader using a kneader, it was formed into a sheet with a thickness of 0.5 mm using a roll machine, and this was pasted on both sides of a polypropylene net with a thickness of 0.3 mm. And made a flat plate. Further, a part was processed into a corrugated plate shape, and a honeycomb structure shown in FIG. 1 was formed by alternately laminating flat plates and corrugated plates.
[0020]
Example 3
Each of the honeycomb structures obtained in Examples 1 and 2 was vertically packed in a square reactor having a cross-sectional area of 35 mm × 40 mm, and a gas having the following composition (45 ° C.) was flown downward at a gas superficial velocity of 4 m / s. Washed away.
SO2: 800 volume ppm
O2: 4% by volume
CO2: 10% by volume
N2: Remaining relative humidity: 100%
The reaction rate γ (mol / L) was determined as the amount of SO2 removed per unit time from the difference in SO2 concentration at the reactor inlet and outlet, and based on this, the reaction rate constant k was determined from the following equation.
γ = k × C SO2 n
(C SO2 n : SO2 concentration [mol / L])
(N: constant)
As a result, a reaction rate constant of 5.2 × 10 −4 was obtained with the catalyst of Example 1 and 5.0 × 10 −4 with the catalyst of Example 2.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cross section of a honeycomb structure obtained by the method of the present invention.

Claims (17)

活性炭と樹脂とを含有する混合物を混練し、これを平板状、波板状または角管状に成形して一次加工品となし、該平板状の成形物と波板状の成形物を交互に積層するか、または、該角管状の成形物を千鳥に配列することにより、ハニカム構造を形成させることからなるハニカム構造活性炭触媒の製造方法。Kneading a mixture containing the activated carbon and resin, laminated thereto a flat, corrugated or square tubular molded to the primary product and without, the flat plate-like molded product and corrugated moldings alternately Or a method for producing a honeycomb-structured activated carbon catalyst, comprising forming a honeycomb structure by arranging the rectangular tubular molded products in a staggered manner. 該一次加工品が押出し成形または加圧成形により成形される請求項1記載の方法。  The method according to claim 1, wherein the primary processed product is formed by extrusion molding or pressure molding. 該一次加工品が活性炭と樹脂と補強材とからなる請求項1または2記載の方法。  The method according to claim 1 or 2, wherein the primary processed product comprises activated carbon, a resin, and a reinforcing material. 該補強材が高分子材料からなる請求項3記載の方法。  4. A method according to claim 3, wherein the reinforcing material comprises a polymer material. 該一次加工品が、活性炭と樹脂からなるシート2枚の間に補強材からなるシートを挟みこんだ、サンドイッチ構造を有する請求項3または4記載の方法。  The method according to claim 3 or 4, wherein the primary processed product has a sandwich structure in which a sheet made of reinforcing material is sandwiched between two sheets made of activated carbon and a resin. 該補強材からなるシートがポリエチレンネットである請求項5記載の方法。  6. The method according to claim 5, wherein the sheet made of the reinforcing material is a polyethylene net. 該樹脂が該活性炭に対して1〜20重量%含まれる請求項1〜6のいずれか記載の方法。  The method according to any one of claims 1 to 6, wherein the resin is contained in an amount of 1 to 20% by weight based on the activated carbon. 該樹脂がフッ素樹脂である請求項1〜7のいずれか記載の方法。  The method according to claim 1, wherein the resin is a fluororesin. 該フッ素樹脂が、ポリテトラフルオロエチレン、パーフルオロアルコキシ樹脂、四フッ化エチレン六フッ化プロピレン共重合体、および三フッ化塩化エチレン樹脂から選択される請求項8記載の方法。  9. The method of claim 8, wherein the fluororesin is selected from polytetrafluoroethylene, perfluoroalkoxy resin, tetrafluoroethylene hexafluoropropylene copolymer, and trifluoroethylene chloride resin. 活性炭と樹脂とを含有する混合物を混練する際、加工性を向上させるための添加剤が加えられる請求項1〜9のいずれか記載の方法。  The method according to any one of claims 1 to 9, wherein an additive for improving processability is added when kneading a mixture containing activated carbon and a resin. 該添加剤が該活性炭に対して0.5〜5重量%加えられる請求項10記載の方法。  The method according to claim 10, wherein the additive is added in an amount of 0.5 to 5% by weight based on the activated carbon. 該添加剤が水溶性高分子である請求項10または11記載の方法。  The method according to claim 10 or 11, wherein the additive is a water-soluble polymer. 該水溶性高分子が、水溶性のでんぷん類、アラビアゴム、ゼラチン、カルボキシメチルセルロース、メチルセルロース、およびポリビニルアルコールから選択される請求項12記載の方法。  The method according to claim 12, wherein the water-soluble polymer is selected from water-soluble starches, gum arabic, gelatin, carboxymethylcellulose, methylcellulose, and polyvinyl alcohol. 該添加剤がゴム成形添加剤である請求項10または11記載の方法。  The method according to claim 10 or 11, wherein the additive is a rubber molding additive. 該ゴム成形添加剤が、クマロン・インデン樹脂、フェノール・ホルムアルデヒド系樹脂、キシレン・ホルムアルデヒド樹脂、ポリテルペン樹脂、石油系炭化水素樹脂、およびロジンエステルから選択される請求項14記載の方法。  15. The method of claim 14, wherein the rubber molding additive is selected from coumarone-indene resin, phenol-formaldehyde resin, xylene-formaldehyde resin, polyterpene resin, petroleum hydrocarbon resin, and rosin ester. 請求項1〜15のいずれか記載の方法により製造されたハニカム構造活性炭触媒に硫黄酸化物を含む排ガスを接触させ、該硫黄酸化物を該ハニカム構造活性炭触媒に吸着し酸化して該排ガスから除去することからなる排煙脱硫方法。  An exhaust gas containing sulfur oxide is brought into contact with the honeycomb structure activated carbon catalyst produced by the method according to any one of claims 1 to 15, and the sulfur oxide is adsorbed on the honeycomb structure activated carbon catalyst and oxidized to be removed from the exhaust gas. A flue gas desulfurization method comprising: 活性炭と樹脂とを含む平板状の成形物と波板状の成形物を交互に積層するか、または、該角管状の成形物を千鳥に配列することにより、ハニカム構造が形成されてなる活性炭−樹脂構造体。Activated carbon in which a honeycomb structure is formed by alternately laminating flat plate shaped products and corrugated plate shaped products containing activated carbon and resin , or by arranging the square tubular molded products in a staggered manner. Resin structure.
JP02612799A 1998-04-07 1999-02-03 Method for manufacturing honeycomb activated carbon catalyst Expired - Lifetime JP4256514B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP02612799A JP4256514B2 (en) 1999-02-03 1999-02-03 Method for manufacturing honeycomb activated carbon catalyst
CA002327591A CA2327591C (en) 1998-04-07 1999-04-06 Desulfurization of exhaust gases using activated carbon catalyst
MYPI99001316A MY121452A (en) 1998-04-07 1999-04-06 Desulfurization of exhaust gases using activated carbon catalyst.
CN99806511.0A CN1117615C (en) 1998-04-07 1999-04-06 Desulphurization of exhaust gases using activated carbon catalyst
AU30564/99A AU3056499A (en) 1998-04-07 1999-04-06 Desulfurization of exhaust gases using activated carbon catalyst
PCT/JP1999/001810 WO1999051337A1 (en) 1998-04-07 1999-04-06 Desulfurization of exhaust gases using activated carbon catalyst
US09/647,680 US6616905B1 (en) 1998-04-07 1999-04-06 Desulfurization of exhaust gases using activated carbon catalyst
IDW20002276A ID26701A (en) 1998-04-07 1999-04-06 DESULFURIZATION OF WASTE GAS USING ACTIVE CARBON CATALYST
TW088105537A TW500623B (en) 1998-04-07 1999-04-07 Desulfurization of flue gas using active carbon catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02612799A JP4256514B2 (en) 1999-02-03 1999-02-03 Method for manufacturing honeycomb activated carbon catalyst

Publications (2)

Publication Number Publication Date
JP2000225341A JP2000225341A (en) 2000-08-15
JP4256514B2 true JP4256514B2 (en) 2009-04-22

Family

ID=12184911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02612799A Expired - Lifetime JP4256514B2 (en) 1998-04-07 1999-02-03 Method for manufacturing honeycomb activated carbon catalyst

Country Status (1)

Country Link
JP (1) JP4256514B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493813B2 (en) * 2000-07-21 2010-06-30 北陸電力株式会社 Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof
JP2003334423A (en) * 2002-05-15 2003-11-25 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
KR101796261B1 (en) 2017-04-25 2017-11-10 지앤씨테크(주) Binding Agents for Cellulosic Materials and Preparation Method Thereof

Also Published As

Publication number Publication date
JP2000225341A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
US6616905B1 (en) Desulfurization of exhaust gases using activated carbon catalyst
US5482906A (en) Adsorption material comprising activated carbon fiber and polytetrafluoroethylene
TWI387482B (en) Air filter sheet, process for manufacturing same, and air filter
EP2260940A1 (en) Carbonaceous catalyst for flue gas desulfurization, process for producing the same and use thereof for removal of mercury from exhaust gas
JP3067080B2 (en) Adsorbent
CN102510874A (en) Process for producing porous stretched polytetrafluoroethylene film or tape having catalyst particles supported thereon, and filter for ozone removal
US10189017B2 (en) Honeycomb monolith structure
WO2000013775A1 (en) Exhaust emission control catalyst structure and device
JP4256514B2 (en) Method for manufacturing honeycomb activated carbon catalyst
JP6270273B2 (en) Polymer actuator element, electrode layer for polymer actuator element, method for producing electrode layer for polymer actuator element, and method for producing polymer actuator element
JP4493813B2 (en) Highly water-repellent activated carbon structure for flue gas desulfurization and manufacturing method thereof
WO2019062448A1 (en) Desulfurizer, and preparation method therefor and application thereof
JP2944059B2 (en) Molding material using activated carbon fiber, molded product thereof, and method for producing the same
JP4523741B2 (en) Removal method of sulfurous acid gas
JP3562551B2 (en) Activated carbon catalyst and flue gas desulfurization method
JPH04235718A (en) Sheet for ozonolysis
JP2836135B2 (en) Method for producing catalytic functional material
JP3643920B2 (en) Production method of plate-like activated carbon
JP3562550B2 (en) Activated carbon catalyst and flue gas desulfurization method
JP3545199B2 (en) Activated carbon catalyst and flue gas desulfurization method
JPH11236207A (en) Activated carbon material and method for desulfurizing flue gas using the same
CN1772340A (en) Flue-gas processing technique based on adsorbent-polymer composite material
JP4159647B2 (en) Activated carbon material and manufacturing method thereof
JP4156076B2 (en) Method for desulfurization of exhaust gas using catalyst
JP4256669B2 (en) Desulfurization catalyst sheet, method for producing the same, and honeycomb structure for flue gas desulfurization using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term