JP2003266081A - Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater - Google Patents

Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater

Info

Publication number
JP2003266081A
JP2003266081A JP2002070262A JP2002070262A JP2003266081A JP 2003266081 A JP2003266081 A JP 2003266081A JP 2002070262 A JP2002070262 A JP 2002070262A JP 2002070262 A JP2002070262 A JP 2002070262A JP 2003266081 A JP2003266081 A JP 2003266081A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
activated carbon
decomposing
treatment
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002070262A
Other languages
Japanese (ja)
Inventor
Akinori Kawachi
昭典 河内
Hiroyuki Nishitani
浩之 西谷
Koichiro Nakai
浩一郎 中井
Takanari Shiraishi
登業 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2002070262A priority Critical patent/JP2003266081A/en
Publication of JP2003266081A publication Critical patent/JP2003266081A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain activated carbon for decomposing hydrogen peroxide capable of decomposing hydrogen peroxide in hydrogen peroxide-containing wastewater with high efficiency over a long period of time, and to provide a treatment method for hydrogen peroxide-containing wastewater. <P>SOLUTION: A compound of at least one metal selected from Ag, Pt, Pd, Cu and Fe and an activated carbon precursor are kneaded and dispersed to obtain a mixture. This mixture is subjected to infusible treatment and/or carbonation treatment and the treated mixture is subsequently activated to obtain hydrogen peroxide decomposing activated carbon with a metal content of 0.01 mass % or more being a decomposition material for hydrogen peroxide. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,過酸化水素含有排
水,例えば半導体製造工場あるいは超純水製造ラインの
殺菌洗浄で発生する殺菌洗浄排水に含まれる過酸化水素
を除去するに際し, 高い分解活性を有する過酸化水素分
解用活性炭及び過酸化水素含有排水の処理方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a high decomposition activity in removing hydrogen peroxide contained in hydrogen peroxide-containing wastewater, for example, sterilization cleaning wastewater generated in sterilization cleaning of semiconductor manufacturing plants or ultrapure water production lines. The present invention relates to a method for treating activated carbon for decomposing hydrogen peroxide, which comprises:

【0002】[0002]

【従来の技術】過酸化水素は,洗浄剤,殺菌剤あるいは
漂白剤として様々な分野で使用されている。そのため,
半導体製造工場,繊維工場,鍍金工場等からは過酸化水
素を含む排水が排出される。特に半導体装置製造用途で
は、ウエハ洗浄や超純水送水配管の洗浄殺菌等で過酸化
水素がしばしば使用されており,高濃度,かつ大量の過
酸化水素含有排水が排出され,環境への影響が懸念され
ている。
2. Description of the Related Art Hydrogen peroxide is used in various fields as a cleaning agent, a germicide or a bleaching agent. for that reason,
Wastewater containing hydrogen peroxide is discharged from semiconductor manufacturing factories, textile factories, plating factories, and the like. In particular, in semiconductor device manufacturing applications, hydrogen peroxide is often used for wafer cleaning, cleaning and sterilization of ultrapure water feed pipes, etc., and a large amount of wastewater containing hydrogen peroxide with high concentration is discharged, which has an impact on the environment. There is concern.

【0003】しかしながら,従来からの過酸化水素の分
解方法である亜硫酸ナトリウムなどの還元剤を用いる処
理方法では,大量の薬品使用による処理コストへの影響
や過剰な薬品流出による二次公害への懸念があった。ま
た,カタラーゼなどの酵素を用いる処理方法は,阻害物
質による分解効率の低下,最適pH調整や十分な反応時
間の確保のため,一時貯槽などの広いスペースを必要と
するほか,特に大量の過酸化水素含有排水を排出する半
導体用途では,その処理コストが大きくて問題となる。
However, in the conventional treatment method using a reducing agent such as sodium sulfite, which is a method for decomposing hydrogen peroxide, there is concern about the influence on the treatment cost due to the use of a large amount of chemicals and the secondary pollution due to excessive chemical outflow. was there. In addition, a treatment method using an enzyme such as catalase requires a wide space such as a temporary storage tank in order to reduce the decomposition efficiency due to an inhibitor, ensure optimum pH adjustment and secure a sufficient reaction time. In semiconductor applications that discharge hydrogen-containing wastewater, the treatment cost is high, which is a problem.

【0004】過酸化水素含有排水を処理する際のこれら
の問題を解決するために,活性炭の還元触媒作用を利用
した方法や、金属触媒などを利用した方法等が数多く提
案されている。活性炭を利用した方法としては,特開平
05−00811号公報,特開平08−039079号
公報,特開平07−171561号公報記載の方法等が
挙げられるが,活性炭の触媒作用の寿命が短いことや活
性炭の粉化による後段処理工程への漏出及び配管などで
の目詰まりの発生といった問題がある。さらに,活性炭
そのものでは,過酸化水素との反応速度が遅いため,装
置が大型化するという欠点があり,高濃度過酸化水素含
有排水の除去には不向きである。
In order to solve these problems when treating wastewater containing hydrogen peroxide, many methods utilizing the reduction catalytic action of activated carbon, methods utilizing metallic catalysts, etc. have been proposed. Examples of the method using activated carbon include the methods described in JP-A-05-00811, JP-A-08-039079, JP-A-07-171561 and the like, but the fact that the life of the catalytic action of activated carbon is short and There are problems such as leakage to the post-treatment process and clogging of piping due to pulverization of the activated carbon. Further, activated carbon itself has a drawback that the reaction apparatus reacts with hydrogen peroxide at a slow rate, resulting in an increase in size of the apparatus, and is not suitable for removing wastewater containing high-concentration hydrogen peroxide.

【0005】高濃度過酸化水素含有排水を処理するため
の方法として,特許第2960057号公報,特開平0
5−261369号公報や特開平10−314760号
公報等には,金属触媒を多孔体質に担持させた処理材を
使用する方法が提案されている。しかし,これらの場合
も金属触媒は多孔体に単に付着しているのみなので,付
着金属類が処理水へ漏出し,付着量が減少して性能が低
下するという問題や,耐久性の問題等が依然として解決
されていない。
As a method for treating wastewater containing high-concentration hydrogen peroxide, Japanese Patent No. 2960057 and Japanese Patent Laid-Open No.
Japanese Patent Laid-Open No. 5-261369 and Japanese Patent Laid-Open No. 10-314760 propose methods of using a treatment material in which a metal catalyst is supported on a porous material. However, even in these cases, since the metal catalyst is simply attached to the porous body, there is a problem that the attached metal leaks into the treated water, the amount of the attached metal decreases, the performance deteriorates, and the durability problem. Still not resolved.

【0006】また,従来の粒状の過酸化水素分解触媒,
特に触媒粒状活性炭の充填式による処理の場合,分解ガ
スの発生によるチャネリング(排水が活性炭層の一部分
のみを通過すること)や充填材そのものの浮上等,接触
不良による分解効率の低下が発生するため,ガス抜きの
手段を必要とするなど装置が複雑となる。また,特開平
07−171561号公報記載の方法では,分解活性の
低下を確認した時点で粒状活性炭層を逆洗することによ
り粒状活性炭層内の気泡を除去するといった方法をとっ
ているが,やはり装置が複雑となる。さらに,特許第2
655299号公報記載の方法では,粒状活性炭流動層
中において排水を上昇流に接触させている。この方法で
は,活性炭の活性低下は遅いものの,活性炭粒子の相互
接触や処理塔壁との接触によって活性炭粒子の一部が破
砕され,粉化し,後段の処理工程への流出が起こるとい
った問題が発生する。
Further, a conventional granular hydrogen peroxide decomposition catalyst,
In particular, in the case of the treatment with the filling method of the catalytic granular activated carbon, the decomposition efficiency is lowered due to poor contact such as channeling (the wastewater passes through only a part of the activated carbon layer) due to the generation of decomposition gas and floating of the packing material itself. However, the device becomes complicated, for example, a means for venting gas is required. Further, in the method described in Japanese Patent Application Laid-Open No. 07-171561, a method of removing bubbles in the granular activated carbon layer by backwashing the granular activated carbon layer at the time point when the degradation activity is confirmed to decrease is also taken. The device becomes complicated. Furthermore, the second patent
According to the method described in Japanese Patent No. 655299, wastewater is brought into contact with an upward flow in a fluidized bed of granular activated carbon. In this method, although the activity of activated carbon declines slowly, there is a problem in that some of the activated carbon particles are crushed and pulverized due to mutual contact of activated carbon particles and contact with the wall of the treatment tower, and flow out to the subsequent treatment process. To do.

【0007】一方,本発明者らも,粒状活性炭や粉末活
性炭における比表面積が小さいことによる過酸化水素分
解活性の低さや粉化による処理水への漏出を解決するた
め,各種金属を活性炭繊維に添着した分解材を主成分と
したカートリッジによる過酸化水素含有排水の処理方法
を特開平7−144189号公報において提案した。し
かし,この方法も, 付着金属類の処理水へ漏出による性
能低下のため,高濃度過酸化水素含有排水の処理に長期
間適用するには不向きであった。
On the other hand, the inventors of the present invention have also used various metals as activated carbon fibers in order to solve the problems of low activity of decomposing hydrogen peroxide due to small specific surface area of granular activated carbon or powdered activated carbon and leakage to treated water due to pulverization. Japanese Patent Application Laid-Open No. 7-144189 proposes a method for treating wastewater containing hydrogen peroxide using a cartridge containing a decomposed material as a main component. However, this method was also unsuitable for long-term application to the treatment of wastewater containing high-concentration hydrogen peroxide because of the performance degradation due to leakage of adhered metals into the treated water.

【0008】[0008]

【発明が解決しようとする課題】本発明は,上記の問題
を解決し,高濃度の過酸化水素含有排水に対しても長期
にわたり安定した分解活性を有する過酸化水素分解材及
び過酸化水素含有排水の処理方法を提供することを技術
的な課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and contains a hydrogen peroxide decomposing material and a hydrogen peroxide-containing material which have stable decomposition activity for a long period of time even against wastewater containing a high concentration of hydrogen peroxide. The technical problem is to provide a method for treating wastewater.

【0009】[0009]

【問題を解決するための手段】本発明者らは,上記の課
題を解決するために鋭意検討した結果,本発明に到達し
た。すなわち,本発明は,次の構成を要旨とするもので
ある。 (1) Ag,Pt,Pd,Cu及びFeから選択される少
なくとも1種の金属の化合物と活性炭前駆体とを混練,
分散して得られた混合物を不融化及び/又は炭化処理し
た後,賦活処理することにより得られた過酸化水素の分
解材であって,金属成分を0.01質量%以上含有すること
を特徴とする過酸化水素分解用活性炭。 (2) 上記(1) 記載の過酸化水素分解用活性炭,又は前記
過酸化水素分解用活性炭を主要成分とするフィルターあ
るいは成型体を処理塔に充填し,前記処理塔に過酸化水
素含有排水を通液させることを特徴とする過酸化水素含
有排水の処理方法。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention has the following structures. (1) Kneading a compound of at least one metal selected from Ag, Pt, Pd, Cu and Fe and an activated carbon precursor,
A decomposing material for hydrogen peroxide obtained by inactivating and / or carbonizing a mixture obtained by dispersion and then activating the mixture, which is characterized by containing 0.01% by mass or more of a metal component. Activated carbon for hydrogen peroxide decomposition. (2) The activated carbon for decomposing hydrogen peroxide described in (1) above, or a filter or a molded body containing the activated carbon for decomposing hydrogen peroxide as a main component is packed in a treatment tower, and waste water containing hydrogen peroxide is charged in the treatment tower. A method for treating wastewater containing hydrogen peroxide, which comprises passing liquid.

【0010】[0010]

【発明の実施の形態】以下,本発明について詳細に説明
する。本発明の過酸化水素分解用活性炭は,Ag,P
t,Pd,Cu及びFe等の金属成分を活性炭前駆体の
段階で保持させたものであり,例えば銀化合物と活性炭
前駆体とを含む混合物に不融化及び/又は炭化処理した
後,前記処理体を賦活処理することにより得られるもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The activated carbon for decomposing hydrogen peroxide of the present invention is Ag, P
Metals such as t, Pd, Cu and Fe are retained at the stage of the activated carbon precursor. For example, a mixture containing a silver compound and an activated carbon precursor is infusibilized and / or carbonized, and then the treated body is treated. Is obtained by activating.

【0011】活性炭前駆体としては,炭素化,不融化等
の手法により活性炭となり,しかも前記金属や金属化合
物と混合可能なものであれば特に限定されるものではな
い。このような活性炭前駆体としては,例えば活性炭を
製造するために一般的に用いられる有機物を用いること
もできる。具体的にはポリアクリロニトリル,ポリビニ
ルアルコール,フェノール樹脂(ノボラック),ピッチ
など何れでもよい。この中でも炭化時の理論炭化収率が
大きい点でピッチを用いるのが好ましい。ピッチの種類
も特に限定されず,公知の活性炭の製造において使用さ
れているものと同様のものを用いることができる。
The activated carbon precursor is not particularly limited as long as it becomes activated carbon by a method such as carbonization or infusibilization and can be mixed with the metal or metal compound. As such an activated carbon precursor, for example, an organic substance generally used for producing activated carbon can be used. Specifically, any of polyacrylonitrile, polyvinyl alcohol, phenol resin (novolac), pitch, etc. may be used. Among these, it is preferable to use the pitch because the theoretical carbonization yield during carbonization is large. The type of pitch is not particularly limited, and the same pitch as that used in the known production of activated carbon can be used.

【0012】本発明の活性炭の原料となる,Ag,P
t,Pd,Cu及びFeから選択される金属又は金属の
化合物と活性炭前駆体の混合物は,両成分を溶媒を用い
て混合することにより調製することができる。ここで上
記の金属化合物としては,溶媒に溶解可能なものが好ま
しく用いられる。この金属化合物は,無機化合物であっ
てもよいし,有機化合物であってもよい。
Ag, P, which is a raw material of the activated carbon of the present invention,
A mixture of a metal or a metal compound selected from t, Pd, Cu and Fe and an activated carbon precursor can be prepared by mixing both components with a solvent. Here, as the above-mentioned metal compound, those soluble in a solvent are preferably used. The metal compound may be an inorganic compound or an organic compound.

【0013】無機化合物としては,例えば,硝酸銀,硫
酸銀,酢酸銀,ジアンミン銀,塩化白金,塩化白金酸カ
リウム,塩化パラジウム,硝酸パラジウム,テトラアン
ミンパラジウム,塩化銅,テトラアンミンパラジウム,
塩化鉄,硝酸鉄,酢酸鉄などを例示することができる。
Examples of the inorganic compound include silver nitrate, silver sulfate, silver acetate, silver diammine, platinum chloride, potassium chloroplatinate, palladium chloride, palladium nitrate, tetraammine palladium, copper chloride, tetraammine palladium,
Examples thereof include iron chloride, iron nitrate and iron acetate.

【0014】有機化合物としては,ビスアセチルアセト
ナト白金,ビスアセチルアセトナト銅,トリスアセチル
アセトナト鉄などが例示される。
Examples of the organic compound include bisacetylacetonatoplatinum, bisacetylacetonatocopper, and trisacetylacetonatoiron.

【0015】また,ここで用いられる溶媒は,活性炭前
駆体及び上記の金属化合物双方を溶解することができる
ものである。このような溶媒は,特に限定されるもので
はないが,利用する活性炭前駆体や金属化合物の種類に
応じてメタノール,キノリン,酢酸などを適宜選択する
ことができる。
The solvent used here is capable of dissolving both the activated carbon precursor and the above metal compound. Such a solvent is not particularly limited, but methanol, quinoline, acetic acid or the like can be appropriately selected depending on the type of the activated carbon precursor or metal compound used.

【0016】溶媒を用いて活性炭前駆体と金属化合物と
を混合する場合,金属化合物が溶解された溶媒中に活性
炭前駆体を加えて混合してもよいし,活性炭前駆体が溶
解された溶媒中に金属化合物を加えて混合してもよい。
When the activated carbon precursor and the metal compound are mixed using a solvent, the activated carbon precursor may be added to and mixed in a solvent in which the metal compound is dissolved, or in a solvent in which the activated carbon precursor is dissolved. The metal compound may be added to and mixed with.

【0017】なお,活性炭前駆体に含まれる金属や金属
化合物の量は,賦活処理後の活性炭において,金属成
分, すなわち, 金属単体としての含有量が0.01質量
%以上,好ましくは0.1〜1.0質量%になるように
活性炭前駆体と混合する金属や金属化合物の量を設定す
る。賦活処理後の活性炭における金属成分の含有量が
0.01質量%未満になると,過酸化水素に対する分解
活性が低下するので好ましくない。
The amount of metal or metal compound contained in the activated carbon precursor is such that, in the activated carbon after the activation treatment, the metal component, that is, the content as a simple metal is 0.01% by mass or more, preferably 0.1% by mass. The amount of the metal or metal compound to be mixed with the activated carbon precursor is set so as to be 1.0% by mass. If the content of the metal component in the activated carbon after the activation treatment is less than 0.01% by mass, the decomposition activity with respect to hydrogen peroxide decreases, which is not preferable.

【0018】上記のようにして調整される金属や金属化
合物と活性炭前駆体との混合物からは,通常,溶媒を除
去しておくのが好ましい。溶媒の除去方法としては,減
圧蒸留などの慣用手段を採用することができる。
It is usually preferable to remove the solvent from the mixture of the metal or metal compound prepared as described above and the activated carbon precursor. As a method for removing the solvent, a conventional means such as vacuum distillation can be adopted.

【0019】本発明の過酸化水素分解用活性炭は,上記
の活性炭前駆体と金属又は金属化合物との混合物を用い
て活性炭を調製することにより得ることができる。活性
炭を調製する際には,第1の方法として,活性炭前駆体
と金属又は金属化合物との混合物を不融化処理した後,
賦活処理を施す。また,第2の方法として,前記混合物
を不融化処理し,次いで炭素化処理を施した後,賦活処
理を施す。さらに,第3の方法として,前記混合物を炭
素化処理した後,賦活処理を施す。これらの方法におい
て,不融化処理,炭素化処理及び賦活処理の各方法は,
常法に従って実施することができ,特に限定されるもの
ではない。
The activated carbon for decomposing hydrogen peroxide of the present invention can be obtained by preparing activated carbon using a mixture of the above-mentioned activated carbon precursor and a metal or a metal compound. When preparing activated carbon, as a first method, after infusibilizing a mixture of an activated carbon precursor and a metal or a metal compound,
Apply activation treatment. As a second method, the mixture is infusibilized, then carbonized, and then activated. Further, as a third method, the mixture is carbonized and then activated. In these methods, infusible treatment, carbonization treatment and activation treatment are
It can be carried out according to a conventional method and is not particularly limited.

【0020】すなわち,炭素化処理は,例えば,窒素ガ
ス,アルゴンガス等の不活性ガス雰囲気下,5〜10℃
/分程度の昇温速度で800〜1200℃まで加熱し,
その最高温度を1〜60分間程度保持することにより実
施することができる。また,不融化処理は,例えば,不
活性ガス又は酸素含有ガスの雰囲気下,0.1〜5℃/
分程度の昇温速度で,前記混合物を活性炭前駆体の融点
より400℃程度低い温度まで加熱することにより実施
することができる。
That is, the carbonization treatment is carried out at 5 to 10 ° C. in an inert gas atmosphere such as nitrogen gas or argon gas.
Heating to 800-1200 ° C at a heating rate of about 1 / min,
It can be carried out by holding the maximum temperature for about 1 to 60 minutes. In addition, the infusibilizing treatment is performed, for example, in an atmosphere of an inert gas or an oxygen-containing gas at 0.1 to 5 ° C /
It can be carried out by heating the mixture to a temperature about 400 ° C. lower than the melting point of the activated carbon precursor at a heating rate of about a minute.

【0021】さらに,賦活処理は,公知の賦活処理方法
に従えばよく,例えば水蒸気,二酸化炭素,酸素又はこ
れらの混合ガスの雰囲気下,あるいはこれらのガスを窒
素等の不活性ガスで希釈したガス雰囲気下において,通
常800〜1200℃程度に加熱し,その最高温度を5
〜120分間程度保持することにより実施することがで
きる。
Further, the activation treatment may be carried out according to a known activation treatment method, for example, in an atmosphere of steam, carbon dioxide, oxygen or a mixed gas thereof, or a gas obtained by diluting these gases with an inert gas such as nitrogen. In the atmosphere, it is usually heated to about 800 to 1200 ° C, and the maximum temperature is 5
It can be carried out by holding for about 120 minutes.

【0022】このようにして得られた過酸化水素分解用
活性炭は,金属成分を金属単体として0.01質量%以
上含有していれば,形状は粉末,粒状あるいは繊維状の
活性炭の何れでもよいが,通水抵抗,処理塔への充填あ
るいは加工などの取り扱い性を考慮すれば,繊維状の活
性炭が好ましい。また,活性炭の比表面積は大きいほど
金属あるいは金属化合物の粒子を非常に微細に,かつ均
一に分散させることができるため,高い性能が得られる
が,実用的には500m2/g以上あれば,過酸化水素を
効率よく分解することができる。
The activated carbon for decomposing hydrogen peroxide thus obtained may be in the form of powder, granular or fibrous activated carbon as long as it contains 0.01% by mass or more of the metal component as a simple metal. However, in consideration of water resistance, handleability such as filling or processing of the treatment tower, fibrous activated carbon is preferable. Also, the larger the specific surface area of the activated carbon, the more finely and uniformly the particles of the metal or metal compound can be dispersed, resulting in high performance, but practically, if it is 500 m 2 / g or more, Hydrogen peroxide can be decomposed efficiently.

【0023】過酸化水素分解用活性炭の形態としては,
過酸化水素分解用活性炭をそのまま容器内に充填しても
よいが,減圧吸引法あるいは抄紙法といった湿式成型法
や乾式成形法等の慣用手法で適当な形状に加工し,フィ
ルターあるいは成型体として処理塔に充填してもよい。
本発明の過酸化水素分解用活性炭に,過酸化水素を含有
する排水を接触させると,過酸化水素を高効率で分解す
ることができるが,これは活性炭に含有されている金属
成分が,金属触媒として作用して過酸化水素を分解する
ためと認められる。
The form of activated carbon for decomposing hydrogen peroxide is as follows:
The activated carbon for decomposing hydrogen peroxide may be filled in the container as it is, but it is processed into an appropriate shape by a conventional method such as a wet molding method such as a vacuum suction method or a papermaking method or a dry molding method, and treated as a filter or a molded body. You may fill a tower.
When the activated carbon for decomposing hydrogen peroxide of the present invention is contacted with wastewater containing hydrogen peroxide, hydrogen peroxide can be decomposed with high efficiency. This is because the metal component contained in the activated carbon is a metal. It is recognized that it acts as a catalyst to decompose hydrogen peroxide.

【0024】過酸化水素分解用活性炭をシート状にした
り,フィルターあるいは成型体に成型する際には,過酸
化水素分解用活性炭の1/20〜3倍量(質量比)の低融
点合成繊維等の有機バインダーあるいは無機バインダー
と活性炭を混合すれば,軽量で,ハンドリング性に優れ
たシート状物,フィルターあるいは成型体を得ることが
できる。この場合,バインダー量が活性炭の3倍量を超
えると,過酸化水素の分解性能が低下する。また,バイ
ンダー量が少なくて活性炭の1/20に満たないと機械的
強度が低下し,実排水処理への適用がやや困難となる。
When the activated carbon for decomposing hydrogen peroxide is formed into a sheet, or molded into a filter or a molded body, a low melting point synthetic fiber in an amount 1/20 to 3 times (mass ratio) that of the activated carbon for decomposing hydrogen peroxide is used. By mixing the organic binder or inorganic binder described in 1 above with activated carbon, it is possible to obtain a sheet-like material, a filter, or a molded product that is lightweight and has excellent handleability. In this case, if the amount of binder exceeds three times the amount of activated carbon, the decomposition performance of hydrogen peroxide will decrease. Also, if the amount of binder is small and less than 1/20 of that of activated carbon, the mechanical strength will decrease, making it slightly difficult to apply to actual wastewater treatment.

【0025】活性炭を混合してシート状物,フィルター
あるいは成型体を製造する際に用いる有機バインダーで
ある低融点合成繊維としては,ポリエステル繊維,ポリ
オレフィン繊維,ポリアミド繊維,ポリアクリロニトリ
ル繊維等を使用することができる。また無機バインダー
としては,リチウムシリケート,硫酸バンド,シリカゾ
ル,アルミナゾル,水ガラス等があり,これらのうちの
一種又は二種以上を使用することができる。
As the low-melting synthetic fiber which is an organic binder used when a sheet-like material, a filter or a molded product is mixed with activated carbon, polyester fiber, polyolefin fiber, polyamide fiber, polyacrylonitrile fiber or the like should be used. You can As the inorganic binder, there are lithium silicate, sulfuric acid band, silica sol, alumina sol, water glass and the like, and one or more of them can be used.

【0026】過酸化水素分解用活性炭をシート状物にし
てフィルターあるいは成型体とする際には,過酸化水素
分解用活性炭と有機バインダーである合成繊維等を供給
して混合し,ウェッブを形成した後,ニードルパンチや
熱処理を施してシート状物とする方法,あるいは前記活
性炭のみでウェッブを形成した後,合成繊維不織布で挟
み,ニードルパンチや熱処理を施して過酸化水素分解用
活性炭シートとする方法がある。また,前記活性炭と無
機バインダーとで成型する方法としては,前記活性炭と
無機バインダーを水中に所定量分散させ,所定形状の金
型の中に吸引し,さらに脱水,熱処理を施して無機バイ
ンダーを硬化させる方法がある。
When the activated carbon for decomposing hydrogen peroxide was made into a sheet and used as a filter or a molded body, activated carbon for decomposing hydrogen peroxide and synthetic fibers as an organic binder were supplied and mixed to form a web. Then, a method of forming a sheet by needle punching or heat treatment, or a method of forming a web only from the activated carbon and then sandwiching it with a synthetic fiber non-woven fabric, and subjecting it to needle punching or heat treatment to obtain an activated carbon sheet for decomposing hydrogen peroxide There is. As a method of molding the activated carbon and the inorganic binder, the activated carbon and the inorganic binder are dispersed in water in a predetermined amount, sucked into a mold having a predetermined shape, and further dehydrated and heat-treated to cure the inorganic binder. There is a way to do it.

【0027】フィルターあるいは成型体の形状として
は,上記のようにして製造される過酸化水素分解用活性
炭シートをスパイラル状に捲き,熱処理を施した円筒状
や円柱状のカートリッジタイプの他,小さな円形,楕円
形及び多葉形といったペレット状成型体を処理塔に充填
してもよい。また,処理対象排水中に懸濁物質(SS)
が多く含まれ,フィルタを目詰まりさせる恐れがある場
合や,分解ガスの発生によるチャネリングや充填材その
ものの浮上等を防ぐためには,平面状の過酸化水素分解
用活性炭シートと波形の過酸化水素分解用活性炭シート
とを交互に積層あるいはスパイラルに捲いてハニカム構
造を形成させた,開口部を有するフィルターを用いるの
が好ましい。
As the shape of the filter or the molded body, the activated carbon sheet for decomposing hydrogen peroxide produced as described above is spirally wound and heat-treated into a cylindrical or cylindrical cartridge type, or a small circular shape. Pellets such as oval and multi-lobed may be packed in the treatment tower. In addition, suspended solids (SS) in the wastewater to be treated
In order to prevent clogging of the filter and to prevent channeling and floating of the packing material itself due to generation of decomposition gas, a planar hydrogen peroxide decomposition carbon sheet and corrugated hydrogen peroxide are used. It is preferable to use a filter having an opening in which a decomposition activated carbon sheet is alternately laminated or spirally wound to form a honeycomb structure.

【0028】[0028]

【実施例】次に,本発明を実施例により具体例を説明す
る。なお,実施例における過酸化水素分解活性の評価
は,処理水10mL中の過酸化水素濃度を,ヨウ素滴定法
により測定し,処理水の過酸化水素濃度を被処理用の半
導体洗浄模擬排水との比により求めて評価した。 実施例1,比較例1〜3 石炭ピッチを原料とし,酢酸銀を練り混んだ混合物を溶
融紡糸及び不融化して得たピッチ繊維を,約 850℃で30
分間水蒸気賦活して得られた繊維状活性炭(BET比表
面積1800m2/g,Ag含有量1. 0質量%:実施例
1)と,金属を混練せず,溶融紡糸及び不融化と賦活し
て得られた比較例1〜2(比較例1はユニチカ社製A−
15:BET比表面積1710m2/g,比較例2はユニ
チカ社製A−10:BET比表面積1200m2/g)の
試料と,酢酸銀を添着し,Agを1.0質量%添着した
比較例3(ユニチカ社製A−15:BET比表面積17
00m2/g)の試料をそれぞれ20mL充填したガラスカ
ラムに,pH6〜7,約25℃,過酸化水素濃度5000
mg/Lの半導体洗浄模擬排水をSV=50h-1で上向流に
より通液した。次いで, 処理水の過酸化水素濃度を測定
して過酸化水素分解活性を評価し, その結果を図1に示
す。
EXAMPLES Next, specific examples of the present invention will be described with reference to examples. The evaluation of the hydrogen peroxide decomposition activity in the examples was carried out by measuring the hydrogen peroxide concentration in 10 mL of the treated water by the iodometric titration method and comparing the hydrogen peroxide concentration of the treated water with the simulated semiconductor cleaning wastewater for treatment. The ratio was obtained and evaluated. Example 1, Comparative Examples 1 to 3 Pitch fibers obtained by melt spinning and infusibilizing a mixture of coal pitch as a raw material and kneading and mixing silver acetate at 30 ° C. at 30 ° C.
Fibrous activated carbon (BET specific surface area 1800 m 2 / g, Ag content 1.0% by mass: Example 1) obtained by activating steam for minutes was melt-spun and infusibilized without metal kneading. Obtained Comparative Examples 1-2 (Comparative Example 1 is A- manufactured by Unitika Ltd.)
15: BET specific surface area 1710 m 2 / g, Comparative Example 2 is a sample of Unitika A-10: BET specific surface area 1200 m 2 / g) and a comparative example in which silver acetate was impregnated and Ag was impregnated at 1.0% by mass. 3 (Unitika A-15: BET specific surface area 17
00m 2 / g) in a glass column filled with 20mL of each sample, pH 6-7, about 25 ° C, hydrogen peroxide concentration 5000
Simulated semiconductor cleaning waste water of mg / L was passed by upflow at SV = 50 h −1 . Then, the hydrogen peroxide concentration of the treated water was measured to evaluate the hydrogen peroxide decomposition activity, and the results are shown in FIG.

【0029】図1から明らかなように,実施例1の活性
炭繊維を用いた場合は,通液量が約15000 ベットボリュ
ーム(BV)になっても,入り側濃度C0 に対する出側
濃度C1 の比はほぼ0であったが,比較例1,2では初
期から, 比較例3では通液量の増加と共にこの比が上昇
し,処理水中に過酸化水素が残存するようになった。
As is apparent from FIG. 1, when the activated carbon fiber of Example 1 was used, even if the liquid flow rate was about 15,000 bed volumes (BV), the inlet side concentration C 0 relative to the outlet side concentration C 1 The ratio was almost 0, but in Comparative Examples 1 and 2, the ratio increased from the beginning, and in Comparative Example 3, this ratio increased with an increase in the flow rate, and hydrogen peroxide remained in the treated water.

【0030】実施例2,比較例4 Agを約1.0質量%練り込んだ繊維状活性炭のウェッ
ブ(目付160 g/m2)を芯鞘構造のポリエステル/ポリプ
ロピレン複合繊維の不織布(ユニチカ社製:商品名ユニ
セル目付40g/ m2 )で上下に挟み,ニードルパンチ
法により目付200g/ m2 のシートを作製し,これを
円柱状に捲き,外径100mm,長さ250mmのカートリ
ッジを製造した。得られたカートリッジをアクリル製の
カラムに充填し,pH6〜7,約25℃,過酸化水素濃度
5000mg/Lの半導体洗浄模擬排水をSV=10-1で上向流
により通液した。また,比較例4として,Agを1.0
質量%添着した繊維状活性炭を用い,実施例1と同様の
方法で作製したカートリッジを充填したカラムにも上向
流により通液し, 処理水の過酸化水素濃度を測定して過
酸化水素分解活性を評価し, その結果を図2に示す。
Example 2 and Comparative Example 4 A web of fibrous activated carbon (weight per unit area: 160 g / m 2 ) kneaded with about 1.0% by mass of Ag was used as a nonwoven fabric of polyester / polypropylene composite fiber having a core-sheath structure (manufactured by Unitika Ltd.). A sheet having a unit weight of 200 g / m 2 was produced by a needle punching method by sandwiching it up and down with a trade name of Unicel unit weight 40 g / m 2 ), and the sheet was rolled into a column to produce a cartridge having an outer diameter of 100 mm and a length of 250 mm. The obtained cartridge was packed in an acrylic column, pH 6-7, about 25 ° C, hydrogen peroxide concentration
5000 mg / L of semiconductor cleaning simulated waste water was passed by upward flow at SV = 10 -1 . Further, as Comparative Example 4, Ag is 1.0
A column filled with a cartridge prepared by the same method as in Example 1 using fibrous activated carbon impregnated with mass% was also passed by upward flow, and the hydrogen peroxide concentration of the treated water was measured to decompose hydrogen peroxide. The activity was evaluated and the results are shown in FIG.

【0031】図2から明らかなように,実施例2では,
通液量が約10000 ベットボリューム(BV)になって
も,入り側濃度C0 に対する出側濃度C1 の比は, ほぼ
0であったが,比較例4では,通液量の増加とともにこ
の比が上昇し,処理水中に過酸化水素が残存するように
なった。
As is clear from FIG. 2, in the second embodiment,
Even when the liquid passage weight of about 10000 bets volume (BV), the ratio of the entrance side concentration C outlet side concentration C 1 relative to 0, was almost 0, Comparative Example 4, with increasing liquid passing amount this The ratio increased and hydrogen peroxide began to remain in the treated water.

【0032】実施例3,比較例5 石炭ピッチを原料とし,酢酸銀を練り混み,溶融紡糸及
び不融化したピッチ繊維を,約850 ℃で30分間水蒸気賦
活して得られた繊維状活性炭(BET比表面積1800
2 /g,Ag含有量1.0質量%)と,酢酸銀を添着
し,Agを1.0質量%担持した比較例5(ユニチカ社
製A−15:BET比表面積:1700m2 /g)の試
料をそれぞれ20mL充填したガラスカラムに,pH6〜
7,約25℃,過酸化水素濃度5000mg/Lの半導体洗
浄模擬排水をSV=50h-1で上向流により通液し,処
理水中のAg濃度をICP発光分析法により測定した。
得られた評価結果を表1に示す。
Example 3, Comparative Example 5 Fibrous activated carbon (BET) obtained by steam-activating the pitch fibers melt-spun and infusibilized for 30 minutes at about 850 ° C. using coal pitch as a raw material, kneading and mixing silver acetate. Specific surface area 1800
m 2 / g, Ag content 1.0% by mass) and silver acetate impregnated, and Comparative Example 5 carrying 1.0% by mass Ag (Unitika A-15: BET specific surface area: 1700 m 2 / g) ), Each of which is filled with 20 mL of the sample, into a glass column at pH 6 to
7. A semiconductor cleaning simulated waste water having a hydrogen peroxide concentration of 5000 mg / L at about 25 ° C. was passed by an upward flow at SV = 50 h −1 , and the Ag concentration in the treated water was measured by ICP emission spectrometry.
Table 1 shows the obtained evaluation results.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示すように, 実施例3の過酸化水素
分解用活性炭を用いると,担持したAgの溶出量が少な
く,過酸化水素分解活性を長期にわたり維持することが
確認された。
As shown in Table 1, it was confirmed that when the activated carbon for decomposing hydrogen peroxide of Example 3 was used, the amount of supported Ag eluted was small and the hydrogen peroxide decomposing activity was maintained for a long period of time.

【0035】実施例4,比較例6 石炭ピッチを原料とし,塩化白金酸カリウムを練り混
み,溶融紡糸及び不融化したピッチ繊維を,約850 ℃で
30分間水蒸気賦活して得られた繊維状活性炭(BET比
表面積1068m2 /g,Pt含有量1.8質量%)
と,塩化白金酸カリウムを添着し,Ptを1.0質量%
添着した比較例6(ユニチカ社製A−15:BET比表
面積:1700m2 /g)の試料をそれぞれ20mL充填
したガラスカラムに,pH6〜7,約25℃,過酸化水素
濃度5000mg/Lの半導体洗浄模擬排水をSV=50h
-1で上向流により通液した。処理水の過酸化水素濃度を
測定して過酸化水素分解活性を評価し, その結果を図3
に示す。
Example 4, Comparative Example 6 Using coal pitch as a raw material, potassium chloroplatinate was kneaded and melt-spun and infusible pitch fiber was prepared at about 850 ° C.
Fibrous activated carbon obtained by steam activation for 30 minutes (BET specific surface area 1068 m 2 / g, Pt content 1.8% by mass)
And potassium chloroplatinate are added, and Pt is 1.0% by mass.
A glass column filled with 20 mL of each sample of Comparative Example 6 (A-15 manufactured by Unitika Ltd .: BET specific surface area: 1700 m 2 / g) was filled with a semiconductor having a pH of 6 to 7 at about 25 ° C. and a hydrogen peroxide concentration of 5000 mg / L. Cleaning simulated drainage is SV = 50h
-1 was passed by upward flow. The hydrogen peroxide concentration of the treated water was measured to evaluate the hydrogen peroxide decomposition activity, and the results are shown in Fig. 3.
Shown in.

【0036】図3から明らかなように,実施例4の活性
炭繊維を用いた場合は,通液量が約10000 ベットボリュ
ーム(BV)になっても,入り側濃度C0 に対する出側
濃度C1 の比はほぼ0であったが,比較例6では通液量
の増加と共にこの比が上昇し,処理水中に過酸化水素が
残存するようになった。
As is apparent from FIG. 3, when the activated carbon fiber of Example 4 was used, even if the liquid flow rate was about 10,000 bed volumes (BV), the inlet side concentration C 0 relative to the outlet side concentration C 1 The ratio was about 0, but in Comparative Example 6, this ratio increased with an increase in the flow rate, and hydrogen peroxide came to remain in the treated water.

【0037】[0037]

【発明の効果】本発明の過酸化水素分解用活性炭は,
非常に高い過酸化水素分解活性を有する,耐久性と加
工特性に優れている,処理時の金属の溶出も最小限に
抑えられるので,この活性炭やこの活性炭を主要成分と
するフィルターあるいは成型体を用いれば,高濃度の過
酸化水素含有排水を長期にわたり安定して処理すること
が可能となる。
The activated carbon for decomposing hydrogen peroxide of the present invention is
It has extremely high hydrogen peroxide decomposition activity, excellent durability and processing characteristics, and metal elution during processing can be minimized. Therefore, this activated carbon or a filter or molded body containing this activated carbon as a main component is used. If it is used, wastewater containing high concentration of hydrogen peroxide can be treated stably for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び,比較例1〜3の試料を充填した
カラムへの通液量(BV)と処理液の過酸化水素濃度比
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the flow rate (BV) passed through a column filled with the samples of Example 1 and Comparative Examples 1 to 3 and the hydrogen peroxide concentration ratio of the treatment liquid.

【図2】実施例2と比較例4の試料を充填したカラムへ
の通液量(BV)と処理液の過酸化水素濃度比との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the flow rate (BV) through the column packed with the samples of Example 2 and Comparative Example 4 and the hydrogen peroxide concentration ratio of the treatment liquid.

【図3】実施例4と比較例6の試料を充填したカラムへ
の通液量(BV)と処理液の過酸化水素濃度比との関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the flow rate (BV) through the column packed with the samples of Example 4 and Comparative Example 6 and the hydrogen peroxide concentration ratio of the treatment liquid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 登業 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 4D019 AA03 AA04 BA03 BB02 BB08 BB12 BB13 BB14 BC07 CA03 CB02 CB03 4D038 AA08 AB26 BB15 BB20 4D050 AA13 AB33 BA04 BC06 4G069 AA03 AA08 BB02A BB02B BC08A BC08B BC31A BC32A BC32B BC66A BC72A BC75A BC75B CA05 CA10 CA11 EA10 EA14 FA01 FA02 FB07 FB34 FC08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shiraishi             23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Ltd.             Shikisha Central Research Institute F-term (reference) 4D019 AA03 AA04 BA03 BB02 BB08                       BB12 BB13 BB14 BC07 CA03                       CB02 CB03                 4D038 AA08 AB26 BB15 BB20                 4D050 AA13 AB33 BA04 BC06                 4G069 AA03 AA08 BB02A BB02B                       BC08A BC08B BC31A BC32A                       BC32B BC66A BC72A BC75A                       BC75B CA05 CA10 CA11                       EA10 EA14 FA01 FA02 FB07                       FB34 FC08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ag,Pt,Pd,Cu及びFeから選
択される少なくとも1種の金属又は金属の化合物と活性
炭前駆体とを混練,分散して得られた混合物を不融化及
び/又は炭化処理した後,賦活処理することにより得ら
れた過酸化水素の分解材であって,金属成分を0.01
質量%以上含有することを特徴とする過酸化水素分解用
活性炭。
1. A mixture obtained by kneading and dispersing at least one metal selected from Ag, Pt, Pd, Cu and Fe and a compound of the metal and an activated carbon precursor, and infusibilizing and / or carbonizing the mixture. After that, a decomposing material of hydrogen peroxide obtained by activating treatment, containing 0.01% of metal component
Activated carbon for decomposing hydrogen peroxide, characterized by containing at least mass%.
【請求項2】 請求項1記載の過酸化水素分解用活性
炭,又は前記過酸化水素分解用活性炭を主要成分とする
フィルターあるいは成型体を処理塔に充填し,前記処理
塔に過酸化水素含有排水を通液させることを特徴とする
過酸化水素含有排水の処理方法。
2. A treatment tower is filled with the activated carbon for decomposing hydrogen peroxide according to claim 1, or a filter or a molded body containing the activated carbon for decomposing hydrogen peroxide as a main component, and the treatment tower is supplied with hydrogen peroxide-containing wastewater. A method for treating wastewater containing hydrogen peroxide, characterized in that the wastewater contains hydrogen peroxide.
JP2002070262A 2002-03-14 2002-03-14 Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater Pending JP2003266081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070262A JP2003266081A (en) 2002-03-14 2002-03-14 Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070262A JP2003266081A (en) 2002-03-14 2002-03-14 Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater

Publications (1)

Publication Number Publication Date
JP2003266081A true JP2003266081A (en) 2003-09-24

Family

ID=29200882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070262A Pending JP2003266081A (en) 2002-03-14 2002-03-14 Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater

Country Status (1)

Country Link
JP (1) JP2003266081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185136A (en) * 2009-01-16 2010-08-26 Institute Of National Colleges Of Technology Japan Catalyst for decomposing hydrogen peroxide, storage method thereof and method for decomposing hydrogen peroxide
WO2011055604A1 (en) * 2009-11-05 2011-05-12 日清紡ホールディングス株式会社 Carbon catalyst and use thereof
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method
KR20170083582A (en) 2014-12-11 2017-07-18 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
JP2018086614A (en) * 2016-11-28 2018-06-07 三菱瓦斯化学株式会社 Method for treating oxidizing substance-containing waste water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185136A (en) * 2009-01-16 2010-08-26 Institute Of National Colleges Of Technology Japan Catalyst for decomposing hydrogen peroxide, storage method thereof and method for decomposing hydrogen peroxide
WO2011055604A1 (en) * 2009-11-05 2011-05-12 日清紡ホールディングス株式会社 Carbon catalyst and use thereof
US8372781B2 (en) 2009-11-05 2013-02-12 Nisshinbo Holdings, Inc. Carbon catalyst and use thereof
JP5167418B2 (en) * 2009-11-05 2013-03-21 日清紡ホールディングス株式会社 Carbon catalyst and its use
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method
WO2012164948A1 (en) * 2011-06-02 2012-12-06 株式会社アサカ理研 Hydrogen peroxide decomposition device and decomposition method for hydrogen peroxide
KR20170083582A (en) 2014-12-11 2017-07-18 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
US10441943B2 (en) 2014-12-11 2019-10-15 Tanaka Kikinzoku Kogyo K.K. Catalyst for hydrogen peroxide decomposition, process for producing the same, and method for decomposing hydrogen peroxide using the catalyst
JP2018086614A (en) * 2016-11-28 2018-06-07 三菱瓦斯化学株式会社 Method for treating oxidizing substance-containing waste water

Similar Documents

Publication Publication Date Title
Gopinath et al. Strategies to design modified activated carbon fibers for the decontamination of water and air
KR102615619B1 (en) Surface-modified carbon and sorbents for improved efficiency in removal of gaseous contaminants
JP5167418B2 (en) Carbon catalyst and its use
US8524186B2 (en) Carbon-based catalyst for flue gas desulfurization and method of producing the same and use thereof for removing mercury in flue gas
JP5173105B2 (en) Filter media
CN107362788A (en) A kind of graphene oxide/titanium dioxide activated carbon three-dimensional composite material and preparation method thereof
JPS5824340A (en) Filter
CN109603820A (en) The monatomic method for preparing catalyst of room temperature degradation of formaldehyde under a kind of Oxygen Condition
CN108607522B (en) Titanium dioxide-multi-walled carbon nanotube-polydimethylsiloxane composite functional material and preparation method and application method thereof
CN101670282A (en) Preparation method of load type nano titanium dioxide catalyst
Yang et al. Opportunities and challenges in aqueous nitrate and nitrite reduction beyond electrocatalysis
Feng et al. Facile preparation, characterization, and formaldehyde elimination performance of MnOx/natural loofah composites
JP2003266081A (en) Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater
CN113198515A (en) Ternary photocatalyst and preparation method and application thereof
CN108906108B (en) N-SrTiO3Microwave synthesis process of active carbon treatment material and application thereof
CN111167281A (en) Manganese cerium oxide/active carbon composite material for formaldehyde decomposition and preparation method thereof
CN110342580A (en) It is a kind of microwave-assisted to prepare active carbon-manganese dioxide nano-composite material method
KR102501792B1 (en) Manufacturing method of activated carbon for air purifier filter with surface modification treatment
CN106345487B (en) A kind of porous catalytic composite material of air cleaning and preparation method thereof
CN111501203A (en) Preparation method of catalytic nanofiber membrane
CN111501347B (en) Preparation method of catalytic nanofiber
CN212309612U (en) Catalyst flat plate type ozone oxidation reactor
JP3578259B2 (en) Decomposition and removal of formaldehyde in air
JPH0576753A (en) Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide
JP3068231B2 (en) NO adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A02