JP3578259B2 - Decomposition and removal of formaldehyde in air - Google Patents

Decomposition and removal of formaldehyde in air Download PDF

Info

Publication number
JP3578259B2
JP3578259B2 JP23550598A JP23550598A JP3578259B2 JP 3578259 B2 JP3578259 B2 JP 3578259B2 JP 23550598 A JP23550598 A JP 23550598A JP 23550598 A JP23550598 A JP 23550598A JP 3578259 B2 JP3578259 B2 JP 3578259B2
Authority
JP
Japan
Prior art keywords
formaldehyde
particles
manganese
oxide
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23550598A
Other languages
Japanese (ja)
Other versions
JP2000079157A (en
Inventor
嘉香 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23550598A priority Critical patent/JP3578259B2/en
Publication of JP2000079157A publication Critical patent/JP2000079157A/en
Application granted granted Critical
Publication of JP3578259B2 publication Critical patent/JP3578259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Gas Separation By Absorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築材料、家具、燃焼器具等から発生し,室内空気を汚染するガス状ホルムアルデヒドの分解・除去方法に関する。
【0002】
【従来の技術】
空気中のホルムアルデヒドの除去方法としては、従来、過酸化水素や次亜塩素酸のアルカリ水溶液による酸化吸収方式(美坂康有,浦木勝,松下政明:空調・衛生工学,第40巻,第1119頁(1966))、粒状活性炭、ゼオライト等の物理吸着材によって除去する方法、過酸化カルシウム(高野二郎,斉藤章,安岡高志,光沢舜明:公害と対策,第17巻,第1109頁(1981))、ポリエチレンイミン(Gesser,H.D.,Fu,S.:Environ.Sci.Technol.,vol.24,p.495(1990))、硫酸アンモニウム(特許第829955号)等を使用し化学反応によって吸着・除去する方法、酸化セリウム(Li,C. et al.:J.Catal.,vol.125,p.445(1990))のように熱エネルギー(熱触媒)を加えてホルムアルデヒドを分解する方法等が知られている。
【0003】
【発明が解決しようとする課題】
上記方法のうち、過酸化水素や次亜塩素酸のアルカリ水溶液による酸化吸収方式は、薬液が液体であるため処理装置が複雑となり、またミスト発生の問題もあって、一般家庭での使用には適さない。粒状活性炭、ゼオライト等の物理吸着材によって除去する方法は、吸着処理後に吸着材の保存状態が変化すると吸着平衡の関係に従って一旦吸着したホルムアルデヒドが再び空気中に放出される問題がある。この現象は、物理吸着に限らず、化学吸着の場合も同様に起こりうる。また、熱触媒はホルムアルデヒドの分解に有効であるが、熱源(エネルギー源)が必要となる問題がある。本発明の目的は、取扱が容易で、熱源(エネルギー源)を要せず、空気中のホルムアルデヒドを効果的に除去・分解し、無害化する方法を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するためホルムアルデヒドの分解・除去剤を種々探索した結果、本発明者はホルムアルデヒドガスを室温で二酸化炭素に分解する粉末状配合物を見出し、本発明を完成するに至った。すなわち、本発明は、ホルムアルデヒド含有空気を、(1)マンガン酸化物粒子とセリウム酸化物粒子の混合物であり、セリウム酸化物粒子が20〜50重量%のマンガン酸化物含有物、
(2)マンガン酸化物粒子と銀酸化物粒子のマンガン酸化物含有物、
(3)マンガン酸化物粒子と銀酸化物粒子と銅酸化物粒子のマンガン酸化物含有物、のうちいずれか1つ以上のマンガン酸化物含有物に接触させ、二酸化炭素の生成を伴いながら、ホルムアルデヒドを分解させることを特徴とする、ホルムアルデヒドの分解・除去方法である。
【0005】
【発明の実施の形態】
本発明で用いられるマンガン酸化物は、粒子状マンガン酸化物(マンガン酸化物粒子)が好ましい。本発明のホルムアルデヒドの分解・除去方法で使用できるマンガン酸化物含有物は、マンガン酸化物単独であっても良いが、マンガン酸化物のほかに、セリウム、銀、銅から選ばれる1種以上の金属粒子もしくは金属酸化物粒子の含有物であってもよい。
【0006】
本発明で用いられるマンガン酸化物粒子としては、二酸化マンガン、活性二酸化マンガン、一酸化マンガン、Mn、Mn及びMn等の各粒子があり、好ましくは活性二酸化マンガン粒子、二酸化マンガン粒子又は四酸化三マンガン粒子であり、最も好ましくは活性二酸化マンガン粒子である。ここで、活性二酸化マンガン粒子は、一般式MnOx(ただし、xは多くの場合1.8〜2.0)で表される比表面積の大きな多孔性二酸化マンガン粒子で、マンガン塩を湿式酸化分解して得られる。なお、用いられるマンガン酸化物粒子の比表面積は、50平方メートル/g以上、好ましくは70平方メートル/g以上、更に好ましくは100〜2000平方メートル/gであり、粒子の大きさは好ましくは平均粒径で0.1〜10μm、更に好ましくは平均粒径で0.1〜4.0μmである。ここで、比表面積は窒素吸着比表面積(BET)として求めた値である。
【0007】
マンガン酸化物粒子のほかに用いられる金属もしくは金属酸化物粒子のうち、セリウム酸化物としては、Ce及びCeOがあり、好ましくはCeOである。銀酸化物としては、AgO、AgO及びAgがあり、好ましくはAgOである。銅酸化物としては、酸化第一銅及び酸化第二銅がある。銅については、前記酸化物よりも金属銅のほうが好ましい。
【0008】
前記セリウム、銀、銅から選ばれる金属もしくは金属酸化物は、ホルムアルデヒド分解・除去性能を高めるために、平均粒径で0.1〜10μmの範囲の粒子が好ましく用いられる。金属又は金属酸化物粒子を2種以上混合する必要があるときは、乳鉢、ボールミル等を用いて均一に混合すればよい。
【0009】
本発明のホルムアルデヒドの分解・除去方法で用いることのできるマンガン酸化物含有物としては、1種類の粒子単品又は複数の粒子混合物のほかに、ガラス繊維等の通気性基材にポリエチレン粒子等の熱可塑性樹脂粒子をバインダーとして用いて、前記したマンガン酸化物又はこれとセリウム、銀、銅から選ばれる1種以上の金属粒子もしくは金属酸化物粒子を加熱・固着させたシート状物であってもよい。また、ハニカム状担体に前記したマンガン酸化物等の粒子を無機バインダー又は有機バインダーを用いて付着・固定させ、フィルタ状としたものでもよい。更には、多孔質ハニカム状担体に前記したマンガン酸化物等の前駆物質である金属塩溶液(硝酸マンガン水溶液等)を含浸させて焼結し、フィルタ状としたものでもよい。
【0010】
また、本発明のホルムアルデヒドの分解・除去方法において、ホルムアルデヒド含有空気をマンガン酸化物含有物と接触させる際の温度は特に限定されるものではないが、好ましくは、居住環境の温度、すなわち、3〜40℃の温度範囲で行う。
【0011】
以下、実験例を説明する。
実験例1
各種金属酸化物(酸化銀、酸化パラジウム、酸化銅、酸化コバルト、酸化亜鉛、二酸化マンガン、酸化鉄、酸化タングステン、酸化チタン、二酸化セリウム、四酸化三マンガン、五酸化バナジウム及び酸化ランタン粒子(いずれも和光純薬社製。二酸化マンガンについては比表面積61平方メートル/g、平均粒径5μmのもの。)について、ホルムアルデヒドガス除去能力と二酸化炭素生成量とを試験(スクリーニング)した。試験方法は、各金属酸化物粒子0.5gをガラス製反応容器(1.16L)の底に撒き、20μLのホルマリン溶液を反応容器内に設けたガラス製試験管の内壁に沿って滴下したのち、反応容器を密閉して25℃で静置した。
【0012】
発生したホルムアルデヒドガスの濃度を2時間後に測定し、空試験値と比較した。HCHO除去率(%)は次式(1)で計算した。
([HCHO]bt−[HCHO]t)/[HCHO]bt×100 (1)
ここで、[HCHO]tは時間tにおけるホルムアルデヒド濃度の試料値、[HCHO]btは空試験値である。また、二酸化炭素生成量(ppm)は次式(2)で計算した。
[CO]t−[CO]bt (2)
ここで、[CO]tは時間tにおける二酸化炭素濃度の試料値、[CO]btは空試験値である。なお、濃度の測定はガステック社製検知管(91Lホルムアルデヒド用、2LL二酸化炭素用)を用いた。結果を図1に示す。
【0013】
ホルムアルデヒド除去率は酸化銀、二酸化マンガン及び酸化チタンで70%以上と高く、次いで二酸化セリウム、四酸化三マンガン、酸化コバルト及び酸化パラジウムが高い値を示した。一方、二酸化炭素生成量は二酸化マンガンが約300ppmと最も高く、酸化銀や酸化ランタンでは逆に二酸化炭素濃度が減少した。ホルムアルデヒドから二酸化炭素が生成する機構は明確ではないが、ホルムアルデヒドが金属酸化物の塩基性表面に接触してギ酸が生成し(カニツァーロ反応)、ギ酸塩となって固定され、二酸化マンガン上ではそのギ酸塩がさらに分解して二酸化炭素になると推定される。
【0014】
【実施例】
以下、実施例により発明を更に具体的に説明する。
実施例1
二酸化マンガン粒子(和光純薬社製。比表面積61平方メートル/g、平均粒径5μmのもの。)単独及び二酸化マンガン粒子と二酸化セリウム粒子との混合粒子系をつくり、上記実験例1と同様な方法で試験した。二酸化マンガンと二酸化セリウムの混合比率は、重量比で4:1、1:1、及び1:4とした。結果を図2に示した。二酸化セリウムは二酸化マンガンに比べてホルムアルデヒド除去率及び二酸化炭素生成量の両方共に低いが、重量比4:1又は1:1で添加すると、二酸化マンガン単独に比べて二酸化炭素生成量の増加傾向が見られた。
【0015】
実施例2
二酸化マンガンに酸化銀を混合して実施例1と同様に試験を行った。二酸化マンガンと酸化銀混合比率は、重量比で9:1及び9.5:0.5とした。結果を図3に示した。両者の混合系は二酸化マンガン単独に比べてホルムアルデヒド除去率が向上し、また二酸化炭素生成量も増加した。
【0016】
実施例3
二酸化マンガン単独のほか、二酸化マンガン/酸化銀混合系、それらに更に酸化銅及び金属銅を混合した系をつくり、実施例1と同様に試験を行った。二酸化マンガンと酸化銅の混合比率は2:3、二酸化マンガンと金属銅の混合比率は2:3、二酸化マンガンと酸化銅と酸化銀の混合比率は3.6:5.4:1、二酸化マンガンと金属銅と酸化銀の混合比率は3.6:5.4:1とした。結果を図4に示した。二酸化マンガンに酸化銅又は金属銅を混合するとホルムアルデヒド除去率は低下したが、金属銅を混合した場合は二酸化炭素生成量が増加した。二酸化マンガン及び酸化銀の混合系においても同様の結果が得られた。混合した金属銅は二酸化炭素の生成を促す作用があると思われる。
【0017】
実施例4
二酸化マンガンと活性二酸化マンガンについて比較試験を行った。試験条件は実施例1と同様であり、用いた粒子は二酸化マンガン(和光純薬製、比表面積61平方メートル/g、平均粒径5μm)と活性二酸化マンガン(日本重化学工業製、比表面積163平方メートル/g、平均粒径1.2μm)である。試験は両者の性能差を明確にするため、触媒粒子の使用量を0.05〜1gまで変化させ、試験を開始して20時間後に容器内のガス濃度を測定した。結果を図5に示す。図5から明らかなように、活性二酸化マンガンの方がホルムアルデヒド除去率は高く、除去率50%を達成するのに必要な触媒量は、試薬グレードの二酸化マンガンの量に比べて約1/2であった。
【0018】
実施例5
ハニカム構造体に触媒を固定したホルムアルデヒド除去フィルタ
支持体となるハニカム構造体として300mm×300mm×(厚み)25mmで、セル数500個/平方インチのアルミハニカム(AL−C500、新日本コア製)を予め用意した。容器に水を秤取し、活性二酸化マンガン(比表面積100平方メートル/g、平均粒径1.3μm)20重量部を撹拌しながら少しずつ加え、十分撹拌した後、撹拌しながら水分散バインダ(ポリゾ−ルAP−6740、昭和高分子製)2重量部を少しずつ添加して混合した。これを目開き300μmのフィルタでろ過し、通過液を塗工液(固形分濃度は約25重量%)とした。次に、遠心塗工機のドラムに予め用意したアルミハニカムを装着し、スプレ−容器に前記塗工液を投入し、ドラム回転数50rpm、吐出量10L/分、塗工時間3分の条件で塗布し、次いで、回転数を300rpmまで高めてアルミハニカム内部に塗工液を均一に行き渡らせた。これを150℃の乾燥器中で30分間加熱したのち、25mm×25mm×(厚み)25mmに切断し、性能試験用ホルムアルデヒド除去フィルタを得た(Aとする)。
【0019】
別に、次の3例のホルムアルデヒド除去フィルタ(支持体:アルミハニカム)を作製した。用いた触媒は3種類で、比表面積63平方メートル/g、平均粒径3.7μmの二酸化マンガン(RB−A、三井金属製)、比表面積55平方メートル/g、平均粒径5.0μmの二酸化マンガン(試薬グレード、和光純薬製)、比表面積330平方メートル/g、平均粒径6.0μmの四酸化三マンガン(カルライト400、Carus社製)で、ホルムアルデヒド除去フィルタの調製方法は上と同様である。
【0020】
これらについても25mm×25mm×(厚み)25mmに切断し、性能試験用フィルタを得た。得られたホルムアルデヒド除去フィルタを順にそれぞれ、B,C,Dとする。A〜Dの4種類のホルムアルデヒド除去フィルタについて、ホルムアルデヒド分解・除去能を評価した。各ホルムアルデヒド除去フィルタを内寸25mm×25mm、長さ500mmのアクリル角パイプの中央部に挿入固定した。角パイプの両端を封じると共にホルムアルデヒドガスを流せるようにガスホースを接続した。更に、片端にホルムアルデヒドガス発生器を流量計を挟んで接続した。ホルムアルデヒドガス発生器から2L/分の流速でホルムアルデヒドガス(ホルムアルデヒド濃度:3ppm)を角パイプ内に導入し、ホルムアルデヒド除去フィルタを通過させ、他端から排出した。1時間後にホルムアルデヒド除去フィルタ前後の位置でホルムアルデヒド濃度(ホルムアルデヒドガス検知管(91L及び91LL、ガステック製)による測定)を測定し、ホルムアルデヒド除去率を以下の式を用いて求めた。除去率(%)=〔(入口側濃度)−(出口側濃度)〕/(入口側濃度)×100ホルムアルデヒド除去フィルタのホルムアルデヒド除去率はAが90%で最も優れ、次いでDの75%であった。また、Bは30%であり、Cは10%であった。
【0021】
【発明の効果】
本発明により、取扱が容易で、熱源(エネルギー源)を要せず、空気中のホルムアルデヒドを居住環境の温度条件下で効果的に除去・分解して、無害化する方法を提供できた。
【図面の簡単な説明】
【図1】各種金属酸化物粒子のホルムアルデヒド除去率及び二酸化炭素生成量を示す棒グラフである(実験例1)。
【図2】二酸化マンガン粒子及び二酸化セリウム粒子の配合比とホルムアルデヒド除去率及び二酸化炭素生成量の関係を示す棒グラフである(実施例1)。
【図3】二酸化マンガン粒子及び酸化銀粒子の配合比とホルムアルデヒド除去率及び二酸化炭素生成量の関係を示す棒グラフである(実施例2)。
【図4】二酸化マンガン粒子、酸化銀及び酸化銅(又は金属銅)の配合比とホルムアルデヒド除去率及び二酸化炭素生成量の関係を示す棒グラフである(実施例3)。
【図5】活性二酸化マンガンのホルムアルデヒド除去率と二酸化マンガンのホルムアルデヒド除去率の比較を示すグラフである(実施例4)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for decomposing and removing gaseous formaldehyde generated from building materials, furniture, burning appliances and the like and contaminating indoor air.
[0002]
[Prior art]
As a method of removing formaldehyde in the air, a conventional method of absorbing and absorbing hydrogen peroxide or hypochlorous acid with an alkali aqueous solution (Yasuyuki Misaka, Masaru Uraki, Masaaki Matsushita: Air Conditioning and Sanitary Engineering, Vol. 40, p. 1119) (1966)), a method of removing with a physical adsorbent such as granular activated carbon, zeolite, etc., calcium peroxide (Jiro Takano, Akira Saito, Takashi Yasuoka, Sunmei Shinshin: Pollution and Countermeasures, Vol. 17, p. 1109 (1981)) ), Polyethylene imine (Gesser, HD, Fu, S .: Environ. Sci. Technol., Vol. 24, p. 495 (1990)), ammonium sulfate (Japanese Patent No. 829955), and the like. Cerium oxide (Li, C. et al .: J. Catal., Vol. 125, p. 445 (19) 0)) was added thermal energy (heat catalyst) method of decomposing formaldehyde and the like are known as.
[0003]
[Problems to be solved by the invention]
Of the above methods, the oxidative absorption method using an aqueous solution of hydrogen peroxide or hypochlorous acid is complicated because the chemical liquid is a liquid, the processing apparatus is complicated, and there is also a problem of mist generation. Not suitable. The method of removing with a physical adsorbent such as granular activated carbon and zeolite has a problem that once the adsorbent changes its storage state after the adsorption treatment, formaldehyde once adsorbed is released into the air again according to the relation of adsorption equilibrium. This phenomenon can occur not only in physical adsorption but also in chemical adsorption. A thermal catalyst is effective for decomposing formaldehyde, but has a problem that a heat source (energy source) is required. An object of the present invention is to provide a method for easily removing, decomposing and detoxifying formaldehyde in air, which is easy to handle and does not require a heat source (energy source).
[0004]
[Means for Solving the Problems]
As a result of various searches for a formaldehyde decomposing / removing agent in order to achieve the above object, the present inventors have found a powdery compound which decomposes formaldehyde gas into carbon dioxide at room temperature, and has completed the present invention. That is, in the present invention, the formaldehyde-containing air is (1) a mixture of manganese oxide particles and cerium oxide particles, wherein the cerium oxide particles contain 20 to 50% by weight of a manganese oxide-containing material.
(2) manganese oxide-containing materials of manganese oxide particles and silver oxide particles,
(3) contacting any one or more of the manganese oxide-containing substances of manganese oxide particles, silver oxide particles, and copper oxide particles with formaldehyde while causing the generation of carbon dioxide And a method for decomposing and removing formaldehyde.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The manganese oxide used in the present invention is preferably a particulate manganese oxide (manganese oxide particles). Manganese oxide-containing material can be used in the decomposition and removal method of the formaldehyde present invention may be a manganese oxide alone, in addition to manganese oxide, cerium, silver, copper or al least one selected It may be a content of metal particles or metal oxide particles.
[0006]
The manganese oxide particles used in the present invention include manganese dioxide, activated manganese dioxide, manganese monoxide, Mn 3 O 4 , Mn 2 O 3, Mn 2 O 7 and other particles, and preferably active manganese dioxide particles. , Manganese dioxide particles or trimanganese tetroxide particles, most preferably active manganese dioxide particles. Here, the activated manganese dioxide particles are porous manganese dioxide particles having a large specific surface area represented by the general formula MnOx (where x is 1.8 to 2.0 in many cases). Obtained. The specific surface area of the manganese oxide particles used is 50 square meters / g or more, preferably 70 square meters / g or more, and more preferably 100 to 2,000 square meters / g. It is 0.1 to 10 µm, more preferably 0.1 to 4.0 µm in average particle size. Here, the specific surface area is a value obtained as a nitrogen adsorption specific surface area (BET).
[0007]
Among the metals or metal oxide particles used in addition to the manganese oxide particles, the cerium oxide includes Ce 2 O 3 and CeO 2 , and preferably CeO 2 . Silver oxide includes Ag 2 O, AgO, and Ag 2 O 3 , and is preferably Ag 2 O. Copper oxide includes cuprous oxide and cupric oxide. For copper, it has preferably better copper metal than the oxide.
[0008]
It said cerium, silver, copper or al metal or metal oxide selected in order to increase the formaldehyde decomposition and removal performance, particles in the range of 0.1~10μm is preferably used with an average particle size. When two or more kinds of metal or metal oxide particles need to be mixed, they may be uniformly mixed using a mortar, a ball mill or the like.
[0009]
Examples of the manganese oxide-containing material that can be used in the method for decomposing and removing formaldehyde of the present invention include, in addition to a single type of particle or a mixture of a plurality of particles, heat-permeable materials such as polyethylene particles on a gas-permeable base material such as glass fiber. using thermoplastic resin particles as a binder, wherein the manganese oxide or its cerium, silver, be copper or al sheet obtained by heating and fixing the one or more metal particles or metal oxide particles chosen Good. The filter may be formed by attaching and fixing the above-mentioned particles of manganese oxide or the like to the honeycomb-shaped carrier using an inorganic binder or an organic binder. Further, the porous honeycomb-shaped carrier may be impregnated with a metal salt solution (manganese nitrate aqueous solution or the like) as a precursor of the above-described manganese oxide or the like and sintered to form a filter.
[0010]
In the method for decomposing / removing formaldehyde of the present invention, the temperature at which the formaldehyde-containing air is brought into contact with the manganese oxide-containing substance is not particularly limited, but is preferably the temperature of a living environment, that is, 3 to 3 hours. Performed in a temperature range of 40 ° C.
[0011]
Hereinafter, an experimental example will be described.
Experimental example 1
Various metal oxides (silver oxide, palladium oxide, copper oxide, cobalt oxide, zinc oxide, manganese dioxide, iron oxide, tungsten oxide, titanium oxide, cerium dioxide, trimanganese tetroxide, vanadium pentoxide, and lanthanum oxide particles (all (Manufactured by Wako Pure Chemical Industries, Ltd., manganese dioxide having a specific surface area of 61 square meters / g and an average particle diameter of 5 μm) was tested (screened) for formaldehyde gas removal capacity and carbon dioxide generation. 0.5 g of the oxide particles are spread on the bottom of a glass reaction vessel (1.16 L), and 20 μL of formalin solution is dropped along the inner wall of a glass test tube provided in the reaction vessel, and then the reaction vessel is sealed. And allowed to stand at 25 ° C.
[0012]
The concentration of the generated formaldehyde gas was measured after 2 hours and compared with the blank test value. The HCHO removal rate (%) was calculated by the following equation (1).
([HCHO] bt- [HCHO] t) / [HCHO] bt × 100 (1)
Here, [HCHO] t is a sample value of the formaldehyde concentration at time t, and [HCHO] bt is a blank test value. The amount of carbon dioxide generated (ppm) was calculated by the following equation (2).
[CO 2 ] t- [CO 2 ] bt (2)
Here, [CO 2 ] t is a sample value of the carbon dioxide concentration at time t, and [CO 2 ] bt is a blank test value. In addition, the measurement of the density | concentration used the detection tube (for 91L formaldehyde and 2LL carbon dioxide) made by Gastech. The results are shown in FIG.
[0013]
The formaldehyde removal rate was as high as 70% or more for silver oxide, manganese dioxide and titanium oxide, followed by cerium dioxide, trimanganese tetroxide, cobalt oxide and palladium oxide. On the other hand, manganese dioxide produced the highest amount of carbon dioxide at about 300 ppm, while silver oxide and lanthanum oxide reduced the carbon dioxide concentration. The mechanism by which carbon dioxide is formed from formaldehyde is not clear, but formaldehyde contacts the basic surface of the metal oxide to form formic acid (Cannizzaro reaction), which is fixed as formate and fixed on manganese dioxide. It is estimated that the salt is further decomposed to carbon dioxide.
[0014]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Manganese dioxide particles (manufactured by Wako Pure Chemical Industries, Ltd., having a specific surface area of 61 square meters / g and an average particle size of 5 μm) were used alone or in the form of a mixed particle system of manganese dioxide particles and cerium dioxide particles. Tested. The mixing ratio of manganese dioxide and cerium dioxide was 4: 1, 1: 1, and 1: 4 by weight. The results are shown in FIG. Cerium dioxide has a lower formaldehyde removal rate and lower carbon dioxide production than manganese dioxide, but when added at a weight ratio of 4: 1 or 1: 1 there is a tendency to increase the carbon dioxide production compared to manganese dioxide alone. Was done.
[0015]
Example 2
A test was conducted in the same manner as in Example 1 except that manganese dioxide was mixed with silver oxide. The mixing ratio of manganese dioxide and silver oxide was 9: 1 and 9.5: 0.5 by weight. The results are shown in FIG. The mixed system of both improved formaldehyde removal rate compared to manganese dioxide alone and also increased the amount of carbon dioxide generated.
[0016]
Example 3
In addition to manganese dioxide alone, a mixed system of manganese dioxide / silver oxide and a system in which copper oxide and metallic copper were further mixed were prepared, and a test was conducted in the same manner as in Example 1. The mixing ratio of manganese dioxide and copper oxide is 2: 3, the mixing ratio of manganese dioxide and metallic copper is 2: 3, the mixing ratio of manganese dioxide, copper oxide and silver oxide is 3.6: 5.4: 1, manganese dioxide And the mixing ratio of metallic copper and silver oxide was 3.6: 5.4: 1. The results are shown in FIG. When copper oxide or metallic copper was mixed with manganese dioxide, the formaldehyde removal rate was reduced, but when metallic copper was mixed, the amount of carbon dioxide generated increased. Similar results were obtained in a mixed system of manganese dioxide and silver oxide. It is believed that the mixed metallic copper has an effect of promoting the generation of carbon dioxide.
[0017]
Example 4
Comparative tests were performed on manganese dioxide and activated manganese dioxide. The test conditions were the same as in Example 1. The particles used were manganese dioxide (manufactured by Wako Pure Chemical Industries, specific surface area: 61 square meters / g, average particle size: 5 μm) and activated manganese dioxide (manufactured by Nippon Heavy Industries, specific surface area: 163 square meters / g). g, average particle size 1.2 μm). In the test, in order to clarify the difference in performance between the two, the used amount of the catalyst particles was changed from 0.05 to 1 g, and the gas concentration in the container was measured 20 hours after the test was started. FIG. 5 shows the results. As is apparent from FIG. 5, active manganese dioxide has a higher formaldehyde removal rate, and the amount of catalyst required to achieve a removal rate of 50% is about half that of reagent-grade manganese dioxide. there were.
[0018]
Example 5
An aluminum honeycomb (AL-C500, manufactured by Shin Nippon Core) having a size of 300 mm x 300 mm x (thickness) of 25 mm and a cell number of 500 cells / square inch was used as a honeycomb structure serving as a formaldehyde removal filter support in which a catalyst was fixed to the honeycomb structure. Prepared in advance. Water is weighed into a container, and 20 parts by weight of activated manganese dioxide (specific surface area: 100 square meters / g, average particle size: 1.3 μm) is added little by little with stirring, and after sufficient stirring, an aqueous dispersion binder (Polyzo) is stirred. -AP-6740 (manufactured by Showa Kobunshi)) was added little by little and mixed. This was filtered through a filter having a mesh size of 300 μm, and the passing solution was used as a coating solution (solid content concentration was about 25% by weight). Next, an aluminum honeycomb prepared in advance is mounted on a drum of a centrifugal coating machine, and the coating liquid is poured into a spray container. The drum rotation speed is 50 rpm, a discharge rate is 10 L / min, and a coating time is 3 minutes. The coating liquid was applied, and then the number of revolutions was increased to 300 rpm to uniformly spread the coating liquid inside the aluminum honeycomb. After heating this in a dryer at 150 ° C. for 30 minutes, it was cut into 25 mm × 25 mm × (thickness) 25 mm to obtain a formaldehyde removal filter for performance test (referred to as A).
[0019]
Separately, the following three examples of formaldehyde removal filters (support: aluminum honeycomb) were produced. Three kinds of catalysts were used. Manganese dioxide (RB-A, manufactured by Mitsui Kinzoku) having a specific surface area of 63 square meters / g and an average particle size of 3.7 μm, manganese dioxide having a specific surface area of 55 square meters / g and an average particle size of 5.0 μm (Reagent grade, manufactured by Wako Pure Chemical Industries), trimanganese tetroxide (Callite 400, manufactured by Carus) having a specific surface area of 330 square meters / g and an average particle diameter of 6.0 μm. The preparation method of the formaldehyde removal filter is the same as above. .
[0020]
These were also cut into 25 mm x 25 mm x (thickness) 25 mm to obtain a performance test filter. The obtained formaldehyde removal filters are designated B, C, and D, respectively. The four types of formaldehyde removal filters A to D were evaluated for their ability to decompose and remove formaldehyde. Each formaldehyde removal filter was inserted and fixed in the center of an acrylic square pipe having an inner size of 25 mm x 25 mm and a length of 500 mm. A gas hose was connected so as to seal both ends of the square pipe and allow formaldehyde gas to flow. Further, a formaldehyde gas generator was connected to one end with a flow meter interposed therebetween. Formaldehyde gas (formaldehyde concentration: 3 ppm) was introduced into the square pipe at a flow rate of 2 L / min from the formaldehyde gas generator, passed through a formaldehyde removal filter, and discharged from the other end. One hour later, the formaldehyde concentration (measured by a formaldehyde gas detector tube (91 L and 91 LL, manufactured by Gastec)) was measured before and after the formaldehyde removal filter, and the formaldehyde removal rate was determined using the following equation. Removal rate (%) = [(inlet side concentration)-(outlet side concentration)] / (inlet side concentration) × 100 The formaldehyde removal rate of the formaldehyde removal filter is 90% for A, which is the highest, and 75% for D. Was. B was 30% and C was 10%.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, handling was easy, the heat source (energy source) was not required, and the method of removing and decomposing | disassembling formaldehyde in air effectively under the temperature conditions of a living environment, and detoxifying it could be provided.
[Brief description of the drawings]
FIG. 1 is a bar graph showing formaldehyde removal rates and carbon dioxide generation amounts of various metal oxide particles (Experimental Example 1).
FIG. 2 is a bar graph showing the relationship between the mixing ratio of manganese dioxide particles and cerium dioxide particles and the formaldehyde removal rate and the amount of carbon dioxide generated (Example 1).
FIG. 3 is a bar graph showing the relationship between the mixing ratio of manganese dioxide particles and silver oxide particles and the formaldehyde removal rate and the amount of carbon dioxide generated (Example 2).
FIG. 4 is a bar graph showing the relationship between the mixing ratio of manganese dioxide particles, silver oxide and copper oxide (or metallic copper), the formaldehyde removal rate and the amount of carbon dioxide generated (Example 3).
FIG. 5 is a graph showing a comparison between the formaldehyde removal rate of active manganese dioxide and the formaldehyde removal rate of manganese dioxide (Example 4).

Claims (3)

ホルムアルデヒド含有空気を、
(1)マンガン酸化物粒子とセリウム酸化物粒子の混合物であり、セリウム酸化物粒子が20〜50重量%のマンガン酸化物含有物、
(2)マンガン酸化物粒子と銀酸化物粒子のマンガン酸化物含有物、
(3)マンガン酸化物粒子と銀酸化物粒子と銅酸化物粒子のマンガン酸化物含有物、のうちいずれか1つ以上のマンガン酸化物含有物に接触させ、二酸化炭素の生成を伴いながら、ホルムアルデヒドを分解させる、ホルムアルデヒドの分解・除去方法。
Formaldehyde-containing air,
(1) a mixture of manganese oxide particles and cerium oxide particles, wherein the cerium oxide particles contain 20 to 50% by weight of a manganese oxide-containing material;
(2) manganese oxide-containing material of manganese oxide particles and silver oxide particles,
(3) contacting any one or more of the manganese oxide-containing materials of manganese oxide particles, silver oxide particles, and copper oxide particles to formaldehyde while producing carbon dioxide; For decomposing and removing formaldehyde.
マンガン酸化物粒子として、二酸化マンガン粒子、活性二酸化マンガン粒子及び四酸化三マンガン粒子のうちの少なくとも一種の粒子を用いる、請求項1のホルムアルデヒドの分解・除去方法。2. The method for decomposing and removing formaldehyde according to claim 1, wherein at least one of manganese dioxide particles, activated manganese dioxide particles and trimanganese tetroxide particles is used as the manganese oxide particles. マンガン酸化物粒子として、比表面積50平方メートル/g以上の粒子を用いる、請求項1または請求項2のホルムアルデヒドの分解・除去方法。3. The method for decomposing and removing formaldehyde according to claim 1, wherein particles having a specific surface area of 50 square meters / g or more are used as the manganese oxide particles.
JP23550598A 1998-07-02 1998-08-21 Decomposition and removal of formaldehyde in air Expired - Fee Related JP3578259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23550598A JP3578259B2 (en) 1998-07-02 1998-08-21 Decomposition and removal of formaldehyde in air

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18672398 1998-07-02
JP10-186723 1998-07-02
JP23550598A JP3578259B2 (en) 1998-07-02 1998-08-21 Decomposition and removal of formaldehyde in air

Publications (2)

Publication Number Publication Date
JP2000079157A JP2000079157A (en) 2000-03-21
JP3578259B2 true JP3578259B2 (en) 2004-10-20

Family

ID=26503935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23550598A Expired - Fee Related JP3578259B2 (en) 1998-07-02 1998-08-21 Decomposition and removal of formaldehyde in air

Country Status (1)

Country Link
JP (1) JP3578259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069418A (en) * 2008-09-19 2010-04-02 Nippon Shokubai Co Ltd Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104984757B (en) * 2015-08-03 2017-09-29 哈尔滨天云伟业科技发展有限公司 A kind of preparation method of formaldehyde quick removal agent
JP2020022946A (en) * 2018-03-08 2020-02-13 日東電工株式会社 catalyst
CN110665502A (en) * 2019-09-03 2020-01-10 北京氦舶科技有限责任公司 Monoatomic Ag-based catalyst, preparation thereof and application thereof in catalytic oxidation of formaldehyde

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069418A (en) * 2008-09-19 2010-04-02 Nippon Shokubai Co Ltd Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst

Also Published As

Publication number Publication date
JP2000079157A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
CN101394929B (en) Low pressure drop, highly active catalyst systems using catalytically active gold
WO2018068729A1 (en) Air purification composite catalyst and preparation method thereof
JP2019534159A (en) Surface modified carbon and adsorbents for improved efficiency in the removal of gaseous pollutants
EP0501003A1 (en) Catalyst and method for decomposing ozone by the use thereof
WO2006103754A1 (en) Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
JP3390649B2 (en) Spherical carbon material and method for producing the same
Peng et al. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants
US6171372B1 (en) Nitrogen dioxide absorbent
Zhou et al. Preparation of a monolith MnO x–CeO 2/La–Al 2 O 3 catalyst and its properties for catalytic oxidation of toluene
JP3217101B2 (en) Method for producing air purifier
CN109590021A (en) A kind of NH_3 leakage catalyst of interlayer structure and its preparation method and application
JP2000126592A (en) Member for removing environment polluting gas and liquid composition for the member
CN101439261A (en) Cobalt oxide and cerium oxide catalyst for purifying particulate emission of diesel engine and preparation method
JP3578259B2 (en) Decomposition and removal of formaldehyde in air
US5266543A (en) Catalytic composite for deodorizing odorous gases and a method for preparing the same
JP2002355558A (en) Method for oxidation removal of formaldehyde
JP5503155B2 (en) Carbon monoxide removal filter
JP2004524258A (en) Ammonia oxidation method
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JPH11137656A (en) Deodorant catalyst element and its production
JP2002210369A (en) Catalyst for cleaning exhaust gas and its production method
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
EP0605237B1 (en) Exhaust gas cleaner
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees