JP3486696B2 - Desulfurization method using gas containing sulfurous acid gas as gas to be treated - Google Patents

Desulfurization method using gas containing sulfurous acid gas as gas to be treated

Info

Publication number
JP3486696B2
JP3486696B2 JP06033494A JP6033494A JP3486696B2 JP 3486696 B2 JP3486696 B2 JP 3486696B2 JP 06033494 A JP06033494 A JP 06033494A JP 6033494 A JP6033494 A JP 6033494A JP 3486696 B2 JP3486696 B2 JP 3486696B2
Authority
JP
Japan
Prior art keywords
gas
activated carbon
desulfurization
carbon layer
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06033494A
Other languages
Japanese (ja)
Other versions
JPH07241441A (en
Inventor
中 若林
洋一 梅原
尚徳 曽根原
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP06033494A priority Critical patent/JP3486696B2/en
Publication of JPH07241441A publication Critical patent/JPH07241441A/en
Application granted granted Critical
Publication of JP3486696B2 publication Critical patent/JP3486696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は亜硫酸ガスを含むガスを
被処理ガスとする脱硫方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desulfurization method using a gas containing sulfurous acid gas as a gas to be treated.

【0002】[0002]

【従来の技術】各種燃焼排ガスや工場排ガス等の排ガス
中に含まれる亜硫酸ガス(SO2)を除去するために排
ガスを石灰石の水スラリー液と接触させ、排ガス中のS
2をその石灰石水スラリー液に吸収反応させる方法は
広く行われている。このような脱硫方法においては、排
ガス中のSO2の脱硫率は、通常、90〜95%程度で
あり、これ以上の高い脱硫率、例えば99〜100%の
脱硫率で脱硫しようとすると、装置の極端な大型化や必
要動力の大幅な増加を招くという問題を生じる。従っ
て、従来の脱硫方法においては、前記したように、約9
0〜95%の脱硫率で脱硫を行っているのが現状であ
る。一方、近年においては、地球環境保全の点から、大
気へ放出する排ガス中のSO2濃度に関する規制はます
ますきびしくなってきており、排ガス中のSO2の徹底
的除去が要望されている。排ガス中のSO2の徹底的除
去を、従来の脱硫装置で実施しようとすると、前記した
ように装置の極端な大型化や必要動力の大幅な増加が必
要とされるため、経済性の点から好ましいことではな
い。従って、従来の脱硫装置から排出される低濃度SO
2を含むガスからそのSO2を経済的に除去し得る方法を
開発することは非常に意味あることである。
2. Description of the Related Art In order to remove sulfurous acid gas (SO 2 ) contained in exhaust gas such as various combustion exhaust gas and factory exhaust gas, the exhaust gas is brought into contact with an aqueous slurry liquid of limestone to remove S in the exhaust gas.
The method of absorbing and reacting O 2 with the limestone water slurry is widely used. In such a desulfurization method, the desulfurization rate of SO 2 in the exhaust gas is usually about 90 to 95%, and when desulfurization is performed at a higher desulfurization rate, for example, a desulfurization rate of 99 to 100%, the device There is a problem in that the size of the vehicle will become extremely large and the required power will increase significantly. Therefore, in the conventional desulfurization method, as described above, about 9
Currently, desulfurization is performed at a desulfurization rate of 0 to 95%. On the other hand, in recent years, from the viewpoint of global environment protection, regulations regarding SO 2 concentration in exhaust gas discharged to the atmosphere have become increasingly strict, and thorough removal of SO 2 in exhaust gas has been demanded. If SO 2 in exhaust gas is to be thoroughly removed by a conventional desulfurization device, as described above, the device must be extremely large and the required power must be greatly increased. Not desirable. Therefore, the low concentration SO discharged from the conventional desulfurization equipment
It would be very meaningful to develop a method that could economically remove its SO 2 from a gas containing 2 .

【0003】従来、燃焼排ガス中のSO2を除去するた
めに、100〜130℃の排ガスを直接活性炭層に供給
し、高温下で吸着除去させる方法は知られている(日立
評論、第49巻、第11号、第54頁〜57頁、196
7年)。この方法においては、燃焼排ガス中の高濃度の
SO2は、活性炭に吸着された後、酸素及び水分と反応
して硫酸に変り、活性炭にはこの硫酸の状態で吸着され
る。この活性炭を用いる吸着分離方法は、排ガスを活性
炭充填層を流通させればよいことから、操作的には非常
に簡便であるが、吸着分離の本質的欠点である吸着剤の
再生の問題を免れることはできない。即ち、吸着操作を
ある時間行うと、SO2の破過が生じ、この破過時点に
おいて活性炭を再生するために、これを水洗又は加熱す
る等の再生操作が必要になる。そして、この再生操作の
必要性のために、活性炭による吸着分離法は殆んど採用
されていない。また、活性炭層の代りに活性炭素繊維層
を用いることも知られている(「触媒」vol32,N
o2,105頁、1990年及び「Chemistry
Letters」、No.11,1899頁、199
3年)。
Conventionally, in order to remove SO 2 in combustion exhaust gas, a method is known in which exhaust gas at 100 to 130 ° C. is directly supplied to an activated carbon layer to be adsorbed and removed at a high temperature (Hitachi Review, Vol. 49). , No. 11, pp. 54-57, 196.
7 years). In this method, high-concentration SO 2 in the combustion exhaust gas is adsorbed by activated carbon, then converted to sulfuric acid by reacting with oxygen and moisture, and adsorbed on activated carbon in the state of sulfuric acid. This adsorptive separation method using activated carbon is very simple in operation since exhaust gas only needs to be passed through the activated carbon packed bed, but avoids the problem of adsorbent regeneration, which is an essential drawback of adsorption separation. It is not possible. That is, when the adsorption operation is performed for a certain period of time, SO 2 breakthrough occurs, and in order to regenerate the activated carbon at the time of this breakthrough, a regeneration operation such as washing or heating of the activated carbon is required. Due to the necessity of this regenerating operation, the adsorption separation method using activated carbon is hardly adopted. It is also known to use an activated carbon fiber layer instead of the activated carbon layer (“catalyst” vol 32, N).
o 2, p. 105, 1990 and "Chemistry.
Letters ", No. 11, 1899, 199
3 years).

【0004】前者の文献(「触媒」)では、代表的な燃
焼排ガス組成であるSO21,000ppmの条件で、
PAN系、セルロース系、カイノール系又はピッチ系の
活性炭素繊維、ヤシ殻活性炭、活性コークス又は褐炭チ
ャーを用いる脱硫試験がなされ、PAN系活性炭素繊維
以外の炭素質物質はいずれも反応開始直後から破過が始
まり、極めてわずかな脱硫性能しか示さなかったこと及
びそれらの炭素質物質は焼成処理しても脱硫性能の向上
が見られなかったこと等が記述されている。また、SO
2除去容量は、硫酸吸着の活性点を覆う生成硫酸の飽和
によって決定されるものとし、この脱硫試験における炭
素質物質による脱硫は、吸着の原理にもとづく方法であ
ることがわかる。後者の文献においては、PAN系以外
の炭素質物質は高脱硫性能を与えないとの認識のもと、
PAN系活性炭素繊維を用いてSO21,000vol
ppmの条件での脱硫試験が検討されている。この後者
の文献には、PAN系活性炭素繊維の脱硫性能を向上さ
せるために、それを熱処理して破過までの時間をいかに
延ばすかの考えの中で、60時間程度の短時間の間、運
転温度における過飽和の水の存在下でSO2の完全吸着
除去が行われること及びこの間硫酸の滴下が生じること
が示されているが、これはPAN系活性炭素繊維に固有
の現象である。そして、この活性炭素繊維でのそのSO
2除去効果はそれをさらに熱処理して特別の表面構造の
ものにすることにより、向上するとしている。一方、活
性炭については、前記したように、このものは脱硫性能
が小さい上に、活性炭素繊維とはその性状が大きく異な
り、通常の脱硫条件では硫酸の滴下を生じにくく、かつ
吸着速度も非常に遅くなることから、実用には適さない
と考えられていた(「排煙脱硫技術」、化学工業社、第
90〜94頁)。従って、SO2の脱硫に際し、硫酸を
その活性炭層から連続的に分離させる等の脱硫試験は全
く試みられたこともなかった。
In the former document (“catalyst”), the typical combustion exhaust gas composition is SO 2 at 1,000 ppm, and
A desulfurization test was performed using PAN-based, cellulose-based, kinol-based or pitch-based activated carbon fibers, coconut shell activated carbon, activated coke or brown coal char, and all carbonaceous substances other than PAN-based activated carbon fibers were destroyed immediately after the reaction started. It was described that the desulfurization performance of the carbonaceous material showed very little, and that the carbonaceous materials did not show any improvement in the desulfurization performance even after the calcination treatment. Also, SO
2 The removal capacity is determined by the saturation of the generated sulfuric acid that covers the active sites of sulfuric acid adsorption, and it is clear that desulfurization by carbonaceous substances in this desulfurization test is a method based on the principle of adsorption. In the latter document, it is recognized that carbonaceous materials other than PAN-based materials do not give high desulfurization performance,
SO 2 1,000vol using PAN-based activated carbon fiber
A desulfurization test under the condition of ppm is being studied. In this latter document, in order to improve the desulfurization performance of the PAN-based activated carbon fiber, in consideration of how to extend the time until breakthrough by heat-treating it, for a short time of about 60 hours, It has been shown that complete adsorption of SO 2 is carried out in the presence of supersaturated water at operating temperature and that sulfuric acid dripping occurs during this, which is a phenomenon unique to PAN-based activated carbon fibers. And the SO in this activated carbon fiber
2The removal effect is said to be improved by further heat treating it to give it a special surface structure. On the other hand, as for activated carbon, as described above, this one has a small desulfurization performance, and its properties are greatly different from those of activated carbon fiber, and it is difficult for sulfuric acid to drop under normal desulfurization conditions, and the adsorption rate is also very high. It was considered to be unsuitable for practical use because of the delay ("Flue gas desulfurization technology", Chemical Industry Co., Ltd., pp. 90-94). Therefore, when desulfurizing SO 2 , desulfurization test such as continuously separating sulfuric acid from the activated carbon layer has never been attempted.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、低濃
度のSO2を含むガスからそのSO2を連続的にかつ長時
間にわたって除去する方法を提供することにある。本発
明の他の課題は、吸着分離によらず、新しい分離原理に
基づいてSO2を分離する方法を提供することにある。
本発明のさらに他の課題は、活性炭のSO2の酸化に対
する触媒機能を利用したSO2含有ガスの脱硫方法を提
供することにある。本発明のさらに他の課題は、排煙脱
硫装置から排出される脱硫処理ガスからそれに含まれる
低濃度亜硫酸ガスを経済的に脱硫する方法を提供するこ
とにある。本発明のさらに他の課題は、石灰石−石こう
法排煙脱硫装置から排出される脱硫処理ガスからそれに
含まれる低濃度亜硫酸ガスを経済的に脱硫する方法を提
供することにある。本発明のさらに他の課題は、以下の
記載から明らかに理解されるであろう。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for continuously removing SO 2 from a gas containing a low concentration of SO 2 for a long time. Another object of the present invention is to provide a method for separating SO 2 based on a new separation principle instead of adsorption separation.
Still another object of the present invention is to provide a method for desulfurizing SO 2 containing gas, which utilizes a catalytic function for SO 2 oxidation of activated carbon. Still another object of the present invention is to provide a method for economically desulfurizing low-concentration sulfur dioxide contained in a desulfurization treatment gas discharged from a flue gas desulfurization apparatus. Still another object of the present invention is to provide a method for economically desulfurizing low-concentration sulfur dioxide gas contained in a desulfurization treatment gas discharged from a limestone-gypsum flue gas desulfurization device. Other subjects of the present invention will be clearly understood from the following description.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。本発明者らは、前記課題を解決すべく鋭意研
究を重ねた結果、前記文献(「触媒」)で示されている
ように、SO21,000ppmの条件では反応開始直
後から破過がはじまり、反応の定常状態では極めてわず
かな脱硫率しか示さなかった活性炭でも、後述する接触
硫酸化速度Rの大きい活性炭を用いる場合には、被処理
ガス中のSO2濃度が低下すると脱硫率が著しく向上
し、100ppm以下という低濃度条件で使用すると極
めて高い脱硫率を示すことを見いだした。すなわち、S
2低濃度条件下では、SO2の吸着能の低い活性炭であ
ってもSO2を吸着分離する吸着剤として用いるのでは
なく、SO2と酸素とを反応させ、再生操作を必要とし
ない触媒として使用することにより十分に高い脱硫率が
得られることを見いだした。本発明はこれらの知見に基
づいて完成されたものである。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. As a result of earnest studies to solve the above problems, the present inventors have found that, as shown in the above-mentioned document (“catalyst”), under the condition of SO 2 1,000 ppm, breakthrough begins immediately after the start of the reaction. In the steady state of the reaction, even if the activated carbon showed an extremely small desulfurization rate, when the activated carbon having a large catalytic sulfation rate R described later is used, the desulfurization rate is remarkably improved when the SO 2 concentration in the gas to be treated decreases. However, it was found that when used under a low concentration condition of 100 ppm or less, an extremely high desulfurization rate was exhibited. That is, S
Under low O 2 concentration conditions, even activated carbon having a low SO 2 adsorption capacity is not used as an adsorbent for adsorbing and separating SO 2 , but a catalyst that does not require regeneration operation by reacting SO 2 with oxygen. It has been found that a sufficiently high desulfurization rate can be obtained by using the above. The present invention has been completed based on these findings.

【0007】本発明によれば、亜硫酸ガス、酸素及び水
蒸気を含むガスを被処理ガスとして用いる脱硫方法にお
いて、(i)被処理ガス中の亜硫酸ガス濃度が100v
olppm以下であること、(ii)被処理ガスを活性炭
層を流通させ、その活性炭層中において亜硫酸ガスと酸
素とを接触酸化させて三酸化イオウに変換させるととも
に、この三酸化イオウを水分と反応させて希硫酸を生成
させること、(iii)活性炭層から活性炭層中で生成した
希硫酸分を連続的に分離すること、(iv)活性炭層を形
成する活性炭の接触硫酸化速度Rが5μmmol/g/
hr以上であること、(v)被処理ガスを活性炭層を流
通させることにより得られる被処理ガスの接触脱硫率Y
が少なくとも80%であること、を特徴とする亜硫酸ガ
スを低濃度で含むガスの脱硫方法が提供される。
According to the present invention, in the desulfurization method using a gas containing sulfurous acid gas, oxygen and water vapor as the gas to be treated, (i) the sulfur dioxide gas concentration in the gas to be treated is 100 v
(ii) A gas to be treated is circulated through an activated carbon layer, and sulfur dioxide gas and oxygen are catalytically oxidized in the activated carbon layer to be converted into sulfur trioxide, and the sulfur trioxide is reacted with water. To produce dilute sulfuric acid, (iii) to continuously separate the dilute sulfuric acid content produced in the activated carbon layer from the activated carbon layer, and (iv) the catalytic sulfation rate R of the activated carbon forming the activated carbon layer is 5 μmmol / g /
(v) Catalytic desulfurization rate Y of the gas to be treated obtained by circulating the gas to be treated through the activated carbon layer
Is at least 80%, and a method for desulfurizing a gas containing a low concentration of sulfurous acid gas is provided.

【0008】また、本発明によれば、前記の脱硫方法に
おいて、その被処理ガスとして、排煙脱硫装置から排出
される脱硫処理ガスを用いる方法が提供される。さらに
本発明によれば、石灰石の水性スラリー液と亜硫酸ガス
とを反応させる中和反応工程と、その中和物を酸化して
石こうを生成させる酸化反応工程を行わせる湿式石灰石
−石こう法排煙脱硫装置から排出される脱硫処理ガス
を、前記脱硫方法で二次脱硫処理するとともに、この二
次脱硫処理に際して活性炭層から分離された希硫酸を前
記排煙脱硫装置における酸化反応工程部に導入すること
を特徴とする脱硫方法が提供される。
Further, according to the present invention, there is provided a method of using the desulfurization treatment gas discharged from the flue gas desulfurization apparatus as the gas to be treated in the above desulfurization method. Further, according to the present invention, a wet limestone-gypsum method flue gas for performing a neutralization reaction step of reacting an aqueous limestone slurry liquid with sulfurous acid gas and an oxidation reaction step of oxidizing the neutralized product to produce gypsum The desulfurization treatment gas discharged from the desulfurization device is subjected to the secondary desulfurization treatment by the desulfurization method, and the dilute sulfuric acid separated from the activated carbon layer during the secondary desulfurization treatment is introduced into the oxidation reaction process part in the flue gas desulfurization device. A desulfurization method characterized by the above is provided.

【0009】本発明で用いる活性炭は、SO2の酸化に
対して触媒として作用するもので、通常活性炭と呼ばれ
ている従来公知の各種の炭素質物質が使用可能である。
このようなものとしては、ヤシ殻活性炭、木材からの活
性炭、コールタール系ピッチからの活性炭、石油ピッチ
からの活性炭、石炭からの活性炭等の各種活性炭が挙げ
られる他、活性コークス等が挙げられる。一般的には、
比表面積50〜2000m2/gのものが用いられる。
これらの活性炭は、必要に応じ、500〜1000℃で
焼成して用いることができる。また、本発明で用いる活
性炭としては、後記で定義される接触硫酸化速度Rが十
分大きなものの使用が好ましい。
The activated carbon used in the present invention acts as a catalyst for the oxidation of SO 2 , and various conventionally known carbonaceous substances usually called activated carbon can be used.
Examples thereof include various activated carbons such as coconut shell activated carbon, activated carbon derived from wood, activated carbon derived from coal tar pitch, activated carbon derived from petroleum pitch, activated carbon derived from coal, and activated coke. In general,
A specific surface area of 50 to 2000 m 2 / g is used.
These activated carbons can be used after firing at 500 to 1000 ° C., if necessary. As the activated carbon used in the present invention, it is preferable to use activated carbon having a sufficiently high catalytic sulfation rate R defined later.

【0010】次に、本発明を図面を参照して説明する。
図1は本発明で用いる活性炭充填塔の模式図を示す。図
1において、1は被処理ガス供給管、2は活性炭層、3
は処理ガス排出管、4は希硫酸収容部、5は希硫酸排出
管、6は洗浄液スプレー管、7は洗浄液供給管、10は
活性炭充填塔を示す。本発明の方法を前記活性炭充填塔
を用いて実施するには、被処理ガスをその供給管1を通
して、塔10内に導入し、活性炭層2内を流通させた
後、脱硫処理ガスをその排出管3を通して塔10外へ抜
出す。スプレー管6からは、洗浄液供給管7から導入さ
れる洗浄液を連続的又は間欠的に活性炭層の上面に散布
するとともに、この洗浄液を活性炭層2を下方に流下さ
せ、これにより、被処理ガスに同伴し、活性炭層に捕集
された固体微粒子をその洗浄液とともに活性炭層から下
方に流出除去させる。
Next, the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic view of an activated carbon packed tower used in the present invention. In FIG. 1, 1 is a treated gas supply pipe, 2 is an activated carbon layer, 3
Is a processing gas discharge pipe, 4 is a dilute sulfuric acid container, 5 is a dilute sulfuric acid discharge pipe, 6 is a cleaning liquid spray pipe, 7 is a cleaning liquid supply pipe, and 10 is an activated carbon packed tower. In order to carry out the method of the present invention using the activated carbon packed tower, the gas to be treated is introduced into the tower 10 through the supply pipe 1 thereof, and is circulated in the activated carbon layer 2, and then the desulfurization gas is discharged. Withdraw through the tube 3 to the outside of the tower 10. From the spray pipe 6, the cleaning liquid introduced from the cleaning liquid supply pipe 7 is continuously or intermittently sprayed onto the upper surface of the activated carbon layer, and the cleaning liquid is caused to flow downward in the activated carbon layer 2 to thereby form a gas to be treated. The solid fine particles that are entrained and collected in the activated carbon layer flow out downward from the activated carbon layer together with the cleaning liquid.

【0011】活性炭層2内においては、活性炭の触媒作
用によりガス中に含まれるSO2は活性炭表面で酸化さ
れてSO3となり、このSO3は活性炭表面に吸着された
水分と反応してH2SO4になり、そしてこのH2SO4
活性炭表面に吸着された水分により希釈されて希硫酸と
なる。本発明においては、活性炭層2は、SO2を吸着
分離させる吸着剤層としてではなく、SO2と酸素とを
反応させる触媒層として用いることを特徴とする。従来
の活性炭を用いる脱硫法においては、活性炭はSO2
ガス中から吸着分離させるための吸着剤として取扱わ
れ、活性炭充填塔もSO2の吸着分離塔として設計され
ている。従って、その充填塔は、乾燥、吸着、水洗の3
工程を基準サイクルとして、このサイクルを繰返すこと
によって運転されている(日立評論、第49巻第11
号、第54頁〜第57頁)。これに対し、本発明では、
活性炭は触媒として取扱われ、活性炭充填塔は触媒充填
塔として設計される。従って、本発明の場合、活性炭充
填塔は、再生を目的とした乾燥や水洗等の工程は必要と
されず、連続的に長時間にわたって運転することができ
る。本発明の場合、活性炭充填塔の連続運転時間は、活
性炭の触媒としての性能劣化に依存するが、通常、10
00時間以上であり、本発明の活性炭充填塔はこのよう
な長時間にわたって安定して運転することができる。
In the activated carbon layer 2, SO 2 contained in the gas is oxidized on the surface of the activated carbon to SO 3 by the catalytic action of the activated carbon, and this SO 3 reacts with the water adsorbed on the surface of the activated carbon to generate H 2 It becomes SO 4 , and this H 2 SO 4 is diluted with the water adsorbed on the surface of the activated carbon to become dilute sulfuric acid. In the present invention, the activated carbon layer 2 is not the SO 2 as an adsorbent layer for adsorbing separator, characterized by using as a catalyst layer for reacting SO 2 and oxygen. In the conventional desulfurization method using activated carbon, activated carbon is handled as an adsorbent for adsorbing and separating SO 2 from the gas, and an activated carbon packed column is also designed as an SO 2 adsorption / separation column. Therefore, the packed tower has three stages of drying, adsorption, and water washing.
It is operated by repeating this cycle with the process as a reference cycle (Hitachi Review, Vol. 49, No. 11).
No., pp. 54-57). On the other hand, in the present invention,
Activated carbon is handled as a catalyst, and the activated carbon packed tower is designed as a catalyst packed tower. Therefore, in the case of the present invention, the activated carbon packed column does not require a step of drying or washing for the purpose of regeneration, and can be continuously operated for a long time. In the case of the present invention, the continuous operating time of the activated carbon packed tower depends on the performance deterioration of the activated carbon as a catalyst, but is usually 10
It is more than 00 hours, and the activated carbon packed tower of the present invention can be stably operated over such a long time.

【0012】本発明においては、被処理ガスを活性炭層
に流通反応させる際にその活性炭層中に生成する希硫酸
は、これをその活性炭層から連続的に分離する。この希
硫酸の活性炭層からの連続的分離を行わないときやその
分離が不十分になると、SO2の円滑な酸化反応が起ら
なくなる。即ち、活性炭層で生成する希硫酸は、その反
応で生成した分を連続的に活性炭層から分離することが
必要である。
In the present invention, the dilute sulfuric acid produced in the activated carbon layer during the flow reaction of the gas to be treated is continuously separated from the activated carbon layer. When the dilute sulfuric acid is not continuously separated from the activated carbon layer or when the separation is insufficient, the smooth oxidation reaction of SO 2 does not occur. That is, the dilute sulfuric acid produced in the activated carbon layer needs to be continuously separated from the activated carbon layer by the amount produced in the reaction.

【0013】図1に示した活性炭充填塔においては、活
性炭層2で生成した希硫酸は、その層2の下方に配設さ
れた希硫酸収容部4の内部に流下し、収容される。ま
た、図1に示した活性炭充填塔の場合、被処理ガスは活
性炭層を下方に流通することから、活性炭層中に生成し
た希硫酸の下方に向けての流下は、この下方に流れる被
処理ガス流により促進され、その結果、活性炭層2から
の希硫酸の円滑な分離が達成される。希硫酸は収容部4
に収容され、この収容部4に収容された希硫酸は、その
排出管5を通って連続的又は間欠的に抜出される。
In the activated carbon packed tower shown in FIG. 1, the dilute sulfuric acid produced in the activated carbon layer 2 flows down and is accommodated in the dilute sulfuric acid accommodating portion 4 arranged below the layer 2. Further, in the case of the activated carbon packed tower shown in FIG. 1, since the gas to be treated flows downward in the activated carbon layer, the downward flow of the dilute sulfuric acid generated in the activated carbon layer is caused by the downward flow of the object to be treated. It is facilitated by the gas flow, so that a smooth separation of the dilute sulfuric acid from the activated carbon layer 2 is achieved. Dilute sulfuric acid is used as the storage unit
The dilute sulfuric acid stored in the storage unit 4 is withdrawn through the discharge pipe 5 continuously or intermittently.

【0014】活性炭層2の形成に用いる活性炭は、円柱
状、円筒状、顆粒状、球形状、ハニカム状等の各種の形
状であることができる。その寸法は、顆粒状又は球形状
の場合、その直径が0.1〜20mm、好ましくは1〜
10mmであり、円柱状や円筒状の場合、その直径は
0.1〜20mm、好ましくは1〜10mmで、その長
さは0.1〜20mm、好ましくは1〜10mmであ
る。活性炭の寸法が余りにも小さいと、活性炭層で生成
した希硫酸が流下しにくくなり、活性炭の圧損失が増加
するので好ましくなく、一方、活性炭の寸法が余りにも
大きいと、活性炭の内部が接触表面として有効に利用で
きなくなるとともに、活性炭内部からの希硫酸の流出が
円滑に行われなくなるので、前記範囲の寸法であること
が好ましい。活性炭は、通常、それが通過しない網目の
金網やプラスチックの網等に保持させて塔内に充填され
る。
The activated carbon used for forming the activated carbon layer 2 may have various shapes such as columnar shape, cylindrical shape, granular shape, spherical shape, and honeycomb shape. In the case of granules or spheres, the dimension is 0.1 to 20 mm, preferably 1 to 20 mm.
In the case of a columnar shape or a cylindrical shape, the diameter is 0.1 to 20 mm, preferably 1 to 10 mm, and the length is 0.1 to 20 mm, preferably 1 to 10 mm. If the size of the activated carbon is too small, the dilute sulfuric acid generated in the activated carbon layer will not flow down easily, and the pressure loss of the activated carbon will increase, which is not preferable.On the other hand, if the size of the activated carbon is too large, the inside of the activated carbon will contact the contact surface. Since it cannot be effectively used as the above, and the dilute sulfuric acid does not smoothly flow out from the inside of the activated carbon, it is preferable that the size is within the above range. Activated carbon is usually packed in the tower while being retained by a mesh or plastic mesh that does not pass through it.

【0015】本発明者らの研究によれば、1,000v
olppm程度の高濃度のSO2を含むガスを酸素及び
水蒸気と共に活性炭層を流通させると、図2のように操
作開始時においては脱硫率は100%であるが、すぐに
破過して脱硫率は極めて低くなることを確認した。一
方、100volppm程度の低濃度のSO2を含むガ
スを酸素及び水蒸気と共に活性炭層を流通させると、図
3のように破過して、脱硫率100%を維持しなくなっ
た後も十分に高い脱硫率を1,000時間以上という極
めて長時間にわたって保持させることが確認された。ま
た、これらの長時間にわたって継続される脱硫率Yは、
活性炭の種類によって変化し、被処理ガス中のSO2
度及び被処理ガスの供給速度によっても変化することが
確認された。この活性炭の触媒機能によって達成される
脱硫率Yを本明細書では接触脱硫率Yと定義する。本発
明においては、この接触脱硫率Yは少なくとも80%、
好ましくは90〜100%である。この接触脱硫率Y
は、活性炭層に対する被処理ガスの供給速度や、逆に、
被処理ガスに対する活性炭層の容量によりコントロール
することができる。
According to the research conducted by the present inventors, 1,000 v
When a gas containing SO 2 at a high concentration of about olppm is circulated through the activated carbon layer together with oxygen and water vapor, the desulfurization rate is 100% at the start of the operation as shown in FIG. Was confirmed to be extremely low. On the other hand, when a gas containing a low concentration of SO 2 of about 100 volppm was circulated through the activated carbon layer together with oxygen and water vapor, it broke through as shown in FIG. 3 and had a sufficiently high desulfurization rate even after the desulfurization rate of 100% was not maintained. It was confirmed that the rate was maintained for an extremely long time of 1,000 hours or more. Further, the desulfurization rate Y that continues over these long periods of time is
It was confirmed that it changes depending on the type of activated carbon, and also changes depending on the SO 2 concentration in the gas to be treated and the supply rate of the gas to be treated. The desulfurization rate Y achieved by the catalytic function of this activated carbon is defined as the catalytic desulfurization rate Y in this specification. In the present invention, the catalytic desulfurization rate Y is at least 80%,
It is preferably 90 to 100%. This contact desulfurization rate Y
Is the supply rate of the gas to be treated to the activated carbon layer, or conversely,
It can be controlled by the capacity of the activated carbon layer with respect to the gas to be treated.

【0016】また、本発明では、この接触脱硫率Yを示
す活性炭の触媒機能は活性炭の種類によって異なるた
め、活性炭表面で形成される希硫酸生成速度(本明細書
では接触硫酸化速度Rと定義される)もその活性炭の種
類によって異なる。従って、本発明により被処理ガスを
活性炭層と接触させて脱硫する場合、その活性炭の接触
硫酸化速度Rの大きい活性炭を選定することが重要であ
る。従来の吸着分離では破過までの時間の長い活性炭が
優れた吸着剤として選定されていたが、本発明で使用す
る活性炭は触媒的な機能が必要となるため、従来の吸着
概念とは異なった基準で選定される。即ち、従来の吸着
剤選定基準であった破過時間では本発明の活性炭の選定
は不十分であり、その選定基準としては、接触硫酸化速
度Rが使用される。これは本発明が活性炭を触媒的に使
用するため、定常状態での活性炭のSO2除去性能の大
小を示すものである。従って、活性炭としては、破過時
間に関係するSO2吸着性能より、むしろ細孔内で生成
した希硫酸の除去性能に関係する活性炭の細孔構造や水
との親和性等が重要となり、これらを併せたものが接触
硫酸化速度Rとして評価され、その値の大きいものほど
接触脱硫性能の高い活性炭であることを示す。本明細書
で定義される接触硫酸化速度Rは、図4に示されるよう
な接触脱硫率Yと被処理ガスの供給速度Fとの関係にお
いて、接触脱硫率Yが100%となる最も大きい被処理
ガスの供給速度(F100)を用いて下記(1)式により
算出される。この場合、接触硫酸化速度Rを、活性炭層
に適用する活性炭固有の特性値として標準化するため
に、活性炭としては18.5〜8.6メッシュに揃えた
ものを使用し、被処理ガスとしては、SO2:40vo
lppm、酸素:5vol%、水蒸気:9.4vol
%、残部:窒素ガスからなるガスを標準ガスとして用
い、その標準ガスと活性炭の標準接触温度としては45
℃を用いた。 R=F100×XS/(22.4×W) (1) R:接触硫酸化速度(μmol/g/hr) F100:接触脱硫率Yが100%となる最も大きい被処
理ガスの供給速度(Nl/hr) XS:被処理ガスのSO2濃度(volppm) W:活性炭の重量(g) 本発明においては、この接触硫酸化速度Rとして、通常
5μmol/g/hr以上、好ましくは10μmol/
g/hr以上、より好ましくは20μmol/g/hr
以上の値を持つ活性炭が使用される。このような活性炭
としては、市販品、例えば、東洋カルゴン社製の活性炭
(商品名:「F30/470」)や、ツルミコール社製
の活性炭(商品名:「4GV」)、クラレケミカル社製
の活性炭(商品名:「4GS」)等を挙げることができ
る。この接触硫酸化速度Rは活性炭固有の特性値である
が、このRは、脱硫実験を行なうことによって求めるこ
とができる。この接触硫酸化速度Rが5μmol/g/
hrよりも小さい活性炭を使用すると、脱硫装置が大き
くなり、経済性の面から不適当である。
Further, in the present invention, the catalytic function of the activated carbon exhibiting the catalytic desulfurization rate Y differs depending on the type of the activated carbon. Therefore, the production rate of dilute sulfuric acid formed on the surface of the activated carbon (defined as the catalytic sulfation rate R in this specification). It also depends on the type of activated carbon. Therefore, when the gas to be treated is brought into contact with the activated carbon layer for desulfurization according to the present invention, it is important to select an activated carbon having a large catalytic sulfation rate R of the activated carbon. In the conventional adsorption separation, activated carbon with a long breakthrough time was selected as an excellent adsorbent, but the activated carbon used in the present invention requires a catalytic function, which is different from the conventional adsorption concept. It is selected according to the standard. That is, the breakthrough time, which was the conventional adsorbent selection standard, is insufficient for selecting the activated carbon of the present invention, and the catalytic sulfation rate R is used as the selection standard. This shows the magnitude of SO 2 removal performance of activated carbon in a steady state, because the present invention uses activated carbon as a catalyst. Therefore, as the activated carbon, the pore structure of the activated carbon and the affinity with water, which are related to the removal performance of the dilute sulfuric acid generated in the pores, are more important than the SO 2 adsorption performance related to the breakthrough time. Is evaluated as the catalytic sulfation rate R, and the larger the value, the higher the activated carbon having catalytic desulfurization performance. In the relationship between the catalytic desulfurization rate Y and the feed rate F of the gas to be treated as shown in FIG. 4, the catalytic sulfidation rate R defined in the present specification is the largest catalytic desulfurization rate Y of 100%. It is calculated by the following equation (1) using the supply rate (F 100 ) of the processing gas. In this case, in order to standardize the catalytic sulfation rate R as a characteristic value specific to the activated carbon applied to the activated carbon layer, the activated carbon used is 18.5 to 8.6 mesh, and the gas to be treated is , SO 2 : 40vo
1 ppm, oxygen: 5 vol%, steam: 9.4 vol
%, Balance: A gas consisting of nitrogen gas is used as a standard gas, and the standard contact temperature between the standard gas and activated carbon is 45
C was used. R = F 100 × X S /(22.4×W) (1) R: catalytic sulfation rate (μmol / g / hr) F 100 : supply of the largest gas to be treated with a catalytic desulfurization rate Y of 100% Velocity (Nl / hr) X S : SO 2 concentration (volppm) of the gas to be treated W: Weight of activated carbon (g) In the present invention, the catalytic sulfation rate R is usually 5 μmol / g / hr or more, preferably 10 μmol /
g / hr or more, more preferably 20 μmol / g / hr
Activated carbon with the above values is used. As such activated carbon, commercially available products such as activated carbon manufactured by Toyo Calgon Co., Ltd. (trade name: "F30 / 470"), activated carbon manufactured by Tsurumi Coal (trade name: "4GV"), activated carbon manufactured by Kuraray Chemical Co., Ltd. (Product name: “4GS”) and the like. This catalytic sulfation rate R is a characteristic value specific to activated carbon, and this R can be obtained by conducting a desulfurization experiment. This catalytic sulfation rate R is 5 μmol / g /
If activated carbon smaller than hr is used, the desulfurization device becomes large, which is not economically suitable.

【0017】本発明の脱硫方法においては、図5からわ
かるように、接触脱硫率Yは、被処理ガス中のSO2
度に依存し、被処理ガス中のSO2濃度が低下するに従
って大幅に向上する。従って、本発明の脱硫方法は、S
2の濃度が100volppm以下という低いSO2
有被処理ガスに適用することにより、顕著な効果を示す
ものである。本発明で用いる被処理ガス中のSO2濃度
は、100volppm以下、好ましくは50volp
pm以下である。また、被処理ガス中の酸素濃度は0.
1vol%以上、好ましくは1vol%以上であり、よ
り好ましくは2vol%以上である。酸素濃度の上限
は、通常21vol%である。水蒸気濃度は、相対湿度
で表わして、5〜100%、好ましくは40〜100
%、より好ましくは70〜100%である。被処理ガス
中の酸素濃度や水蒸気濃度が低すぎる場合には、外部か
らそれらのガスを添加することができる。
In the desulfurization method of the present invention, as can be seen from FIG. 5, the catalytic desulfurization rate Y depends on the SO 2 concentration in the gas to be treated, and greatly increases as the SO 2 concentration in the gas to be treated decreases. improves. Therefore, the desulfurization method of the present invention uses S
When it is applied to the SO 2 -containing gas to be treated, which has a low O 2 concentration of 100 volppm or less, a remarkable effect is exhibited. The SO 2 concentration in the gas to be used in the present invention is 100 volppm or less, preferably 50 volp
It is pm or less. Further, the oxygen concentration in the gas to be treated is 0.
It is 1 vol% or more, preferably 1 vol% or more, and more preferably 2 vol% or more. The upper limit of the oxygen concentration is usually 21 vol%. The water vapor concentration is 5 to 100%, preferably 40 to 100, expressed as relative humidity.
%, More preferably 70 to 100%. When the oxygen concentration and the water vapor concentration in the gas to be treated are too low, those gases can be added from the outside.

【0018】本発明の脱硫操作温度は、活性炭層2の平
均温度で、100℃以下、好ましくは80℃以下、より
好ましくは50℃以下である。その下限は、通常10℃
である。
The desulfurization operation temperature of the present invention is an average temperature of the activated carbon layer 2 of 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 50 ° C. or lower. The lower limit is usually 10 ° C
Is.

【0019】本発明で用いる脱硫装置としては、前記し
た如き活性炭充填塔に限らず、活性炭層を有する気固装
置であれば任意のものが使用可能であり、例えば、活性
炭層を有する横型の気固装置も使用することができる。
この場合、この気固装置は、その底部に希硫酸収容部を
付設する等して、被処理ガスの脱硫処理に際して活性炭
層に生成する希硫酸を活性炭層から連続的に分離し、こ
れを反応装置から連続的又は間欠的に抜出す構造のもの
とすることが重要である。
The desulfurization device used in the present invention is not limited to the activated carbon packed column as described above, and any gas-solidifying device having an activated carbon layer can be used. For example, a horizontal type gas having an activated carbon layer can be used. Fastening devices can also be used.
In this case, this gas-solidifying device is provided with a dilute sulfuric acid storage portion at the bottom thereof to continuously separate the dilute sulfuric acid generated in the activated carbon layer during the desulfurization treatment of the gas to be treated from the activated carbon layer, and to react this. It is important that the structure is such that the device is continuously or intermittently withdrawn.

【0020】本発明の脱硫法は、各種の排煙脱硫装置か
ら排出される脱硫処理ガスに対する二次脱硫法として有
利に適用され、好ましくは、石灰石の水性スラリーとS
2とを反応させる中和反応工程と、その中和物(亜硫
酸カルシウム)を酸化して石こうを生成させる酸化反応
工程を行わせる湿式石灰石−石こう法排煙脱硫装置から
の脱硫処理ガスの二次脱硫法として適用される。図6
に、本発明の脱硫法を湿式石灰石−石こう法排煙脱硫装
置からの脱硫処理ガスの二次脱硫に適用した場合のフロ
ーシートの一例について示す。
The desulfurization method of the present invention is advantageously applied as a secondary desulfurization method for desulfurization treatment gas discharged from various flue gas desulfurization devices, and preferably an aqueous slurry of limestone and S
Two types of desulfurization treatment gas from a wet limestone-gypsum flue gas desulfurization device for performing a neutralization reaction step of reacting with O 2 and an oxidation reaction step of oxidizing the neutralized product (calcium sulfite) to generate gypsum It is applied as the next desulfurization method. Figure 6
FIG. 1 shows an example of a flow sheet when the desulfurization method of the present invention is applied to the secondary desulfurization of the desulfurization treatment gas from the wet limestone-gypsum flue gas desulfurization apparatus.

【0021】図6において、ボイラー等の燃焼設備より
排出されたSO2を含む130〜150℃の排ガスは、
これを導管11を経てガス/ガス熱交換器12に供給
し、後述するようにして脱硫され、導管22で供給され
る排煙脱硫後の脱硫処理ガスとの熱交換により冷却させ
た後、導管13により排ガス冷却塔14に導入する。冷
却塔14に、後述するように石こう粒子を分離した後の
吸収液(石灰石の水溶液)が導管32により供給され、
導管15により供給される吸収液及び導管38より供給
される水のスプレーによって冷却された排ガスは、導管
16によって脱硫塔17の下部に導入される。一方、脱
硫塔17の上部には、pH5〜6の石灰石−石こう含有
水性スラリー液(以下、吸収液と略記する)が脱硫塔下
部から導管18によって供給され、スプレー等の手段に
より分散され、脱硫塔17を上昇する排ガスと向流接触
して排ガス中のSO2の大部分(通常90〜95%)が
除去される。脱硫塔17で大部分のSO2が除去された
排ガスは、脱硫塔17の上部に設置されたデミスター1
9に入り、ここで排ガスに同伴されたミストや固形物が
除去される。脱硫塔17で大部分のSO2が除去された
排ガスは、導管20を経て活性炭充填塔10に導入さ
れ、活性炭との接触により排ガス中に残存するSO2
数ppm以下あるいは完全に除去された後、導管22を
経てガス/ガス熱交換器12において導管11より供給
される排ガスとの熱交換によって90〜110℃に再加
熱され、導管23を経て系外に排出される。
In FIG. 6, the exhaust gas at 130 to 150 ° C. containing SO 2 discharged from the combustion equipment such as a boiler is
This is supplied to the gas / gas heat exchanger 12 via the conduit 11, desulfurized as described later, and cooled by heat exchange with the desulfurization gas after flue gas desulfurization supplied in the conduit 22 and then cooled. It is introduced into the exhaust gas cooling tower 14 by 13. To the cooling tower 14, the absorption liquid (aqueous solution of limestone) after separating gypsum particles as described later is supplied by a conduit 32,
The exhaust gas cooled by the absorption liquid supplied by the conduit 15 and the water spray supplied by the conduit 38 is introduced into the lower part of the desulfurization tower 17 by the conduit 16. On the other hand, in the upper part of the desulfurization tower 17, a limestone-gypsum-containing aqueous slurry liquid (hereinafter abbreviated as an absorption liquid) having a pH of 5 to 6 is supplied from a lower part of the desulfurization tower by a conduit 18 and dispersed by means such as a spray to desulfurize. Most of the SO 2 in the exhaust gas (usually 90 to 95%) is removed by making countercurrent contact with the rising exhaust gas in the column 17. The exhaust gas from which most of SO 2 was removed in the desulfurization tower 17 is the demister 1 installed at the upper part of the desulfurization tower 17.
9, the mist and solid matter entrained in the exhaust gas are removed here. The exhaust gas from which most of SO 2 was removed in the desulfurization tower 17 was introduced into the activated carbon packed tower 10 through the conduit 20, and SO 2 remaining in the exhaust gas was several ppm or less or completely removed by contact with the activated carbon. After that, it is reheated to 90 to 110 ° C. by heat exchange with the exhaust gas supplied from the conduit 11 in the gas / gas heat exchanger 12 via the conduit 22, and is discharged to the outside of the system via the conduit 23.

【0022】活性炭充填塔10より流出した希硫酸は、
導管36により脱硫塔17の下部(亜硫酸カルシウムの
酸化反応工程部)に供給され、ここで石灰石と反応して
石こうを生成する。脱硫塔17においてSO2の大部分
を吸収した吸収液は、脱硫塔17の下部で導管37によ
り供給される酸素含有ガス、例えば空気と接触し、吸収
液中の亜硫酸は酸化されて石こうが生成する。
The dilute sulfuric acid flowing out from the activated carbon packed tower 10 is
It is supplied to the lower portion of the desulfurization tower 17 (calcium sulfite oxidation reaction process section) through a conduit 36, where it reacts with limestone to produce gypsum. The absorption liquid that has absorbed most of SO 2 in the desulfurization tower 17 comes into contact with an oxygen-containing gas, for example, air, which is supplied by a conduit 37 in the lower portion of the desulfurization tower 17, and the sulfurous acid in the absorption liquid is oxidized to form gypsum. To do.

【0023】本発明においては、活性炭充填塔10の活
性炭層より流出した希硫酸は、湿式石灰石−石こう法排
煙脱硫装置の中和物(CaSO3)を酸化して石こう
(CaSO4)を生成させる酸化反応工程部に導入する
ことが効果的である。この酸化反応工程部では吸収液の
pHを4.5前後の低い値に保持することが亜硫酸の酸
化を促進させる上で望ましいため、活性炭充填塔10よ
り流出する希硫酸の導入はpH調整剤として極めて有効
である。
In the present invention, the dilute sulfuric acid flowing out of the activated carbon layer of the activated carbon packed tower 10 oxidizes the neutralized product (CaSO 3 ) of the wet limestone-gypsum flue gas desulfurization unit to produce gypsum (CaSO 4 ). It is effective to introduce it into the oxidation reaction process section. In this oxidation reaction process part, it is desirable to maintain the pH of the absorbing solution at a low value of around 4.5 in order to accelerate the oxidation of sulfurous acid, so the introduction of dilute sulfuric acid flowing out from the activated carbon packed column 10 serves as a pH adjuster. It is extremely effective.

【0024】図6では脱硫塔下部に酸化工程がある場合
について説明したが、未反応石灰石を除去し高品質の石
こうを得るため、酸化塔を別に設置し、この酸化塔に硫
酸を添加して低いpHで酸化を行う場合もあるが、この
場合にもその硫酸として活性炭層より分離した希硫酸を
使用することができ、極めて効果的である。
In FIG. 6, the case where there is an oxidation step in the lower part of the desulfurization tower has been described, but in order to remove unreacted limestone and obtain high quality gypsum, an oxidation tower is installed separately and sulfuric acid is added to this oxidation tower. Although oxidation may be performed at a low pH, dilute sulfuric acid separated from the activated carbon layer can be used as the sulfuric acid also in this case, which is extremely effective.

【0025】石こうを含有した吸収液は、導管24によ
り石こう分離機25に送られ、ここで石こうが分離され
る。石こうを分離した後の吸収液は導管26によって濾
液タンク27に貯えられ、さらに導管28によって石灰
石スラリータンク29へ送られ、導管30より供給され
る石灰石をスラリー化した後、導管31によって脱硫塔
17の下部へ返送される。濾液タンク27の吸収液の一
部は、導管32によって排ガス冷却塔14に送られ、排
ガスの冷却に使用された後、導管33によって排水処理
工程34に送られ、有害物質が除去された後、導管35
により放流される。
The absorption liquid containing gypsum is sent to the gypsum separator 25 by the conduit 24, where the gypsum is separated. The absorption liquid after separating the gypsum is stored in the filtrate tank 27 by the conduit 26, is further sent to the limestone slurry tank 29 by the conduit 28, slurries the limestone supplied from the conduit 30, and then the desulfurization tower 17 by the conduit 31. Will be returned to the bottom of. A part of the absorption liquid in the filtrate tank 27 is sent to the exhaust gas cooling tower 14 by the conduit 32, used for cooling the exhaust gas, and then sent to the wastewater treatment process 34 by the conduit 33 to remove harmful substances, Conduit 35
Released by.

【0026】前記のようにして脱硫処理を行う場合、活
性炭充填塔10の活性炭層には、デミスター19を通過
した微量の微細固形物が付着堆積し、これによって徐々
ではあるが活性炭の触媒機能が低下する場合がある。こ
のような活性炭の触媒機能の低下を防止するために、そ
の活性炭充填塔10に対し、導管21から水を連続的又
は間欠的に供給したり、水溶液、例えば、導管39によ
って濾液タンク27より供給される石こう等の固形物を
含まない吸収液(石灰石水溶液)を連続的又は間欠的に
供給して、これらの液によって活性炭層を洗浄するのが
有効である。これらの液体の供給は、活性炭層に生成し
た希硫酸の洗浄除去にも効果的である。なお、本発明の
脱硫方法は湿式石灰石−石こう法排煙脱硫装置からの脱
硫処理ガスの二次脱硫法ばかりでなく、亜硫酸ガスを低
濃度で含むガスを本発明で処理し、得られた希硫酸を湿
式石灰石−石こう法の原理に基づき石こうとする方法を
含むものである。
When the desulfurization treatment is carried out as described above, a minute amount of fine solid matter that has passed through the demister 19 is adhered and deposited on the activated carbon layer of the activated carbon packed tower 10, whereby the catalytic function of the activated carbon is gradually increased. It may decrease. In order to prevent such a decrease in the catalytic function of the activated carbon, water is continuously or intermittently supplied to the activated carbon packed tower 10 from the conduit 21 or an aqueous solution, for example, from the filtrate tank 27 by the conduit 39. It is effective to continuously or intermittently supply an absorption liquid (limestone aqueous solution) containing no solid matter such as gypsum, and wash the activated carbon layer with these liquids. The supply of these liquids is also effective for cleaning and removing dilute sulfuric acid generated in the activated carbon layer. The desulfurization method of the present invention is not only a secondary desulfurization method of a desulfurization treatment gas from a wet limestone-gypsum flue gas desulfurization apparatus, but also a gas obtained by treating the present invention with a gas containing a low concentration of sulfurous acid gas. It includes a method of converting sulfuric acid into gypsum based on the principle of the wet limestone-gypsum method.

【0027】[0027]

【発明の効果】本発明は、活性炭の持つSO2の酸化反
応に対する触媒機能を利用して、被処理ガス中に含まれ
るSO2を接触的に酸化除去する方法であり、従来の活
性炭による吸着分離による脱硫法に必要とされた活性炭
の再生処理は必要とされない。従って、本発明では、被
処理ガス中のSO2を連続的かつ長時間にわたって安定
した脱硫率で除去することができる。本発明は、SO2
を低濃度で含む各種のガスの脱硫法として適用すること
ができる。被処理ガスの例としては、各種脱硫装置から
得られる脱硫処理ガスや、流動床ボイラー排ガス、焼却
炉排ガス等がある。これらのガスは、SO2を10〜1
00volppm程度含むものであるが、本発明ではこ
れらのガス中のSO2を1volppm以下又は完全に
ゼロにすることができる。
INDUSTRIAL APPLICABILITY The present invention is a method for catalytically oxidizing and removing SO 2 contained in a gas to be treated by utilizing a catalytic function of SO 2 for oxidizing reaction of SO 2. The regeneration treatment of activated carbon required for the desulfurization method by separation is not required. Therefore, in the present invention, SO 2 in the gas to be treated can be removed continuously and for a long time at a stable desulfurization rate. The present invention is based on SO 2
It can be applied as a desulfurization method for various gases containing a low concentration of. Examples of the gas to be treated include desulfurization treatment gas obtained from various desulfurization devices, fluidized bed boiler exhaust gas, incinerator exhaust gas, and the like. These gases contain 10 to 1 SO 2
Although it contains about 100 volppm, in the present invention, SO 2 in these gases can be made 1 volppm or less or completely zero.

【0028】排煙脱硫装置から排出される脱硫処理ガス
を本発明の脱硫法により脱硫するときには、排煙脱硫装
置の極端な大型化や消費動力の大幅な増加を要すること
なく、大気へ放出する排ガス中のSO2濃度をほぼ完全
にゼロにすることができる。しかも、本発明の脱硫法
は、簡単な構造の活性炭充填塔を用いて実施し得るの
で、その操作は簡単であり、しかもその処理コストも低
く、経済的である。
When the desulfurization treatment gas discharged from the flue gas desulfurization apparatus is desulfurized by the desulfurization method of the present invention, it is released to the atmosphere without requiring an extremely large size of the flue gas desulfurization apparatus or a large increase in power consumption. The SO 2 concentration in the exhaust gas can be made almost zero. Moreover, since the desulfurization method of the present invention can be carried out using an activated carbon packed column having a simple structure, its operation is simple, and its treatment cost is low, and it is economical.

【0029】[0029]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0030】実施例1 図7に示す構造の活性炭層を有する反応装置を脱硫装置
として用いた。この反応装置は、内径26mm、長さ1
50mmのガラス製の反応管41の内部に市販活性炭を
12cc充填して活性炭層42を形成し、その上端部に
ガス供給管43及び下端部に希硫酸抜出バルブ45を付
設した希硫酸抜出管44を配設するとともに、その反応
管の活性炭層42の下方に処理ガス排出口46を配設
し、さらに、その反応管の外周面には、温水導入管47
と温水排出管48を有する反応温度調節用の加熱ジャケ
ット49を付設したものである。前記活性炭としては、
石炭を原料とする市販品(商品名「F30/470」東
洋カルゴン社製、表面積約1500m2/g)を節分け
してその粒度を18.5〜8.6メッシュに揃えたもの
を用いた。このものの接触硫酸化速度Rは38μmol
/g/hrであった。
Example 1 A reactor having an activated carbon layer having a structure shown in FIG. 7 was used as a desulfurizer. This reactor has an inner diameter of 26 mm and a length of 1
A 50 mm glass reaction tube 41 was filled with 12 cc of commercially available activated carbon to form an activated carbon layer 42, and a dilute sulfuric acid extraction valve 45 was attached to the gas supply tube 43 at the upper end and a dilute sulfuric acid extraction valve 45 at the lower end. A pipe 44 is provided, a process gas outlet 46 is provided below the activated carbon layer 42 of the reaction tube, and a hot water introducing pipe 47 is provided on the outer peripheral surface of the reaction tube.
And a heating jacket 49 having a hot water discharge pipe 48 for adjusting the reaction temperature. As the activated carbon,
A commercial product (trade name "F30 / 470" manufactured by Toyo Calgon Co., Ltd., surface area of about 1500 m 2 / g) using coal as a raw material was divided into nodes and the particle size thereof was adjusted to 18.5 to 8.6 mesh. The catalytic sulfation rate R of this product is 38 μmol
It was / g / hr.

【0031】この反応装置のその上端のガス導入管43
から下記組成の被処理ガスを60Nリットル/hrの供
給速度で反応温度45℃において下方に向けて流通させ
て脱硫試験を行った。この場合、その活性炭層に生成し
た希硫酸は、これを底部に流下させ、これを希硫酸抜出
バルブ45を間欠的に操作することにより系外へ排出し
た。 (被処理ガス組成) SO2:1000 volppm O2 : 5 vol% CO2: 12 vol% H2O:45℃飽和、約9.5 vol% N2 :残 部
A gas inlet pipe 43 at the upper end of the reactor
A desulfurization test was conducted by flowing a gas to be treated having the following composition downward at a reaction rate of 45 ° C. at a supply rate of 60 N liter / hr. In this case, the dilute sulfuric acid generated in the activated carbon layer was discharged to the outside by letting it flow down to the bottom and intermittently operating the dilute sulfuric acid extraction valve 45. (Treated gas composition) SO 2: 1000 volppm O 2 : 5 vol% CO 2: 12 vol% H 2 O: 45 ℃ saturated, about 9.5 vol% N 2: the remaining portion

【0032】この脱硫試験においては、通ガス後約4時
までは脱硫率100%で脱硫処理ガス中にはSO2は存
在しなかったが、約4時間経過後には被過が始まり、通
ガス後12時間以降は接触脱硫率Y=18%の一定値を
示した。この場合の脱硫率と操作時間との関係を図2に
示す。引続きガス中のSO2濃度を200volpp
m、40volppmと低下させて接触脱硫率Yを測定
したところ、接触脱硫率Y=68%及び100%をそれ
ぞれ得た。これらの接触脱硫率Yの測定結果を被処理ガ
ス中のSO2濃度(volppm)との関係で図5に示
す。次に、ガス中のSO2濃度を40volppmに固
定して、被処理ガス供給速度を110Nリットル/h
r、222Nリットル/hr及び331Nリットル/h
rに変化させて接触脱硫率Yを測定した。その接触脱硫
率Yと被処理ガスの供給速度(Nl/hr)との関係を
図4に示す。
In this desulfurization test, the desulfurization rate was 100% and SO 2 was not present in the desulfurization treatment gas until about 4 o'clock after passing the gas, but after about 4 hours, an excessive amount of gas began to pass and the passing gas was passed. After 12 hours, the catalytic desulfurization rate Y was a constant value of 18%. The relationship between the desulfurization rate and the operation time in this case is shown in FIG. The SO 2 concentration in the gas was continuously increased to 200 volpp
When the catalytic desulfurization rate Y was measured while lowering m and 40 volppm, the catalytic desulfurization rates Y = 68% and 100% were obtained, respectively. The measurement results of these catalytic desulfurization rates Y are shown in FIG. 5 in relation to the SO 2 concentration (vol ppm) in the gas to be treated. Next, the SO 2 concentration in the gas was fixed at 40 volppm, and the gas to be treated was supplied at a rate of 110 Nl / h.
r, 222 Nl / h and 331 Nl / h
The catalytic desulfurization rate Y was measured while changing to r. FIG. 4 shows the relationship between the catalytic desulfurization rate Y and the supply rate (Nl / hr) of the gas to be treated.

【0033】実施例2 実施例1で示したのと同様の新しい活性炭12ccから
なる活性炭層を有する以外は実施例1で示したのと同様
の構造を有する反応装置を作った。この反応装置のその
上端のガス導入管43から下方に向けて温度45℃で下
記組成の排煙脱硫出口模擬ガスを供給速度60Nリット
ル/hrで流し、連続脱硫実験を行った。 (排煙脱硫装置出口模擬排ガス組成) SO2: 40 volppm O2 : 5 vol% CO2: 12 vol% H2O:45℃飽和、約9.5 vol% N2 :残 部 前記脱硫実験においては、通ガス初期から脱硫率100
%が得られ、約250時間後には活性炭層より希硫酸が
流出し始め、これを連続的に活性炭層から分離させた。
このようにして脱硫実験を1000時間以上継続しても
その脱硫率は100%に維持された。従って、この実験
における接触脱硫率Yは100%であることがわかる。
Example 2 A reactor having the same structure as shown in Example 1 except that it has an activated carbon layer composed of 12 cc of new activated carbon similar to that shown in Example 1 was prepared. A continuous desulfurization experiment was carried out by flowing downward a flue gas desulfurization outlet simulation gas having the following composition at a supply rate of 60 Nl / hr from the gas introduction pipe 43 at the upper end of the reactor to a temperature of 45 ° C. (FGD outlet simulated exhaust gas composition) SO 2: 40 volppm O 2 : 5 vol% CO 2: 12 vol% H 2 O: 45 ℃ saturated, about 9.5 vol% N 2: the remaining part the desulfurization experiments Is a desulfurization rate of 100 from the beginning of passing gas.
%, And after about 250 hours, dilute sulfuric acid started to flow out from the activated carbon layer, and this was continuously separated from the activated carbon layer.
In this way, the desulfurization rate was maintained at 100% even if the desulfurization experiment was continued for 1000 hours or longer. Therefore, it is understood that the catalytic desulfurization rate Y in this experiment is 100%.

【0034】実施例3 実施例2で示したのと同様の新しい活性炭12ccから
なる活性炭層を有する以外は実施例1で示したのと同様
の構造を有する反応装置を作った。この反応装置のその
上端のガス導入管43から下方に向けて温度45℃で下
記組成の被処理ガスを供給速度60Nl/hrで流し、
連続脱硫実験を行った。 (被処理ガス組成) SO2: 100 volppm O2 : 5 vol% CO2: 12 vol% H2O: 45℃飽和、約9.5 vol% N2 : 残 部 この脱硫実験の結果は図3に示されるように、通ガス初
期は脱硫率100%が得られたが、45時間後に破過し
初め、132時間後に一定脱硫率87%を示し、以後
1,000時間以上継続してもこの脱硫率は維持され
た。従って、この実験における接触脱硫率Yは87%で
あることがわかる。
Example 3 A reactor having the same structure as shown in Example 1 except that it has an activated carbon layer consisting of 12 cc of new activated carbon similar to that shown in Example 2 was prepared. A gas to be treated having the following composition was made to flow downward from the gas introduction pipe 43 at the upper end of the reactor at a temperature of 45 ° C. at a supply rate of 60 Nl / hr,
A continuous desulfurization experiment was conducted. (Processed gas composition) SO 2 : 100 volppm O 2 : 5 vol% CO 2 : 12 vol% H 2 O: saturated at 45 ° C., about 9.5 vol% N 2 : balance The result of this desulfurization experiment is shown in FIG. As shown in Fig. 1, a desulfurization rate of 100% was obtained at the beginning of passing gas, but it started to break through after 45 hours and showed a constant desulfurization rate of 87% after 132 hours. The desulfurization rate was maintained. Therefore, it is understood that the catalytic desulfurization rate Y in this experiment is 87%.

【0035】実施例4 実施例1において、活性炭として、別の市販品(商品名
「4GV」、ツルミコール社製、やしがらを原料、表面
積1200m2/g)を篩分けしてその粒度を18.5
〜8.6メッシュに揃えたもの(R=43μmol/g
/hr)を用いるとともに、被処理ガス中のSO2濃度
を100volppmに設定した以外は同様にして実験
を行った。この場合、通ガス開始初期での脱硫率は10
0%であったが、通ガス後約30時間で破過が生じ、通
ガス後160時間以降は接触脱硫率Y=87%の一定値
を示した。次いで、被処理ガス中のSO2濃度を40v
olppmにしたところ、接触脱硫率Y=100%の結
果が得られた。
Example 4 In Example 1, as the activated carbon, another commercially available product (trade name “4GV”, manufactured by Tsurumi Coal Co., Ltd., raw material of coconut shell, surface area of 1200 m 2 / g) was sieved to have a particle size of 18 .5
〜8.6 mesh (R = 43 μmol / g
/ Hr), and the same experiment was conducted except that the SO 2 concentration in the gas to be treated was set to 100 volppm. In this case, the desulfurization rate at the beginning of passing gas is 10
Although it was 0%, breakthrough occurred about 30 hours after passing the gas, and after 160 hours after passing the gas, the catalytic desulfurization rate Y was a constant value of 87%. Then, the SO 2 concentration in the gas to be treated is adjusted to 40 v
When it was set to olppm, the result of the catalytic desulfurization rate Y = 100% was obtained.

【0036】実施例5 実施例2において、通ガス後1000時間において、湿
式石灰石−石こう法排液脱硫吸収液を模擬した温度45
℃の石こう飽和水溶液50ミリリットルをその反応装置
のガス導入管43から被処理ガスと共に徐々に供給し
て、活性炭層を洗浄した。この洗浄操作の後も、活性炭
層は十分な触媒機能を有し、100%の接触脱硫率Yを
示すことが確認された。
Example 5 In Example 2, at a time of 1000 hours after passing the gas, a temperature of 45 simulating the wet limestone-gypsum process waste liquid desulfurization absorption liquid was used.
50 ml of a saturated aqueous solution of gypsum at 0 ° C. was gradually supplied together with the gas to be treated from the gas introduction pipe 43 of the reactor to wash the activated carbon layer. It was confirmed that even after this washing operation, the activated carbon layer had a sufficient catalytic function and showed a catalytic desulfurization rate Y of 100%.

【図面の簡単な説明】[Brief description of drawings]

【図1】活性炭充填塔の模式図を示す。FIG. 1 shows a schematic view of an activated carbon packed tower.

【図2】活性炭層にSO2を高濃度で含む被処理ガスを
流通させて脱硫するとともに、その際に生成する希硫酸
を連続的に分離する際の脱硫率と操作時間との関係を示
す。
FIG. 2 shows the relationship between the desulfurization rate and the operating time when the target gas containing SO 2 at a high concentration is circulated in the activated carbon layer for desulfurization and the dilute sulfuric acid generated at that time is continuously separated. .

【図3】活性炭層にSO2を低濃度で含む被処理ガスを
流通させて脱硫するとともに、その際に生成する希硫酸
を連続的に分離する際の脱硫率と操作時間との関係を示
す。
FIG. 3 shows the relationship between the desulfurization rate and the operating time when a target gas containing SO 2 at a low concentration is circulated in an activated carbon layer for desulfurization and the dilute sulfuric acid generated at that time is continuously separated. .

【図4】接触脱硫率Yと被処理ガスの空間速度との関係
を示す。
FIG. 4 shows the relationship between the catalytic desulfurization rate Y and the space velocity of the gas to be treated.

【図5】接触脱硫率Yと被処理ガス中のSO2濃度との
関係を示す。
FIG. 5 shows the relationship between the catalytic desulfurization rate Y and the SO 2 concentration in the gas to be treated.

【図6】湿式石灰石−石こう法排煙脱硫装置から排出さ
れる脱硫処理ガスの二次脱硫処理ガスに本発明の脱硫法
を適用した場合のフローシートの一例を示す。
FIG. 6 shows an example of a flow sheet when the desulfurization method of the present invention is applied to the secondary desulfurization gas of the desulfurization gas discharged from the wet limestone-gypsum flue gas desulfurization apparatus.

【図7】実施例で用いた脱硫装置の構造図を示す。FIG. 7 shows a structural diagram of a desulfurization device used in Examples.

【符号の説明】[Explanation of symbols]

1 被処理ガス供給管 2 活性炭層 3 処理ガス排出管 4 希硫酸収容部 5 希硫酸抜出管 6 洗浄液スプレー管 7 洗浄液供給管 10 活性炭充填塔 12 ガス/ガス熱交換器 14 冷却塔 17 脱硫塔 19 デミスター 20 被処理ガス供給ライン 25 石こう分離機 27 濾液タンク 29 石灰石スラリータンク 36 希硫酸抜出ライン 1 Processing gas supply pipe 2 activated carbon layer 3 Process gas exhaust pipe 4 Dilute sulfuric acid storage 5 Dilute sulfuric acid extraction tube 6 Cleaning liquid spray tube 7 Cleaning liquid supply pipe 10 Activated carbon packed tower 12 Gas / gas heat exchanger 14 Cooling tower 17 Desulfurization tower 19 Demister 20 Process gas supply line 25 gypsum separator 27 Filtrate tank 29 Limestone slurry tank 36 Dilute sulfuric acid extraction line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12 番1号 千代田化工建設株式会社内 (56)参考文献 特開 昭61−86929(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/86 B01D 53/50 B01D 53/81 B01J 21/18 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Kimura Inventor Takashi Kimura 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd. (56) Reference JP-A-61-86929 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01D 53/86 B01D 53/50 B01D 53/81 B01J 21/18

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜硫酸ガス、酸素及び水蒸気を含むガス
を被処理ガスとして用いる脱硫方法において、(i)被
処理ガス中の亜硫酸ガス濃度が100volppm以下
であること、(ii)被処理ガスを活性炭層を流通させ、
その活性炭層中において亜硫酸ガスと酸素とを接触酸化
させて三酸化イオウに変換させるとともに、この三酸化
イオウを水分と反応させて希硫酸を生成させること、
(iii)活性炭層から活性炭層中で生成した希硫酸分を連
続的に分離すること、(iv)活性炭層を形成する活性炭
の接触硫酸化速度Rが5μmol/g/hr以上である
こと(v)被処理ガスを活性炭層を流通させることによ
り得られる被処理ガスの接触脱硫率Yが少なくとも80
%であること、を特徴とする亜硫酸ガスを低濃度で含む
ガスの脱硫方法。
1. A desulfurization method using a gas containing sulfurous acid gas, oxygen and steam as a gas to be treated, wherein (i) the concentration of sulfurous acid gas in the gas to be treated is 100 volppm or less, and (ii) the gas to be treated is activated carbon. Distribute the layers,
In the activated carbon layer, sulfur dioxide gas and oxygen are catalytically oxidized to be converted into sulfur trioxide, and this sulfur trioxide is reacted with water to generate dilute sulfuric acid,
(Iii) continuously diluting the dilute sulfuric acid content generated in the activated carbon layer from the activated carbon layer, (iv) the catalytic sulfation rate R of the activated carbon forming the activated carbon layer is 5 μmol / g / hr or more (v ) The catalytic desulfurization rate Y of the gas to be treated obtained by circulating the gas to be treated through the activated carbon layer is at least 80.
%, A method for desulfurizing a gas containing sulfur dioxide at a low concentration.
【請求項2】 内部に活性炭層を有し、その下方に希硫
酸収容部を配設した構造の活性炭充填塔に対し、活性炭
層の上方の位置から被処理ガスを塔内に供給し、その活
性炭層の下方の位置から脱硫処理ガスを塔外へ抜出すと
ともに、活性炭層底部から希硫酸を希硫酸収容部に流下
収容させ、さらにその希硫酸収容部からその希硫酸を抜
出すことを特徴とする請求項1の方法。
2. A to-be-processed gas is supplied into the tower from a position above the activated carbon layer to an activated carbon packed column having a structure in which an activated carbon layer is provided inside and a diluted sulfuric acid accommodation section is disposed below the activated carbon layer. The desulfurization treatment gas is extracted from the position below the activated carbon layer to the outside of the tower, dilute sulfuric acid is allowed to flow down from the bottom of the activated carbon layer into the dilute sulfuric acid storage section, and the diluted sulfuric acid is extracted from the dilute sulfuric acid storage section. The method of claim 1, wherein:
【請求項3】 被処理ガス中の、亜硫酸ガス濃度が50
volppm以下である請求項1又は2の方法。
3. The concentration of sulfurous acid gas in the gas to be treated is 50.
The method according to claim 1 or 2, which is less than or equal to volppm.
【請求項4】 被処理ガスが、排煙脱硫装置から排出さ
れる脱硫処理ガスである請求項1〜3のいずれかの方
法。
4. The method according to claim 1, wherein the gas to be treated is a desulfurization treatment gas discharged from a flue gas desulfurization device.
【請求項5】 石灰石の水性スラリー液と亜硫酸ガスと
を反応させる中和反応工程と、その中和物を酸化して石
こうを生成させる酸化反応工程を行わせる湿式石灰石−
石こう法排煙脱硫装置から排出される脱硫処理ガスを、
請求項1又は2の方法で二次脱硫処理するとともに、こ
の二次脱硫処理に際して活性炭層から分離された希硫酸
を前記排煙脱硫装置における酸化反応工程部に導入する
ことを特徴とする脱硫方法。
5. A wet limestone for carrying out a neutralization reaction step of reacting an aqueous limestone slurry liquid with sulfurous acid gas, and an oxidation reaction step of oxidizing the neutralized product to produce gypsum.
Desulfurization treatment gas discharged from the gypsum method flue gas desulfurization device,
A desulfurization method comprising performing a secondary desulfurization treatment by the method according to claim 1 or 2, and introducing dilute sulfuric acid separated from an activated carbon layer during the secondary desulfurization treatment into an oxidation reaction process section of the flue gas desulfurization apparatus. .
【請求項6】 活性炭層を水で連続的又は間欠的に洗浄
するとともに、その際の洗浄により得られる洗浄排液を
前記排煙脱硫装置における酸化反応工程部に導入する請
求項5の方法。
6. The method according to claim 5, wherein the activated carbon layer is continuously or intermittently washed with water, and the cleaning effluent obtained by the cleaning at that time is introduced into the oxidation reaction step section of the flue gas desulfurization apparatus.
【請求項7】 湿式石灰石−石こう法排煙脱硫装置から
排出される、石こうと石灰石を含む水性スラリー液から
それに含まれ懸濁粒子を分離した後の水溶液で活性炭層
を連続的又は間欠的に洗浄するとともに、その際の洗浄
により得られる洗浄排液を前記排煙脱硫装置における酸
化反応工程部に導入する請求項5の方法。
7. An activated carbon layer is continuously or intermittently formed with an aqueous solution after separating suspended particles contained therein from an aqueous slurry liquid containing gypsum and limestone discharged from a wet limestone-gypsum flue gas desulfurization apparatus. The method according to claim 5, wherein the cleaning waste liquid obtained by the cleaning at that time is introduced into the oxidation reaction process section of the flue gas desulfurization apparatus.
JP06033494A 1994-03-03 1994-03-03 Desulfurization method using gas containing sulfurous acid gas as gas to be treated Expired - Lifetime JP3486696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06033494A JP3486696B2 (en) 1994-03-03 1994-03-03 Desulfurization method using gas containing sulfurous acid gas as gas to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06033494A JP3486696B2 (en) 1994-03-03 1994-03-03 Desulfurization method using gas containing sulfurous acid gas as gas to be treated

Publications (2)

Publication Number Publication Date
JPH07241441A JPH07241441A (en) 1995-09-19
JP3486696B2 true JP3486696B2 (en) 2004-01-13

Family

ID=13139175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06033494A Expired - Lifetime JP3486696B2 (en) 1994-03-03 1994-03-03 Desulfurization method using gas containing sulfurous acid gas as gas to be treated

Country Status (1)

Country Link
JP (1) JP3486696B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
JP4574884B2 (en) * 2001-03-27 2010-11-04 住友重機械工業株式会社 Method and apparatus for recovering sulfuric acid in exhaust gas treatment system
KR100581675B1 (en) * 2004-07-13 2006-05-22 레인보우스케이프주식회사 Deodorization apparatus of foul smell gas
LU91685B1 (en) * 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide and sulfur dioxide from exhaust gases
CN103866137B (en) 2014-01-16 2015-11-18 北京科技大学 The innoxious resource method of disposal of one heavy metal species waste gypsum minimizing
JP7103729B2 (en) * 2017-09-21 2022-07-20 一般財団法人電力中央研究所 Impurity remover regeneration system
TWI689343B (en) * 2019-02-12 2020-04-01 源潔科技股份有限公司 Fossil fuel pollutant prevention system

Also Published As

Publication number Publication date
JPH07241441A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
CN101934191B (en) Method for desulfurizing and denitrating smoke simultaneously through ammonia method
CA2193638C (en) Exhaust gas treating systems
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
US5120515A (en) Simultaneous dehydration and removal of residual impurities from gaseous hydrocarbons
US3578390A (en) Method of removing sulfur dioxide from gases containing the same
SU1722210A3 (en) Method of cleaning humid gas from hydrogen sulfide
CN110479094A (en) A kind of desulphurization catalyst and the flue gas desulfurization processing system based on desulphurization catalyst
WO2004035176A1 (en) Production of sulphur and activated carbon
CN106714938A (en) A process for the oxidation of hydrogen sulfide to sulfur trioxide with subsequent sulfur trioxide removal and a plant for carrying out the process
US3862295A (en) Method for sorptive removal of sulfur gases
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
JP3757437B2 (en) Activated carbon catalytic reactor, flue gas desulfurization apparatus and desulfurization method using the same
US6106791A (en) Exhaust gas treating systems
JPH08108042A (en) Desulfurization and denitrification of flue gas,method and device for removal of carbon dioxide and catalyst and absorbent used therein
CN102019143A (en) Method for joint desulfurization and denitration of flue gas and special device thereof
US3948624A (en) Removal of sulfur compounds from gas streams
US6814948B1 (en) Exhaust gas treating systems
EP0264176A1 (en) Continuous recovery of sulfur from flue gas
CA1052980A (en) Process for the removal of sulfur dioxide from exhaust flue gases
CN110575741A (en) Flue gas desulfurization and denitrification device and method
JPS5814933A (en) Method and apparatus for desulfurizing and denitrating exhaust gas in dry system
US3840643A (en) Flue gas desulfurization using sorbent having gradient concentration of active material
CN114159950A (en) Flue gas desulfurization and decarburization coupled treatment system and method
JP2002284510A (en) Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
JP2004337776A (en) Exhaust gas treating apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term