WO2020031516A1 - Method of manufacturing adsorbent - Google Patents

Method of manufacturing adsorbent Download PDF

Info

Publication number
WO2020031516A1
WO2020031516A1 PCT/JP2019/024319 JP2019024319W WO2020031516A1 WO 2020031516 A1 WO2020031516 A1 WO 2020031516A1 JP 2019024319 W JP2019024319 W JP 2019024319W WO 2020031516 A1 WO2020031516 A1 WO 2020031516A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
iron
carbide
porous material
adsorbent
Prior art date
Application number
PCT/JP2019/024319
Other languages
French (fr)
Japanese (ja)
Inventor
昭太 袋
響 倉澤
久保田 洋
Original Assignee
株式会社フジタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジタ filed Critical 株式会社フジタ
Priority to JP2020536366A priority Critical patent/JP7177840B2/en
Publication of WO2020031516A1 publication Critical patent/WO2020031516A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for producing an adsorbent.
  • the present invention relates to a method for producing an adsorbent that adsorbs phosphorus and arsenic.
  • the carbide is very stable in the environment (underground) and hardly decomposed.
  • carbon dioxide can be converted to carbon and sequestered and stored underground.
  • burying biomass carbide in the ground leads to a reduction in the amount of carbon dioxide in the atmosphere.
  • the carbide has an effect of improving the soil quality of the soil.
  • simply using the carbides only for improving the soil quality of the soil is not worth the production costs.
  • Patent Literature 1 describes a phosphorus recovery material using a carbide supporting calcium. By adsorbing phosphorus using such a phosphorus recovery material, water pollution due to discharge of phosphorus into natural waters can be suppressed. Further, when the phosphorus-collecting material having adsorbed phosphorus is buried in farmland, the phosphorus adsorbed on the phosphorus-collecting material is dissolved by the organic acid released from the root of the crop. That is, since this phosphorus functions as a fertilizer for agricultural products, it is possible to improve the yield of agricultural land in which the phosphorus recovery material is buried, or to grow high-quality agricultural products.
  • Patent Document 1 it is necessary to use a material containing a large amount of silicon, such as rice husk or diatomaceous earth.
  • a material containing a large amount of silicon is used, the production amount of the phosphorus recovery material is limited.
  • One embodiment of the present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing an adsorbent that can manufacture an adsorbent using various materials.
  • the method for producing an adsorbent according to one embodiment of the present invention includes the steps of carbonizing an organic substance to form a carbide, impregnating a solution containing iron into pores of the carbide, and impregnating the solution containing iron. And drying the carbide.
  • the solution may contain iron ions.
  • the solution may be a colloid containing particles containing iron hydroxide.
  • the solution may contain heme iron.
  • the alkali solution may be impregnated into the holes of the dried carbide to generate iron hydroxide particles, and the alkali solution may be discharged out of the holes of the carbide to dry the carbide.
  • the method for producing an adsorbent according to one embodiment of the present invention includes the steps of: forming a carbide by carbonizing an organic substance; Impregnated with the alkaline solution into the pores of the carbide impregnated with the solution to generate iron hydroxide particles, discharge the anion and the alkaline solution out of the pores, and dry the carbide. .
  • the iron hydroxide particles may be reduced.
  • the carbide impregnated with the solution containing iron may be dried, an iron compound may be attached to the carbide, and iron contained in the iron compound may be reduced.
  • the pressure may be reduced while the carbide is immersed in the solution.
  • the reduction may be performed using a gas containing hydrogen, carbon monoxide, or hydrocarbon.
  • the reduction may be performed at a temperature of 500 ° C. or higher using a gas containing carbon monoxide.
  • the reduction may be performed at a temperature of 100 ° C. or higher using a gas containing hydrogen.
  • FIG. 1 It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention. It is sectional drawing which shows the hole shape of the porous material used for the adsorbent which concerns on one Embodiment of this invention. It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention. FIG.
  • FIG. 3 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention. It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention.
  • FIG. 3 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention.
  • 1 is a flowchart illustrating a method for producing a solution containing iron according to an embodiment of the present invention. It is a figure explaining the method of reducing the pressure of the porous material immersed in the solution in the manufacturing method of the adsorbent concerning one embodiment of the present invention.
  • the porous material used for the adsorbent a carbonized material of wood is exemplified, but the porous material is not limited to this configuration.
  • the carbide may be one obtained by carbonizing an organic substance other than wood.
  • the porous material may be a porous member other than carbide.
  • adsorbent 10 according to the first embodiment and a method for manufacturing the adsorbent 10 will be described with reference to FIGS.
  • a carbide obtained by carbonizing an organic substance is used as the porous material 100 used for the adsorbent 10 (see FIG. 5).
  • a solution containing iron is used as a method for introducing metal particles into pores of the carbide. The following describes a configuration in which a method of dipping a carbide into the pores is used, and the iron compound attached to the pores of the carbide is reduced so that zero-valent iron particles are arranged in the pores of the carbide.
  • FIG. 1 is a flowchart showing a method for manufacturing an adsorbent according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a pore shape of a porous material used for an adsorbent according to one embodiment of the present invention.
  • 3 to 5 are diagrams illustrating a method for manufacturing an adsorbent according to one embodiment of the present invention.
  • the organic matter is carbonized in step S101.
  • wood is used as the organic matter.
  • Organic matter is carbonized by heat treatment in an atmosphere having an oxygen ratio lower than that in the air.
  • a carbonization furnace that supplies heat required for carbonization from the outside is called an external heating type
  • a furnace that secures heat from materials is called an internal combustion type.
  • the external heat type cuts off oxygen and carbonizes
  • the internal combustion type supplies oxygen for combustion necessary to secure the minimum amount of heat required for carbonization. That is, basically, the process of heating at a high temperature under reducing conditions is called carbonization.
  • compositional decomposition in the organic substance starts during the temperature rise (for example, about 280 ° C.), and oxygen and hydrogen in the organic substance are converted into gases such as carbon dioxide, carbon monoxide, hydrogen, and hydrocarbons. And evolves into amorphous carbon with a high carbon content.
  • a carbide formed by carbonization of an organic material is an example of the porous material 100. In this case, the porous material 100 has conductivity.
  • the porous material 100 has a macropore 200, a mesopore 210, and a micropore 220.
  • the macro holes 200 are holes connected to the surface of the porous material 100. Inside the porous material 100, the macro holes 200 are subdivided to form mesopores 210, and the mesopores 210 are subdivided to form micropores 220.
  • the size of the macropore 200 is approximately 50 nm to 40 ⁇ m.
  • the size of the mesopores 210 is approximately 2 nm to 50 nm.
  • the size of the micropores 220 is approximately 0.5 nm to 2 nm or less.
  • a solution 120 containing iron or an iron compound is prepared in step S103, separately from the carbonization of the organic substance in step S101.
  • an aqueous solution containing iron is used as the solution 120.
  • an aqueous ferrous chloride solution (FeCl 2 ) an aqueous ferric chloride solution (FeCl 3 ), and an aqueous ferrous nitrate solution (Fe (NO 3 )) in which inorganic iron or an inorganic iron compound is dissolved.
  • a solution in which heme iron bound to a protein as an organic iron compound is dissolved can be used as the solution 120. Waste such as animal blood containing heme iron may be used. When these solutions are not particularly distinguished, they may be simply referred to as iron solutions.
  • the solution 120 is not limited to the above-mentioned iron solution, and may be a solution containing iron other than the above.
  • the solvent of the solution is not limited to water, but may be an organic solvent such as methanol, ethanol, phenol, benzene, and hexane.
  • step S105 the carbide formed in step S101 is immersed in the solution 120 formed in step S103.
  • the state at this time is shown in FIG.
  • the solution 120 when the solution 120 is supplied to the porous material 100, the solution 120 enters the pores (the macropores 200, the mesopores 210, and the micropores 220 (see FIG. 2)) of the porous material 100. I do (penetrate).
  • the iron ions 110 in the solution 120 also enter the pores of the porous material 100. That is, immersing the porous material 100 in the solution 120 causes the iron ions 110 to permeate into the pores of the porous material 100.
  • the mesopores 210 and the micropores 220 are much smaller in size than the macropores 200, and their ends are dead ends inside the porous material 100. For this reason, when the solution 120 permeates into the pores of the porous material 100, for example, bubbles 130 may be generated at the tips of the micropores 220. In the example of FIG. 3, a state in which bubbles 130 are generated only at the tip of the micropore 220 is illustrated. However, the bubbles 130 may extend to the mesopores 210 or may extend to the macropores 200. Since the solution 120 cannot penetrate into the region where the bubbles 130 exist, the iron ions 110 cannot be supplied to this region.
  • step S107 of FIG. 1 while the porous material 100 is immersed in the solution 120, the pressure in the atmosphere in which these are arranged is reduced.
  • the state at this time is shown in FIG.
  • FIG. 4 when the atmosphere in which the solutions 120 are supplied is reduced in a state where the solutions 120 are supplied to the porous material 100, bubbles 130 existing at the tips of the micropores 220 as shown in FIG. Spread out of the hole. This process may be called degassing.
  • the solution 120 can enter the position where the bubbles 130 existed in FIG.
  • the micropores 220 can be supplied with iron ions 110.
  • This step S107 and the next step S109 may be omitted.
  • step S109 the atmosphere decompressed in step S107 is returned to the atmospheric pressure, the porous material 100 is taken out of the solution 120, and the porous material 100 impregnated with the solution 120 is dried in step S111.
  • the liquid contained in the solution 120 is removed by this drying. This drying is performed while heating the porous material 100.
  • the humidity of the environment in which the porous material 100 is arranged may be adjusted. This drying may be performed simultaneously with the heat treatment of the reduction process in the next step.
  • FIG. 5 shows a state where the porous material 100 is dried after being immersed in the solution 120.
  • the iron ions 110 contained in the solution 120 are precipitated, and the iron compound 111 is formed.
  • the iron compound 111 adheres in the pores of the porous material 100 and on the surface thereof.
  • the iron compound 111 adheres to the inner wall of at least one of the macropore 200, the mesopore 210, and the micropore 220.
  • the iron compound 111 is attached to the inner walls of all these holes.
  • steps S105 to S109 since the solution 120 can be supplied also to the mesopores 210 and the micropores 220, the iron compound 111 can be attached to the inner walls of these pores in step S111.
  • step S113 in FIG. 1 a reduction treatment of the iron compound 111 attached to the inside of the pores of the porous material 100 and to the surface thereof is performed.
  • the iron compound 111 is reduced while being attached to the inner wall of at least one of the macropores 200, the mesopores 210, and the micropores 220.
  • the reduction treatment is performed by a heat treatment in a reducing gas atmosphere.
  • the divalent or trivalent iron compound 111 is reduced to zero-valent iron.
  • the adsorbent 10 according to the present embodiment is manufactured.
  • the zero-valent iron contained in the adsorbent 10 adsorbs phosphorus, arsenic, and the like.
  • step S101 living trees (including thinned wood, conifers, bamboos, and other thinned woods, and waste woods), sawmills or wood processing plants (sawdust, bark chips, chip chips, and trimmings) can be used. And woody wastes of plant shells, building demolition materials or furniture materials.
  • the carbide generated in step S101 is, for example, charcoal or bamboo charcoal.
  • Charcoal may include white charcoal, black charcoal, ogre charcoal, coconut shell charcoal, fir shell charcoal, and powdered charcoal, in addition to bamboo charcoal.
  • the carbonization temperature of the organic substance in step S101 is 400 ° C to 1200 ° C, 500 ° C to 1100 ° C, 600 ° C to 1000 ° C, or 700 ° C to 900 ° C.
  • the organic substance carbonization atmosphere is an inert gas atmosphere such as a nitrogen gas or an argon gas, an oxygen-free atmosphere, a reducing atmosphere, or a reduced-pressure atmosphere.
  • a low vacuum state of ⁇ 101200 Pa or more and ⁇ 1300 Pa or less, a medium vacuum state of ⁇ 101299.9 Pa or more and ⁇ 101200 Pa or less, and a pressure of ⁇ 101299.99999 Pa or more are usually obtained at a gauge pressure of zero atmospheric pressure. It can be performed in a high vacuum state of -101299.9 Pa or an ultra-high vacuum state of -101299.9999 Pa or less.
  • the carbonization time of the organic material is 10 minutes or more and 10 days or less, 10 minutes or more and 5 hours or less.
  • the oxygen concentration can be performed at 0.01% or more and 3% or less, or 0.1% or more and 1% or less.
  • Organic matter is carbonized by internal combustion or external heating, batch-type open and closed charcoal kilns, continuous rotary kilns and oscillating carbonization furnaces, screw furnaces, heating chambers, and heat-resistant containers (crucibles) with lids. ) Can be performed.
  • the method of obtaining the porous material 100 by carbonizing the organic material in step S101 has been described as an example, but a commercially available carbide may be used as the porous material 100.
  • the mass percent concentration of iron contained in the solution 120 used in step S103 is 0.1 wt% or more and 50 wt% or less, 1 wt% or more and 40 wt% or less, or 5 wt% or more and 15 wt% or less.
  • the time during which the porous material 100 is immersed in the solution 120 in step S103 is from 10 seconds to 24 hours, from 1 minute to 5 hours, or from 5 minutes to 1 hour.
  • the gauge pressure is usually -0.101 MPa or more and -0.02 MPa or less, -0.101 MPa or more and -0.04 MPa or less, or -0.101 MPa at a gauge pressure where the atmospheric pressure is zero. At least -0.08 MPa.
  • the reduced pressure immersion time may be shorter than usual, and may be appropriately selected from 1 second to 1 hour, 10 seconds to 10 minutes, or 30 seconds to 5 minutes after reaching the predetermined gauge pressure. Good.
  • an organic solvent such as water, methanol, ethanol, phenol, benzene, or hexane is used.
  • the method of preparing the solution 120 in step S103 has been described as an example, but a commercially available solution may be used as the solution 120.
  • a dispersant that promotes dispersion of the iron ions 110 may be added to the solution 120.
  • a surfactant can be used.
  • anionic (anionic) surfactants, cationic (cationic) surfactants, amphoteric (zwitterionic) surfactants, nonionic (nonionic) surfactants, and polymer surfactants as surfactants Can be.
  • anionic surfactant sodium fatty acid, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, alkyl ether sulfate, alkylethanol triethanolamine, and alkylbenzene sulfonate can be used.
  • Alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium chloride, alkyl pyridium chloride and alkyl benzyl dimethyl ammonium salt can be used as the cationic surfactant.
  • amphoteric surfactant alkyldimethylamine oxide and alkylcarboxybetaine can be used.
  • nonionic surfactant polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, octylphenol ethoxylate, and alkyl monoglyceryl ether can be used.
  • polyacrylate polystyrene sulfonate
  • polyvinyl alcohol polyethyleneimine
  • concentration of the dispersant is from 0.01% to 20%, or from 0.01% to 1%.
  • carbide has hydrophobicity (non-hydrophilicity) unless carbonized at a high temperature, water hardly enters the inside. Therefore, by adding a surfactant to the solution 120, the solution 120 can be easily permeated into the porous material 100.
  • the above-mentioned surfactant may be supplied to the porous material 100 before the porous material 100 is immersed in the solution 120.
  • the supply of the surfactant may be performed by applying the surfactant to the upper surface of the porous material 100, or may be performed by immersing the porous material 100 in a solution containing the surfactant.
  • deaeration may be performed in a state where the surfactant is supplied to the porous material 100.
  • the porous material 100 does not have to be immersed in the solution 120.
  • the solution 120 may be permeated into the pores of the porous material 100.
  • vibration may be applied at the time of degassing to more efficiently diffuse the bubbles 130 out of the holes.
  • This vibration may be an ultrasonic vibration.
  • the porous material 100 may be heated at the time of degassing. Further, at the time of degassing, the porous material 100 may be tilted or rotated in the solution 120.
  • the pressure at the time of deaeration is usually -0.101 MPa to -0.03 Mpa at a gauge pressure with the atmospheric pressure set to zero, and the deaeration time is 10 seconds to 1 hour, or 30 seconds to 10 minutes. .
  • the solution 120 containing the iron ions 110 may not easily permeate into the pores of the porous material 100 because the carbide is hydrophobic. In such a case, most of the porous material 100 floats on the liquid surface due to air existing in the holes (the macro holes 200, the meso holes 210, and the micro holes 220) of the porous material 100. Even in such a state, by reducing the pressure, the air present in the holes can be drawn out of the porous material 100 and discharged out of the solution 120. Thereby, the solution 120 containing the iron ions 110 can be filled in the region where the bubbles 130 existed in the pores of the porous material 100.
  • the porous material 100 When the pressure is reduced as described above, the bubbles 130 in the porous material 100 increase, the buoyancy of the porous material 100 increases, and the porous material 100 may float on the liquid surface.
  • a mesh-shaped floating prevention plate smaller than the porous material 100 may be provided in the container containing the solution 120. If the porous material 100 floats above the liquid surface, the efficiency of replacement between the bubbles 130 and the solution 120 on the liquid surface deteriorates, and when returning to the atmospheric pressure, air instead of the solution 120 is used instead of the porous material 100. Can get inside. However, such a phenomenon can be suppressed by installing the floating prevention plate as described above.
  • the above steps S105 to S111 may be repeated a plurality of times. Further, the steps S107 and S109 may be repeatedly performed a plurality of times. Alternatively, the drying in step S111 may be performed while the pressure is reduced without passing through the step of returning to the atmospheric pressure in step S109. In this case, the pressure may be returned to the atmospheric pressure after the drying, or the reduction in step S113 may be performed while the pressure is reduced. Further, the above drying and reduction may be performed in the same step. By repeating the above steps a plurality of times, the amount of the iron compound 111 attached to the porous material 100 can be increased.
  • the reduction temperature of the iron compound 111 in step S113 may be at least 500 ° C. or higher.
  • the range of the reduction temperature is, for example, 500 ° C to 1200 ° C, 500 ° C to 1000 ° C, 500 ° C to 900 ° C, or 700 ° C to 900 ° C.
  • the reducing gas used for the reduction treatment of the iron compound 111 is a carbon monoxide gas, a hydrogen gas, a hydrogen sulfide gas, a sulfur dioxide gas or a hydrocarbon gas.
  • a reducing gas may be mixed such as a mixture of carbon monoxide and hydrogen.
  • many reducing gases are difficult to handle from the viewpoint of explosiveness and flammability, they may be diluted with an inert gas.
  • the reduction time is 1 minute or more and 10 hours or less, 10 minutes or more and 2 hours or less.
  • the reduction may be either a batch type or a continuous type, and a tube furnace or a box furnace may be appropriately used as long as the structure allows heating and introduction of a reducing gas (may be mixed with an inert gas). it can.
  • a carbon monoxide gas is used as the reducing gas, the reduction temperature may be at least 500 ° C. or higher.
  • the range of the reduction temperature can be, for example, 500 ° C to 1200 ° C, 500 ° C to 1000 ° C, 500 ° C to 900 ° C, or 700 ° C to 900 ° C.
  • the reduction temperature may be at least 100 ° C. or higher.
  • the range of the reduction temperature can be, for example, 100 ° C to 1200 ° C, 100 ° C to 900 ° C, or 700 ° C to 900 ° C.
  • the dried organic material before carbonization is immersed in a solution in which the iron compound is dissolved, dried, and then carbonized. Since the macro hole 200 is a hole caused by a tree tracheid hole, it is considered that reduced zero-valent iron crystals are deposited on the inner wall of the macro hole 200.
  • the iron compound can be immersed into the organic material by diffusion and infiltration. There is a possibility that zero-valent iron crystals are not sufficiently precipitated on the surface of the pores.
  • the solution 120 containing iron is impregnated into the pores of the porous material 100 and dried.
  • the iron compound 111 can be attached to the inner walls of these holes, and after reduction, zero-valent iron crystals can be attached to the inner walls of these holes.
  • the reduction is performed by a heat treatment different from carbonization
  • conditions suitable for the reduction can be appropriately selected.
  • the carbonization and the reduction treatment can be performed by different apparatuses.
  • the carbonization temperature and the reduction temperature can be treated at different temperatures and times.
  • the carbonization and the reduction treatment can be performed in different atmospheres.
  • a reduction treatment of iron in an inert gas atmosphere or an oxygen-free atmosphere a counter ion of the metal compound of the metal compound in the carbide reacts with the carbon constituting the carbide by heating, and carbon monoxide or hydrogen is reduced. Generated.
  • sulfur dioxide gas generated by heating reacts with carbon in the carbide to generate carbon monoxide and sulfur dioxide.
  • oxygen in the carbide reacts with carbon constituting the carbide to generate carbon monoxide.
  • hydrogen contained in the carbide is thermally decomposed to produce methane and hydrogen. The carbon monoxide, methane, or hydrogen is consumed by the reduction of iron. Therefore, it is considered that the content of carbon and hydrogen in the carbide decreases, and the yield of the carbide used as the adsorbent decreases.
  • the metal forms a counter ion of the metal compound in the carbide or a carbide with oxygen and hydrogen. Reaction with carbon is suppressed. Therefore, it is considered that the reduction of the carbon content of the carbide used as the adsorbent is suppressed.
  • porous material 100 a configuration in which a carbide obtained by carbonizing an organic substance is used as the porous material 100 is illustrated, but a material other than the carbide may be used as the porous material 100. Further, the configuration in which the porous material 100 is obtained by carbonizing wood as an organic substance has been illustrated, but an organic substance other than wood may be carbonized.
  • the iron oxide and / or iron sulfide may be present on the surface of the carbide or inside the pores (at least one of macropores 200, mesopores 210, and micropores 220).
  • the porous material 100 is a carbide
  • the carbide since the carbide has high conductivity, electron exchange is rapidly performed between the carbide and the zero-valent iron crystal particles attached to the pores. Therefore, when a carbide containing crystal particles of zero-valent iron is put into water, zero-valent metal iron is quickly ionized on the surface of the porous body, and a hydroxide such as iron oxyhydroxide (FeOOH) is generated. It reacts with phosphate ions present in water to form iron phosphate and can be adsorbed and fixed on carbides. As described above, by using a conductive material as the porous material 100, phosphorus can be efficiently adsorbed.
  • a method for manufacturing the adsorbent 10A according to the second embodiment will be described with reference to FIG.
  • the method for manufacturing the adsorbent 10A is similar to the method for manufacturing the adsorbent 10 according to the first embodiment shown in FIG. 1, except that the solution 120 is immersed and dried, and the porous material 100A to which the iron compound 111A is attached. Is different from the method for producing the adsorbent 10 of the first embodiment in that the is further immersed in an alkaline solution.
  • FIG. 6 description of portions common to FIG. 1 will be omitted, and different points from FIG.
  • the configuration of the adsorbent 10A according to the present embodiment is the same as the configuration of the adsorbent 10 according to the first embodiment, and is not illustrated here.
  • the same components as those of the adsorbent 10 are denoted by the same reference numerals as those used in the adsorbent 10, and the letters “A” are appended thereto, and the description thereof is omitted. .
  • the porous material 100A is immersed in an alkaline solution in step S115A.
  • the iron compound 111A has adhered to the inner wall of the hole of the porous material 100A as in FIG. Therefore, when the porous material 100A is immersed in the alkaline solution, and the alkaline solution permeates into the pores of the porous material 100A and comes into contact with the iron compound 111A, at least a part of the iron compound 111A is hydroxylated. Thus, iron hydroxide is generated on the inner wall of the hole of the porous material 100A.
  • the porous material 100A is washed with water (Step S120A).
  • the alkali metal ions generated in the pores of the porous material 100A, the anions bonded to iron in the iron compound, and the alkali solution remaining in the pores can be removed.
  • the iron hydroxide present on the inner wall of the pores of the porous material 100A has a low solubility, and therefore is not easily discharged to the outside of the porous material 100A even after the above-described water washing. Further, if the inside of the porous material 100A is biased toward alkalinity, for example, the adsorptive power of phosphorus or the like is weakened.
  • the alkali metal ions, anions, and alkali in the porous material 100A are washed by water. By removing the solution, it is possible to suppress the inside of the porous material 100A from being biased toward alkaline. Note that the water washing in step S120A may be omitted. After the drying in step S121A, washing may be performed.
  • the iron compound 111A existing in the pores can be hydroxylated by performing degassing in the same manner as in Step S107A.
  • a porous material 100A having iron hydroxide adhered to the inner wall can be obtained (Steps S117A, S119A, S120A, S121A). After the porous material 100A dried in step S121A is washed with water, the reduction treatment in step S113A is performed.
  • a solution such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) can be used.
  • steps S115A to S121A may be repeated a plurality of times. Further, the steps S117A and S119A may be repeated a plurality of times. Steps S117A and S119A may be omitted.
  • the reduction treatment can be performed in a state where the iron compound 111A is hydroxylated. That is, the gas generated in the reduction process is harmless steam.
  • FIG. 7 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention.
  • FIG. 7 shows the inner wall 101A of the holes (the macro holes 200A, the meso holes 210A, and the micro holes 220A) of the porous material 100A, and illustrates a phenomenon in a region surrounded by the inner wall 101A.
  • an anion (chloride ion 153A) paired with iron ion 151A exists in iron chloride solution 150A in addition to iron ion 151A.
  • solid iron chloride 155A precipitates on the inner wall 101A of the hole of the porous material 100A.
  • Object ions 143A are generated. Since the iron hydroxide 141A has low solubility in water, it precipitates as a solid on the inner wall 101A and is retained in the porous material 100A. On the other hand, since sodium chloride has a high solubility in water, it exists as chloride ions 143A and sodium ions 145A, and can be removed from the pores of the porous material 100A by, for example, washing with water in step S120A ((D in FIG. 7). )). Further, by washing with water, excess sodium hydroxide solution 140A not used for the reaction in the pores can also be removed from porous material 100A (FIG. 7D). That is, of the iron compound (iron chloride) in the iron chloride solution 150A, the substance (chlorine) bonded to iron is anionized and discharged out of the porous material 100A together with the sodium hydroxide solution 140A.
  • iron hydroxide solid
  • anions and alkali metal ions Liquid
  • excess alkali solution liquid
  • iron hydroxide solid
  • anions and alkali metal ions Liquid
  • excess alkali solution liquid
  • FIG. 8 is a flowchart showing a method for manufacturing an adsorbent according to one embodiment of the present invention.
  • FIG. 9 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention.
  • FIG. 8 The process shown in FIG. 8 is a process in which steps S107A to S111A are omitted from FIG. That is, after immersing the porous material 100A in the solution 120A, it is immersed in the alkaline solution without drying.
  • FIG. 6 shows a production method in which the iron compound 111A is chemically reacted with the iron compound 111A in a state where the iron compound 111A is precipitated on the inner wall 101A of the hole of the porous material 100A to produce iron hydroxide 141A.
  • the iron ion 110A in the solution 120A and the hydroxide ion 147A in the alkaline solution are chemically reacted to precipitate the iron hydroxide 141A on the inner wall 101A.
  • FIG. 9 is similar to FIG. 7, the description of the same features in FIG. 9 as those in FIG. 7 will be omitted.
  • iron chloride solution 150A is used as solution 120A and sodium hydroxide solution 140A is used as the alkaline solution will be described.
  • iron ions 151A and chloride ions 153A are contained in the iron chloride solution 150A.
  • the sodium hydroxide solution 140A enters the pores of the porous material 100A by diffusion and infiltration (FIG. 9B).
  • sodium ion 145A and hydroxide ion 147A are present in sodium hydroxide solution 140A.
  • FIG. 9C illustrates a configuration in which the pores of the porous material 100A are replaced with the sodium chloride solution 140A from the iron chloride solution 150A, these solutions may be mixed.
  • Iron ions 151A and hydroxide ions 147A undergo a chemical reaction in the pores of the porous material 100A to generate iron hydroxide 141A, which precipitates on the inner wall 101A of the pores of the porous material 100A (FIG. D)).
  • chloride ions 153A, sodium ions 145A, and sodium hydroxide solution 140A other than iron hydroxide 141A can be removed from the holes (FIG. 9D).
  • the manufacturing method in which the porous material 100A is immersed in the alkaline solution is illustrated.
  • the alkaline solution enters the pores of the porous material 100A by diffusion and infiltration
  • the porous material immersed in the solution 120A is A method of supplying an alkaline solution to the surface of the material 100A may be employed.
  • an alkaline solution may be sprayed on the surface of the porous material 100A with a spray or the like.
  • ⁇ Third embodiment> [Production method of adsorbent 10B]
  • a method for manufacturing the adsorbent 10B according to the third embodiment will be described with reference to FIG.
  • the method for manufacturing the adsorbent 10B is similar to the method for manufacturing the adsorbent 10 according to the first embodiment shown in FIG. 1, but the solution 120B that permeates the pores of the porous material 100B contains iron.
  • the method is different from the method for producing the adsorbent 10 of the first embodiment in that it is colloidal.
  • FIG. 10 is a flowchart showing a method for producing a solution containing iron according to an embodiment of the present invention.
  • the solution 120B used in the present embodiment is prepared by steps S131B to S135 as described in detail below.
  • the following steps S131B to S135B are steps corresponding to step S103 shown in FIG.
  • step S131B the iron solution described in step S101 of FIG. 1 is prepared. Subsequently, in step S133B, the alkali solution described in step S115A of FIG. 6 is added to this iron solution. When the alkaline solution is added to the iron solution, the iron solution becomes a colloid containing iron hydroxide particles.
  • the aqueous iron solution exemplified above an aqueous ferrous chloride solution, an aqueous ferric chloride solution, an aqueous ferrous nitrate solution, an aqueous ferric nitrate solution, an aqueous ferrous sulfate solution, or an aqueous ferrous sulfate solution
  • an alkaline solution a sodium hydroxide solution or a potassium hydroxide solution
  • the iron aqueous solution becomes a colloid containing iron hydroxide particles.
  • the solution in this state can be called a colloid solution.
  • a dispersant as exemplified in the first embodiment is added.
  • This colloid solution contains iron hydroxide particles having a size of 1 nm or more and 100 nm or less. Therefore, by impregnating the colloid solution into the mesopores 210B and the micropores 220B, the iron hydroxide particles can penetrate into these pores.
  • the iron hydroxide particles adhere to the inner walls of the pores of the porous material 100B.
  • unreacted iron ions, anions paired with iron ions of the iron solution, and alkali metal ions can be removed from the pores of the porous material 100B.
  • zero-valent iron attached to the inner wall of the pores of the porous material 100B can be obtained.
  • step S135B the step of adding a dispersant
  • zero-valent iron can be obtained by reducing the iron hydroxide particles.
  • an iron chloride solution is used as the solution 120B. Even when used, solid iron hydroxide is formed inside the pores of the porous material, and sodium chloride is removed outside the pores, suppressing the amount of acid gas generated during the reduction process. can do.
  • FIG. 11 is a diagram illustrating a method of reducing the pressure of a porous material immersed in a solution in the method for producing an adsorbent according to one embodiment of the present invention.
  • the decompression container 400 has a container part 401 and a lid part 403.
  • the container 401 has a shape capable of storing the solution 120.
  • the lid 403 is provided on the upper part of the container 401 so as to be detachable.
  • the cover 403 is provided with an exhaust port 405 and an air supply port 407.
  • the exhaust port 405 is connected to the first valve 410.
  • the first valve 410 is connected to a vacuum pump 430.
  • the air supply port 407 is connected to the second valve 420.
  • the second valve 420 is connected to a pipe 435 that supplies air or a desired gas from the outside into the decompression container 400.
  • a vacuum pressure gauge 440 is connected to the decompression container 400.
  • the vacuum pressure gauge 440 can measure the pressure inside the decompression container 400. Note that an aspirator may be used instead of the vacuum pump 430.
  • the solution 120 is supplied to the decompression container 400, and the porous material 100 is immersed in the solution 120.
  • the case 500 containing the porous material 100 therein is submerged in the solution 120.
  • the case 500 has a shape surrounding the internal space, and is submerged in the solution 120 with the porous material 100 stored in the internal space. That is, the case 500 can suppress the porous material 100 from rising and coming out of the liquid surface of the solution 120, and can lift the porous material 100 when removing the case 500 from the decompression container 400.
  • the case 500 is provided with an opening large enough to allow the solution 120 to pass therethrough and large enough to prevent the porous material 100 from passing therethrough.
  • the size of the opening is, for example, 0.1 mm or more and 50 mm or less.
  • a mesh basket made of metal such as stainless steel or resin such as hard plastic can be used.
  • the case 500 exemplifies a configuration in which the case 500 surrounds the upper, lower, left, and right sides of the porous material 100, the configuration is not limited to this.
  • the case 500 may have a shape in which the upper portion of the porous material 100 is covered and the lower portion is removed so as to suppress the porous material 100 from rising upward.
  • the case 500 has a shape provided above the porous member 100 and below the porous member 100 so that the porous member 100 can be lifted when the case 500 is taken out of the decompression container 400. Is also good.
  • the vacuum pump 430 By operating the vacuum pump 430 with the first valve 410 open and the second valve 420 closed, the pressure inside the decompression container 400 is reduced. Thereafter, by supplying air or a desired gas to the pipe 435 with the first valve 410 closed and the second valve 420 opened, the inside of the decompression container 400 can be returned to the atmospheric pressure.
  • the lid 403 is opened, and the case 500 is taken out together with the porous material 100.
  • the porous material 100 can be taken out while the excess solution 120 is dropped into the decompression container 400. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This method of manufacturing an adsorbent includes forming a carbide by carbonizing an organic substance, causing a solution comprising iron to seep into pores of the carbide, and drying the carbide into which the solution has seeped. The solution may comprise iron ion. Iron compounds adhered to inner walls of the pores of the carbide by drying the carbide may be reduced. An alkaline solution may be caused to seep into the holes of the dried carbide and iron hydroxide generated by the alkaline solution may be reduced. The solution may comprise iron ion, and may be a colloidal solution comprising particles comprising iron hydroxide.

Description

吸着材の製造方法Adsorbent manufacturing method
 本発明は吸着材の製造方法に関する。特に、本発明はリンおよびヒ素を吸着する吸着材の製造方法に関する。 The present invention relates to a method for producing an adsorbent. In particular, the present invention relates to a method for producing an adsorbent that adsorbs phosphorus and arsenic.
 大気中の二酸化炭素の量を削減するために、二酸化炭素を人為的に回収し地中に貯留する技術が知られている。例えば、樹木や農作物等のバイオマスを利用して大気中の二酸化炭素を吸収させ、当該二酸化炭素を有機炭素として固定することができる。しかし、これらのバイオマスは有機物であることから、そのまま地中に貯留しても、腐敗や分解が起き、大気中に二酸化炭素を再放出することになる。一方、バイオマスは、酸素を遮断した状態で加熱すると、酸素原子や水素原子を脱離し、炭素分と灰分からなる炭化物を生成することができる。この炭化物は炭素の塊であることから、酸素の存在下において、高温で加熱しないかぎり燃焼されない。つまり、炭化物は環境中(地中)では非常に安定であり、ほとんど分解されることはない。このように、炭化させたバイオマスを農地等に埋めることで、二酸化炭素を炭素に変換して地中に隔離貯留することができる。つまり、バイオマスの炭化物を地中に埋めることは、大気中の二酸化炭素量の削減に繋がる。また、炭化物は土壌の土質を改善する効果を有する。しかしながら、炭化物の製造にかかるコストを考慮すると、単に炭化物を土壌の土質改善のためだけに利用することは、その製造コストに見合わない。 技術 In order to reduce the amount of carbon dioxide in the atmosphere, there is known a technology for artificially capturing and storing carbon dioxide in the ground. For example, it is possible to absorb carbon dioxide in the atmosphere using biomass such as trees and crops and fix the carbon dioxide as organic carbon. However, since these biomass are organic substances, even if they are stored in the ground as they are, they will rot and decompose, and will release carbon dioxide into the atmosphere again. On the other hand, when biomass is heated in a state where oxygen is cut off, oxygen atoms and hydrogen atoms are desorbed, and carbides composed of carbon and ash can be generated. Since this carbide is a lump of carbon, it is not burned in the presence of oxygen unless heated at a high temperature. That is, the carbide is very stable in the environment (underground) and hardly decomposed. By burying carbonized biomass in farmland or the like in this way, carbon dioxide can be converted to carbon and sequestered and stored underground. In other words, burying biomass carbide in the ground leads to a reduction in the amount of carbon dioxide in the atmosphere. Further, the carbide has an effect of improving the soil quality of the soil. However, in consideration of the cost of producing carbides, simply using the carbides only for improving the soil quality of the soil is not worth the production costs.
 他方、炭化物は多孔質であるため、表面積が非常に大きいことが知られている。この表面積の大きさを利用して、炭化物は多様な物質の吸着材として用いられている。例えば、特許文献1では、カルシウムを担持した炭化物を用いたリン回収材が記載されている。このようなリン回収材を用いてリンを吸着させることで、リンが自然水域に排出されることによる水質汚染を抑制することができる。さらに、リンを吸着したリン回収材を農地に埋めると、農作物が根から放出する有機酸により当該リン回収材に吸着したリンが溶解される。すなわち、このリンは農作物の肥料として機能するため、リン回収材が埋められた農地の収量を向上させる、又は良質な農作物を成長させることができる。 On the other hand, it is known that carbide has a very large surface area because it is porous. Utilizing this surface area, carbides are used as adsorbents for various substances. For example, Patent Literature 1 describes a phosphorus recovery material using a carbide supporting calcium. By adsorbing phosphorus using such a phosphorus recovery material, water pollution due to discharge of phosphorus into natural waters can be suppressed. Further, when the phosphorus-collecting material having adsorbed phosphorus is buried in farmland, the phosphorus adsorbed on the phosphorus-collecting material is dissolved by the organic acid released from the root of the crop. That is, since this phosphorus functions as a fertilizer for agricultural products, it is possible to improve the yield of agricultural land in which the phosphorus recovery material is buried, or to grow high-quality agricultural products.
 このように、単に土壌の土質改善のためだけではなく、例えば、ある有害物質を吸着させることで、環境汚染を抑制することができる炭化物、又は、その有害物質を他の用途に適用することができる炭化物の需要が増加してきている。 In this way, it is not merely to improve the soil quality of the soil, for example, by adsorbing a certain harmful substance, a carbide that can suppress environmental pollution, or applying the harmful substance to other uses. The demand for possible carbides is increasing.
特開2007-75706号公報JP 2007-75706 A
 しかしながら、特許文献1のリン回収材では、籾殻又は珪藻土等のようにケイ素を多く含む材料を用いる必要がある。ケイ素を多く含む材料を用いる場合、リン回収材の製造量に限界がある。また、リンなどの物質を吸着することができる許容量に限界がある。 However, in the phosphorus recovery material of Patent Document 1, it is necessary to use a material containing a large amount of silicon, such as rice husk or diatomaceous earth. When a material containing a large amount of silicon is used, the production amount of the phosphorus recovery material is limited. In addition, there is a limit to the amount that can adsorb substances such as phosphorus.
 本発明の一実施形態は、上記の課題に鑑みてなされたものであって、多様な材料を用いて吸着材を製造することができる吸着材の製造方法を提供することを課題とする。 One embodiment of the present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing an adsorbent that can manufacture an adsorbent using various materials.
 本発明の一実施形態にかかる吸着材の製造方法は、有機物を炭化して炭化物を形成し、前記炭化物の孔の中に鉄を含む溶液を染みこませ、前記鉄を含む溶液を染みこませた前記炭化物を乾燥させる。 The method for producing an adsorbent according to one embodiment of the present invention includes the steps of carbonizing an organic substance to form a carbide, impregnating a solution containing iron into pores of the carbide, and impregnating the solution containing iron. And drying the carbide.
 前記溶液は、鉄イオンを含んでもよい。 The solution may contain iron ions.
 前記溶液は、水酸化鉄を含む粒子を含むコロイド状であってもよい。 The solution may be a colloid containing particles containing iron hydroxide.
 前記溶液は、ヘム鉄を含んでもよい。 The solution may contain heme iron.
 乾燥した前記炭化物の孔の中にアルカリ溶液を染みこませて水酸化鉄粒子を生成し、前記アルカリ溶液を前記炭化物の孔の外へ排出し、前記炭化物を乾燥してもよい。 (4) The alkali solution may be impregnated into the holes of the dried carbide to generate iron hydroxide particles, and the alkali solution may be discharged out of the holes of the carbide to dry the carbide.
 本発明の一実施形態にかかる吸着材の製造方法は、有機物を炭化して炭化物を形成し、前記炭化物の孔の中に、鉄イオン及び前記鉄イオンと対をなす陰イオンを含む溶液を染みこませ、前記溶液を染み込ませた前記炭化物の孔の中にアルカリ溶液を染み込ませて水酸化鉄粒子を生成し、前記陰イオン及び前記アルカリ溶液を孔の外へ排出し、前記炭化物を乾燥する。 The method for producing an adsorbent according to one embodiment of the present invention includes the steps of: forming a carbide by carbonizing an organic substance; Impregnated with the alkaline solution into the pores of the carbide impregnated with the solution to generate iron hydroxide particles, discharge the anion and the alkaline solution out of the pores, and dry the carbide. .
 前記水酸化鉄粒子を還元してもよい。 The iron hydroxide particles may be reduced.
 前記鉄を含む溶液を染みこませた前記炭化物を乾燥させ、鉄化合物を前記炭化物に付着させ、前記鉄化合物に含まれる鉄を還元してもよい。 炭化 The carbide impregnated with the solution containing iron may be dried, an iron compound may be attached to the carbide, and iron contained in the iron compound may be reduced.
 前記炭化物を前記溶液に浸漬させた状態で減圧してもよい。 減 圧 The pressure may be reduced while the carbide is immersed in the solution.
 前記還元は、水素、一酸化炭素、又は炭化水素を含むガスを用いて行われてもよい。 The reduction may be performed using a gas containing hydrogen, carbon monoxide, or hydrocarbon.
 前記還元は、一酸化炭素を含むガスを用いて500℃以上の温度で行われてもよい。 還 元 The reduction may be performed at a temperature of 500 ° C. or higher using a gas containing carbon monoxide.
 前記還元は、水素を含むガスを用いて100℃以上の温度で行われてもよい。 還 元 The reduction may be performed at a temperature of 100 ° C. or higher using a gas containing hydrogen.
 本発明の一実施形態によれば、多様な材料を用いて吸着材を製造することができる吸着材の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a method of manufacturing an adsorbent that can manufacture an adsorbent using various materials.
本発明の一実施形態に係る吸着材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る吸着材に用いられる多孔質材の孔形状を示す断面図である。It is sectional drawing which shows the hole shape of the porous material used for the adsorbent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る吸着材の製造方法を示す図である。It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. 本発明の一実施形態に係る吸着材の製造方法を示す図である。It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. 本発明の一実施形態に係る吸着材の製造方法を示す図である。It is a figure showing the manufacturing method of the adsorbent concerning one embodiment of the present invention. 本発明の一実施形態に係る吸着材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る吸着材において、水酸化鉄を生成させる具体的な方法を示す概念図である。FIG. 3 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention. 本発明の一実施形態に係る吸着材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the adsorbent which concerns on one Embodiment of this invention. 本発明の一実施形態に係る吸着材において、水酸化鉄を生成させる具体的な方法を示す概念図である。FIG. 3 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention. 本発明の一実施形態に係る鉄を含む溶液の製造方法を示すフローチャートである。1 is a flowchart illustrating a method for producing a solution containing iron according to an embodiment of the present invention. 本発明の一実施形態に係る吸着材の製造方法において、溶液に浸漬した多孔質材を減圧する方法を説明する図である。It is a figure explaining the method of reducing the pressure of the porous material immersed in the solution in the manufacturing method of the adsorbent concerning one embodiment of the present invention.
 以下、図面を参照して本発明の一実施形態における吸着材及び吸着材の製造方法について説明する。但し、本発明の一実施形態における吸着材及び吸着材の製造方法は多くの異なる態様で実施することが可能であり、以下に示す例の記載内容に限定して解釈されない。なお、本実施の形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号又は同一の符号の後にアルファベットを付し、その繰り返しの説明は省略する。 Hereinafter, an adsorbent and a method for producing the adsorbent according to an embodiment of the present invention will be described with reference to the drawings. However, the adsorbent and the method for producing the adsorbent according to one embodiment of the present invention can be implemented in many different modes, and are not to be construed as being limited to the description of the following examples. Note that, in the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals or the same reference numerals, and the description thereof is not repeated.
 以下の実施形態では、吸着材に用いられる多孔質材として、木材が炭化した炭化物について例示するが、この構成に限定されない。例えば、炭化物は木材以外の有機物が炭化したものであってもよい。また、多孔質材は、炭化物以外の多孔質な部材であってもよい。また、特に技術的な矛盾が生じない限り、異なる実施形態間の技術を組み合わせることができる。 で は In the following embodiment, as the porous material used for the adsorbent, a carbonized material of wood is exemplified, but the porous material is not limited to this configuration. For example, the carbide may be one obtained by carbonizing an organic substance other than wood. Further, the porous material may be a porous member other than carbide. In addition, as long as there is no particular technical contradiction, techniques between different embodiments can be combined.
〈第1実施形態〉
[吸着材10の製造方法]
 図1~図5を用いて、第1実施形態に係る吸着材10及び吸着材10の製造方法について説明する。本実施形態において、吸着材10(図5参照)に用いられる多孔質材100として、有機物が炭化された炭化物が用いられ、炭化物の孔の中に金属粒子を導入する方法として、鉄を含む溶液に炭化物を浸漬する方法が用いられ、炭化物の孔の中に付着した鉄化合物が還元されることで、ゼロ価の鉄粒子が炭化物の孔の中に配置される構成について説明する。
<First embodiment>
[Method of Manufacturing Adsorbent 10]
The adsorbent 10 according to the first embodiment and a method for manufacturing the adsorbent 10 will be described with reference to FIGS. In the present embodiment, as the porous material 100 used for the adsorbent 10 (see FIG. 5), a carbide obtained by carbonizing an organic substance is used. As a method for introducing metal particles into pores of the carbide, a solution containing iron is used. The following describes a configuration in which a method of dipping a carbide into the pores is used, and the iron compound attached to the pores of the carbide is reduced so that zero-valent iron particles are arranged in the pores of the carbide.
 図1は、本発明の一実施形態に係る吸着材の製造方法を示すフローチャートである。図2は、本発明の一実施形態に係る吸着材に用いられる多孔質材の孔形状を示す断面図である。図3~図5は、それぞれ本発明の一実施形態に係る吸着材の製造方法を示す図である。 FIG. 1 is a flowchart showing a method for manufacturing an adsorbent according to one embodiment of the present invention. FIG. 2 is a cross-sectional view showing a pore shape of a porous material used for an adsorbent according to one embodiment of the present invention. 3 to 5 are diagrams illustrating a method for manufacturing an adsorbent according to one embodiment of the present invention.
 図1に示すように、ステップS101で有機物が炭化される。本実施形態では、有機物として木材が用いられる。有機物の炭化は、大気雰囲気に比べて酸素比が小さい雰囲気での熱処理によって行われる。 有機 As shown in FIG. 1, the organic matter is carbonized in step S101. In the present embodiment, wood is used as the organic matter. Organic matter is carbonized by heat treatment in an atmosphere having an oxygen ratio lower than that in the air.
 炭化炉には主に二種類あり、炭化に必要な熱を外部から供給する炭化炉を外熱式と呼び、材料から熱を確保するものを内燃式と呼ぶ。外熱式は酸素を遮断して炭化し、内燃式は炭化に必要な最低限の熱量を確保するために必要な燃焼のための酸素を供給する。つまり、基本的には還元条件下、高温で加熱するプロセスを炭化と呼ぶ。有機物を還元条件下で加熱すると、昇温途中(例えば、約280℃)で有機物中の組成分解が始まり、有機物内の酸素、水素が、二酸化炭素、一酸化炭素、水素、炭化水素などのガスとして揮発し、炭素分の多い無定形炭素に変化していく。さらに高温で加熱し続けることで、有機物内の酸素、水素がさらに減少し、純度の高い固定炭素及び灰分から構成される炭化物を形成する。このような変化により、有機物は炭化物に変わる。有機物内の水分や構成成分が揮発性ガス等として脱離し、一定量の炭素が残存するため、有機物の炭化によって形成される炭化物には多数かつ大小様々な連続多孔が形成されることになる。炭化温度の上昇に伴い炭素化が進行して形成される炭化物は、耐熱性(耐火性)、吸着性、導電性の性質を有するようになる。有機物の炭化によって形成された炭化物は、多孔質材100の一例である。この場合、多孔質材100は導電性を有している。 There are mainly two types of carbonization furnaces. A carbonization furnace that supplies heat required for carbonization from the outside is called an external heating type, and a furnace that secures heat from materials is called an internal combustion type. The external heat type cuts off oxygen and carbonizes, while the internal combustion type supplies oxygen for combustion necessary to secure the minimum amount of heat required for carbonization. That is, basically, the process of heating at a high temperature under reducing conditions is called carbonization. When an organic substance is heated under reducing conditions, compositional decomposition in the organic substance starts during the temperature rise (for example, about 280 ° C.), and oxygen and hydrogen in the organic substance are converted into gases such as carbon dioxide, carbon monoxide, hydrogen, and hydrocarbons. And evolves into amorphous carbon with a high carbon content. By continuing to heat at a higher temperature, oxygen and hydrogen in the organic matter are further reduced, and a carbide composed of fixed carbon and ash with high purity is formed. Due to such a change, the organic matter is changed into carbide. Since water and constituents in the organic substance are eliminated as volatile gas and the like, and a certain amount of carbon remains, a large number and various small and large continuous pores are formed in the carbide formed by carbonization of the organic substance. The carbide formed by the progress of carbonization as the carbonization temperature increases has heat resistance (fire resistance), adsorptive properties, and conductive properties. A carbide formed by carbonization of an organic material is an example of the porous material 100. In this case, the porous material 100 has conductivity.
 ここで、図2を用いて、多孔質材100として炭化物が用いられた場合における、多孔質材100の孔形状について説明する。図2に示すように、多孔質材100は、マクロ孔200、メソ孔210、及びミクロ孔220を有する。マクロ孔200は、多孔質材100の表面に繋がる孔である。多孔質材100の内部において、マクロ孔200が細分化されてメソ孔210が形成されており、メソ孔210が細分化されてミクロ孔220が形成されている。マクロ孔200のサイズは、おおよそ50nm~40μmである。メソ孔210のサイズは、おおよそ2nm~50nmである。ミクロ孔220のサイズは、おおよそ0.5nm~2nm以下である。 Here, the pore shape of the porous material 100 when a carbide is used as the porous material 100 will be described with reference to FIG. As shown in FIG. 2, the porous material 100 has a macropore 200, a mesopore 210, and a micropore 220. The macro holes 200 are holes connected to the surface of the porous material 100. Inside the porous material 100, the macro holes 200 are subdivided to form mesopores 210, and the mesopores 210 are subdivided to form micropores 220. The size of the macropore 200 is approximately 50 nm to 40 μm. The size of the mesopores 210 is approximately 2 nm to 50 nm. The size of the micropores 220 is approximately 0.5 nm to 2 nm or less.
 図1に示すように、ステップS101の有機物の炭化とは別に、ステップS103で鉄又は鉄化合物を含む溶液120の準備が行われる。本実施形態では、溶液120として、鉄を含む水溶液が用いられる。具体的には、溶液120として、無機鉄又は無機鉄化合物が溶解された塩化第1鉄水溶液(FeCl)、塩化第2鉄水溶液(FeCl)、硝酸第1鉄水溶液(Fe(NO)、硝酸第2鉄水溶液(Fe(NO)、硫酸第1鉄水溶液(FeSO)、硫酸第2鉄水溶液(Fe(SO)、又はポリ硫酸第二鉄溶液([Fe(OH)(SO3-n/2、但し0<n≦2、m=f(n))が用いられる。又は、溶液120として、有機鉄化合物としてたんぱく質と結合したヘム鉄が溶解された溶液も使用できる。ヘム鉄が含まれる動物の血液などの廃棄物を利用してもよい。これらの溶液を特に区別しない場合、単に鉄溶液という場合がある。なお、溶液120は上記の鉄溶液に限定されず、上記以外の鉄を含む溶液であってもよい。また、溶液の溶媒は水だけでなく、メタノール、エタノール、フェノール、ベンゼン、ヘキサンなどの有機溶媒でも構わない。 As shown in FIG. 1, a solution 120 containing iron or an iron compound is prepared in step S103, separately from the carbonization of the organic substance in step S101. In the present embodiment, an aqueous solution containing iron is used as the solution 120. Specifically, as the solution 120, an aqueous ferrous chloride solution (FeCl 2 ), an aqueous ferric chloride solution (FeCl 3 ), and an aqueous ferrous nitrate solution (Fe (NO 3 )) in which inorganic iron or an inorganic iron compound is dissolved. 2 ), ferric nitrate aqueous solution (Fe (NO 3 ) 3 ), ferrous sulfate aqueous solution (FeSO 4 ), ferric sulfate aqueous solution (Fe (SO 4 ) 3 ), or ferric polysulfate solution ([ Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m , provided that 0 <n ≦ 2, m = f (n)). Alternatively, a solution in which heme iron bound to a protein as an organic iron compound is dissolved can be used as the solution 120. Waste such as animal blood containing heme iron may be used. When these solutions are not particularly distinguished, they may be simply referred to as iron solutions. The solution 120 is not limited to the above-mentioned iron solution, and may be a solution containing iron other than the above. The solvent of the solution is not limited to water, but may be an organic solvent such as methanol, ethanol, phenol, benzene, and hexane.
 ステップS105で、ステップS101で形成された炭化物を、ステップS103で形成された溶液120に浸漬する。このときの状態を図3に示す。図3に示すように、溶液120が多孔質材100に供給されると、溶液120が多孔質材100の孔(マクロ孔200、メソ孔210、及びミクロ孔220(図2参照))に侵入する(染みこむ)。これに伴い、溶液120中の鉄イオン110も多孔質材100の孔に侵入する。つまり、多孔質材100を溶液120に浸漬することで、鉄イオン110を多孔質材100の孔の中に染みこませる。 In step S105, the carbide formed in step S101 is immersed in the solution 120 formed in step S103. The state at this time is shown in FIG. As shown in FIG. 3, when the solution 120 is supplied to the porous material 100, the solution 120 enters the pores (the macropores 200, the mesopores 210, and the micropores 220 (see FIG. 2)) of the porous material 100. I do (penetrate). Along with this, the iron ions 110 in the solution 120 also enter the pores of the porous material 100. That is, immersing the porous material 100 in the solution 120 causes the iron ions 110 to permeate into the pores of the porous material 100.
 ここで、メソ孔210及びミクロ孔220は、マクロ孔200に比べてサイズが非常に小さく、その先端が多孔質材100の内部で行き止まりになっている。このため、溶液120が多孔質材100の孔の中に染みこんだときに、例えばミクロ孔220の先端に気泡130が生じてしまう場合がある。図3の例では、ミクロ孔220の先端にだけ気泡130が発生した状態を例示したが、気泡130はメソ孔210まで広がっている場合もあり、マクロ孔200まで広がっている場合もある。気泡130が存在する領域には溶液120が染みこむことができないため、この領域に鉄イオン110を供給することができない。 Here, the mesopores 210 and the micropores 220 are much smaller in size than the macropores 200, and their ends are dead ends inside the porous material 100. For this reason, when the solution 120 permeates into the pores of the porous material 100, for example, bubbles 130 may be generated at the tips of the micropores 220. In the example of FIG. 3, a state in which bubbles 130 are generated only at the tip of the micropore 220 is illustrated. However, the bubbles 130 may extend to the mesopores 210 or may extend to the macropores 200. Since the solution 120 cannot penetrate into the region where the bubbles 130 exist, the iron ions 110 cannot be supplied to this region.
 このような現象を解消するために、図1のステップS107において、多孔質材100が溶液120中に浸漬した状態で、これらが配置された雰囲気を減圧する。このときの状態を図4に示す。図4に示すように、多孔質材100に溶液120が供給された状態で、これらが配置された雰囲気を減圧すると、図3に示すようなミクロ孔220の先端に存在していた気泡130が孔の外に拡散される。この処理を脱気という場合がある。図4に示すように気泡130が孔の外に拡散されると、図3で気泡130が存在していた位置に溶液120が侵入することができるため、気泡130が存在していた領域(この例では、ミクロ孔220)に鉄イオン110を供給することができる。なお、上記のように孔の内部に気泡が生じない場合、又は孔の内部に気泡が生じる場合であっても、その気泡の存在が吸着材10の特性に悪影響を及ぼさない程度であれば、このステップS107及び次のステップS109は省略してもよい。 In order to eliminate such a phenomenon, in step S107 of FIG. 1, while the porous material 100 is immersed in the solution 120, the pressure in the atmosphere in which these are arranged is reduced. The state at this time is shown in FIG. As shown in FIG. 4, when the atmosphere in which the solutions 120 are supplied is reduced in a state where the solutions 120 are supplied to the porous material 100, bubbles 130 existing at the tips of the micropores 220 as shown in FIG. Spread out of the hole. This process may be called degassing. When the bubbles 130 are diffused out of the holes as shown in FIG. 4, the solution 120 can enter the position where the bubbles 130 existed in FIG. In an example, the micropores 220) can be supplied with iron ions 110. In addition, when no air bubbles are generated inside the hole as described above, or even when air bubbles are generated inside the hole, as long as the presence of the air bubbles does not adversely affect the characteristics of the adsorbent 10, This step S107 and the next step S109 may be omitted.
 ステップS109で、ステップS107で減圧された雰囲気を大気圧に戻し、多孔質材100を溶液120から取り出し、ステップS111で溶液120を染みこませた多孔質材100の乾燥を行う。この乾燥によって溶液120に含まれる液体を除去する。この乾燥は、多孔質材100を加熱しながら行われる。また、多孔質材100を乾燥する際に、多孔質材100が配置された環境の湿度を調整してもよい。この乾燥は次のステップの還元プロセスの熱処理時に同時に行ってもよい。 In step S109, the atmosphere decompressed in step S107 is returned to the atmospheric pressure, the porous material 100 is taken out of the solution 120, and the porous material 100 impregnated with the solution 120 is dried in step S111. The liquid contained in the solution 120 is removed by this drying. This drying is performed while heating the porous material 100. When drying the porous material 100, the humidity of the environment in which the porous material 100 is arranged may be adjusted. This drying may be performed simultaneously with the heat treatment of the reduction process in the next step.
 溶液120に浸漬した後に多孔質材100を乾燥した状態を図5に示す。図5に示すように、溶液120に含まれる溶媒を除去することで、溶液120に含まれていた鉄イオン110が析出し、鉄化合物111が形成される。そして、この鉄化合物111が、多孔質材100の孔の中及びその表面に付着する。具体的には、鉄化合物111はマクロ孔200、メソ孔210、及びミクロ孔220のうち少なくともいずれか一の孔の内壁に付着する。なお、図5では、鉄化合物111がこれら全ての孔の内壁に付着している。ステップS105~S109において、溶液120をメソ孔210及びミクロ孔220にも供給することができるため、ステップS111で鉄化合物111をこれらの孔の内壁に付着させることができる。 FIG. 5 shows a state where the porous material 100 is dried after being immersed in the solution 120. As shown in FIG. 5, by removing the solvent contained in the solution 120, the iron ions 110 contained in the solution 120 are precipitated, and the iron compound 111 is formed. Then, the iron compound 111 adheres in the pores of the porous material 100 and on the surface thereof. Specifically, the iron compound 111 adheres to the inner wall of at least one of the macropore 200, the mesopore 210, and the micropore 220. In FIG. 5, the iron compound 111 is attached to the inner walls of all these holes. In steps S105 to S109, since the solution 120 can be supplied also to the mesopores 210 and the micropores 220, the iron compound 111 can be attached to the inner walls of these pores in step S111.
 図1のステップS113で、多孔質材100の孔の中及びその表面に付着した鉄化合物111の還元処理が行われる。言い換えると、鉄化合物111は、マクロ孔200、メソ孔210、及びミクロ孔220のうち少なくともいずれか一の孔の内壁に付着した状態で還元される。還元処理は、還元ガス雰囲気での熱処理によって行われる。この還元処理によって、二価もしくは三価の鉄化合物111が還元され、ゼロ価の鉄になる。このようにして、本実施形態に係る吸着材10が製造される。吸着材10に含まれるゼロ価の鉄が、リンやヒ素などを吸着する。 {Circle around (1)} In step S113 in FIG. 1, a reduction treatment of the iron compound 111 attached to the inside of the pores of the porous material 100 and to the surface thereof is performed. In other words, the iron compound 111 is reduced while being attached to the inner wall of at least one of the macropores 200, the mesopores 210, and the micropores 220. The reduction treatment is performed by a heat treatment in a reducing gas atmosphere. By this reduction treatment, the divalent or trivalent iron compound 111 is reduced to zero-valent iron. Thus, the adsorbent 10 according to the present embodiment is manufactured. The zero-valent iron contained in the adsorbent 10 adsorbs phosphorus, arsenic, and the like.
 なお、ステップS101において用いられる有機物として、生立木(広葉樹、針葉樹、竹などの間伐材、林地廃材を含む)、製材工場又は木材加工工場の廃材(鋸屑、樹皮屑、チップ屑、端切材を含む)、植物性の殻、建築解体材又は家具材の木質系廃材を用いることができる。ステップS101で生成される炭化物は、例えば木炭又は竹炭である。木炭は、竹炭の他に、白炭、黒炭、オガ炭、ヤシ殻炭、モミ殻炭、粉炭を含んでもよい。 In addition, as organic substances used in step S101, living trees (including thinned wood, conifers, bamboos, and other thinned woods, and waste woods), sawmills or wood processing plants (sawdust, bark chips, chip chips, and trimmings) can be used. And woody wastes of plant shells, building demolition materials or furniture materials. The carbide generated in step S101 is, for example, charcoal or bamboo charcoal. Charcoal may include white charcoal, black charcoal, ogre charcoal, coconut shell charcoal, fir shell charcoal, and powdered charcoal, in addition to bamboo charcoal.
 ステップS101における有機物の炭化温度は、400℃以上1200℃以下、500℃以上1100℃以下、600℃以上1000℃以下、又は700℃以上900℃以下である。有機物の炭化雰囲気は、窒素ガス、アルゴンガスなどの不活性ガス雰囲気、無酸素雰囲気、還元雰囲気、又は減圧雰囲気である。有機物の炭化を減圧雰囲気で行う場合、通常大気圧をゼロとしたゲージ圧で、-101200Pa以上-1300Pa以下の低真空状態、-101299.9Pa以上-101200Pa以下の中真空状態、-101299.99999Pa以上-101299.9Paの高真空状態、又は-101299.99999Pa以下の超高真空状態で行うことができる。有機物の炭化時間は10分以上10日以下、10分以上5時間以下である。また、有機物の炭化を低酸素雰囲気で行う場合、酸素濃度は0.01%以上3%以下、又は0.1%以上1%以下で行うことができる。有機物の炭化は、内燃式もしくは外熱式で、バッチ式の開放型や密閉型の炭窯炉、連続式のロータリーキルンや揺動式炭化炉、スクリュー炉、加熱チャンバ、蓋がされた耐熱容器(坩堝)を用いて行うことができる。 炭化 The carbonization temperature of the organic substance in step S101 is 400 ° C to 1200 ° C, 500 ° C to 1100 ° C, 600 ° C to 1000 ° C, or 700 ° C to 900 ° C. The organic substance carbonization atmosphere is an inert gas atmosphere such as a nitrogen gas or an argon gas, an oxygen-free atmosphere, a reducing atmosphere, or a reduced-pressure atmosphere. When carbonization of an organic substance is performed in a reduced-pressure atmosphere, a low vacuum state of −101200 Pa or more and −1300 Pa or less, a medium vacuum state of −101299.9 Pa or more and −101200 Pa or less, and a pressure of −101299.99999 Pa or more are usually obtained at a gauge pressure of zero atmospheric pressure. It can be performed in a high vacuum state of -101299.9 Pa or an ultra-high vacuum state of -101299.9999 Pa or less. The carbonization time of the organic material is 10 minutes or more and 10 days or less, 10 minutes or more and 5 hours or less. In the case where carbonization of an organic substance is performed in a low oxygen atmosphere, the oxygen concentration can be performed at 0.01% or more and 3% or less, or 0.1% or more and 1% or less. Organic matter is carbonized by internal combustion or external heating, batch-type open and closed charcoal kilns, continuous rotary kilns and oscillating carbonization furnaces, screw furnaces, heating chambers, and heat-resistant containers (crucibles) with lids. ) Can be performed.
 本実施形態では、ステップS101において有機物を炭化することで多孔質材100を得る方法を例示したが、多孔質材100として市販された炭化物を用いてもよい。 In the present embodiment, the method of obtaining the porous material 100 by carbonizing the organic material in step S101 has been described as an example, but a commercially available carbide may be used as the porous material 100.
 ステップS103で用いられる溶液120に含まれる鉄の質量パーセント濃度は0.1wt%以上50wt%以下、1wt%以上40wt%以下、又は5wt%以上15wt%以下である。ステップS103で多孔質材100が溶液120に浸けられる時間は、10秒以上24時間以下、1分以上5時間以下、又は5分以上1時間以下である。圧力容器に入れて炭化物を浸漬後に減圧する場合、通常大気圧をゼロとしたゲージ圧で-0.101MPa以上-0.02MPa以下、-0.101MPa以上-0.04MPa以下、又は-0.101MPa以上-0.08MPa以下とすることができる。この場合、減圧浸漬時間は、通常よりも短くて構わなく、所定のゲージ圧力に達してから1秒以上1時間以下、10秒以上10分以下、又は30秒以上5分以下から適宜選択すればよい。 鉄 The mass percent concentration of iron contained in the solution 120 used in step S103 is 0.1 wt% or more and 50 wt% or less, 1 wt% or more and 40 wt% or less, or 5 wt% or more and 15 wt% or less. The time during which the porous material 100 is immersed in the solution 120 in step S103 is from 10 seconds to 24 hours, from 1 minute to 5 hours, or from 5 minutes to 1 hour. When the pressure is reduced after the carbide is immersed in a pressure vessel, the gauge pressure is usually -0.101 MPa or more and -0.02 MPa or less, -0.101 MPa or more and -0.04 MPa or less, or -0.101 MPa at a gauge pressure where the atmospheric pressure is zero. At least -0.08 MPa. In this case, the reduced pressure immersion time may be shorter than usual, and may be appropriately selected from 1 second to 1 hour, 10 seconds to 10 minutes, or 30 seconds to 5 minutes after reaching the predetermined gauge pressure. Good.
 ステップS103で用いられる溶液120の溶媒として、水、メタノール、エタノール、フェノール、ベンゼン、ヘキサンなどの有機溶媒が用いられる。なお、本実施形態では、ステップS103において溶液120を作製する方法を例示したが、溶液120は市販品のものを用いてもよい。 有機 As a solvent of the solution 120 used in step S103, an organic solvent such as water, methanol, ethanol, phenol, benzene, or hexane is used. In the present embodiment, the method of preparing the solution 120 in step S103 has been described as an example, but a commercially available solution may be used as the solution 120.
 また、溶液120に、鉄イオン110の分散を促進する分散剤を追加してもよい。当該分散剤として、例えば界面活性剤を用いることができる。界面活性剤として、陰イオン(アニオン)界面活性剤、陽イオン(カチオン)界面活性剤、両性(双性)界面活性剤、非イオン(ノニオン)界面活性剤、及び高分子界面活性剤を用いることができる。陰イオン界面活性剤として、脂肪酸ナトリウム、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、アルキルエーテル硫酸エステル塩、アルキル硫酸トリエタノールアミン、及びアルキルベンゼンスルホン酸塩を用いることができる。陽イオン界面活性剤として、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩クロリド、アルキルピリジウムクロリド、及びアルキルベンジルジメチルアンモニウム塩を用いることができる。両性界面活性剤として、アルキルジメチルアミンオキシド及びアルキルカルボキシベタインを用いることができる。非イオン界面活性剤として、ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、オクチルフェノールエトキシレート、及びアルキルモノグリセリルエーテルを用いることができる。高分子界面活性剤として、ポリアクリル酸塩、ポリスチレンスルホン酸塩、ポリビニルアルコール、及びポリエチレンイミンを用いることができる。分散剤の濃度は0.01%以上20%以下、または0.01%以上1%以下である。なお、炭化物は高温で炭化しないと疎水性(非親水性)を有するため、水が内部に入りにくい。このため、溶液120に界面活性剤を含ませることにより、溶液120を多孔質材100の内部に浸透しやすくさせることができる。 分散 A dispersant that promotes dispersion of the iron ions 110 may be added to the solution 120. As the dispersant, for example, a surfactant can be used. Use of anionic (anionic) surfactants, cationic (cationic) surfactants, amphoteric (zwitterionic) surfactants, nonionic (nonionic) surfactants, and polymer surfactants as surfactants Can be. As the anionic surfactant, sodium fatty acid, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, alkyl ether sulfate, alkylethanol triethanolamine, and alkylbenzene sulfonate can be used. Alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium chloride, alkyl pyridium chloride and alkyl benzyl dimethyl ammonium salt can be used as the cationic surfactant. As the amphoteric surfactant, alkyldimethylamine oxide and alkylcarboxybetaine can be used. As the nonionic surfactant, polyoxyethylene alkyl ether, fatty acid sorbitan ester, alkyl polyglucoside, fatty acid diethanolamide, octylphenol ethoxylate, and alkyl monoglyceryl ether can be used. As a polymer surfactant, polyacrylate, polystyrene sulfonate, polyvinyl alcohol, and polyethyleneimine can be used. The concentration of the dispersant is from 0.01% to 20%, or from 0.01% to 1%. In addition, since the carbide has hydrophobicity (non-hydrophilicity) unless carbonized at a high temperature, water hardly enters the inside. Therefore, by adding a surfactant to the solution 120, the solution 120 can be easily permeated into the porous material 100.
 ステップS105において、多孔質材100を溶液120に浸漬する前に、多孔質材100に上記の界面活性剤を供給してもいい。界面活性剤の供給は、多孔質材100の上面に塗布することで行われてもよく、界面活性剤を含む溶液に多孔質材100を浸漬することで行われてもよい。また、ステップS107と同様に、界面活性剤を多孔質材100に供給した状態で脱気を行ってもよい。 In step S105, the above-mentioned surfactant may be supplied to the porous material 100 before the porous material 100 is immersed in the solution 120. The supply of the surfactant may be performed by applying the surfactant to the upper surface of the porous material 100, or may be performed by immersing the porous material 100 in a solution containing the surfactant. Further, similarly to step S107, deaeration may be performed in a state where the surfactant is supplied to the porous material 100.
 また、多孔質材100は溶液120に浸漬しなくてもよい。例えば、多孔質材100の表面に溶液120を塗布することで、溶液120を多孔質材100の孔の中に染みこませてもよい。 (4) The porous material 100 does not have to be immersed in the solution 120. For example, by applying the solution 120 to the surface of the porous material 100, the solution 120 may be permeated into the pores of the porous material 100.
 ステップS107において、より効率的に気泡130を孔の外に拡散させるために、脱気の際に振動を与えてもよい。この振動は超音波振動であってもよい。また、脱気の際に多孔質材100を加熱してもよい。また、脱気の際に、多孔質材100を溶液120中で傾ける又は回転させてもよい。脱気の際の圧力は、通常大気圧をゼロとしたゲージ圧で-0.101MPa以上-0.03Mpa以下で、脱気時間は10秒以上1時間以下、または30秒以上10分以下である。 In step S107, vibration may be applied at the time of degassing to more efficiently diffuse the bubbles 130 out of the holes. This vibration may be an ultrasonic vibration. Further, the porous material 100 may be heated at the time of degassing. Further, at the time of degassing, the porous material 100 may be tilted or rotated in the solution 120. The pressure at the time of deaeration is usually -0.101 MPa to -0.03 Mpa at a gauge pressure with the atmospheric pressure set to zero, and the deaeration time is 10 seconds to 1 hour, or 30 seconds to 10 minutes. .
 多孔質材100として炭化物が用いられる場合、炭化物は疎水性であるため、多孔質材100の孔の中に鉄イオン110を含んだ溶液120が染みこみ難い場合がある。このような場合、多孔質材100の孔(マクロ孔200、メソ孔210、ミクロ孔220)に存在する空気によって、多孔質材100の多くは液面に浮いてしまう。このような状態であっても、減圧することで、上記の孔に存在する空気を多孔質材100の外に引き出し、溶液120の外に排出することができる。これにより、多孔質材100の孔において、気泡130が存在していた領域に、鉄イオン110を含む溶液120を充填させることができる。 When a carbide is used as the porous material 100, the solution 120 containing the iron ions 110 may not easily permeate into the pores of the porous material 100 because the carbide is hydrophobic. In such a case, most of the porous material 100 floats on the liquid surface due to air existing in the holes (the macro holes 200, the meso holes 210, and the micro holes 220) of the porous material 100. Even in such a state, by reducing the pressure, the air present in the holes can be drawn out of the porous material 100 and discharged out of the solution 120. Thereby, the solution 120 containing the iron ions 110 can be filled in the region where the bubbles 130 existed in the pores of the porous material 100.
 なお、上記のように減圧すると、多孔質材100内の気泡130が大きくなり、多孔質材100の浮力が上昇し、多孔質材100が液面上に浮いてしまう場合がある。この現象を抑制するために、溶液120を入れた容器に、多孔質材100よりも小さな網目状の浮上防止板を設置してもよい。多孔質材100が液面上まで浮上してしまうと、液面上における気泡130と溶液120との置換効率が悪くなり、また大気圧に戻す際に、溶液120ではなく空気が多孔質材100内に入ってしまう可能性がある。しかし、上記のように浮上防止板を設置することで、このような現象を抑制することができる。 When the pressure is reduced as described above, the bubbles 130 in the porous material 100 increase, the buoyancy of the porous material 100 increases, and the porous material 100 may float on the liquid surface. In order to suppress this phenomenon, a mesh-shaped floating prevention plate smaller than the porous material 100 may be provided in the container containing the solution 120. If the porous material 100 floats above the liquid surface, the efficiency of replacement between the bubbles 130 and the solution 120 on the liquid surface deteriorates, and when returning to the atmospheric pressure, air instead of the solution 120 is used instead of the porous material 100. Could get inside. However, such a phenomenon can be suppressed by installing the floating prevention plate as described above.
 上記のステップS105~S111の工程は、複数回繰り返し行われてもよい。また、ステップS107及びS109の工程が、複数回繰り返し行われてもよい。また、ステップS109の大気圧に戻す工程を経ずに、減圧された状態のままステップS111の乾燥を行ってもよい。その場合、当該乾燥の後に大気圧に戻してもよく、減圧のままステップS113の還元を行ってもよい。また、上記の乾燥及び還元を同一工程で行ってもよい。上記の工程を複数回繰り返すことで、多孔質材100に付着する鉄化合物111の量を増やすことができる。 工程 The above steps S105 to S111 may be repeated a plurality of times. Further, the steps S107 and S109 may be repeatedly performed a plurality of times. Alternatively, the drying in step S111 may be performed while the pressure is reduced without passing through the step of returning to the atmospheric pressure in step S109. In this case, the pressure may be returned to the atmospheric pressure after the drying, or the reduction in step S113 may be performed while the pressure is reduced. Further, the above drying and reduction may be performed in the same step. By repeating the above steps a plurality of times, the amount of the iron compound 111 attached to the porous material 100 can be increased.
 ステップS113における鉄化合物111の還元温度は、少なくとも500℃以上であればよい。還元温度の範囲は、例えば500℃以上1200℃以下、500℃以上1000℃以下、500℃以上900℃以下、又は700℃以上900℃以下である。鉄化合物111の還元処理に用いられる還元ガスは、一酸化炭素ガス、水素ガス、硫化水素ガス、二酸化硫黄ガス又は炭化水素ガスである。また、一酸化炭素と水素を混ぜるなど、還元ガスを混合しても構わない。さらに還元ガスは爆発性や可燃性の観点から取り扱いが難しいガスも多いため、これらを不活性ガスで希釈しても構わない。例えば、一酸化炭素濃度を1%~20%になるように、窒素ガスで希釈することができる(つまり、窒素の濃度が99%~80%である)。還元時間は1分以上10時間以下、10分以上2時間以下である。当該還元は、バッチ式、連続式のどちらでも構わなく、加熱と還元ガス(不活性ガスとの混合でも構わない)の導入ができる構造であれば、管状炉、箱型炉を適宜用いることができる。還元性ガスとして一酸化炭素ガスを用いる場合、還元温度は、少なくとも500℃以上であればよい。この場合の還元温度の範囲は、例えば500℃以上1200℃以下、500℃以上1000℃以下、500℃以上900℃以下、又は700℃以上900℃以下とすることができる。また、還元性ガスとして水素ガスが用いられる場合、還元温度は、少なくとも100℃以上であればよい。この場合の還元温度の範囲は、例えば100℃以上1200℃以下、100℃以上900℃以下、又は700℃以上900℃以下とすることができる。 還 元 The reduction temperature of the iron compound 111 in step S113 may be at least 500 ° C. or higher. The range of the reduction temperature is, for example, 500 ° C to 1200 ° C, 500 ° C to 1000 ° C, 500 ° C to 900 ° C, or 700 ° C to 900 ° C. The reducing gas used for the reduction treatment of the iron compound 111 is a carbon monoxide gas, a hydrogen gas, a hydrogen sulfide gas, a sulfur dioxide gas or a hydrocarbon gas. Further, a reducing gas may be mixed such as a mixture of carbon monoxide and hydrogen. Further, since many reducing gases are difficult to handle from the viewpoint of explosiveness and flammability, they may be diluted with an inert gas. For example, it can be diluted with nitrogen gas so that the concentration of carbon monoxide is 1% to 20% (that is, the concentration of nitrogen is 99% to 80%). The reduction time is 1 minute or more and 10 hours or less, 10 minutes or more and 2 hours or less. The reduction may be either a batch type or a continuous type, and a tube furnace or a box furnace may be appropriately used as long as the structure allows heating and introduction of a reducing gas (may be mixed with an inert gas). it can. When a carbon monoxide gas is used as the reducing gas, the reduction temperature may be at least 500 ° C. or higher. In this case, the range of the reduction temperature can be, for example, 500 ° C to 1200 ° C, 500 ° C to 1000 ° C, 500 ° C to 900 ° C, or 700 ° C to 900 ° C. When hydrogen gas is used as the reducing gas, the reduction temperature may be at least 100 ° C. or higher. In this case, the range of the reduction temperature can be, for example, 100 ° C to 1200 ° C, 100 ° C to 900 ° C, or 700 ° C to 900 ° C.
 なお、鉄化合物111を還元する際に、還元ガスに加えて、二酸化炭素ガス、酸素ガス、水蒸気を加え、賦活することで、還元と同時に多孔質材100に微細な孔を増やす(活性炭化する)ことができる。多孔質材100を活性炭化することで、多孔質材100の表面積をより大きくすることができる。 When the iron compound 111 is reduced, carbon dioxide gas, oxygen gas, and water vapor are added to the reducing gas and activated to activate, thereby increasing the number of fine pores in the porous material 100 simultaneously with the reduction (active carbonization). )be able to. Activated carbonization of the porous material 100 can increase the surface area of the porous material 100.
 従来、炭化物の内部に鉄化合物を形成する場合は、炭化する前の乾燥した有機物を、当該鉄化合物が溶解した溶液中に浸漬し、乾燥した後に、炭化を行っていた。上記のマクロ孔200は、木の仮道管孔に起因する孔であるため、マクロ孔200の内壁には還元されたゼロ価の鉄結晶が析出すると考えられる。また、生木等の乾燥前の生の有機物を、当該鉄化合物を溶解した溶液中に浸漬した場合、拡散浸透により、有機物の内部にまで鉄化合物を浸漬することができるが、炭化後の炭化物の孔表面にゼロ価の鉄結晶が十分に析出していない可能性がある。 Conventionally, when an iron compound is formed inside a carbide, the dried organic material before carbonization is immersed in a solution in which the iron compound is dissolved, dried, and then carbonized. Since the macro hole 200 is a hole caused by a tree tracheid hole, it is considered that reduced zero-valent iron crystals are deposited on the inner wall of the macro hole 200. In addition, when a raw organic material such as a raw wood is dried and immersed in a solution in which the iron compound is dissolved, the iron compound can be immersed into the organic material by diffusion and infiltration. There is a possibility that zero-valent iron crystals are not sufficiently precipitated on the surface of the pores.
 それに対して、本実施形態では、多孔質材100にメソ孔210及びミクロ孔220が形成された後に、鉄を含む溶液120を多孔質材100の孔の中に染みこませ、乾燥させるため、鉄化合物111をこれらの孔の内壁に付着させることができ、還元後には、これらの孔の内壁にゼロ価の鉄結晶を付着させることができる。 On the other hand, in the present embodiment, after the mesopores 210 and the micropores 220 are formed in the porous material 100, the solution 120 containing iron is impregnated into the pores of the porous material 100 and dried. The iron compound 111 can be attached to the inner walls of these holes, and after reduction, zero-valent iron crystals can be attached to the inner walls of these holes.
 また、従来は、有機物を炭化する熱処理で、炭化の際に発生する一酸化炭素や水素を利用して上記の鉄化合物の還元を行っていた。したがって、炭化の条件と還元処理の条件とを個別に制御することができなかった。例えば、鉄化合物の還元に必要な還元性ガスの量を調整することが難しかった。 従 来 Also, conventionally, in a heat treatment for carbonizing an organic substance, the above-described iron compound has been reduced using carbon monoxide or hydrogen generated during carbonization. Therefore, the conditions for carbonization and the conditions for reduction treatment could not be individually controlled. For example, it has been difficult to adjust the amount of reducing gas required for the reduction of iron compounds.
 それに対して、本実施形態では、還元を炭化とは別の熱処理で行うため、還元に適した条件を適宜選択することができる。例えば、炭化と還元処理とを異なる装置で行うことができる。又は、炭化温度と還元温度とを異なる温度や時間で処理することができる。又は、炭化と還元処理とを異なる雰囲気で行うことができる。ここで、不活性ガス雰囲気あるいは無酸素雰囲気下で鉄の還元処理を行う場合、加熱によって炭化物中の金属化合物の金属の対イオンが炭化物を構成する炭素と反応して、一酸化炭素あるいは水素が生成される。例えば、硫酸鉄を含む炭化物の場合、加熱によって生じた亜硫酸ガスと炭化物中の炭素が反応し、一酸化炭素と二酸化硫黄が生成される。あるいは、炭化物中の酸素が炭化物を構成する炭素と反応して一酸化炭素が生成される。あるいは、炭化物に含まれる水素が熱分解し、メタンや水素が生成される。その一酸化炭素、メタン、あるいは水素は、鉄の還元によって消費される。したがって、炭化物中の炭素や水素の含有量が減少し、吸着材として用いられる炭化物の収量が減少すると考えられる。一方、還元ガス雰囲気で鉄の還元処理を行う場合、鉄の還元に利用される還元ガスが外部から供給されるため、炭化物中の金属化合物の金属の対イオンあるいは酸素及び水素と炭化物を構成する炭素との反応は抑制される。したがって、吸着材として用いられる炭化物の炭素量の減少が抑制されると考えられる。 On the other hand, in the present embodiment, since the reduction is performed by a heat treatment different from carbonization, conditions suitable for the reduction can be appropriately selected. For example, the carbonization and the reduction treatment can be performed by different apparatuses. Alternatively, the carbonization temperature and the reduction temperature can be treated at different temperatures and times. Alternatively, the carbonization and the reduction treatment can be performed in different atmospheres. Here, when performing a reduction treatment of iron in an inert gas atmosphere or an oxygen-free atmosphere, a counter ion of the metal compound of the metal compound in the carbide reacts with the carbon constituting the carbide by heating, and carbon monoxide or hydrogen is reduced. Generated. For example, in the case of a carbide containing iron sulfate, sulfur dioxide gas generated by heating reacts with carbon in the carbide to generate carbon monoxide and sulfur dioxide. Alternatively, oxygen in the carbide reacts with carbon constituting the carbide to generate carbon monoxide. Alternatively, hydrogen contained in the carbide is thermally decomposed to produce methane and hydrogen. The carbon monoxide, methane, or hydrogen is consumed by the reduction of iron. Therefore, it is considered that the content of carbon and hydrogen in the carbide decreases, and the yield of the carbide used as the adsorbent decreases. On the other hand, when reducing the iron in a reducing gas atmosphere, since the reducing gas used for the reduction of iron is supplied from the outside, the metal forms a counter ion of the metal compound in the carbide or a carbide with oxygen and hydrogen. Reaction with carbon is suppressed. Therefore, it is considered that the reduction of the carbon content of the carbide used as the adsorbent is suppressed.
 なお、本実施形態では、有機物を炭化した炭化物を多孔質材100として用いる構成を例示したが、多孔質材100として、炭化物以外の材料を用いてもよい。また、有機物として木材を炭化することで多孔質材100を得る構成を例示したが、木材以外の有機物を炭化してもよい。また、ステップS103において、溶液120として、硫酸第1鉄水溶液(FeSO)、硫酸第2鉄水溶液(Fe(SO)、又はポリ硫酸第二鉄溶液([Fe(OH)(SO3-n/2、但し0<n≦2、m=f(n))を用いる場合、ステップS113の還元処理によって得られる吸着材10に、酸化鉄及び/又は硫化鉄が付着されてもよい。酸化鉄及び/又は硫化鉄は、炭化物の表面または孔(マクロ孔200、メソ孔210、及びミクロ孔220のうち少なくともいずれか一の孔)の内部に存在してもよい。 In the present embodiment, a configuration in which a carbide obtained by carbonizing an organic substance is used as the porous material 100 is illustrated, but a material other than the carbide may be used as the porous material 100. Further, the configuration in which the porous material 100 is obtained by carbonizing wood as an organic substance has been illustrated, but an organic substance other than wood may be carbonized. Further, in step S103, as the solution 120, a ferrous sulfate aqueous solution (FeSO 4 ), a ferric sulfate aqueous solution (Fe (SO 4 ) 3 ), or a ferric polysulfate solution ([Fe 2 (OH) n ( SO 4 ) 3 −n / 2 ] m , where 0 <n ≦ 2 and m = f (n)), the iron oxide and / or iron sulfide is contained in the adsorbent 10 obtained by the reduction treatment in step S113. May be attached. The iron oxide and / or iron sulfide may be present on the surface of the carbide or inside the pores (at least one of macropores 200, mesopores 210, and micropores 220).
 多孔質材100が炭化物の場合、炭化物は導電性が高いため、炭化物とその孔の中に付着したゼロ価の鉄の結晶粒子との間で電子交換が速やかに行われる。したがって、ゼロ価の鉄の結晶粒子を含む炭化物を水中に入れると、多孔質体表面でゼロ価の金属鉄が速やかにイオン化し、オキシ水酸化鉄(FeOOH)などの水酸化物を生成し、水中に存在するリン酸イオンと反応し、リン酸鉄を形成して炭化物に吸着固定することができる。上記と同様に、多孔質材100として、導電性を有する材料を用いることで、効率よくリンを吸着することができる。 (4) When the porous material 100 is a carbide, since the carbide has high conductivity, electron exchange is rapidly performed between the carbide and the zero-valent iron crystal particles attached to the pores. Therefore, when a carbide containing crystal particles of zero-valent iron is put into water, zero-valent metal iron is quickly ionized on the surface of the porous body, and a hydroxide such as iron oxyhydroxide (FeOOH) is generated. It reacts with phosphate ions present in water to form iron phosphate and can be adsorbed and fixed on carbides. As described above, by using a conductive material as the porous material 100, phosphorus can be efficiently adsorbed.
〈第2実施形態〉
[吸着材10Aの製造方法]
 図6を用いて、第2実施形態に係る吸着材10Aの製造方法について説明する。吸着材10Aの製造方法は、図1に示す第1実施形態に係る吸着材10の製造方法と類似しているが、溶液120を浸漬し、乾燥させ、鉄化合物111Aが付着した多孔質材100Aを、さらにアルカリ溶液に浸漬する点において、第1実施形態の吸着材10の製造方法と相違する。以下の図6の説明において、図1と共通する部分については説明を省略し、主に図1と異なる点について説明する。なお、本実施形態に係る吸着材10Aの構成は、第1実施形態に係る吸着材10の構成と同様なので、ここでは図示を省略する。以下の説明において、吸着材10Aの構成の中で、吸着材10と同様の構成については、吸着材10で用いられる符号と同一の符号の後にアルファベット「A」を付し、その説明は省略する。
<Second embodiment>
[Method of Manufacturing Adsorbent 10A]
A method for manufacturing the adsorbent 10A according to the second embodiment will be described with reference to FIG. The method for manufacturing the adsorbent 10A is similar to the method for manufacturing the adsorbent 10 according to the first embodiment shown in FIG. 1, except that the solution 120 is immersed and dried, and the porous material 100A to which the iron compound 111A is attached. Is different from the method for producing the adsorbent 10 of the first embodiment in that the is further immersed in an alkaline solution. In the following description of FIG. 6, description of portions common to FIG. 1 will be omitted, and different points from FIG. Note that the configuration of the adsorbent 10A according to the present embodiment is the same as the configuration of the adsorbent 10 according to the first embodiment, and is not illustrated here. In the following description, among the configurations of the adsorbent 10A, the same components as those of the adsorbent 10 are denoted by the same reference numerals as those used in the adsorbent 10, and the letters “A” are appended thereto, and the description thereof is omitted. .
 図6に示すように、ステップS111Aで溶液120Aを染みこませた多孔質材100Aの乾燥を行った後に、ステップS115Aで当該多孔質材100Aをアルカリ溶液に浸漬する。このとき、多孔質材100Aの孔の内壁には、図5と同様に鉄化合物111Aが付着している。したがって、多孔質材100Aがアルカリ溶液に浸漬され、当該アルカリ溶液が多孔質材100Aの孔の中に染みこみ、鉄化合物111Aと接触すると、上記鉄化合物111Aの少なくとも一部が水酸化される。このようにして、多孔質材100Aの孔の内壁に水酸化鉄が生成される。 As shown in FIG. 6, after drying the porous material 100A impregnated with the solution 120A in step S111A, the porous material 100A is immersed in an alkaline solution in step S115A. At this time, the iron compound 111A has adhered to the inner wall of the hole of the porous material 100A as in FIG. Therefore, when the porous material 100A is immersed in the alkaline solution, and the alkaline solution permeates into the pores of the porous material 100A and comes into contact with the iron compound 111A, at least a part of the iron compound 111A is hydroxylated. Thus, iron hydroxide is generated on the inner wall of the hole of the porous material 100A.
 この水酸化鉄の生成の後に、多孔質材100Aを水洗する(ステップS120A)。この水洗によって、多孔質材100Aの孔の中に生成されたアルカリ金属イオン、鉄化合物において鉄と結合していた陰イオン、及び当該孔の中に残ったアルカリ溶液を除去することができる。ここで、多孔質材100Aの孔の内壁に存在する水酸化鉄は、溶解度が低いため、上記の水洗を行っても多孔質材100Aの外に排出されにくい。また、多孔質材100Aの内部がアルカリ性に偏っていると、例えばリン等の吸着力が弱くなってしまうが、上記のように水洗によって多孔質材100A内のアルカリ金属イオン、陰イオン、及びアルカリ溶液を除去することで、多孔質材100Aの内部がアルカリ性に偏ることを抑制することができる。なお、ステップS120Aの水洗は省略しても構わない。また、ステップS121Aの乾燥の後に水洗を行ってもよい。 (4) After the production of the iron hydroxide, the porous material 100A is washed with water (Step S120A). By this washing, the alkali metal ions generated in the pores of the porous material 100A, the anions bonded to iron in the iron compound, and the alkali solution remaining in the pores can be removed. Here, the iron hydroxide present on the inner wall of the pores of the porous material 100A has a low solubility, and therefore is not easily discharged to the outside of the porous material 100A even after the above-described water washing. Further, if the inside of the porous material 100A is biased toward alkalinity, for example, the adsorptive power of phosphorus or the like is weakened. However, as described above, the alkali metal ions, anions, and alkali in the porous material 100A are washed by water. By removing the solution, it is possible to suppress the inside of the porous material 100A from being biased toward alkaline. Note that the water washing in step S120A may be omitted. After the drying in step S121A, washing may be performed.
 上記のアルカリ溶液をメソ孔210A及びミクロ孔220Aまで染みこませるために、ステップS107Aと同様に脱気を行うことで、孔の中に存在する鉄化合物111Aを水酸化することができ、孔の内壁に水酸化鉄が付着した多孔質材100Aを得ることができる(ステップS117A、S119A、S120A、S121A)。ステップS121Aで乾燥した多孔質材100Aを水洗した後に、ステップS113Aの還元処理を行う。 In order to infiltrate the above-mentioned alkaline solution into the mesopores 210A and the micropores 220A, the iron compound 111A existing in the pores can be hydroxylated by performing degassing in the same manner as in Step S107A. A porous material 100A having iron hydroxide adhered to the inner wall can be obtained (Steps S117A, S119A, S120A, S121A). After the porous material 100A dried in step S121A is washed with water, the reduction treatment in step S113A is performed.
 なお、ステップS115Aで用いられるアルカリ溶液として、水酸化ナトリウム(NaOH)、又は水酸化カリウム(KOH)などの溶液を用いることができる。 As the alkaline solution used in step S115A, a solution such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) can be used.
 上記のステップS115A~S121Aの工程は、複数回繰り返し行われてもよい。また、上記のステップS117A及びS119Aの工程が、複数回繰り返し行われてもよい。ステップS117A及びS119Aの工程が省略されてもよい。 工程 The above steps S115A to S121A may be repeated a plurality of times. Further, the steps S117A and S119A may be repeated a plurality of times. Steps S117A and S119A may be omitted.
 以上のように、本実施形態に係る吸着材10Aの製造方法によると、鉄化合物111Aが水酸化された状態で還元処理を行うことができる。つまり、還元処理で発生するガスは、無害な水蒸気である。 As described above, according to the method for manufacturing the adsorbent 10A according to the present embodiment, the reduction treatment can be performed in a state where the iron compound 111A is hydroxylated. That is, the gas generated in the reduction process is harmless steam.
 ここで、本実施形態のより具体的な例について、図7を用いて説明する。ここでは、溶液120Aとして塩化鉄溶液150Aが用いられ、アルカリ溶液として水酸化ナトリウム溶液140Aが用いられた場合について説明する。図7は、本発明の一実施形態に係る吸着材において、水酸化鉄を生成させる具体的な方法を示す概念図である。図7では、多孔質材100Aの孔(マクロ孔200A、メソ孔210A、及びミクロ孔220A)の内壁101Aが示されており、内壁101Aに囲まれた領域における現象が例示されている。 Here, a more specific example of the present embodiment will be described with reference to FIG. Here, a case where iron chloride solution 150A is used as solution 120A and sodium hydroxide solution 140A is used as the alkaline solution will be described. FIG. 7 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention. FIG. 7 shows the inner wall 101A of the holes (the macro holes 200A, the meso holes 210A, and the micro holes 220A) of the porous material 100A, and illustrates a phenomenon in a region surrounded by the inner wall 101A.
 図7の(A)に示すように、塩化鉄溶液150A中には、鉄イオン151Aの他に鉄イオン151Aと対をなす陰イオン(塩化物イオン153A)が存在している。多孔質材100Aに上記の塩化鉄溶液150Aを染みこませ、乾燥によって塩化鉄溶液150Aに含まれる溶媒を除去することで、多孔質材100Aの孔の内壁101Aに、固体の塩化鉄155Aが析出する(図7の(B))。 示 す As shown in FIG. 7A, an anion (chloride ion 153A) paired with iron ion 151A exists in iron chloride solution 150A in addition to iron ion 151A. By impregnating the iron chloride solution 150A into the porous material 100A and removing the solvent contained in the iron chloride solution 150A by drying, solid iron chloride 155A precipitates on the inner wall 101A of the hole of the porous material 100A. (FIG. 7B).
 内壁101Aに塩化鉄155Aが析出した状態の多孔質材100Aに水酸化ナトリウム溶液140Aを染みこませると、多孔質材100A内では水酸化ナトリウム溶液中の水酸化物イオンが塩化鉄と反応し、水酸化鉄141A、塩化物イオン143A、及び水酸化ナトリウム溶液中のナトリウムイオン145Aが生成される(図7の(C))。つまり、内壁101Aに析出した塩化鉄155Aに水酸化ナトリウム溶液140Aが接することで、水酸化ナトリウム溶液155Aの水酸化物イオンが塩化鉄155Aの塩素と化学反応により置換され、水酸化鉄141A及び塩化物イオン143Aが生成される。水酸化鉄141Aは水への溶解度が低いため固体として内壁101Aに析出し、多孔質材100A内に保持される。一方で、塩化ナトリウムは水への溶解度が高いため、塩化物イオン143A及びナトリウムイオン145Aとして存在し、例えばステップS120Aの水洗によって多孔質材100Aの孔から除去することができる(図7の(D))。さらに、水洗によって、孔内で反応に使われなかった過剰な水酸化ナトリウム溶液140Aも多孔質材100Aから除去することができる(図7の(D))。つまり、塩化鉄溶液150A中の鉄化合物(塩化鉄)のうち、鉄と結合していた物質(塩素)は陰イオン化され、水酸化ナトリウム溶液140Aとともに多孔質材100Aの外へ排出される。 When the sodium hydroxide solution 140A is impregnated into the porous material 100A in which iron chloride 155A is precipitated on the inner wall 101A, hydroxide ions in the sodium hydroxide solution react with the iron chloride in the porous material 100A. Iron hydroxide 141A, chloride ion 143A, and sodium ion 145A in the sodium hydroxide solution are generated (FIG. 7C). That is, when the sodium hydroxide solution 140A comes into contact with the iron chloride 155A deposited on the inner wall 101A, the hydroxide ions of the sodium hydroxide solution 155A are replaced by the chlorine of the iron chloride 155A by a chemical reaction, and the iron hydroxide 141A and the chloride are removed. Object ions 143A are generated. Since the iron hydroxide 141A has low solubility in water, it precipitates as a solid on the inner wall 101A and is retained in the porous material 100A. On the other hand, since sodium chloride has a high solubility in water, it exists as chloride ions 143A and sodium ions 145A, and can be removed from the pores of the porous material 100A by, for example, washing with water in step S120A ((D in FIG. 7). )). Further, by washing with water, excess sodium hydroxide solution 140A not used for the reaction in the pores can also be removed from porous material 100A (FIG. 7D). That is, of the iron compound (iron chloride) in the iron chloride solution 150A, the substance (chlorine) bonded to iron is anionized and discharged out of the porous material 100A together with the sodium hydroxide solution 140A.
 その他の場合も上記と同様に、多孔質材100Aの孔の中では、化学反応により生成した水酸化鉄(固体)、水酸化鉄と反応前に鉄と結びついていた陰イオン及びアルカリ金属イオン(液体)、並びに、過剰なアルカリ溶液(液体)が存在するが、水酸化鉄以外は水洗で除去することができる。これにより、溶液120Aの陰イオン由来の元素(上記の例では「塩素」)を還元前に除去することができ、還元処理の際の酸性ガスの発生量を大幅に抑制することができる。なお、吸着材の製造工程において水酸化物を生成させない場合は、還元時に、溶液120Aが塩化鉄を含む溶液であれば塩化水素ガスが発生し、溶液120Aが硝酸鉄を含む溶液であれば硝酸ガスが発生し、溶液120Aが硫酸鉄を含む溶液であれば硫酸ガス等の酸性ガスが発生する。したがって、酸性ガスを除去するためのスクラバーが必要になる。一方で、本実施形態のように、吸着材の製造工程において水酸化物を生成させることで、上記のようなガスを除去するためのスクラバーを設ける必要がなく、吸着材の製造装置の簡易化が可能である。 In other cases, similarly to the above, in the pores of the porous material 100A, in the pores of the porous material 100A, iron hydroxide (solid) generated by a chemical reaction, anions and alkali metal ions ( Liquid) and excess alkali solution (liquid), but other than iron hydroxide can be removed by washing with water. Thereby, an element derived from the anion of the solution 120A (“chlorine” in the above example) can be removed before reduction, and the amount of acidic gas generated during the reduction treatment can be greatly suppressed. In the case where hydroxide is not generated in the production process of the adsorbent, hydrogen chloride gas is generated during reduction if the solution 120A is a solution containing iron chloride, and nitric acid is generated if the solution 120A is a solution containing iron nitrate. Gas is generated, and if the solution 120A is a solution containing iron sulfate, an acidic gas such as sulfuric acid gas is generated. Therefore, a scrubber for removing the acid gas is required. On the other hand, by generating hydroxide in the manufacturing process of the adsorbent as in the present embodiment, there is no need to provide a scrubber for removing the gas as described above, thereby simplifying the apparatus for manufacturing the adsorbent. Is possible.
〈第2実施形態の変形例〉
 図8及び図9を用いて、第2実施形態の変形例について説明する。図8は、本発明の一実施形態に係る吸着材の製造方法を示すフローチャートである。図9は、本発明の一実施形態に係る吸着材において、水酸化鉄を生成させる具体的な方法を示す概念図である。
<Modification of Second Embodiment>
A modification of the second embodiment will be described with reference to FIGS. FIG. 8 is a flowchart showing a method for manufacturing an adsorbent according to one embodiment of the present invention. FIG. 9 is a conceptual diagram showing a specific method for producing iron hydroxide in the adsorbent according to one embodiment of the present invention.
 図8に示す工程は、図6からステップS107A~S111Aのステップが省略された工程である。つまり、多孔質材100Aを溶液120Aに浸漬した後、乾燥せずにアルカリ溶液に浸漬する。図6では、多孔質材100Aの孔の内壁101Aに鉄化合物111Aを析出させた状態で、鉄化合物111Aを化学反応させて水酸化鉄141Aを生成する製造方法を示したが、図8では、溶液120A中の鉄イオン110Aとアルカリ溶液中の水酸化物イオン147Aとを化学反応させて、内壁101Aに水酸化鉄141Aを沈殿させる。 工程 The process shown in FIG. 8 is a process in which steps S107A to S111A are omitted from FIG. That is, after immersing the porous material 100A in the solution 120A, it is immersed in the alkaline solution without drying. FIG. 6 shows a production method in which the iron compound 111A is chemically reacted with the iron compound 111A in a state where the iron compound 111A is precipitated on the inner wall 101A of the hole of the porous material 100A to produce iron hydroxide 141A. The iron ion 110A in the solution 120A and the hydroxide ion 147A in the alkaline solution are chemically reacted to precipitate the iron hydroxide 141A on the inner wall 101A.
 ここで、本実施形態の変形例のより具体的な例について、図9を用いて説明する。図9は図7と類似しているため、図9において図7と同様の特徴については、説明を省略する。なお、以下の説明では、溶液120Aとして塩化鉄溶液150Aが用いられ、アルカリ溶液として水酸化ナトリウム溶液140Aが用いられた場合について説明する。 Here, a more specific example of the modification of the present embodiment will be described with reference to FIG. Since FIG. 9 is similar to FIG. 7, the description of the same features in FIG. 9 as those in FIG. 7 will be omitted. In the following description, a case where iron chloride solution 150A is used as solution 120A and sodium hydroxide solution 140A is used as the alkaline solution will be described.
 図9の(A)に示すように、多孔質材100Aを塩化鉄溶液150Aに浸漬した後に乾燥していない多孔質材100Aにおいて、塩化鉄溶液150A中には鉄イオン151A及び塩化物イオン153Aが存在している。この状態の多孔質材100Aに対して水酸化ナトリウム溶液140Aを供給すると、水酸化ナトリウム溶液140Aは拡散浸透で多孔質材100Aの孔の中に入り込む(図9の(B))。なお、図9の(B)に示すように、水酸化ナトリウム溶液140A中にはナトリウムイオン145A及び水酸化物イオン147Aが存在している。 As shown in FIG. 9A, in the porous material 100A that has not been dried after the porous material 100A has been immersed in the iron chloride solution 150A, iron ions 151A and chloride ions 153A are contained in the iron chloride solution 150A. Existing. When the sodium hydroxide solution 140A is supplied to the porous material 100A in this state, the sodium hydroxide solution 140A enters the pores of the porous material 100A by diffusion and infiltration (FIG. 9B). As shown in FIG. 9B, sodium ion 145A and hydroxide ion 147A are present in sodium hydroxide solution 140A.
 水酸化ナトリウム溶液140Aが多孔質材100Aの孔の中に入り込むことで、多孔質材100Aの孔の中は、鉄イオン151A、塩化物イオン153A、ナトリウムイオン145A、及び水酸化物イオン147Aが存在した状態になる(図9の(C))。なお、図9の(C)では、多孔質材100Aの孔の中が塩化鉄溶液150Aから水酸化ナトリウム溶液140Aに置換された構成を例示したが、これらの溶液が混在していてもよい。多孔質材100Aの孔の中で鉄イオン151Aと水酸化物イオン147Aとが化学反応することで水酸化鉄141Aが生成され、多孔質材100Aの孔の内壁101Aに沈殿する(図9の(D))。この状態で水洗を行うことで、水酸化鉄141A以外の塩化物イオン153A、ナトリウムイオン145A、及び水酸化ナトリウム溶液140Aを孔から除去することができる(図9の(D))。 When the sodium hydroxide solution 140A enters the pores of the porous material 100A, iron ions 151A, chloride ions 153A, sodium ions 145A, and hydroxide ions 147A are present in the pores of the porous material 100A. (C in FIG. 9). Although FIG. 9C illustrates a configuration in which the pores of the porous material 100A are replaced with the sodium chloride solution 140A from the iron chloride solution 150A, these solutions may be mixed. Iron ions 151A and hydroxide ions 147A undergo a chemical reaction in the pores of the porous material 100A to generate iron hydroxide 141A, which precipitates on the inner wall 101A of the pores of the porous material 100A (FIG. D)). By performing water washing in this state, chloride ions 153A, sodium ions 145A, and sodium hydroxide solution 140A other than iron hydroxide 141A can be removed from the holes (FIG. 9D).
 第2実施形態の変形例によると、多孔質材100Aを塩化鉄溶液150Aに浸漬させた後に乾燥する必要がないため、製造工程の簡易化を図ることができる。 According to the modification of the second embodiment, since it is not necessary to dry the porous material 100A after immersing it in the iron chloride solution 150A, it is possible to simplify the manufacturing process.
 第2実施形態の変形例では、多孔質材100Aをアルカリ溶液に浸漬する製造方法を例示したが、アルカリ溶液は拡散浸透によって多孔質材100Aの孔の中に入り込むため、溶液120Aに浸漬した多孔質材100Aの表面にアルカリ溶液を供給する方法を採用してもよい。例えば、多孔質材100Aの表面にスプレーなどでアルカリ溶液を吹き付けてもよい。 In the modified example of the second embodiment, the manufacturing method in which the porous material 100A is immersed in the alkaline solution is illustrated. However, since the alkaline solution enters the pores of the porous material 100A by diffusion and infiltration, the porous material immersed in the solution 120A is A method of supplying an alkaline solution to the surface of the material 100A may be employed. For example, an alkaline solution may be sprayed on the surface of the porous material 100A with a spray or the like.
〈第3実施形態〉
[吸着材10Bの製造方法]
 図10を用いて、第3実施形態に係る吸着材10Bの製造方法について説明する。吸着材10Bの製造方法は、図1に示す第1実施形態に係る吸着材10の製造方法と類似しているが、多孔質材100Bの孔の中に染みこませる溶液120Bが、鉄を含むコロイド状である、という点において、第1実施形態の吸着材10の製造方法と相違する。
<Third embodiment>
[Production method of adsorbent 10B]
A method for manufacturing the adsorbent 10B according to the third embodiment will be described with reference to FIG. The method for manufacturing the adsorbent 10B is similar to the method for manufacturing the adsorbent 10 according to the first embodiment shown in FIG. 1, but the solution 120B that permeates the pores of the porous material 100B contains iron. The method is different from the method for producing the adsorbent 10 of the first embodiment in that it is colloidal.
 図10は、本発明の一実施形態に係る鉄を含む溶液の製造方法を示すフローチャートである。図10に示すように、本実施形態で用いられる溶液120Bは、以下に詳細を説明するようにステップS131B~S135によって調製される。なお、以下のステップS131B~S135Bは、図1に示すステップS103に対応する工程である。 FIG. 10 is a flowchart showing a method for producing a solution containing iron according to an embodiment of the present invention. As shown in FIG. 10, the solution 120B used in the present embodiment is prepared by steps S131B to S135 as described in detail below. The following steps S131B to S135B are steps corresponding to step S103 shown in FIG.
 まず、ステップS131Bで、図1のステップS101で説明した鉄溶液を準備する。続いて、ステップS133Bで、この鉄溶液に、図6のステップS115Aで説明したアルカリ溶液を追加する。鉄溶液にアルカリ溶液が追加されると、鉄溶液は、水酸化鉄の粒子を含んだコロイド状になる。具体的には、上記のように例示された鉄水溶液(塩化第1鉄水溶液、塩化第2鉄水溶液、硝酸第1鉄水溶液、硝酸第2鉄水溶液、硫酸第1鉄水溶液、又は硫酸第2鉄水溶液)にアルカリ溶液(水酸化ナトリウム溶液、水酸化カリウム溶液)を追加した場合、上記の鉄水溶液は水酸化鉄の粒子を含むコロイド状になる。この状態の溶液をコロイド溶液ということもできる。続いて、ステップS135Bで、第1実施形態において例示したような分散剤を追加する。 First, in step S131B, the iron solution described in step S101 of FIG. 1 is prepared. Subsequently, in step S133B, the alkali solution described in step S115A of FIG. 6 is added to this iron solution. When the alkaline solution is added to the iron solution, the iron solution becomes a colloid containing iron hydroxide particles. Specifically, the aqueous iron solution exemplified above (an aqueous ferrous chloride solution, an aqueous ferric chloride solution, an aqueous ferrous nitrate solution, an aqueous ferric nitrate solution, an aqueous ferrous sulfate solution, or an aqueous ferrous sulfate solution) When an alkaline solution (a sodium hydroxide solution or a potassium hydroxide solution) is added to the aqueous solution), the iron aqueous solution becomes a colloid containing iron hydroxide particles. The solution in this state can be called a colloid solution. Subsequently, in step S135B, a dispersant as exemplified in the first embodiment is added.
 このコロイド溶液は、1nm以上100nm以下のサイズの水酸化鉄粒子を含む。したがって、コロイド溶液をメソ孔210B及びミクロ孔220Bに染みこませることで、水酸化鉄粒子をこれらの孔の中に侵入させることができる。 コ ロ イ ド This colloid solution contains iron hydroxide particles having a size of 1 nm or more and 100 nm or less. Therefore, by impregnating the colloid solution into the mesopores 210B and the micropores 220B, the iron hydroxide particles can penetrate into these pores.
 多孔質材100Bを上記のコロイド溶液に浸漬し、水洗した後に乾燥することで、又は浸漬し、乾燥した後に水洗することで、多孔質材100Bの孔の内壁に水酸化鉄粒子を付着させるとともに、多孔質材100Bの孔から、未反応の鉄イオン、鉄溶液の鉄イオンと対をなす陰イオン、及びアルカリ金属イオンを除去することができる。この水酸化鉄粒子を還元処理することで、多孔質材100Bの孔の内壁に付着したゼロ価の鉄を得ることができる。 By immersing the porous material 100B in the above colloid solution and drying after washing with water, or by immersing and drying and then washing with water, the iron hydroxide particles adhere to the inner walls of the pores of the porous material 100B. In addition, unreacted iron ions, anions paired with iron ions of the iron solution, and alkali metal ions can be removed from the pores of the porous material 100B. By performing a reduction treatment on the iron hydroxide particles, zero-valent iron attached to the inner wall of the pores of the porous material 100B can be obtained.
 なお、分散剤を用いなくてもコロイド溶液中の粒子を十分に分散させることができる場合、又はコロイド溶液中の粒子の分散が不十分であっても、吸着材10Bの特性に悪影響を及ぼさない程度であれば、分散剤を追加する工程(ステップS135B)を省略してもよい。 In addition, when the particles in the colloid solution can be sufficiently dispersed without using a dispersant, or even when the dispersion of the particles in the colloid solution is insufficient, the characteristics of the adsorbent 10B are not adversely affected. In this case, the step of adding a dispersant (step S135B) may be omitted.
 以上のように、本実施形態に係る吸着材10Bの製造方法によると、水酸化鉄粒子を還元処理することで、ゼロ価の鉄を得ることができるので、例えば、溶液120Bとして塩化鉄溶液が用いられた場合であっても、多孔質材の孔の内部に固体の水酸化鉄を形成し、塩化ナトリウムは孔の外に除去されるため、還元処理の際の酸性ガスの発生量を抑制することができる。 As described above, according to the method for producing the adsorbent 10B according to the present embodiment, zero-valent iron can be obtained by reducing the iron hydroxide particles. For example, an iron chloride solution is used as the solution 120B. Even when used, solid iron hydroxide is formed inside the pores of the porous material, and sodium chloride is removed outside the pores, suppressing the amount of acid gas generated during the reduction process. can do.
 上記の実施形態において、多孔質材100(又は100A、100B)を溶液120(又は120A、120B)に浸漬した状態で、これらを減圧する方法の一例について、図11を用いて説明する。図11は、本発明の一実施形態に係る吸着材の製造方法において、溶液に浸漬した多孔質材を減圧する方法を説明する図である。 In the above embodiment, an example of a method of depressurizing the porous material 100 (or 100A, 100B) while immersing it in the solution 120 (or 120A, 120B) will be described with reference to FIG. FIG. 11 is a diagram illustrating a method of reducing the pressure of a porous material immersed in a solution in the method for producing an adsorbent according to one embodiment of the present invention.
 図11に示すように、減圧容器400は容器部401及び蓋部403を有する。容器部401は、溶液120を貯めることが可能な形状を有する。蓋部403は、容器部401の上部に脱着可能に設けられる。蓋部403には、排気口405及び給気口407が設けられている。排気口405は第1バルブ410に接続されている。第1バルブ410は真空ポンプ430に接続されている。給気口407は第2バルブ420に接続されている。第2バルブ420は、外部から減圧容器400内に空気又は所望のガスを供給する配管435に接続されている。また、減圧容器400には真空圧力計440が接続されている。真空圧力計440は、減圧容器400内の圧力を測定することができる。なお、真空ポンプ430の代わりにアスピレータが用いられてもよい。 減 圧 As shown in FIG. 11, the decompression container 400 has a container part 401 and a lid part 403. The container 401 has a shape capable of storing the solution 120. The lid 403 is provided on the upper part of the container 401 so as to be detachable. The cover 403 is provided with an exhaust port 405 and an air supply port 407. The exhaust port 405 is connected to the first valve 410. The first valve 410 is connected to a vacuum pump 430. The air supply port 407 is connected to the second valve 420. The second valve 420 is connected to a pipe 435 that supplies air or a desired gas from the outside into the decompression container 400. Further, a vacuum pressure gauge 440 is connected to the decompression container 400. The vacuum pressure gauge 440 can measure the pressure inside the decompression container 400. Note that an aspirator may be used instead of the vacuum pump 430.
 また、図11に示すように、減圧容器400に溶液120が供給されており、その溶液120の中に多孔質材100が浸漬している。なお、内部に多孔質材100を格納したケース500が溶液120に沈められている。ケース500は、その内部空間を囲む形状であり、当該内部空間に多孔質材100が格納された状態で溶液120に沈められている。つまり、ケース500は、多孔質材100が浮き上がって溶液120の液面より上に出ることを抑制し、ケース500を減圧容器400から取り出す際に多孔質材100を持ち上げることができる。 Further, as shown in FIG. 11, the solution 120 is supplied to the decompression container 400, and the porous material 100 is immersed in the solution 120. The case 500 containing the porous material 100 therein is submerged in the solution 120. The case 500 has a shape surrounding the internal space, and is submerged in the solution 120 with the porous material 100 stored in the internal space. That is, the case 500 can suppress the porous material 100 from rising and coming out of the liquid surface of the solution 120, and can lift the porous material 100 when removing the case 500 from the decompression container 400.
 ケース500には、溶液120が通過可能な大きさ、かつ、多孔質材100が通過できない大きさの開口が設けられている。当該開口のサイズは、例えば0.1mm以上50mm以下である。ケース500として、例えばステンレスなどの金属製又は硬質プラスチックなどの樹脂製の網状の籠を用いることができる。なお、ここではケース500が多孔質材100の上下左右を囲んだ構成を例示したが、この構成に限定されない。例えば、ケース500は、多孔質材100が上方に浮き上がることを抑制するように多孔質材100の上方を覆い、下方が抜かれた形状であってもよい。又は、ケース500が多孔質材100の上方、かつ、ケース500を減圧容器400から取り出す際に多孔質材100を持ち上げることができるように、多孔質材100の下方に設けられた形状であってもよい。 (4) The case 500 is provided with an opening large enough to allow the solution 120 to pass therethrough and large enough to prevent the porous material 100 from passing therethrough. The size of the opening is, for example, 0.1 mm or more and 50 mm or less. As the case 500, a mesh basket made of metal such as stainless steel or resin such as hard plastic can be used. Although the case 500 exemplifies a configuration in which the case 500 surrounds the upper, lower, left, and right sides of the porous material 100, the configuration is not limited to this. For example, the case 500 may have a shape in which the upper portion of the porous material 100 is covered and the lower portion is removed so as to suppress the porous material 100 from rising upward. Alternatively, the case 500 has a shape provided above the porous member 100 and below the porous member 100 so that the porous member 100 can be lifted when the case 500 is taken out of the decompression container 400. Is also good.
 第1バルブ410を開いた状態、かつ、第2バルブ420を閉じた状態で真空ポンプ430を動作させることで、減圧容器400の中が減圧される。その後、第1バルブ410を閉じた状態、かつ、第2バルブ420を開いた状態で配管435に空気又は所望のガスを供給することで、減圧容器400の中を大気圧に戻すことができる。 By operating the vacuum pump 430 with the first valve 410 open and the second valve 420 closed, the pressure inside the decompression container 400 is reduced. Thereafter, by supplying air or a desired gas to the pipe 435 with the first valve 410 closed and the second valve 420 opened, the inside of the decompression container 400 can be returned to the atmospheric pressure.
 上記の処理が終了した後に、蓋部403を開けて、多孔質材100ごとケース500を取り出す。このとき、多孔質材100の下方に相当するケース500の一部に上記の開口が設けられていることで、過剰な溶液120を減圧容器400内に落としながら多孔質材100を取り出すことができる。 後 に After the above processing is completed, the lid 403 is opened, and the case 500 is taken out together with the porous material 100. At this time, since the above-mentioned opening is provided in a part of the case 500 corresponding to the lower part of the porous material 100, the porous material 100 can be taken out while the excess solution 120 is dropped into the decompression container 400. .
 以上、本発明の一実施形態について図面を参照しながら説明したが、本発明は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本実施形態の吸着材を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。さらに、上述した各実施形態は、相互に矛盾がない限り適宜組み合わせが可能であり、各実施形態に共通する技術事項については、明示の記載がなくても各実施形態に含まれる。 As described above, one embodiment of the present invention has been described with reference to the drawings. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. For example, those in which those skilled in the art appropriately add, delete, or change the design based on the adsorbent of the present embodiment are also included in the scope of the present invention as long as they have the gist of the present invention. Furthermore, the above-described embodiments can be appropriately combined with each other as long as there is no inconsistency, and technical matters common to the embodiments are included in each embodiment without explicit description.
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Regarding other effects different from the effects obtained by the aspects of the above-described embodiments, those that are obvious from the description of this specification or that can be easily predicted by those skilled in the art are, of course, It is understood that the present invention brings about.
10:吸着材、 100:多孔質材、 101A:内壁、 110:鉄イオン、 111:鉄化合物、 120:溶液、 130:気泡、 140A:水酸化ナトリウム溶液、 141A:水酸化鉄、 143A:塩化物イオン、 145A:ナトリウムイオン、 147A:水酸化物イオン、 150A:塩化鉄溶液、 151A:鉄イオン、 153A:塩化物イオン、 155A:塩化鉄、 200:マクロ孔、 210:メソ孔、 220:ミクロ孔、 400:減圧容器、 410:容器部、 403:蓋部、 405:排気口、 407:給気口、 410:第1バルブ、 420:第2バルブ、 430:真空ポンプ、 435:配管、 440:真空圧力計、 500:ケース 10: adsorbent, # 100: porous material, # 101A: inner wall, # 110: iron ion, # 111: iron compound, # 120: solution, # 130: air bubbles, # 140A: sodium hydroxide solution, # 141A: iron hydroxide, # 143A: chloride Ion, $ 145A: sodium ion, $ 147A: hydroxide ion, $ 150A: iron chloride solution, $ 151A: iron ion, $ 153A: chloride ion, $ 155A: iron chloride, $ 200: macropore, $ 210: mesopore, $ 220: micropore , # 400: decompression container, # 410: container, # 403: lid, # 405: exhaust port, # 407: air supply port, # 410: first valve, # 420: second valve, # 430: vacuum pump, # 435: piping, # 440: Vacuum pressure gauge, $ 500: case

Claims (12)

  1.  有機物を炭化して炭化物を形成し、
     前記炭化物の孔の中に鉄を含む溶液を染みこませ、
     前記鉄を含む溶液を染みこませた前記炭化物を乾燥させる、吸着材の製造方法。
    Carbonize organic matter to form carbides,
    Infiltrate the solution containing iron into the pores of the carbide,
    A method for producing an adsorbent, wherein the carbide impregnated with the solution containing iron is dried.
  2.  前記溶液は鉄イオンを含む、請求項1に記載の吸着材の製造方法。 方法 The method for producing an adsorbent according to claim 1, wherein the solution contains iron ions.
  3.  前記溶液は、水酸化鉄を含む粒子を含むコロイド状である、請求項1に記載の吸着材の製造方法。 The method for producing an adsorbent according to claim 1, wherein the solution is a colloid containing particles containing iron hydroxide.
  4.  前記溶液は、ヘム鉄を含む、請求項1に記載の吸着材の製造方法。 方法 The method for producing an adsorbent according to claim 1, wherein the solution contains heme iron.
  5.  乾燥した前記炭化物の孔の中にアルカリ溶液を染みこませて水酸化鉄粒子を生成し、
     前記アルカリ溶液を前記炭化物の孔の外へ排出し、
     前記炭化物を乾燥する、請求項1、2、4に記載の吸着材の製造方法。
    Infiltrate the alkaline solution into the dried pores of the carbide to produce iron hydroxide particles,
    Discharging the alkaline solution out of the pores of the carbide;
    The method for producing an adsorbent according to claim 1, wherein the carbide is dried.
  6.  有機物を炭化して炭化物を形成し、
     前記炭化物の孔の中に、鉄イオン及び前記鉄イオンと対をなす陰イオンを含む溶液を染みこませ、
     前記溶液を染み込ませた前記炭化物の孔の中にアルカリ溶液を染み込ませて水酸化鉄粒子を生成し、
     前記陰イオン及び前記アルカリ溶液を孔の外へ排出し、
     前記炭化物を乾燥する、吸着材の製造方法。
    Carbonize organic matter to form carbides,
    In the pores of the carbide, impregnated with a solution containing iron ions and anions paired with the iron ions,
    Producing iron hydroxide particles by impregnating the alkaline solution into the pores of the carbide impregnated with the solution,
    Discharging the anion and the alkaline solution out of the pore,
    A method for producing an adsorbent, wherein the carbide is dried.
  7.  前記水酸化鉄粒子を還元する請求項5又は6に記載の吸着材の製造方法。 7. The method for producing an adsorbent according to claim 5, wherein the iron hydroxide particles are reduced.
  8.  前記鉄を含む溶液を染みこませた前記炭化物を乾燥させ、鉄化合物を前記炭化物に付着させ、
     前記鉄化合物に含まれる鉄を還元する請求項1に記載の吸着材の製造方法。
    Drying the carbide impregnated with the solution containing iron, causing an iron compound to adhere to the carbide,
    The method for producing an adsorbent according to claim 1, wherein the iron contained in the iron compound is reduced.
  9.  前記炭化物を前記溶液に浸漬させた状態で減圧する、請求項1乃至8のいずれか一に記載の吸着材の製造方法。 The method for producing an adsorbent according to any one of claims 1 to 8, wherein the pressure is reduced while the carbide is immersed in the solution.
  10.  前記還元は、水素、一酸化炭素、又は炭化水素を含むガスを用いて行われる、請求項7又は8に記載の吸着材の製造方法。 The method for producing an adsorbent according to claim 7, wherein the reduction is performed using a gas containing hydrogen, carbon monoxide, or a hydrocarbon.
  11.  前記還元は、一酸化炭素を含むガスを用いて500℃以上の温度で行われる、請求項7又は8に記載の吸着材の製造方法。 方法 The method for producing an adsorbent according to claim 7, wherein the reduction is performed at a temperature of 500 ° C. or higher using a gas containing carbon monoxide.
  12.  前記還元は、水素を含むガスを用いて100℃以上の温度で行われる、請求項7又は8に記載の吸着材の製造方法。
     
    The method for producing an adsorbent according to claim 7, wherein the reduction is performed at a temperature of 100 ° C. or higher using a gas containing hydrogen.
PCT/JP2019/024319 2018-08-10 2019-06-19 Method of manufacturing adsorbent WO2020031516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020536366A JP7177840B2 (en) 2018-08-10 2019-06-19 Method for producing adsorbent that adsorbs phosphorus or arsenic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151554 2018-08-10
JP2018-151554 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031516A1 true WO2020031516A1 (en) 2020-02-13

Family

ID=69415455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024319 WO2020031516A1 (en) 2018-08-10 2019-06-19 Method of manufacturing adsorbent

Country Status (2)

Country Link
JP (1) JP7177840B2 (en)
WO (1) WO2020031516A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960726A (en) * 2021-03-17 2021-06-15 安徽工业大学 Iron-carbon composite material and preparation method and application thereof
CN113499681A (en) * 2021-08-23 2021-10-15 上海琼楼环境科技有限公司 Universal furniture deodorant and preparation method thereof
CN113546604A (en) * 2020-04-23 2021-10-26 日商藤田股份有限公司 Adsorbent material
CN115069212A (en) * 2021-03-10 2022-09-20 日商藤田股份有限公司 Adsorbent and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118281A (en) * 1977-03-25 1978-10-16 Hitachi Ltd Preparation of hydrous oxide supported on carrier
JPS5447885A (en) * 1977-09-22 1979-04-14 Kureha Chem Ind Co Ltd Ethylene absorbent and production thereof
JPS5489994A (en) * 1977-12-27 1979-07-17 Fuji Electric Co Ltd Ferromagnetic activated carbon forming method
JPS62191040A (en) * 1986-02-17 1987-08-21 Nippon Denso Co Ltd Adsorbable carbon material and its production
JPH04150940A (en) * 1990-10-09 1992-05-25 Osaka Gas Co Ltd Adsorbent and preparation thereof
JPH059015A (en) * 1991-06-27 1993-01-19 Hitachi Plant Eng & Constr Co Ltd Manufacture of activated carbon stuck with chemical
JP2002079015A (en) * 2000-08-29 2002-03-19 L Winchester Eric Filter for arsenic removal and purification method of water containing arsenic
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118281A (en) * 1977-03-25 1978-10-16 Hitachi Ltd Preparation of hydrous oxide supported on carrier
JPS5447885A (en) * 1977-09-22 1979-04-14 Kureha Chem Ind Co Ltd Ethylene absorbent and production thereof
JPS5489994A (en) * 1977-12-27 1979-07-17 Fuji Electric Co Ltd Ferromagnetic activated carbon forming method
JPS62191040A (en) * 1986-02-17 1987-08-21 Nippon Denso Co Ltd Adsorbable carbon material and its production
JPH04150940A (en) * 1990-10-09 1992-05-25 Osaka Gas Co Ltd Adsorbent and preparation thereof
JPH059015A (en) * 1991-06-27 1993-01-19 Hitachi Plant Eng & Constr Co Ltd Manufacture of activated carbon stuck with chemical
JP2002079015A (en) * 2000-08-29 2002-03-19 L Winchester Eric Filter for arsenic removal and purification method of water containing arsenic
JP2006307373A (en) * 2005-04-27 2006-11-09 Mitsubishi Heavy Ind Ltd Method for preparing active carbon fiber for desulfurization catalyst and active carbon fiber for desulfurization catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546604A (en) * 2020-04-23 2021-10-26 日商藤田股份有限公司 Adsorbent material
CN113546604B (en) * 2020-04-23 2023-11-03 日商藤田股份有限公司 Adsorption material
CN115069212A (en) * 2021-03-10 2022-09-20 日商藤田股份有限公司 Adsorbent and method for producing same
CN112960726A (en) * 2021-03-17 2021-06-15 安徽工业大学 Iron-carbon composite material and preparation method and application thereof
CN112960726B (en) * 2021-03-17 2024-04-12 安徽工业大学 Iron-carbon composite material and preparation method and application thereof
CN113499681A (en) * 2021-08-23 2021-10-15 上海琼楼环境科技有限公司 Universal furniture deodorant and preparation method thereof

Also Published As

Publication number Publication date
JP7177840B2 (en) 2022-11-24
JPWO2020031516A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2020031516A1 (en) Method of manufacturing adsorbent
Wang et al. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment
Zhang et al. Hydrothermal carbonization for hydrochar production and its application
JP7290401B2 (en) Adsorbent manufacturing method
Wang et al. Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor
Boumediene¹ et al. Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions
Erdem et al. Preparation and characterization of a novel activated carbon from vine shoots by ZnCl 2 activation and investigation of its rifampicine removal capability
WO2016072932A1 (en) Activated carbon, hydrochar and processes for making same
Abdel-Ghani et al. Pentachlorophenol (PCP) adsorption from aqueous solution by activated carbons prepared from corn wastes
Nguyen et al. Engineering conversion of Asteraceae plants into biochars for exploring potential applications: a review
KR101725459B1 (en) Biochar for removing organosulphur compound from seaweed and preparing method thereof
CN108607507A (en) A kind of preparation method of the high stability charcoal base cementite of degradation of dye
Khan et al. Developments in activated functionalized carbons and their applications in water decontamination: a review
Kamali et al. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute
Xiao A review of biochar functionalized by thermal air oxidation
WO2020022148A1 (en) Carbonization/reduction system and method of producing metal supported porous material
JP2014214193A (en) Soil conditioner and soil improvement method
Fan et al. Adsorption of Heavy Metals by Adsorbents from Food Waste Residue.
Nadda Biochar and its composites: fundamentals and Applications
Joseph et al. Adsorption performance and evaluation of activated carbon from coconut shell for the removal of chlorinated phenols in aqueous medium
Li et al. Preparation of waste coffee-grounds carbon and study on phenol adsorption ability
Masso Valorization of compost in the production of carbon-based materials for the treatment of contaminated wastewater
El-Sheikh Partial pyrolysis of olive wood to improve its sorption of chlorophenols and nitrophenols
KR102413737B1 (en) Manufacturing Method of Coffee Activated Carbon Deodorant
JP7330772B2 (en) fertilizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846825

Country of ref document: EP

Kind code of ref document: A1