JPH0824636A - Production of adsorbent and water purifying apparatus using the same - Google Patents

Production of adsorbent and water purifying apparatus using the same

Info

Publication number
JPH0824636A
JPH0824636A JP6189814A JP18981494A JPH0824636A JP H0824636 A JPH0824636 A JP H0824636A JP 6189814 A JP6189814 A JP 6189814A JP 18981494 A JP18981494 A JP 18981494A JP H0824636 A JPH0824636 A JP H0824636A
Authority
JP
Japan
Prior art keywords
adsorbent
activated carbon
producing
treatment
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6189814A
Other languages
Japanese (ja)
Inventor
Masami Hiasa
雅見 日浅
Nobuyuki Maehashi
信之 前橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP6189814A priority Critical patent/JPH0824636A/en
Publication of JPH0824636A publication Critical patent/JPH0824636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce an adsorbent capable of efficiently removing, a low b.p. halogen type org. matter present in water in a low concn. over a long period of time and to provide a water purifying apparatus utilizing the adsorbent. CONSTITUTION:Activated carbon obtained by carbonizing and activating org. matter and proper in mode pore diameter is selected and ash on the surface of activated carbon is removed by boiling. Next, activated carbon is subjected to heat treatment under a high vacuum to remove the hoydrophilic functional group on the surface of activated carbon to make activated carbon hydrophobic. By this method, an excellent adsorbent enhanced in the compatibility with a low b.p. halogen type org. matter is obtained. By forming a packed bed composed of this adsorbent, a water purifying apparatus is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水、地下水、排水
等から低沸点ハロゲン系有機物を吸着除去する吸着剤の
製造方法、および、前記吸着剤を利用した浄水装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an adsorbent for adsorbing and removing low-boiling-point halogenated organic substances from tap water, ground water, waste water, etc., and a water purification apparatus using the adsorbent.

【0002】[0002]

【従来技術およびその問題点】水道水、地下水等の中に
は低沸点ハロゲン系有機物(例えばクロロホルムやトリ
クロロエチレン)が溶存している場合がある。特に水道
水、地下水に関しては、低沸点ハロゲン系有機物の発癌
性が近年指摘されている。
2. Description of the Related Art There are cases where low-boiling halogenated organic substances (such as chloroform and trichloroethylene) are dissolved in tap water, ground water and the like. In particular, with respect to tap water and groundwater, carcinogenicity of low boiling point halogenated organic substances has recently been pointed out.

【0003】このことから、水道水、地下水を飲食用に
供する場合、前記低沸点ハロゲン系有機物を水道水から
除去することが望ましい。
Therefore, when tap water or ground water is used for food and drink, it is desirable to remove the low boiling point halogenated organic matter from tap water.

【0004】また、排水に関しては、例えば、クリーニ
ング店の排水のようにトリクロロエチレンを含む排水が
考えられ、地下水汚染の原因となるため除去することが
望ましい。
Regarding the drainage, for example, drainage containing trichlorethylene such as the drainage of a cleaning shop is considered, and it is desirable to remove it because it causes groundwater pollution.

【0005】従来は、前述の低沸点ハロゲン系有機物の
除去には、活性炭が用いられてきた。この活性炭は、椰
子殻、石炭、おがくず等の天然系有機物や、フェノール
樹脂、アクリル樹脂、石油ピッチ、石炭ピッチ等の合成
系有機物を原料とし、これを炭化し、賦活処理により作
製するものである。
Conventionally, activated carbon has been used to remove the above-mentioned low-boiling halogenated organic substances. This activated carbon is made from natural organic matter such as coconut shells, coal and sawdust, and synthetic organic matter such as phenol resin, acrylic resin, petroleum pitch and coal pitch, which are carbonized and produced by activation treatment. .

【0006】しかしながら、活性炭の低沸点ハロゲン系
有機物に対する吸着量は、他の被吸着物質と比較すると
少ない。
However, the amount of activated carbon adsorbed on the low boiling point halogenated organic material is smaller than that of other substances to be adsorbed.

【0007】一般に低沸点ハロゲン系有機物の除去に際
し、活性炭の中でも好適といわれている椰子殻を原料と
する粒状活性炭であっても、25℃の吸着等温線から求
めたクロロホルムの平衡濃度0.02mg/Lでの活性
炭重量当たりの吸着量は0.2から0.6mg/g程度
(例えばクラレケミカル(株)製粒状活性炭「GW」の
場合、0.39mg/g)と少ない。
When removing low-boiling halogen-based organic substances, even if the granular activated carbon is made of coconut shell, which is said to be suitable among activated carbons, the equilibrium concentration of chloroform is 0.02 mg obtained from the adsorption isotherm at 25 ° C. The adsorption amount per weight of activated carbon at / L is about 0.2 to 0.6 mg / g (for example, 0.39 mg / g in the case of granular activated carbon “GW” manufactured by Kuraray Chemical Co., Ltd.).

【0008】このことは、前記「GW」を200g充填
した浄水装置を仮定した場合、全ての活性炭が理想的に
平衡状態まで吸着したとしても、クロロホルムの吸着量
は0.39(mg/g)×200(g)=78(mg)
であり、流入水のクロロホルム濃度を0.1mg/Lと
すると、78(mg)/0.1(mg/L)=780
(L)の流入水の処理しか期待できないことになり、頻
繁に活性炭の交換が必要となり、不便かつ不経済であ
る。
This means that, assuming a water purifier filled with 200 g of the above-mentioned "GW", the adsorption amount of chloroform is 0.39 (mg / g) even if all activated carbons are ideally adsorbed to an equilibrium state. × 200 (g) = 78 (mg)
When the chloroform concentration of the inflow water is 0.1 mg / L, 78 (mg) /0.1 (mg / L) = 780
Only the treatment of the inflow water of (L) can be expected, which requires frequent replacement of activated carbon, which is inconvenient and uneconomical.

【0009】また、吸着能力が低いことから低沸点ハロ
ゲン系有機物の除去処理に対する信頼性が低い。
Further, since the adsorption capacity is low, the reliability of the removal treatment of the low boiling point halogenated organic matter is low.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、水中
に低濃度で存在する低沸点ハロゲン系有機物を効率的、
かつ長期にわたって除去可能な吸着剤の製造方法を提供
することである。
SUMMARY OF THE INVENTION An object of the present invention is to efficiently and efficiently remove low boiling point halogenated organic substances present in water at low concentrations.
And to provide a method for producing an adsorbent that can be removed over a long period of time.

【0011】他の観点においては、本発明の目的は、水
道水中に低濃度で存在する低沸点ハロゲン系有機物を、
少量の吸着剤で長期間にわたって効果的に除去すること
が可能な、小型かつコンパクトでメンテナンス性に優れ
た浄水装置を提供することである。
In another aspect, the object of the present invention is to provide a low boiling point halogenated organic substance which is present in tap water at a low concentration.
It is an object of the present invention to provide a small-sized and compact water purifying apparatus which can be effectively removed over a long period of time with a small amount of an adsorbent and has excellent maintainability.

【0012】[0012]

【課題を解決するための手段】本発明は前記課題を解決
するため、1)溶媒(水)と吸着剤の親和性を減少さ
せ、溶質(低沸点ハロゲン系有機物)と吸着剤との親和
性を増加させると、溶質と吸着剤との吸着エネルギーが
増加するという知見と、 2)本来活性炭の表面は疎水性であるが、通常の活性炭
には部分的にフェノール性水酸基やカルボキシル基を始
めとする親水性官能基が存在しており、この部分は親水
化されているという知見と、 3)活性炭の表面には親水性不純物としての灰分が残存
するという知見と、 4)高真空化あるいは水素を始めとする還元性ガス、窒
素を始めとする低活性ガス、アルゴンを始めとする不活
性ガスを微量含む雰囲気で加熱すると、親水性官能基を
除去することができるという技術思想と、 5)加熱処理に先がけ、活性炭表面に存在する灰分を除
去することにより、活性炭表面の疎水性を向上させるこ
とができるという技術思想と、 6)活性炭の吸着現象は分子間力によって生じるため、
被吸着物質の分子サイズに応じた好適な活性炭細孔直径
が存在するという技術思想、に立脚している。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention 1) decreases the affinity between a solvent (water) and an adsorbent, and the affinity between a solute (a low boiling point halogenated organic substance) and the adsorbent. It is found that the adsorption energy between the solute and the adsorbent increases when the amount of water is increased. There is a hydrophilic functional group that exists, and this part is hydrophilized, 3) The knowledge that ash remains as a hydrophilic impurity on the surface of activated carbon, 4) High vacuum or hydrogen 5) The technical idea that the hydrophilic functional group can be removed by heating in an atmosphere containing a trace amount of a reducing gas such as, a low activity gas such as nitrogen, or an inert gas such as argon. Heat treatment First, the technical idea that the hydrophobicity of the activated carbon surface can be improved by removing the ash existing on the activated carbon surface, and 6) because the adsorption phenomenon of activated carbon is caused by intermolecular force,
It is based on the technical idea that there is a suitable activated carbon pore diameter according to the molecular size of the substance to be adsorbed.

【0013】このため、本発明の吸着剤の製造方法は、
従来の活性炭を高真空下で加熱して親水性官能基を除去
することにより、活性炭表面の低沸点ハロゲン系有機物
に対する吸着性を増加させることを特徴としている。
Therefore, the method for producing an adsorbent of the present invention is
It is characterized in that the conventional activated carbon is heated under a high vacuum to remove the hydrophilic functional group, thereby increasing the adsorptivity of the low boiling point halogenated organic substance on the surface of the activated carbon.

【0014】加熱処理時の最高温度は500℃から20
00℃の範囲で可能である。
The maximum temperature during the heat treatment is from 500 ° C. to 20
It is possible in the range of 00 ° C.

【0015】また、この時用いる活性炭のモード細孔直
径は1.0から3.0nmの範囲であることが吸着効率
を高めるために好ましい。ここで述べるモード細孔直径
とは、水蒸気吸着法により細孔直径に対する細孔容積の
分布を測定した際の細孔容積の占める割合の最も多い細
孔直径と定義する。
The mode pore diameter of the activated carbon used at this time is preferably in the range of 1.0 to 3.0 nm in order to improve the adsorption efficiency. The mode pore diameter described here is defined as the pore diameter having the largest proportion of the pore volume when the distribution of the pore volume with respect to the pore diameter is measured by the water vapor adsorption method.

【0016】さらに活性炭表面の灰分を除去するため
に、加熱処理前に、煮沸処理、硝酸処理等の薬品処理を
行なうことが好ましい。
Further, in order to remove the ash content on the surface of the activated carbon, it is preferable to carry out a chemical treatment such as a boiling treatment or a nitric acid treatment before the heat treatment.

【0017】[0017]

【作用】本発明により作製した吸着剤は、従来の活性炭
に対して弱吸着性であったクロロホルムを始めとする低
沸点ハロゲン系有機物の吸着剤に対する親和性を向上し
ているため、前記有機物に対する優れた吸着性能を有す
る。
The adsorbent prepared according to the present invention has improved affinity to the adsorbent of low boiling point halogenated organic compounds such as chloroform, which has been weakly adsorbed to conventional activated carbon, and therefore has a high affinity for the organic compounds. It has excellent adsorption performance.

【0018】[0018]

【実施例】【Example】

実験例1(繊維状活性炭) クラレケミカル(株)製フェノール樹脂原料繊維状活性
炭「FR−15」(モード細孔直径2.4nm)、「F
R−20」(モード細孔直径3.2nm)および「FR
−25」(モード細孔直径4.4nm)、大阪ガス
(株)製石炭ピッチ原料繊維状活性炭「A−10」、東
邦レーヨン(株)製アクリル樹脂原料繊維状活性炭「F
E−300」「FE−400」を、日本真空技術(株)
製真空熱処理炉を用い、0.5Torrの水素ガス雰囲
気中で図1から図3に示す加熱処理をそれぞれ実施し、
本発明の吸着剤を得た。
Experimental example 1 (fibrous activated carbon) Kuraray Chemical Co., Ltd. phenol resin raw material fibrous activated carbon "FR-15" (mode pore diameter 2.4 nm), "F
R-20 "(mode pore diameter 3.2 nm) and" FR
-25 "(mode pore diameter 4.4 nm), Osaka Gas Co., Ltd. coal pitch raw material fibrous activated carbon" A-10 ", Toho Rayon Co., Ltd. acrylic resin raw material fibrous activated carbon" F "
E-300 "and" FE-400 "are manufactured by Nippon Vacuum Technology Co., Ltd.
Using a vacuum heat treatment furnace, the heat treatment shown in FIGS. 1 to 3 was carried out in a hydrogen gas atmosphere of 0.5 Torr.
An adsorbent of the present invention was obtained.

【0019】この吸着剤の低沸点ハロゲン系有機物に対
する吸着性能を調べるため、以下の手順に従い、平衡吸
着試験を実施した。 (1)平衡に達するまでの時間を短縮するため、乳鉢で
粒径100μm以下に粉砕した吸着剤を110℃で3時
間以上乾燥した。 (2)この試料を100mLのバイアル瓶に0および1
mgから40mgの範囲で段階的に採取し、これに濃度
100μg/Lに調製したクロロホルム溶液を100m
L加え、密栓して25℃で1時間振とうした。 (3)その後、上水試験方法((社)日本水道協会)の
トリハロメタン類の測定方法に準じて、各バイアル瓶の
平衡濃度を求めた。 (4)平衡濃度と吸着剤単位重量当たりの吸着量を算出
し、フロインドリッヒ式で回帰させ、平衡濃度20μg
/Lの時の吸着剤単位重量当たりの吸着量を求めた。
An equilibrium adsorption test was carried out in accordance with the following procedure in order to investigate the adsorption performance of this adsorbent with respect to low boiling point halogenated organic substances. (1) In order to shorten the time required to reach equilibrium, the adsorbent crushed to a particle size of 100 μm or less in a mortar was dried at 110 ° C. for 3 hours or more. (2) Add 0 and 1 of this sample to a 100 mL vial.
Chloroform solution with a concentration of 100 μg / L was collected in 100 m
L was added, the container was sealed, and the mixture was shaken at 25 ° C. for 1 hour. (3) Then, the equilibrium concentration of each vial was determined according to the method for measuring trihalomethanes of the water supply test method (Japan Water Works Association). (4) Equilibrium concentration and adsorption amount per unit weight of adsorbent were calculated and regressed by the Freundlich equation to obtain equilibrium concentration of 20 μg.
The amount of adsorption per unit weight of the adsorbent at the time of / L was determined.

【0020】この結果を図4に示す。これより、繊維状
活性炭の原料によらず、加熱処理によるクロロホルム吸
着性能の向上が認められ、加熱処理にはフェノール性水
酸基、カルボキシル基を始めとする親水性官能基の除去
効果があることがわかった。親水性官能基の除去反応は
500℃以上で効率的に進展し、一方、加熱処理温度の
設備経済性から2000℃以下が良く、したがって加熱
処理時の最高温度は500℃以上2000℃以下が望ま
しい。
The results are shown in FIG. From this, it was confirmed that the chloroform adsorption performance was improved by the heat treatment regardless of the raw material of the fibrous activated carbon, and that the heat treatment had an effect of removing hydrophilic functional groups such as phenolic hydroxyl groups and carboxyl groups. It was The reaction for removing the hydrophilic functional group proceeds efficiently at 500 ° C. or higher, while 2000 ° C. or lower is preferable because of the facility economy of the heat treatment temperature. Therefore, the maximum temperature during heat treatment is preferably 500 ° C. or higher and 2000 ° C. or lower .

【0021】実験例2(繊維状活性炭の洗浄処理) 前記「FR−15」について、親水性不純物である灰分
除去を目的として、加熱処理に先立ち、下記の2通りの
前処理を行なった。すなわち、純水中で2時間煮沸した
後純水で洗浄して110℃で乾燥したもの(煮沸処
理)、および、60%硝酸中に1時間浸漬した後純水で
洗浄して110℃で乾燥したもの(硝酸処理)で、これ
らを前記真空熱処理炉を用い、0.5Torrの水素ガ
ス雰囲気中で図3に示す加熱処理をそれぞれ実施した。
Experimental Example 2 (Washing Treatment of Fibrous Activated Carbon) The above "FR-15" was subjected to the following two pretreatments prior to the heat treatment for the purpose of removing ash which is a hydrophilic impurity. That is, it was boiled in pure water for 2 hours, washed with pure water and dried at 110 ° C (boiling treatment), and immersed in 60% nitric acid for 1 hour, washed with pure water and dried at 110 ° C. These were subjected to the heat treatment shown in FIG. 3 in a hydrogen gas atmosphere of 0.5 Torr using the vacuum heat treatment furnace.

【0022】得られた吸着剤を、前記実験例1に記載の
平衡吸着試験の方法に従って平衡濃度20μg/Lの時
の吸着剤単位重量当たりの吸着量を求めた。この結果を
表1に示す。
According to the method of the equilibrium adsorption test described in Experimental Example 1, the adsorbent amount per unit weight of the adsorbent at an equilibrium concentration of 20 μg / L was determined. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】これより、クロロホルムの吸着性能は、 煮沸処理>硝酸処理>未処理 の順であった。From this, the adsorption performance of chloroform was in the order of boiling treatment> nitric acid treatment> non-treatment.

【0025】前処理は活性炭表面の灰分除去が目的のた
め、本実験の煮沸処理、硝酸処理に限らず他方法であっ
ても問題ない。
The purpose of the pretreatment is to remove the ash on the surface of the activated carbon, and therefore the boiling treatment and nitric acid treatment in this experiment are not the only problem, and other methods may be used.

【0026】実験例3(粒状活性炭) クラレケミカル(株)製椰子殼原料粒状活性炭「GW」
(モード細孔直径2.1nm)、「GA」(モード細孔
直径1.6nm)および「GLC」(モード細孔直径
2.8nm)を、前記真空熱処理炉を用い、0.5To
rrの水素ガス雰囲気中で図1から図3に示す加熱処理
をそれぞれ実施した。
Experimental Example 3 (Granular Activated Carbon) Kuraray Chemical Co., Ltd. coconut shell raw material granular activated carbon "GW"
(Mode pore diameter of 2.1 nm), "GA" (mode pore diameter of 1.6 nm) and "GLC" (mode pore diameter of 2.8 nm) using the vacuum heat treatment furnace described above at 0.5 To
The heat treatments shown in FIGS. 1 to 3 were each performed in a hydrogen gas atmosphere of rr.

【0027】得られた吸着剤を、前記実験例1に記載の
平衡吸着試験の方法に従って平衡濃度20μg/Lの時
の吸着剤単位重量当たりの吸着量を求めた。この結果を
図5に示す。これより、クロロホルムの吸着性能は、向
上するものと、しないもの(「GA」)とがあり、向上
するものについては、最高温度1200℃が良かった。
According to the method of the equilibrium adsorption test described in Experimental Example 1 above, the adsorbed amount per unit weight of the adsorbent at an equilibrium concentration of 20 μg / L was determined. The result is shown in FIG. As a result, the adsorption performance of chloroform was improved or not (“GA”), and the maximum temperature of 1200 ° C. was good for the improved adsorption performance.

【0028】また、実験例1および実験例3で用いた活
性炭について、その水蒸気吸着法で測定したモード細孔
直径と、未加熱処理時の平衡濃度20μg/Lの時の活
性炭単位重量当たりの吸着量の関係を図6に示す。これ
よりモード細孔直径1.0nmから3.0nmの活性炭
を用いて加熱処理することが望ましいことがわかる。た
だし、「GA」の結果から、加熱処理の最高温度に関し
ては、出発原料、活性炭のモード細孔径に関係した最適
温度がある。
Regarding the activated carbon used in Experimental Examples 1 and 3, the mode pore diameter measured by the steam adsorption method and the adsorption per unit weight of activated carbon at the equilibrium concentration of 20 μg / L during unheated treatment The relationship between the amounts is shown in FIG. From this, it is understood that it is desirable to perform heat treatment using activated carbon having a mode pore diameter of 1.0 nm to 3.0 nm. However, from the result of “GA”, regarding the maximum temperature of the heat treatment, there is an optimum temperature related to the starting material and the mode pore size of the activated carbon.

【0029】実験例4(粉末活性炭) クラレケミカル(株)製椰子殻、石炭、植物原料粉末状
活性炭「P−60」および「PK−D」を、前記真空熱
処理炉を用い、0.5Torrの水素ガス雰囲気中で図
1から図3に示す加熱処理をそれぞれ実施した。
Experimental Example 4 (Powdered Activated Carbon) Coconut shell manufactured by Kuraray Chemical Co., Coal, and plant-derived powdered activated carbons "P-60" and "PK-D" were used at 0.5 Torr in the vacuum heat treatment furnace. The heat treatments shown in FIGS. 1 to 3 were carried out in a hydrogen gas atmosphere.

【0030】得られた吸着剤を、前記実験例1に記載の
平衡吸着試験の方法にしたがって平衡濃度20μg/L
の時の吸着剤単位重量当たりの吸着量を求めた。この結
果を図7に示す。これより、クロロホルムの吸着性能は
いずれも向上し、最高温度1200℃が最も良かった。
The adsorbent thus obtained was subjected to an equilibrium concentration of 20 μg / L in accordance with the equilibrium adsorption test method described in Experimental Example 1 above.
At that time, the amount of adsorption per unit weight of the adsorbent was determined. The result is shown in FIG. 7. From this, the adsorption performance of chloroform was improved, and the maximum temperature of 1200 ° C was the best.

【0031】以上に述べた実験例から、1)活性炭の出
発原料や形状によらず、本発明の高真空下での加熱処理
は吸着性能の向上に効果があること、 2)洗浄処理による親水性灰分除去も吸着性能の向上に
効果のあること、 3)原料となる活性炭の水蒸気吸着法によるモード細孔
直径は1.0から3.0nmの範囲にあるのが好ましい
こと、 4)加熱処理の最適温度は概ね800℃から1200℃
の範囲が好ましいこと、がわかる。
From the experimental examples described above, 1) that the heat treatment under high vacuum of the present invention is effective for improving the adsorption performance, regardless of the starting material and shape of the activated carbon. Removal of organic ash is also effective in improving the adsorption performance, 3) It is preferable that the mode pore diameter of the activated carbon as a raw material by the steam adsorption method is in the range of 1.0 to 3.0 nm, 4) Heat treatment The optimum temperature is about 800 ℃ to 1200 ℃
It is understood that the range of is preferable.

【0032】次に本発明に基づき製造した吸着剤を充填
した浄水装置の実施例について述べる。
Next, an example of a water purifier filled with an adsorbent manufactured according to the present invention will be described.

【0033】前記実験例3の、最高温度1200℃で加
熱処理した粒状活性炭「GW」の平衡濃度20μg/L
の時の吸着剤単位重量当たりの吸着量は図6に示すよう
に1.8mg/gである。本実施例の浄水装置は、この
吸着剤200gの充填層を収容してなる。この時、全て
の吸着剤が理想的に平衡状態まで吸着したと仮定する
と、クロロホルムの吸着量は1.8(mg/g)×20
0(g)=360(mg)であり、流入水のクロロホル
ム濃度を0.1mg/Lとすると、360(mg)/
0.1(mg/L)=3600(L)の流入水の処理が
できることになる。これは前述の通り、理想的な状況を
仮定しているので、実際の寿命はこれよりも短いが、従
来の活性炭と比較すると、大きく寿命が延びていること
がわかる。
The equilibrium concentration of the granular activated carbon "GW" heat-treated at the maximum temperature of 1200 ° C in Experimental Example 3 was 20 μg / L.
The adsorption amount per unit weight of the adsorbent at that time was 1.8 mg / g as shown in FIG. The water purifier of this embodiment contains a packed bed of 200 g of this adsorbent. At this time, assuming that all the adsorbents were ideally adsorbed to the equilibrium state, the adsorbed amount of chloroform was 1.8 (mg / g) × 20.
0 (g) = 360 (mg), and assuming the chloroform concentration of the inflow water to be 0.1 mg / L, 360 (mg) /
The influent water of 0.1 (mg / L) = 3600 (L) can be treated. As described above, this assumes an ideal situation, so the actual life is shorter than this, but it can be seen that the life is greatly extended compared to conventional activated carbon.

【0034】なお、本発明の浄水装置は、前述の製造方
法に基づいて作製した吸着剤を充填する平易な構造のた
め、さらに懸濁微粒子成分の除去をも目的とした場合、
前記吸着剤充填層の前段もしくは後段にろ過段を設けた
構成とすることも可能であり、また水を電気分解する電
解槽を設けた、いわゆるアルカリイオン水生成機能を付
加した浄水装置として構成することも可能である。
Since the water purification apparatus of the present invention has a simple structure for filling the adsorbent prepared according to the above-mentioned manufacturing method, when it is also intended to remove suspended fine particle components,
It is also possible to have a configuration in which a filtration stage is provided before or after the adsorbent-packed layer, and also as a water purification device with a so-called alkaline ionized water producing function provided with an electrolytic cell for electrolyzing water. It is also possible.

【0035】[0035]

【発明の効果】以上に述べたように、本発明によれば、
高真空下で加熱し親水性官能基を除去することにより、
活性炭表面の低沸点ハロゲン系有機物に対する親和性を
増加させ、吸着性能の優れた吸着剤を得ることができ
る。
As described above, according to the present invention,
By heating under high vacuum to remove hydrophilic functional groups,
It is possible to obtain an adsorbent having excellent adsorption performance by increasing the affinity of the activated carbon surface for low boiling point halogenated organic substances.

【0036】さらに、加熱処理前に活性炭を煮沸あるい
は硝酸を始めとする薬品処理で、活性炭表面の灰分除去
を行うこと、原料となる活性炭のモード細孔直径を最適
範囲で選択すること、加熱処理温度の最高温度を500
℃から2000℃の範囲で行うことにより吸着性能のよ
り優れた吸着剤を得ることができる。
Further, prior to the heat treatment, the activated carbon is boiled or a chemical treatment such as nitric acid is used to remove the ash on the surface of the activated carbon, the mode pore diameter of the activated carbon as a raw material is selected within an optimum range, and the heat treatment is performed. The maximum temperature is 500
By carrying out in the range of ℃ to 2000 ℃, it is possible to obtain an adsorbent having more excellent adsorption performance.

【0037】この吸着剤を収容した浄水装置では、小型
でコンパクトでありながら、水道水中に低濃度で存在す
る低沸点ハロゲン系有機物を、少量の吸着剤で長期間に
わたって効果的に除去することが可能であり、浄水装置
のランニングコストを低減、除去信頼性を増加すること
ができる。
The water purification apparatus containing this adsorbent is small and compact, but it is possible to effectively remove the low boiling point halogenated organic substances present in tap water at a low concentration for a long period of time with a small amount of adsorbent. It is possible, the running cost of the water purifier can be reduced, and the removal reliability can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実験例1、実験例3、実験例4で最高
温度800℃の加熱処理ダイアグラムである。
FIG. 1 is a heat treatment diagram at a maximum temperature of 800 ° C. in Experimental Example 1, Experimental Example 3, and Experimental Example 4.

【図2】図2は、実験例1、実験例3、実験例4で最高
温度1000℃の加熱処理ダイアグラムである。
FIG. 2 is a heat treatment diagram at a maximum temperature of 1000 ° C. in Experimental Example 1, Experimental Example 3, and Experimental Example 4.

【図3】図3は、実験例1から実験例4までで最高温度
1200℃の加熱処理ダイアグラムである。
FIG. 3 is a heat treatment diagram of the maximum temperature of 1200 ° C. in Experimental Examples 1 to 4.

【図4】図4は、実験例1の結果を示すグラフで、繊維
状活性炭の加熱処理の効果を示す。
FIG. 4 is a graph showing the results of Experimental Example 1, showing the effect of heat treatment of fibrous activated carbon.

【図5】図5は、実験例3の結果を示すグラフで、粒状
活性炭の加熱処理の効果を示す。
FIG. 5 is a graph showing the results of Experimental Example 3, showing the effect of heat treatment of granular activated carbon.

【図6】図6は、実験例1および実験例3で用いた未加
熱処理活性炭のモード細孔直径と吸着性能との関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the mode pore diameter and the adsorption performance of the unheated activated carbon used in Experimental Example 1 and Experimental Example 3.

【図7】図7は、実験例4の結果を示すグラフで、粉末
活性炭の加熱処理の効果を示す。
FIG. 7 is a graph showing the results of Experimental Example 4, showing the effect of heat treatment of powdered activated carbon.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】有機物を炭化し、賦活して得られる活性炭
を、高真空下で加熱処理して得られることを特徴とする
吸着剤の製造方法。
1. A method for producing an adsorbent, which is obtained by heating activated carbon obtained by carbonizing and activating an organic substance under high vacuum.
【請求項2】有機物を炭化し、賦活して得られる活性炭
を、洗浄処理したのち、高真空下で加熱処理して得られ
ることを特徴とする吸着剤の製造方法。
2. A method for producing an adsorbent, which is obtained by subjecting activated carbon obtained by carbonizing and activating an organic matter to a washing treatment and then a heating treatment under a high vacuum.
【請求項3】前記洗浄処理とは、煮沸処理および硝酸を
始めとする薬品処理である請求項2に基づく吸着剤の製
造方法。
3. The method for producing an adsorbent according to claim 2, wherein the cleaning treatment is a boiling treatment and a chemical treatment including nitric acid.
【請求項4】前記高真空とは、残留する空気以外は何も
含まない雰囲気、または水素、一酸化炭素、アンモニア
を始めとする還元性ガス、窒素を始めとする低活性ガ
ス、アルゴンを始めとする不活性ガスを微量含む雰囲気
で、気圧が0.5Torr以下である請求項1から3の
いずれかに基づく吸着剤の製造方法。
4. The high vacuum means an atmosphere containing nothing other than residual air, or a reducing gas such as hydrogen, carbon monoxide or ammonia, a low active gas such as nitrogen, or argon. The method for producing an adsorbent according to any one of claims 1 to 3, wherein the atmospheric pressure is 0.5 Torr or less in an atmosphere containing a trace amount of an inert gas.
【請求項5】前記活性炭の水蒸気吸着法によるモード細
孔直径が1.0nmから3.0nmの範囲にある請求項
1から4のいずれかに基づく吸着剤の製造方法。
5. The method for producing an adsorbent according to any one of claims 1 to 4, wherein the mode pore diameter of the activated carbon by the steam adsorption method is in the range of 1.0 nm to 3.0 nm.
【請求項6】前記加熱処理の最高温度が500℃から2
000℃の範囲にある請求項1から5のいずれかに基づ
く吸着剤の製造方法。
6. The maximum temperature of the heat treatment is from 500 ° C. to 2 °
The method for producing an adsorbent according to any one of claims 1 to 5, which is in the range of 000 ° C.
【請求項7】前記請求項1から6のいずれかに基づく製
造方法で製造された吸着剤を利用したことを特徴とする
浄水装置
7. A water purification apparatus using an adsorbent produced by the production method according to any one of claims 1 to 6.
JP6189814A 1994-07-09 1994-07-09 Production of adsorbent and water purifying apparatus using the same Pending JPH0824636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189814A JPH0824636A (en) 1994-07-09 1994-07-09 Production of adsorbent and water purifying apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6189814A JPH0824636A (en) 1994-07-09 1994-07-09 Production of adsorbent and water purifying apparatus using the same

Publications (1)

Publication Number Publication Date
JPH0824636A true JPH0824636A (en) 1996-01-30

Family

ID=16247662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189814A Pending JPH0824636A (en) 1994-07-09 1994-07-09 Production of adsorbent and water purifying apparatus using the same

Country Status (1)

Country Link
JP (1) JPH0824636A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000859A (en) * 1999-06-24 2001-01-09 Matsushita Electric Ind Co Ltd Production of active carbon for water treatment and active carbon for water treatment obtained by the method
WO2001068526A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068525A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US6613126B2 (en) 1998-09-30 2003-09-02 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
JP2009166042A (en) * 1997-04-16 2009-07-30 Pur Water Purification Products Inc Filter for apparatus for treating gravity-fed water apparatus
JP2011225734A (en) * 2010-04-21 2011-11-10 Kao Corp Method of producing polyether polycarbonate
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
KR20190073855A (en) * 2017-12-19 2019-06-27 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166042A (en) * 1997-04-16 2009-07-30 Pur Water Purification Products Inc Filter for apparatus for treating gravity-fed water apparatus
US6613126B2 (en) 1998-09-30 2003-09-02 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
JP2001000859A (en) * 1999-06-24 2001-01-09 Matsushita Electric Ind Co Ltd Production of active carbon for water treatment and active carbon for water treatment obtained by the method
WO2001068526A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2001068525A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US7008725B2 (en) 2000-03-16 2006-03-07 Sony Corporation Hydrogen-storing carbonaceous material and method for producing the same, hydrogen-stored carbonaceous material and method for producing the same and battery and fuel cell using hydrogen-stored carbonaceous material
US7014952B2 (en) 2000-03-16 2006-03-21 Sony Corporation Hydrogen-storing carbonaceous material and method for producing the same, hydrogen-stored carbonaceous material and method for producing the same and battery and fuel cell using hydrogen-stored carbonaceous material
JP2011225734A (en) * 2010-04-21 2011-11-10 Kao Corp Method of producing polyether polycarbonate
US10105680B2 (en) 2014-07-25 2018-10-23 Kansai Coke And Chemicals Co., Ltd. Activated carbon with excellent adsorption performance and process for producing same
KR20190073855A (en) * 2017-12-19 2019-06-27 주식회사 티씨케이 Method for manufacturing activated carbon for electrode material
US11072532B2 (en) 2017-12-19 2021-07-27 Tokai Carbon Korea Co., Ltd Method for manufacturing activated carbon for electrode material

Similar Documents

Publication Publication Date Title
Mahajan et al. Surface-treated activated carbon for removal of phenol from water
Zhang et al. Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water
JP3537581B2 (en) Mercury adsorbent
Din et al. Comparative study of different activation treatments for the preparation of activated carbon: a mini-review
KR101506094B1 (en) Heavy Metal Adsorbent Using Biochar-Alginate Capsule, Preparation Method Thereof and Removal Method ofHeavy Metal in Aqueous Solution Using the Same
US5837644A (en) Surface hydrophobic active carbon and method for production thereof
CN104525119B (en) A kind of g-C3n4functional charcoal sorbing material of/ZnO/ activated carbon and preparation method thereof
Zaini et al. Microwave-induced zinc chloride activated palm kernel shell for dye removal
Maroto-Valer et al. Thermal regeneration of activated carbons saturated with ortho-and meta-chlorophenols
JP4864238B2 (en) Activated carbon and its manufacturing method
JPH0824636A (en) Production of adsorbent and water purifying apparatus using the same
KR102069492B1 (en) Method for producing metal impregnated activated carbon for concentration of low concentration ammonia
He et al. Synthesis of corncob biochar with high surface area by KOH activation for VOC adsorption: effect of KOH addition method
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
JP2016160170A (en) Carbon porous body, manufacturing method therefor and ammonia adsorbent
JPH05302216A (en) Modification of carbonaceous fiber
JPH07145516A (en) Active carbon fiber, its production and water purifier containing the same active carbon fiber as adsorbent
Kobayashi et al. Rice hull charcoal for adsorption of cesium and strontium in aqueous solution
JP2007331982A (en) Method for manufacturing hydrophobic zeolite
JP4876307B2 (en) Method for producing activated carbon
CN113856628A (en) Metal modified biochar capable of efficiently recovering and desorbing phosphorus, and preparation method and application thereof
JP3132962B2 (en) Method for producing modified activated carbon
Lv et al. Carbon–silica composite bio-sorbents with a high density of oxygen-containing sites for efficient methylene blue adsorption
CN115916707A (en) Sequential reactor for adsorbing contaminants onto activated carbon and electrochemically regenerating activated carbon
CN106861624A (en) A kind of preparation method of the porous carbon of adsorbable organic dyestuff in wastewater