JPH05293965A - Three-dimensional silicon structure - Google Patents

Three-dimensional silicon structure

Info

Publication number
JPH05293965A
JPH05293965A JP4272605A JP27260592A JPH05293965A JP H05293965 A JPH05293965 A JP H05293965A JP 4272605 A JP4272605 A JP 4272605A JP 27260592 A JP27260592 A JP 27260592A JP H05293965 A JPH05293965 A JP H05293965A
Authority
JP
Japan
Prior art keywords
silicon
dimensional
bonding
structure according
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4272605A
Other languages
Japanese (ja)
Inventor
Udo Jauernig
ヤウアーニヒ ウド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH05293965A publication Critical patent/JPH05293965A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Micromachines (AREA)

Abstract

PURPOSE: To provide a three-dimensional structure which can be used as a silicon nozzle with a feed channel. CONSTITUTION: A three-dimensional silicon structure comprises a first silicon part 1 having an opening 6 and a second silicon part 2 having a channel 14. Both silicon parts are joined by a bonding process so that the channel 14 is located on the opening 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、請求項1の部類による
三次元のケイ素構造体から出発する。
The invention starts from a three-dimensional silicon structure according to the category of claim 1.

【0002】[0002]

【従来の技術】重ねられたケイ素ウエーハをボンデイン
グ技術を用いて結合することによって製造される三次元
のケイ素構造体は既に公知である(Csepregi
L.in Heuberger A.,“Mikrom
echanik”,Springer−Verlag,
1989年、第230頁〜第234頁)。しかし、これ
ら構造体は大体において平面構造部品に制限されてい
る。
2. Description of the Related Art Three-dimensional silicon structures produced by bonding stacked silicon wafers using a bonding technique are already known (Csepregi).
L. in Heuberger A. , "Mikrom
echanik ", Springer-Verlag,
1989, pp. 230-234). However, these structures are largely limited to planar structural components.

【0003】[0003]

【発明の構成】これに対して、請求項1の特徴部に記載
された特徴を有する、本発明による三次元のケイ素構造
体は、第三の次元が良好に解明され、従って平面構造部
品以外の適用も可能であるという利点を有する。これに
よって得られるケイ素の構造化における自由度は最近の
ケイ素構造部品にも利用することができる。
On the other hand, the three-dimensional silicon structure according to the present invention having the features described in the characterizing part of claim 1 has the third dimension well clarified, and therefore other than planar structural parts. Has the advantage that it can also be applied. The resulting degree of freedom in structuring silicon can also be used in modern silicon structural parts.

【0004】従属請求項に記載された特徴により、請求
項1に記載された三次元のケイ素構造体の有利な構成お
よび改良が可能である。それ自体2つのケイ素ウエーハ
のボンデイングによって製造されたケイ素部品の使用に
よって、構造化の可能性は再度拡張される。かかる構造
部品は、殊に高精度の通路をつくるのに適当である。こ
れらの通路は、ウエーハ部品を分割し、次いで切断面を
研磨することによりそれぞれの適用ケースにとくに簡単
に準備される。通路を孔を有するケイ素部品と結合する
ことによって供給路を有するノズルが製造される。従っ
て、本発明によるケイ素構造体によって、とくに有利に
かつ構造化の大きい自由度で流体素子、通路およびノズ
ルが製造される。
The features described in the dependent claims enable advantageous constructions and improvements of the three-dimensional silicon structure described in claim 1. The structuring possibilities are once again expanded by the use of silicon components produced by the bonding of two silicon wafers themselves. Such structural components are particularly suitable for producing high-precision passages. These passages are provided particularly simply for each application case by splitting the wafer parts and then grinding the cut surfaces. A nozzle having a feed channel is manufactured by joining the passage with a silicon component having holes. Therefore, the silicon structure according to the invention makes it possible to manufacture fluidic elements, channels and nozzles in a particularly advantageous and highly structured manner.

【0005】本発明の1実施例が図面に示され、下記に
詳述されている。
One embodiment of the present invention is shown in the drawings and detailed below.

【0006】[0006]

【実施例】図1には、第1ケイ素部品が1で示され、第
2ケイ素部品は2で示されている。第1ケイ素部品は孔
6を有する。第2ケイ素部品は2つの分割片11,12
からなり、通路14を有する。通路14は第2ケイ素部
品全体を通って延びている。ケイ素部品1とケイ素部品
2は、矢印により示唆されているように、互いに結合さ
れる。この結合は第1ケイ素構造部品1の表面4と該表
面を覆う第2ケイ素構造部品2の端面側の表面5とのボ
ンデイングによって行なわれる。双方の表面4,5は、
ボンデイングのため適当に準備されている。双方の表面
4,5は十分平坦でなければならない。ケイ素ウエーハ
の表面を表わす表面4は、ウエーハのメーカーにより、
研磨またはエッチングによって十分に良好な表面品質を
備えている。十分に平坦な表面5をつくるのは機械加工
によって行なわれる。ボンデイングのための表面4,5
のもう1つの準備法は、ナトリウム含有ガラスの薄層ス
パッタリング、二酸化ケイ素層の熱酸化またはケイ素表
面の親水化を包含する。本来のボンデイングは、双方の
構造部品に電圧を印加および/または熱処理を加えるこ
とからなる。相応するボンデイングは、最初に挙げた文
献に記載されている。孔6の形状寸法は、強制的に規定
されていない。異方性の湿式化学的エッチングは、11
0−ケイ素中に表面に対して垂直に配向された壁を有す
る、平行の延びる細長いスリットをつくることができ、
100−ケイ素中では、側壁は表面に対して約55°の
角度を有する。ケイ素部品の2方向の異方性エッチング
により、100−ケイ素の場合、最小断面がケイ素部品
1内に存在する孔をつくることもできる。しかし、湿式
化学的エッチングでは、孔6の形状寸法はケイ素の結晶
構造に拘束されている。たとえば反応性イオンエッチン
グのような異方性のプラズマエッチングの使用により、
ほとんど垂直な壁を有する、平面図で任意の形の孔6を
つくることができる。異方性エッチングの使用により、
同様に任意の形の孔6をつくることができるが、この場
合には表面4に対する側壁の角度は孔6の形に依存す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1, a first silicon part is designated by 1 and a second silicon part is designated by 2. The first silicon part has holes 6. The second silicon part consists of two pieces 11, 12
And has a passage 14. The passage 14 extends through the entire second silicon component. Silicon part 1 and silicon part 2 are connected to each other, as indicated by the arrow. This bonding is carried out by bonding the surface 4 of the first silicon structural component 1 and the end surface 5 of the second silicon structural component 2 which covers the surface. Both surfaces 4, 5 are
Properly prepared for bonding. Both surfaces 4, 5 must be sufficiently flat. The surface 4 representing the surface of the silicon wafer is manufactured by the wafer manufacturer.
It has a sufficiently good surface quality by polishing or etching. Producing a sufficiently flat surface 5 is done by machining. Surfaces for bonding 4, 5
Another method of preparation of the above involves thin layer sputtering of sodium-containing glass, thermal oxidation of a silicon dioxide layer or hydrophilization of the silicon surface. The actual bonding consists of applying a voltage and / or heat treatment to both structural parts. Corresponding bonding is described in the first cited document. The geometry of the holes 6 is not compulsorily defined. Anisotropic wet chemical etching is 11
It is possible to make parallel elongated slits with walls oriented in 0-silicon perpendicular to the surface,
In 100-silicon, the sidewalls have an angle to the surface of about 55 °. The bidirectional anisotropic etching of the silicon part can also create holes whose minimum cross section is within the silicon part 1 for 100-silicon. However, in wet chemical etching, the geometry of the holes 6 is constrained by the crystal structure of silicon. The use of anisotropic plasma etching, such as reactive ion etching,
It is possible to make holes 6 of any shape in plan view, with almost vertical walls. By using anisotropic etching,
It is likewise possible to make the holes 6 of any shape, but in this case the angle of the side wall with respect to the surface 4 depends on the shape of the holes 6.

【0007】同様に、孔6ないしは孔6を有する通路1
4の多重配置も考えられる。この場合、幾つかの孔6が
1つの通路14に所属されていてもよいし、幾つかの通
路14が並列にそれぞれ1つまたは幾つかの孔6を有し
て配置されていてもよい。後者の場合、この構造体を分
割することによって、孔6を有する個々の通路14を多
数同時につくることができる。
Similarly, a hole 6 or a passage 1 having a hole 6
A multiple arrangement of 4 is also conceivable. In this case, several holes 6 may belong to one passage 14 or several passages 14 may be arranged in parallel with one or several holes 6, respectively. In the latter case, by dividing this structure, a large number of individual channels 14 with holes 6 can be created simultaneously.

【0008】ここに示した三次元のケイ素構造体は、供
給路を有するケイ素ノズルとして使用することができ
る。異方性エッチングの使用によって、これらのノズル
は大きい精度で製造することができる。ケイ素の化学的
不働態および高い耐熱性のため、これらのノズルは、腐
蝕環境中でもたとえばベンジンの噴射ノズルとして使用
することができる。
The three-dimensional silicon structure shown here can be used as a silicon nozzle having a supply passage. By using anisotropic etching, these nozzles can be manufactured with great precision. Due to the chemical passivation and high heat resistance of silicon, these nozzles can also be used in corrosive environments, for example as benzine injection nozzles.

【0009】図2には、2つの重なっているウエーハ2
1,22からなる第2ケイ素部品2の製造が示されてい
る。ウエーハ21,22中に設けられたみぞは13で示
されている。みぞ13を他方のウエーハで閉じることに
よるかまたは2つのみぞを重ねることによって、ボンデ
イングの際に通路14が形成する。線15に沿ってウエ
ーハを分割することによって、第2ケイ素部品2が生
じ、その際切断16が第2ケイ素部品2中の通路14の
数を定める。切断15によって生じた、ウエーハ21,
22の表面に対して垂直な少なくとも1つの表面は、適
当な方法によって、ボンデイングに適した表面5に後加
工される。
In FIG. 2, two overlapping wafers 2 are shown.
The production of a second silicon part 2 consisting of 1, 22 is shown. The groove provided in the wafers 21, 22 is indicated by 13. A passage 14 is formed during bonding by closing the groove 13 with the other wafer or by overlapping the two grooves. By dividing the wafer along the line 15, a second silicon part 2 is produced, the cuts 16 defining the number of passages 14 in the second silicon part 2. The wafer 21 produced by the cutting 15,
At least one surface perpendicular to the surface of 22 is post-processed into a surface 5 suitable for bonding by a suitable method.

【0010】通路14の断面は、みぞ13の形状寸法に
よって生じる。異方性エッチングにより、100−ケイ
素中に約70°の開角を有するV字形のみぞを、110
−ケイ素中に垂直な壁を有するみぞをつくることができ
る。110−ケイ素中のみぞの深さは、埋めたエッチン
グ停止層によって大きな精度で形成される。異方性エッ
チング技術によって、みぞ13の近似的に半円形の断面
が得られる。切断線15に沿って通路14を分割するの
は、ダイヤモンド鋸またはレーザー光線の使用によって
行なわれる。その際得られる表面の質は、たいていはボ
ンデイング法には不適当である。十分に良好な表面品質
は機械的後加工、たとえばラップ仕上または磨き仕上に
よって達成される。切断線16に沿ってウエーハ21,
22を分割するのはケイ素構造部品2に所定数の通路1
4を設けるという課題を有する。切断16は鋸引きによ
って行なわれるが、異方性の湿式化学的エッチングによ
って行なうことができる。たとえば2つの通路14を有
するケイ素構造部品の場合、それぞれ第2の切断16の
みが実施される。
The cross section of the passage 14 results from the geometry of the groove 13. By anisotropic etching, a V-shaped groove having an opening angle of about 70 ° in 100-silicon was formed into 110.
It is possible to create grooves with vertical walls in silicon. The groove depth in 110-silicon is formed with great precision by the buried etch stop layer. The anisotropic etching technique results in an approximately semi-circular cross section of the groove 13. Dividing the passageway 14 along the cutting line 15 is done by using a diamond saw or a laser beam. The quality of the surface obtained in this case is usually unsuitable for the bonding method. A sufficiently good surface quality is achieved by mechanical post-processing, such as lapping or polishing. The wafer 21 along the cutting line 16,
22 is divided into a certain number of passages 1 in the silicon structural component
There is a problem that 4 is provided. The cutting 16 is performed by sawing, but can be performed by anisotropic wet chemical etching. For example, in the case of a silicon structural component having two passages 14, only a second cut 16 is made in each case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例によるケイ素構造体の斜
視図。
FIG. 1 is a perspective view of a silicon structure according to a first embodiment of the present invention.

【図2】製造の間の第2ケイ素部品の斜視図。FIG. 2 is a perspective view of a second silicon part during manufacturing.

【符号の説明】[Explanation of symbols]

1 第1ケイ素部品 2 第2ケイ素部品 4,5 表面 6 孔 11,12 分割片 13 みぞ 14 通路 15 切断線 16 切断 21,22 ウエーハ 1 1st silicon part 2 2nd silicon part 4,5 Surface 6 Hole 11,12 Divided piece 13 Groove 14 Passage 15 Cutting line 16 Cutting 21,22 Wafer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2つのケイ素部品をボンデイ
ングによって互いに結合してなる三次元のケイ素構造体
において、ケイ素部品(1,2)がケイ素ウエ−ハから
製造されていて、第1ケイ素部品(1)はケイ素ウエー
ハの表面から形成された高品質の表面(4)を有し、第
2ケイ素部品(2)は、このケイ素部品(2)のウエー
ハ表面に対して垂直である、高い表面品質を有する表面
(5)を有し、双方の部品(1,2)は上記の表面
(4,5)でボンデイングによって結合されていること
を特徴とする三次元のケイ素構造体。
1. A three-dimensional silicon structure in which at least two silicon parts are bonded to each other by bonding, the silicon parts (1, 2) being manufactured from a silicon wafer, the first silicon part (1). ) Has a high quality surface (4) formed from the surface of a silicon wafer, and the second silicon part (2) has a high surface quality which is perpendicular to the wafer surface of this silicon part (2). A three-dimensional silicon structure, characterized in that it has a surface (5) having both parts (1, 2) bonded by bonding on the surface (4,5).
【請求項2】 第2ケイ素部品(2)は2つのケイ素ウ
エーハ(21,22)のボンデイングによって製造され
ていることを特徴とする請求項1記載の三次元のケイ素
構造体。
2. The three-dimensional silicon structure according to claim 1, wherein the second silicon part (2) is manufactured by bonding two silicon wafers (21, 22).
【請求項3】 ケイ素ウエーハ(22)の1つがみぞを
有し、該みぞはボンデイングの際に他方のケイ素ウエー
ハ(21)によって通路(14)が生じるように閉じら
れることを特徴とする請求項2記載の三次元のケイ素構
造体。
3. A silicon wafer (22), characterized in that one of the silicon wafers (22) has a groove which is closed during bonding so that the other silicon wafer (21) produces a passage (14). The three-dimensional silicon structure according to item 2.
【請求項4】 2つのケイ素ウエーハー(21,22)
がそれぞれ1つのみぞ(13)を有し、該みぞはボンデ
イングの際に鏡像的に重なって少なくとも1つの通路
(14)を生じることを特徴とする請求項2記載の三次
元のケイ素構造体。
4. Two silicon wafers (21, 22)
3. The three-dimensional silicon structure according to claim 2, characterized in that each has one groove (13), said grooves overlapping in mirror image during bonding to give at least one passage (14).
【請求項5】 少なくとも1つの通路(14)が切断線
(15)によって、2つの重ねてボンデイングされたウエ
ーハ(21,22)の表面に対して垂直に分割されるこ
とを特徴とする請求項3または4記載の三次元のケイ素
構造体。
5. At least one passage (14) has a cutting line
A three-dimensional silicon structure according to claim 3 or 4, characterized in that it is divided perpendicularly to the surfaces of the two bonded wafers (21, 22) by (15).
【請求項6】 切断によって生じた断面は、磨き仕上お
よび/またはラップ仕上によって高い表面品質を有する
表面に後加工されていることを特徴とする請求項5記載
の三次元のケイ素構造体。
6. The three-dimensional silicon structure according to claim 5, wherein the cross section produced by the cutting is post-processed to a surface having high surface quality by polishing and / or lapping.
【請求項7】 第1ケイ素部品(1)は少なくとも1つ
の孔(6)を有し、少なくとも1つの孔は少なくとも1
つの通路(14)よりも小さくかつ孔(6)および通路
(14)はボンデイングの際に重なっていることを特徴
とする請求項1から6までのいずれか1項記載の三次元
のケイ素構造体。
7. The first silicon part (1) has at least one hole (6), at least one hole being at least one.
Three-dimensional silicon structure according to any one of the preceding claims, characterized in that it is smaller than one passage (14) and the holes (6) and passages (14) overlap during bonding. ..
JP4272605A 1991-10-12 1992-10-12 Three-dimensional silicon structure Pending JPH05293965A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4133885A DE4133885C2 (en) 1991-10-12 1991-10-12 Three-dimensional silicon structure
DE4133885.5 1991-10-12

Publications (1)

Publication Number Publication Date
JPH05293965A true JPH05293965A (en) 1993-11-09

Family

ID=6442595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272605A Pending JPH05293965A (en) 1991-10-12 1992-10-12 Three-dimensional silicon structure

Country Status (3)

Country Link
JP (1) JPH05293965A (en)
DE (1) DE4133885C2 (en)
GB (1) GB2260282B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129621A1 (en) * 2008-03-26 2011-06-02 Gt Solar, Incorporated Systems and methods for distributing gas in a chemical vapor deposition reactor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
CN100525876C (en) 1998-09-17 2009-08-12 阿德文生物系统公司 Electrospray nozzle and monolithic substrate
US6245227B1 (en) 1998-09-17 2001-06-12 Kionix, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
IT1303195B1 (en) * 1998-12-02 2000-10-30 Giuliano Cozzari FUEL INJECTOR DEVICE FOR INTERNAL COMBUSTION ENGINES AND RELATED INJECTION METHOD.
US6633031B1 (en) 1999-03-02 2003-10-14 Advion Biosciences, Inc. Integrated monolithic microfabricated dispensing nozzle and liquid chromatography-electrospray system and method
WO2001050499A1 (en) 1999-12-30 2001-07-12 Advion Biosciences, Inc. Multiple electrospray device, systems and methods
AU2001229633A1 (en) 2000-01-18 2001-07-31 Advion Biosciences, Inc. Separation media, multiple electrospray nozzle system and method
DE10049517B4 (en) * 2000-10-06 2005-05-12 Robert Bosch Gmbh Fuel injector
DE10154601B4 (en) * 2000-11-13 2007-02-22 Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto A micro device with an integrated protruding electrospray emitter and a method of fabricating the micro device
NL1024033C2 (en) * 2003-08-04 2005-02-07 Univ Delft Tech Method for manufacturing nano channels and nano channels manufactured therewith.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111940B2 (en) * 1987-09-11 1995-11-29 日産自動車株式会社 Method for joining semiconductor substrates
NL8900469A (en) * 1989-02-24 1990-09-17 Imec Inter Uni Micro Electr METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES
US5006202A (en) * 1990-06-04 1991-04-09 Xerox Corporation Fabricating method for silicon devices using a two step silicon etching process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129621A1 (en) * 2008-03-26 2011-06-02 Gt Solar, Incorporated Systems and methods for distributing gas in a chemical vapor deposition reactor
US8961689B2 (en) * 2008-03-26 2015-02-24 Gtat Corporation Systems and methods for distributing gas in a chemical vapor deposition reactor

Also Published As

Publication number Publication date
DE4133885A1 (en) 1993-04-15
GB2260282B (en) 1995-04-26
GB2260282A (en) 1993-04-14
DE4133885C2 (en) 1996-03-21
GB9221282D0 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP2806576B2 (en) Method of manufacturing large array semiconductor device
JPH05293965A (en) Three-dimensional silicon structure
US20100015781A1 (en) Semiconductor substrate, and semiconductor device and method of manufacturing the semiconductor device
JPH07297172A (en) Bulk micromachining method
JP4967777B2 (en) Inkjet head manufacturing method
US20020126941A1 (en) Thick wafer processing and resultant products
JP2009206291A (en) Semiconductor substrate, semiconductor device, and manufacturing method thereof
JPH04262589A (en) Manufacture of optical semiconductor device
JPH08216415A (en) Method for finely machining liquid jet nozzle
JP2002370198A (en) Micro-channel structure and manufacturing method therefor
JPH08247149A (en) Static pressure bearing and manufacture thereof
CN114594540B (en) 45-degree silicon-based reflector and manufacturing method thereof
KR20190138739A (en) Method of manufacturing slit nozzle and slit nozzle
JPS5820772B2 (en) Processing method for brittle materials
JPH0534526A (en) Formation of optical reflecting mirror mounted on optical surface
JPS63115113A (en) Connection structure between light guide and optical fiber
JP2002233912A (en) Grooving method
JP2975287B2 (en) Gas supply nozzle for radical reaction type precision cutting equipment
JPH06270135A (en) Fine perforation processing of substrate
JP2003290942A (en) Method for machining crystal piece
JPH10263865A (en) Laser beam splitting method and substrate
KR20240061775A (en) Diamond cutting tool manufacturing method
JPH0927566A (en) Manufacture of submount
JPS62124684A (en) Head slider
US20020191943A1 (en) Venting optical microbench