NL8900469A - METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES - Google Patents

METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES Download PDF

Info

Publication number
NL8900469A
NL8900469A NL8900469A NL8900469A NL8900469A NL 8900469 A NL8900469 A NL 8900469A NL 8900469 A NL8900469 A NL 8900469A NL 8900469 A NL8900469 A NL 8900469A NL 8900469 A NL8900469 A NL 8900469A
Authority
NL
Netherlands
Prior art keywords
substrate
vacuum
applying
silicides
silicone
Prior art date
Application number
NL8900469A
Other languages
Dutch (nl)
Original Assignee
Imec Inter Uni Micro Electr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imec Inter Uni Micro Electr filed Critical Imec Inter Uni Micro Electr
Priority to NL8900469A priority Critical patent/NL8900469A/en
Priority to PCT/EP1990/000337 priority patent/WO1990010098A1/en
Priority to EP90904294A priority patent/EP0413023A1/en
Priority to JP2504535A priority patent/JPH03504850A/en
Publication of NL8900469A publication Critical patent/NL8900469A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Description

WERKWIJZE EN TOESTEL VOOR HET AANBRENGEN VAN EPITAXIAAL SILICIUM EN SILICIDESMETHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES

De onderhavige uitvinding betreft een werkwijze en toestel volgens resp. conclusie 1 en 2. De aan aanvraagster bekende stand van de techniek omvat de volgende publicaties: - EP octrooiaanvrage nr. 0070751; - EP octrooiaanvrage nr. 0157052 - EP octrooiaanvrage nr. 0133121 - EP octrooiaanvrage nr. 0230652 - S.P. Murarka en D.B. Fraser: "Silicide formation in thin cosputtered (titanium+silicon) films on polycrystailline silicon and SiC>2" - T. Makino, N. Sato, M. Takeda, Y. Furumura, and K. Imaoka: "a stacked-source-drain mosfet using selective epitaxy" - T.P.H.F. Wendling, C. Wieczorek, K. Hieber: "selective CVD of TaSi2"The present invention relates to a method and apparatus according to resp. claims 1 and 2. The prior art known to the applicant comprises the following publications: - EP patent application no. 0070751; - EP patent application No. 0157052 - EP patent application No. 0133121 - EP patent application No. 0230652 - S.P. Murarka and D.B. Fraser: "Silicide formation in thin cosputtered (titanium + silicon) films on polycrystaillin silicon and SiC> 2" - T. Makino, N. Sato, M. Takeda, Y. Furumura, and K. Imaoka: "a stacked-source- drain mosfet using selective epitaxy "- TPHF Wendling, C. Wieczorek, K. Hieber: "selective CVD or TaSi2"

Doordat het substraat of de wafer niet buiten het vacuum wordt gebracht, kan de contactweerstand tussen silicide en epitaxiaal silicium vekleind worden, hoogstwaarschijnlijk doordat de silicide epitaxiaal op de epitaxiale silicium wordt gegroeid.Because the substrate or wafer is not brought out of the vacuum, the contact resistance between silicide and epitaxial silicon can be reduced, most likely because the silicide is grown epitaxially on the epitaxial silicon.

De epitaxiale silicium-groei kan zowel voor MOS als bipolaire geïntegreerde circuits worden toegepast; het betreft hier bijv. de SAC-techniek (self aligned contactvoor het aanbrengen van een emittercontact uit silicide, waarbij de emitter uit epitaxiaal silicium bestaat, of silicide-con-tacten op epitaxiaal aangebrachte source- en draingebieden.The epitaxial silicon growth can be used for both MOS and bipolar integrated circuits; this concerns, for example, the SAC technique (self-aligned contact for applying an emitter contact of silicide, wherein the emitter consists of epitaxial silicon, or silicide contacts on epitaxially arranged source and drain regions.

Ondiepe en graduele juncties bij een drain zijn mogelijk ter voorkoming van hot-carrier-effekten en kortka-naal-effekten tegen te gaan, zoals die optreden bij de zogeheten LDD-techniek. Bij SSD-techniek kan fosfor (P) en arsenicum (As) gecombineerd worden.Shallow and gradual junctions at a drain are possible to prevent hot-carrier effects and to counteract short-channel effects, such as occur with the so-called LDD technique. With SSD technology, phosphorus (P) and arsenic (As) can be combined.

Verdere voordelen omvatten de mogelijkheden voor drie-dimensionale integratie, een betere planarisatie, het oplossen van zogeheten thermische mismatch, een algehele verlaging van de procestemperatuur en het verkrijgen van een hogere aspectratio via selectieve groei.Further advantages include the possibilities for three-dimensional integration, better planarization, solving the so-called thermal mismatch, an overall reduction in the process temperature and obtaining a higher aspect ratio through selective growth.

In de bijgevoegde figuur is de onderhavige uitvinding schematisch verduidelijkt. Via een sluis 1 kunnen wafers één voor één of batchgewijs in een eerste vacuum 2 geraken, ί waarna zij via een niet-getoond transportmechanisme, één voor één of batchgewijs in een reactor 3 kunnen worden gebracht voor het aanbrengen van een epitaxiale siliciumlaag. Vervolgens worden de wafers één voor één, bijv. door middel van zogeheten frogarmen die in de ruimte 2 roterend zijn opgesteld, in een reactor 4 gebracht voor het aanbrengen van silicides.The present invention is schematically illustrated in the attached figure. Wafers can get into a first vacuum 2 one by one or in batches via a lock 1, after which they can be introduced into a reactor 3 one by one or in batches via a transport mechanism (not shown) for applying an epitaxial silicon layer. The wafers are then introduced one by one, for example by means of so-called frog arms rotatably arranged in space 2, into a reactor 4 for applying silicides.

Indien noodzakelijk kunnen wafers tussen de handelingen in de reactors 3 resp. 4 dan wel daarna in een eveneens met de vacuumruimte 2 verbonden reinigingsruimte 5 worden gebracht.If necessary, wafers can be reacted in the reactors 3 resp. 4 or subsequently be brought into a cleaning space 5 also connected to the vacuum space 2.

Voor de reactor 3 voor het aanbrengen van een epitaxiale siliciumlaag gelden de volgende specificaties: maximale temperatuur: 1050 °C regelbaar temperatuurbereik: 650eC - 1050°C regelbaar drukbereik: 0.05 - 50 Toor temperatuursuniformiteit op de wafer(s):±5°C in-situ plasma en/of NP3 cleaning: optioneel bij 800°C: 10-6 Torr achtergrondsdruk bij 1000°C: 10"3 Torr maximum lek bij 25°C: 5 10-6 mbar I/sec 'gassen (max. mass-flow controller debieten): HCI (2slm),The following specifications apply to the reactor 3 for applying an epitaxial silicon layer: maximum temperature: 1050 ° C adjustable temperature range: 650eC - 1050 ° C adjustable pressure range: 0.05 - 50 For temperature uniformity on the wafer (s): ± 5 ° C in -situ plasma and / or NP3 cleaning: optional at 800 ° C: 10-6 Torr background pressure at 1000 ° C: 10 "3 Torr maximum leak at 25 ° C: 5 10-6 mbar I / sec 'gases (max. mass -flow controller flow rates): HCI (2slm),

SiH2Cl2 (500 scan), H2/N2(5slm),SiH2Cl2 (500 scan), H2 / N2 (5slm),

SiH4 (500 sccm), 2 dopant/H2 lijnen totale gasdebieten bij procesdruk: 0.2-1 sim bij 0.05 - 0.1SiH4 (500 sccm), 2 dopant / H2 lines total gas flows at process pressure: 0.2-1 sim at 0.05 - 0.1

Torr 2 sim bij 1 Torr poorten: zeker poort voor massaspectrometer gewenst gedeponeerde laagdiktes: 0.1 - 1 ymTorr 2 sim at 1 Torr ports: sure port for mass spectrometer desired deposited layer thicknesses: 0.1 - 1 ym

Voor de reactor 4 voor het aanbrengen van silicides gelden de volgende omstandigheden:The following conditions apply to the reactor 4 for applying silicides:

Aard van de module: -LPCVDNature of the module: -LPCVD

-oven- of RTP reactor (single-wafer) -bron voorzien voor metaalprecursor (W enfurnace or RTP reactor (single-wafer) source provided for metal precursor (W and

Co) maximale temperatuur : 1000°C regelbaar temperatuurbereik: 150-900°C temperatuuruniformiteit wafer : 5°C in situ plasma cleaning en/of NF3 max. kamerwandtemperatuur: 150°C achtergronddruk: 25°C: 10-7 mbar 800°C: 10"6 mbar 1000°C 10-3 mbar maximum lek bij 25°C: 5xl0-6 mbar/sec gassen en gasleidingen (debieten te bepalen): - in situ cleaning: NF3 leiding voorzien (optie) - verwarmde leiding voor metaalprecursor - niet corrosieve gassen: 4 leidingen (SiH^^/Ar en 1 reserve) - 2 leidingen voor corrosieve gassen totaal gasdebiet bij procesdruk: - o.05 - 0.1 mbar: 0.2-1 sim lmbar: 2 sim flenzen: - 3 blind; 1 optisch venster - alle flenzen met centrale as gericht op de wafer(s)Co) maximum temperature: 1000 ° C adjustable temperature range: 150-900 ° C temperature uniformity wafer: 5 ° C in situ plasma cleaning and / or NF3 max.room wall temperature: 150 ° C background pressure: 25 ° C: 10-7 mbar 800 ° C : 10 "6 mbar 1000 ° C 10-3 mbar maximum leak at 25 ° C: 5xl0-6 mbar / sec gases and gas pipes (flow rates to be determined): - in situ cleaning: NF3 pipe provided (option) - heated pipe for metal precursor - non-corrosive gases: 4 pipes (SiH ^^ / Ar and 1 reserve) - 2 pipes for corrosive gases total gas flow at process pressure: - o.05 - 0.1 mbar: 0.2-1 sim lmbar: 2 sim flanges: - 3 blind; 1 optical window - all center axis flanges facing the wafer (s)

Tenslotte wordt opgemerkt dat de lage temperaturen in het bijzonder geschikt zijn voor het (verder) verkleinen van afmetingen van een geïntegreerd circuit.Finally, it is noted that the low temperatures are particularly suitable for (further) reducing the size of an integrated circuit.

Claims (3)

1. Werkwijze voor het aanbrengen van epitaxiale siliciumlagen en silicide-lagen, op een substraat of waver, waarbij het substraat in een eerste vacuumruimte wordt gebracht; - het substraat onder vacuum in een toestel voor het eveneens onder vacuum aanbrengen van epitaxiale lagen bij lage temperatuur (kleiner dan 1000eC); - het substraat vanuit dit toestel onder vacuum, bijv, via de eerste vacuumruimte, naar een toestel voor het selectief aanbrengen van silicidelaag wordt gebracht, bijv. een LPCVD-toestel daarvoor.A method for applying epitaxial silicon layers and silicide layers, on a substrate or waver, wherein the substrate is placed in a first vacuum space; - the substrate under vacuum in a device for also applying epitaxial layers at low temperature (less than 1000 ° C) under vacuum; the substrate is brought from this device under vacuum, e.g., via the first vacuum space, to a device for the selective application of silicide layer, e.g. an LPCVD device therefor. 2. Toestel voor het uitvoeren van de werkwijze volgens conclusie l.Device for carrying out the method according to claim 1. 3. Toestel volgens conclusie 2, waarin een toestel voor reiniging van een substraat via een vacuumkanaal op de eerste vacuumruimte is aangesloten, opdat een substraat onder vacuum naar deze reinigingsruimte kan worden overgebracht.Apparatus according to claim 2, wherein an apparatus for cleaning a substrate is connected to the first vacuum space via a vacuum channel, so that a substrate can be transferred to this cleaning space under vacuum.
NL8900469A 1989-02-24 1989-02-24 METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES NL8900469A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
NL8900469A NL8900469A (en) 1989-02-24 1989-02-24 METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES
PCT/EP1990/000337 WO1990010098A1 (en) 1989-02-24 1990-02-23 A method and an apparatus for disposing epitaxial silicon and silicides
EP90904294A EP0413023A1 (en) 1989-02-24 1990-02-23 A method and an apparatus for disposing epitaxial silicon and silicides
JP2504535A JPH03504850A (en) 1989-02-24 1990-02-23 Epitaxial silicon and silicide placement method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8900469A NL8900469A (en) 1989-02-24 1989-02-24 METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES
NL8900469 1989-02-24

Publications (1)

Publication Number Publication Date
NL8900469A true NL8900469A (en) 1990-09-17

Family

ID=19854204

Family Applications (1)

Application Number Title Priority Date Filing Date
NL8900469A NL8900469A (en) 1989-02-24 1989-02-24 METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES

Country Status (4)

Country Link
EP (1) EP0413023A1 (en)
JP (1) JPH03504850A (en)
NL (1) NL8900469A (en)
WO (1) WO1990010098A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133885C2 (en) * 1991-10-12 1996-03-21 Bosch Gmbh Robert Three-dimensional silicon structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359490A (en) * 1981-07-13 1982-11-16 Fairchild Camera & Instrument Corp. Method for LPCVD co-deposition of metal and silicon to form metal silicide
US4629635A (en) * 1984-03-16 1986-12-16 Genus, Inc. Process for depositing a low resistivity tungsten silicon composite film on a substrate
KR910003169B1 (en) * 1985-11-12 1991-05-20 가부시끼가이샤 한도다이 에네르기 겐뀨소 Smeiconductor device manufacturing method and device
US4756927A (en) * 1986-05-29 1988-07-12 Massachusetts Institute Of Technology Method and apparatus for refractory metal deposition

Also Published As

Publication number Publication date
WO1990010098A1 (en) 1990-09-07
JPH03504850A (en) 1991-10-24
EP0413023A1 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US6797340B2 (en) Method for depositing refractory metal layers employing sequential deposition techniques
US5500249A (en) Uniform tungsten silicide films produced by chemical vapor deposition
US20170372919A1 (en) Flowable Amorphous Silicon Films For Gapfill Applications
US5558910A (en) Uniform tungsten silicide films produced by chemical vapor deposition
US11011384B2 (en) Gapfill using reactive anneal
US6313035B1 (en) Chemical vapor deposition using organometallic precursors
US6645884B1 (en) Method of forming a silicon nitride layer on a substrate
US7473655B2 (en) Method for silicon based dielectric chemical vapor deposition
US7732327B2 (en) Vapor deposition of tungsten materials
KR20190010736A (en) Deposition of flowable silicon-containing films
US20030215570A1 (en) Deposition of silicon nitride
US10580642B2 (en) Two-step process for silicon gapfill
JPH08236464A (en) Utilization of si h 4 soak and purge in accumulation process
WO2018200211A1 (en) Methods for gapfill in high aspect ratio structures
US5997950A (en) Substrate having uniform tungsten silicide film and method of manufacture
JP2020537359A (en) Conformal-doped amorphous silicon as a nucleation layer for metal deposition
US10854511B2 (en) Methods of lowering wordline resistance
NL8900469A (en) METHOD AND APPARATUS FOR APPLYING EPITAXIAL SILICONE AND SILICIDES
US20210013038A1 (en) Methods of Forming Tungsten Pillars
JP2021167466A (en) In-situ tungsten deposition without barrier layer
Öztürk et al. Thin Film Deposition

Legal Events

Date Code Title Description
A1B A search report has been drawn up
BV The patent application has lapsed