JPH05291068A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH05291068A
JPH05291068A JP11830992A JP11830992A JPH05291068A JP H05291068 A JPH05291068 A JP H05291068A JP 11830992 A JP11830992 A JP 11830992A JP 11830992 A JP11830992 A JP 11830992A JP H05291068 A JPH05291068 A JP H05291068A
Authority
JP
Japan
Prior art keywords
magnet
magnet material
metal
plated
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11830992A
Other languages
Japanese (ja)
Inventor
Makoto Saito
斎藤  誠
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11830992A priority Critical patent/JPH05291068A/en
Publication of JPH05291068A publication Critical patent/JPH05291068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet high in productivity with a cheap equipment by a method wherein the surface of a magnet material is plated with metal and then subjected to plastic working in the air. CONSTITUTION:Alloy powder, composed 30wt.% Nd, 30wt.% Co, 0.9wt.% B, and of rare earth magnet material as the remainder, is compressed in an atmosphere of Ar at a temperature of 600-900 deg.C into a thick-walled ring-shaped powder-compressed molded body 10. The molded body 10 is plated with Ni and then subjected to plastic working in the air at 600 to 900 deg.C through a ring rolling method. Since the surface of the magnet material 10 is placed with metal, it can be subjected to ring rolling working in the air. Even if an upset working method is employed as a plastic working method, the magnet material 10 can be subjected to plastic working in the air if it is plated with metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は永久磁石の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a permanent magnet.

【0002】[0002]

【従来の技術】R−Fe−B(RはLa系の希土類元
素)で代表される希土類磁石には、(イ)母材合金を溶
融し、型に鋳込んで鋳塊とし、これを粉砕して極微細粉
とし、この粉末を磁場中で成形・焼結して異方性磁石と
した焼結磁石と、(ロ)母材合金の溶湯を超急冷して薄
帯とし、その粗粉砕粉末を圧粉して成る等方磁性の素材
を塑性加工して磁気異方化した超急冷磁石とがある。
2. Description of the Related Art In rare earth magnets represented by R-Fe-B (R is a La-based rare earth element), (a) a base alloy is melted and cast into a mold to form an ingot, which is crushed. To form ultra-fine powder, which is then compacted and sintered in a magnetic field to form an anisotropic magnet, and (b) the melt of the base alloy is rapidly quenched into a ribbon, which is roughly crushed. There is a super-quenching magnet that is magnetically anisotropic by plastically working an isotropic magnetic material made by compacting powder.

【0003】これらの異方性希土類磁石は高い磁気特性
を有しており、OA用,FA用の小型モータに適用でき
ればモータの小型化,軽量化を図る上で極めて有用であ
る。
These anisotropic rare earth magnets have high magnetic properties, and if they can be applied to a small motor for OA and FA, they are extremely useful for downsizing and weight saving of the motor.

【0004】この希土類磁石をモータに適用するには、
これを半径方向に磁気異方化したリング状磁石とするこ
とが最も望ましいが、上記焼結磁石の場合、粉末を磁場
中で成形・焼結する際に半径方向の磁場を付与するのが
難しい問題がある。
In order to apply this rare earth magnet to a motor,
It is most desirable to use this as a ring-shaped magnet that is magnetically anisotropic in the radial direction, but in the case of the above-mentioned sintered magnet, it is difficult to apply a magnetic field in the radial direction when molding and sintering the powder in the magnetic field. There's a problem.

【0005】一方後者の超急冷磁石の場合、磁場中での
成形を必要とせず、塑性変形によって異方化を行うた
め、上記リング状磁石にあっても異方化を最大限に行い
得る特長がある。
On the other hand, in the latter case of the ultra-quenching magnet, it is possible to maximize the anisotropy even in the above-mentioned ring-shaped magnet because the anisotropy is achieved by plastic deformation without the need for forming in a magnetic field. There is.

【0006】ここで塑性変形によって磁気異方化を行う
方法として、磁石素材をダイスとポンチとを用いて後方
押出成形する方法があるが、この方法では肉厚が一定肉
厚以下の薄いリング状磁石を成形することが困難であ
り、肉厚の薄い所望のリング状磁石を得るためにはその
後研削加工を施すことが必要である。
Here, as a method of magnetically anisotropy by plastic deformation, there is a method of extruding a magnet material backward using a die and a punch. In this method, the thickness is a thin ring shape having a certain thickness or less. It is difficult to mold the magnet, and it is necessary to perform grinding after that in order to obtain a desired ring-shaped magnet having a thin wall thickness.

【0007】しかしながら希土類磁石は難加工材であっ
て加工に際して困難を伴い、場合によって加工割れを起
こしてしまう。
However, the rare earth magnet is a difficult-to-machine material and is difficult to machine, and in some cases causes a machining crack.

【0008】またこのような研削加工を施すとなると、
製造工程数が増して希土類磁石のコスト増大をもたらし
てしまう。
When such a grinding process is performed,
The number of manufacturing steps is increased, and the cost of the rare earth magnet is increased.

【0009】そこで本発明者は、先の特許願(特開平2
−173239)において、磁石素材を一旦厚肉のリン
グ状に予備成形し、これを一対のロール工具で狭圧しつ
つ、これらロール工具の回転によってリング状の予備成
形体を連続的に塑性変形させ、薄肉化する加工方法を提
案した。
Therefore, the inventor of the present invention has filed an earlier patent application (Japanese Unexamined Patent Application Publication No.
173239), the magnet material is once preformed into a thick ring shape, and while being pressed by a pair of roll tools, the ring shaped preform is continuously plastically deformed by the rotation of these roll tools, A processing method to reduce the wall thickness was proposed.

【0010】この方法によれば、肉厚が非常に薄くて
(例えば肉厚が直径dに対してt=0.05d程度)寸
法精度も良好であり、且つ表面肌も綺麗であってその後
の研削加工等仕上げ加工を省略可能なリング状成形体を
容易に得ることができる。
According to this method, the wall thickness is very thin (for example, the wall thickness is about t = 0.05d with respect to the diameter d), the dimensional accuracy is good, and the surface texture is clean, and It is possible to easily obtain a ring-shaped molded body in which finishing processing such as grinding processing can be omitted.

【0011】しかしながら、希土類磁石は活性希土類元
素を含んでいるために大気中加熱状態で加工を行うと酸
化が著しく、磁気特性が劣化したり、加工時に欠陥が生
じてしまう問題があり、従って上記ロール工具を用いた
リングローリング加工及び後方押出加工の何れの方法の
場合にも非酸化性雰囲気中で加工を行わなければなら
ず、この場合高価な設備が必要であって生産性も悪く、
磁石の製造コストが高くなってしまう。
However, since the rare earth magnet contains an active rare earth element, there is a problem that when it is processed in a heated state in the atmosphere, it is significantly oxidized and the magnetic characteristics are deteriorated or defects occur during processing. In both cases of ring rolling and backward extrusion using a roll tool, processing must be performed in a non-oxidizing atmosphere, in which case expensive equipment is required and productivity is poor,
The manufacturing cost of the magnet increases.

【0012】以上異方性希土類磁石の場合を例として説
明したが、こうした問題は活性元素を有する永久磁石の
製造に際して一般的に生じ得る問題である。
Although the anisotropic rare earth magnet has been described above as an example, such a problem is a problem that can generally occur in the production of a permanent magnet having an active element.

【0013】[0013]

【課題を解決するための手段】本発明はこのような課題
を解決するためになされたものであり、その要旨は、活
性元素を含む磁石素材に塑性加工を施して所定形状に成
形するに際し、該磁石素材表面に金属めっきを施した状
態で該磁石素材を大気中で塑性加工することにある。
The present invention has been made to solve the above problems, and its gist is to form a magnet material containing an active element into a predetermined shape by plastic working. This is to plastically process the magnet material in the atmosphere while the surface of the magnet material is plated with metal.

【0014】本発明は磁石素材表面に金属めっきを施し
た上で所定の塑性加工を大気中で行うことを特徴とする
ものであり、このようにすると大気中での加工にも拘ら
ず、活性元素を含む磁石素材の酸化が防止され、良好な
成形体が得られることが確認されている。かかる本発明
によれば安価な設備で生産性良く永久磁石を製造するこ
とができる。
The present invention is characterized in that the surface of a magnet material is metal-plated and then a predetermined plastic working is carried out in the atmosphere. It has been confirmed that the magnet material containing the element is prevented from being oxidized and a good molded product can be obtained. According to the present invention, a permanent magnet can be manufactured with good productivity with inexpensive equipment.

【0015】また本発明によれば、磁石素材を塑性加工
した後において、防錆のためのめっき,電着処理等を省
略できるといった副次的効果が得られる。
Further, according to the present invention, after plastic working of the magnet material, a secondary effect that plating for rust prevention, electrodeposition treatment, etc. can be omitted can be obtained.

【0016】従来、活性元素を含む永久磁石の製造工程
では、塑性加工後に防錆のためのめっき処理等を行って
いるが、本発明では予め磁石素材表面に金属めっきを施
すため、場合によって塑性加工後における防錆のための
上記めっき処理等を省略することが可能となるのであ
る。
Conventionally, in the manufacturing process of a permanent magnet containing an active element, a plating treatment for rust prevention is performed after plastic working. However, in the present invention, the surface of the magnet material is preliminarily metal-plated, so that it may be plastic. It is possible to omit the above-mentioned plating treatment for rust prevention after processing.

【0017】本発明は、異方性希土類磁石の製造方法と
して特に適している。希土類磁石は活性希土類元素を含
んでおり、また超急冷磁石の場合には磁気異方性付与の
ために塑性加工が必要である。
The present invention is particularly suitable as a method for producing an anisotropic rare earth magnet. The rare earth magnet contains an active rare earth element, and in the case of an ultra-quenched magnet, plastic working is necessary to give magnetic anisotropy.

【0018】そこでかかる希土類磁石の製造に当って本
発明を適用すれば、良好な磁石成形体を安価に、生産性
良く製造できるようになる。
Therefore, if the present invention is applied to the production of such a rare earth magnet, a good magnet compact can be produced at low cost and with good productivity.

【0019】ここで本発明を希土類磁石の製造方法とし
て適用するに際し、(イ)希土類磁石の粉末を非酸化性
雰囲気中600〜900℃の温度で圧縮処理して圧粉成
形体を得る工程と、(ロ)該圧粉成形体表面に金属めっ
きを施す工程と、(ハ)該金属めっき処理した圧粉成形
体を大気中600〜900℃の温度で塑性加工する工程
とを経て磁石を製造するようにするのが良い。
When applying the present invention as a method for producing a rare earth magnet, (a) a step of compressing the powder of the rare earth magnet at a temperature of 600 to 900 ° C. in a non-oxidizing atmosphere to obtain a green compact. , (B) a magnet is manufactured through a step of performing metal plating on the surface of the green compact and a step of (c) plastically processing the metal-plated green compact at a temperature of 600 to 900 ° C. in the atmosphere. It is better to do

【0020】尚、塑性加工の方法として前述した後方又
は前方押出加工やリングローリング加工、その他の加工
方法を採用することが可能である。
As the plastic working method, it is possible to employ the above-mentioned backward or forward extrusion processing, ring rolling processing, and other processing methods.

【0021】[0021]

【実施例】次に本発明の特徴を更に明確にすべく、以下
にその実施例を詳述する。 [実施例1]30Nd−3Co−0.9B−残Fe(数
値は重量%を示す)の組成を有する希土類磁石の合金粉
末をAr雰囲気中,780℃で圧縮処理し、図1に示す
ように75mmφ(外径)×64mmφ(内径)×30
mm(高さ)の厚肉リング形状の圧粉成形体(磁石素
材)10を得た。
EXAMPLES In order to further clarify the characteristics of the present invention, examples thereof will be described in detail below. [Example 1] An alloy powder of a rare earth magnet having a composition of 30Nd-3Co-0.9B-remaining Fe (numerical values represent% by weight) was compressed at 780 ° C in an Ar atmosphere, and as shown in Fig. 1. 75 mmφ (outer diameter) x 64 mmφ (inner diameter) x 30
A thick powder molding (magnet material) 10 having a thickness of mm (height) was obtained.

【0022】この圧粉成形体10に対してNiめっき
(表1中サンプルB),Crめっき(表1中サンプル
C)をそれぞれ40μmの厚みで施し、次にかかるめっ
き処理した圧粉成形体10に対して大気中でリングロー
リング手法により塑性加工を施した。
Ni powder (Sample B in Table 1) and Cr plating (Sample C in Table 1) were applied to the green compact 10 with a thickness of 40 μm, respectively, and then the green compact 10 was plated. Was subjected to plastic working in the atmosphere by the ring rolling method.

【0023】図2はこのリングローリングによる塑性加
工の方法を示したもので、図中12,14はロール工
具、16は高さ規制のためのロール工具である。
FIG. 2 shows a method of plastic working by this ring rolling. In the figure, 12 and 14 are roll tools, and 16 is a roll tool for height regulation.

【0024】この方法では、800℃に加熱したリング
状圧粉成形体10をロール工具12,14により狭圧し
つつ、これらロール工具12,14を回転させて圧粉成
形体10を連続的に塑性変形させ、順次その肉厚を薄く
して行く。
In this method, the ring-shaped powder compact 10 heated to 800 ° C. is compressed by the roll tools 12 and 14, and the roll tools 12 and 14 are rotated to continuously plasticize the powder compact 10. It is deformed and its thickness is gradually reduced.

【0025】そして最終的に120mmφ(外径)×1
13.5mmφ(内径)×30mm(高さ)の成形体1
1と成し、その後かかる成形体11を常法に従って半径
方向に着磁処理し、得られた異方性希土類磁石の磁気特
性を測定した。結果が表1に示してある。
Finally, 120 mmφ (outer diameter) × 1
13.5 mmφ (inner diameter) × 30 mm (height) molded body 1
Then, the molded body 11 was magnetized in the radial direction according to a conventional method, and the magnetic characteristics of the obtained anisotropic rare earth magnet were measured. The results are shown in Table 1.

【0026】尚、比較のために上記めっき処理を施さな
いもの(表1中サンプルA)についても同様の処理を行
ったところ、塑性加工中に酸化による割れが発生し、健
全な磁石が得られなかった。その磁気特性は表1の如く
であった。
For comparison, the same treatment was carried out on the one not subjected to the above-mentioned plating treatment (Sample A in Table 1). As a result, cracks due to oxidation occurred during plastic working, and a sound magnet was obtained. There wasn't. The magnetic properties are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】この結果から、磁石素材表面に金属めっき
を施しておくことにより、大気中でリングローリング加
工を施した場合であっても良好な磁気特性の磁石が得ら
れることが分る。
From these results, it can be seen that by applying metal plating to the surface of the magnet material, a magnet with good magnetic properties can be obtained even when ring rolling is performed in the atmosphere.

【0029】[実施例2]実施例1と同様の組成から成
る合金粉末を実施例1と同様の条件下で図3に示すよう
に37mmφ×15mm(高さ)の中実円板形状に圧縮
成形し、次にこの圧粉成形体18の表面にNiめっき
(サンプルB),Crめっき(サンプルC)をそれぞれ
60μmの厚みで施した。
Example 2 An alloy powder having the same composition as in Example 1 was compressed under the same conditions as in Example 1 into a solid disk shape of 37 mmφ × 15 mm (height) as shown in FIG. After molding, the surface of the green compact 18 was plated with Ni (Sample B) and Cr (Sample C) with a thickness of 60 μm.

【0030】次にこれら金属めっき処理した圧粉成形体
18に対して大気中でアプセット加工を施し、62mm
φ×9.7mm(高さ)の成形体20に塑性加工した。
Next, these metal-plated green compacts 18 were upset in the atmosphere to obtain 62 mm.
The formed body 20 of φ × 9.7 mm (height) was plastically processed.

【0031】その後成形体20の着磁処理を行い、得ら
れた磁石の磁気特性を測定した。結果が表2に示してあ
る。
After that, the molded body 20 was magnetized, and the magnetic characteristics of the obtained magnet were measured. The results are shown in Table 2.

【0032】尚、本実施例においても比較のために上記
めっき処理を施さないもの(サンプルA)について同様
の手順で処理を施し、得られた磁石の磁気特性を測定し
た。結果が表2に併せて示してある。
For comparison, in the present example, the magnetic property of the obtained magnet was measured for the sample not subjected to the plating treatment (Sample A) by the same procedure. The results are also shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2の結果から、塑性加工方法としてアプ
セット加工を採用した場合においても、磁石素材に金属
めっき処理を施しておくことによって、大気中での塑性
加工が可能であることが分る。
From the results shown in Table 2, it is understood that even when the upset process is adopted as the plastic working method, the plastic working in the atmosphere can be performed by subjecting the magnet material to the metal plating treatment.

【0035】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において、当業者の知識に基づき様々な変更を加えた
態様で実施可能である。
The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention can be implemented in a mode in which various modifications are made based on the knowledge of those skilled in the art without departing from the spirit of the invention. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例方法の工程説明図である。FIG. 1 is a process explanatory diagram of an embodiment method of the present invention.

【図2】同実施例において採用した塑性加工方法として
のリングローリング加工法の説明図である。
FIG. 2 is an explanatory view of a ring rolling working method as a plastic working method adopted in the embodiment.

【図3】本発明の他の実施例方法の工程説明図である。FIG. 3 is a process explanatory diagram of a method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,18 磁石素材 12,14 ロール工具 10,18 Magnet material 12,14 Roll tool

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性元素を含む磁石素材に塑性加工を施
して所定形状に成形するに際し、該磁石素材表面に金属
めっきを施した状態で該磁石素材を大気中で塑性加工す
ることを特徴とする永久磁石の製造方法。
1. When the magnet material containing an active element is plastically processed into a predetermined shape, the magnet material is plastically processed in the atmosphere while the surface of the magnet material is metal-plated. Method for manufacturing a permanent magnet.
【請求項2】(イ)希土類磁石の粉末を非酸化性雰囲気
中600〜900℃の温度で圧縮処理して圧粉成形体を
得る工程と(ロ)該圧粉成形体表面に金属めっきを施す
工程と(ハ)該金属めっき処理した圧粉成形体を大気中
600〜900℃の温度で塑性加工する工程とを含むこ
とを特徴とする永久磁石の製造方法。
2. A step of: (a) compressing rare earth magnet powder in a non-oxidizing atmosphere at a temperature of 600 to 900 ° C. to obtain a powder compact, and (b) metal-plating the surface of the powder compact. A method for producing a permanent magnet, which comprises a step of: (c) a step of plastically processing the metal-plated powder compact at a temperature of 600 to 900 ° C. in the atmosphere.
JP11830992A 1992-04-10 1992-04-10 Manufacture of permanent magnet Pending JPH05291068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11830992A JPH05291068A (en) 1992-04-10 1992-04-10 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11830992A JPH05291068A (en) 1992-04-10 1992-04-10 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH05291068A true JPH05291068A (en) 1993-11-05

Family

ID=14733494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11830992A Pending JPH05291068A (en) 1992-04-10 1992-04-10 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH05291068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124657A1 (en) * 2008-04-07 2009-10-15 Thyssenkrupp Transrapid Gmbh Magnetic bearing and method for producing a bearing race suitable therefore
CN104607634A (en) * 2015-01-22 2015-05-13 包头市金蒙汇磁材料有限责任公司 Machining method for inner hole and outer circle of annular rare-earth permanent magnet and special device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124657A1 (en) * 2008-04-07 2009-10-15 Thyssenkrupp Transrapid Gmbh Magnetic bearing and method for producing a bearing race suitable therefore
CN104607634A (en) * 2015-01-22 2015-05-13 包头市金蒙汇磁材料有限责任公司 Machining method for inner hole and outer circle of annular rare-earth permanent magnet and special device

Similar Documents

Publication Publication Date Title
EP1026267A1 (en) Method for producing high silicon steel, and silicon steel
JPH05291068A (en) Manufacture of permanent magnet
JPH08250356A (en) Alloy powder for anisotropic magnet, anisotropic permanent magnet using the same and manufacture thereof
JPH07176443A (en) Manufacture of anisotropic rare-earth magnet
JP7155971B2 (en) Arc-shaped permanent magnet and manufacturing method thereof
JP2643267B2 (en) Method for producing R-Fe-B anisotropic magnet
JPS61276303A (en) Manufacture of rare earths permanent magnet
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JP4353489B2 (en) Manufacturing method of iron-nickel magnetic alloy products
JP3057897B2 (en) Manufacturing method of anisotropic rare earth magnet
JP2003253304A (en) Member for magnetic core and its manufacturing method
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPWO2004013873A1 (en) Rare earth-iron-boron magnet manufacturing method
JPH02263415A (en) Manufacture of radial anisotropic permanent magnet
KR100362844B1 (en) Making Method for Magnet Core Using Powder Extrusion Wire Rod
SU1201877A1 (en) Method of manufacturing permanent magnets based on alloys of rare-earth metals with transition group elements
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JP2764981B2 (en) Method for producing R-Fe-B anisotropic ring magnet
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JP2000045025A (en) Production of rolled silicon steel
JPH06140223A (en) Manufacture of annular magnet material
JPH05135924A (en) Manufacture of rare earth permanent magnet
JPH108170A (en) Production of sintered body and produced sintered body
JPS62247054A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS63250406A (en) Molded product for electromagnetic use