JP7155971B2 - Arc-shaped permanent magnet and manufacturing method thereof - Google Patents

Arc-shaped permanent magnet and manufacturing method thereof Download PDF

Info

Publication number
JP7155971B2
JP7155971B2 JP2018228401A JP2018228401A JP7155971B2 JP 7155971 B2 JP7155971 B2 JP 7155971B2 JP 2018228401 A JP2018228401 A JP 2018228401A JP 2018228401 A JP2018228401 A JP 2018228401A JP 7155971 B2 JP7155971 B2 JP 7155971B2
Authority
JP
Japan
Prior art keywords
magnet
arc
preform
permanent magnet
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228401A
Other languages
Japanese (ja)
Other versions
JP2020092167A (en
Inventor
彰 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018228401A priority Critical patent/JP7155971B2/en
Publication of JP2020092167A publication Critical patent/JP2020092167A/en
Application granted granted Critical
Publication of JP7155971B2 publication Critical patent/JP7155971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

本発明は、ラジアル異方性を有する円弧状永久磁石およびその製造方法に関する。 The present invention relates to an arcuate permanent magnet having radial anisotropy and a method for manufacturing the same.

安価であり且つ高磁気特性を有するR-T-B系磁石は、希土類元素(R)、遷移元素(T)およびホウ素(B)を主成分とする、つまりR-T-B構造の主相を有する永久磁石であって、その製造方法により焼結磁石と熱間加工磁石とに大別される。そして、いずれの製造方法においても、所要の形状に成型することが求められる。なお、この磁石の形状については、特にモータ製造などにおいて、円筒状や円弧状であり、その内径側から外径側に向かって放射状に磁束を配向させた、ラジアル異方性を有する永久磁石の需要が高まっている。 RTB magnets that are inexpensive and have high magnetic properties are mainly composed of a rare earth element (R), a transition element (T) and boron (B), that is, the main phase of the RTB structure. and is roughly classified into sintered magnets and hot worked magnets depending on the manufacturing method. In any manufacturing method, molding into a desired shape is required. Regarding the shape of this magnet, especially in the manufacture of motors, a permanent magnet having a radial anisotropy, in which the magnetic flux is oriented radially from the inner diameter side to the outer diameter side, is cylindrical or arc-shaped. Demand is growing.

ラジアル異方性を有する円弧状永久磁石を製造する場合、焼結磁石では、磁気異方性を得るために磁場中プレスを行う必要があり、そのため、成型方向と配向磁場方向により形状の制約を受けることから、材料を加熱し、圧力により塑性変形を加えて結晶粒を配向させる熱間加工を利用した方法を用いることも多い。 When manufacturing arc-shaped permanent magnets with radial anisotropy, sintered magnets must be pressed in a magnetic field to obtain magnetic anisotropy. Therefore, a method using hot working, in which the material is heated and plastically deformed by pressure to orient the crystal grains, is often used.

ラジアル異方性を有する円弧状永久磁石を熱間加工により製造する方法としては、曲面を持った上下パンチを使用して円弧形状の圧密体から円弧状磁石を加工する方法(特許文献1および特許文献2)、リング形状磁石を成形加工した後、このリング形状磁石を分割する方法(特許文献3)、押出金型を使用する方法(特許文献4)などが知られている。 As a method of manufacturing an arc-shaped permanent magnet having radial anisotropy by hot working, there is a method of processing an arc-shaped magnet from an arc-shaped compacted body using upper and lower punches having curved surfaces (Patent Document 1 and Patent Document 2), a method of molding a ring-shaped magnet and then dividing the ring-shaped magnet (Patent Document 3), a method of using an extrusion die (Patent Document 4), and the like are known.

特開平06-124829号公報JP-A-06-124829 特開平06-140224号公報JP-A-06-140224 特開2015-15381号公報JP 2015-15381 A 特許第4957415号公報Japanese Patent No. 4957415

しかしながら、特許文献1や特許文献2に記載の方法では、曲面を持った上下パンチと成形体との間で発生する摩擦により全体に均一な圧縮が加わらず、円弧状磁石における周方向端部の磁気特性が劣化するという課題がある。
また、特許文献3に記載の方法では、製造可能な円弧形状は分割前のリング形状磁石の形状制約に影響を受けるため、曲率の低い円弧状磁石や厚肉の円弧状磁石を製造する場合、分割前のリング形状磁石の大型化と加工量の不均一化によって成形性および磁気特性が低下する傾向があるという課題がある。
さらに、特許文献4に記載の方法では、矩形の予備成形体から直接円弧状磁石を押出成形するため、押出金型内において変形を制御することが難しく、円弧状磁石の周方向端部における配向を制御しにくいという課題がある。
However, in the methods described in Patent Document 1 and Patent Document 2, uniform compression is not applied to the entire body due to friction generated between the upper and lower punches having curved surfaces and the molded body, and the circumferential ends of the arc-shaped magnet are not compressed. There is a problem that the magnetic properties deteriorate.
In addition, in the method described in Patent Document 3, the arc shape that can be manufactured is affected by the shape restrictions of the ring-shaped magnet before division, so when manufacturing an arc-shaped magnet with a low curvature or a thick arc-shaped magnet, There is a problem that the formability and magnetic properties tend to deteriorate due to the increase in the size of the ring-shaped magnet before splitting and the non-uniformity in the amount of processing.
Furthermore, in the method described in Patent Document 4, since the arc-shaped magnet is directly extruded from the rectangular preform, it is difficult to control the deformation in the extrusion die, and the orientation at the circumferential end of the arc-shaped magnet is difficult to control.

本発明は上記のような課題を解決することを目的とする。
すなわち、本発明の目的は、残留磁束密度(Br)、保磁力(Hcj)、配合度(Br/Js)等の磁気特性が周方向中心部と周方向端部の両方において同等に優れ、減磁し難い、ラジアル異方性円弧状永久磁石およびその製造方法を提供することにある。
An object of the present invention is to solve the above problems.
That is, the object of the present invention is to achieve the same excellent magnetic properties such as residual magnetic flux density (Br), coercive force (Hcj), blending ratio (Br/Js) at both the circumferential center portion and the circumferential end portion, and reduce the magnetic properties. To provide a radially anisotropic arcuate permanent magnet which is difficult to magnetize and a method for manufacturing the same.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)~(3)である。
(1)磁石用粉末に少なくとも圧密加工を施して予備成形体を得る成形工程と、前記予備成形体に押出加工を施して、配向度0.90以上のパラレル配向板磁石を得る板磁石形成工程と、前記パラレル配向板磁石に圧縮ひずみ(ε1)が0.5以下、伸長ひずみ(ε2)が0.2以下となるように応力を加えて曲げ加工を行う押出曲げ加工工程と、を備える、ラジアル異方性を有する円弧状永久磁石の製造方法。
(2)前記予備成形体の断面と寸法が一致する矩形の投入口および円弧形状の排出口を有する金型を用意し、前記投入口へ、前記予備成形体を装入し、前記金型にて前記板磁石形成工程および前記押出曲げ加工工程を連続して行う、上記(1)に記載のラジアル異方性を有する円弧状永久磁石の製造方法。
(3)R-T-B構造の主相を有する希土類熱間加工磁石であって、曲率が0.055以下且つ磁石半径方向の厚みが4.5mm以上の円弧形状からなり、周方向中心部および周方向端部における配向度が0.90以上であり、且つ、前記周方向中心部と前記周方向端部との配向度差が絶対値で0.05より小さい、ラジアル異方性円弧状永久磁石。
The present inventor has made intensive studies to solve the above problems, and completed the present invention.
The present invention is the following (1) to (3).
(1) A forming step for obtaining a preform by at least consolidating the magnet powder, and a plate magnet forming step for obtaining a parallel-oriented plate magnet having a degree of orientation of 0.90 or more by extruding the preform. and an extrusion bending step of bending the parallel-oriented plate magnet by applying stress so that the compression strain (ε1) is 0.5 or less and the extension strain (ε2) is 0.2 or less, A method for manufacturing an arcuate permanent magnet having radial anisotropy.
(2) Prepare a mold having a rectangular inlet and an arc-shaped outlet whose dimensions are the same as the cross section of the preform, insert the preform into the inlet, and insert the preform into the mold. The method for producing an arc-shaped permanent magnet having radial anisotropy according to (1) above, wherein the step of forming the plate magnet and the step of extrusion bending are performed continuously.
(3) A rare earth hot-worked magnet having a main phase of an RTB structure, which has an arc shape with a curvature of 0.055 or less and a thickness of 4.5 mm or more in the radial direction of the magnet, and a center portion in the circumferential direction and a radially anisotropic arc shape having an orientation degree of 0.90 or more at the circumferential end portions and an orientation difference between the circumferential center portion and the circumferential end portion of less than 0.05 in absolute value permanent magnet.

本発明によれば、残留磁束密度(Br)、保磁力(Hcj)および配向度(Br/Js)がいずれも周方向中心部と周方向端部の両方において同等に優れ、減磁し難い、ラジアル異方性を有する円弧状永久磁石を容易に得ることができる。さらに、前記磁気特性がいずれも周方向中心部と周方向端部の両方において同等に優れ、且つ、曲率が低い円弧形状や厚肉の円弧形状、広がり角度の大きい円弧形状であるラジアル異方性円弧状永久磁石を得ることもできる。 According to the present invention, the residual magnetic flux density (Br), the coercive force (Hcj), and the degree of orientation (Br/Js) are all equally excellent at both the circumferential center and the circumferential ends, and are difficult to demagnetize. Arc-shaped permanent magnets having radial anisotropy can be easily obtained. Furthermore, the magnetic properties are equally excellent at both the center portion in the circumferential direction and the end portions in the circumferential direction, and the radial anisotropy is an arc shape with a low curvature, a thick arc shape, and an arc shape with a large spread angle. Arc-shaped permanent magnets can also be obtained.

本発明のラジアル異方性を有する円弧状永久磁石を製造する方法の一例を工程図として示したものである。1 is a process chart showing an example of a method for manufacturing an arc-shaped permanent magnet having radial anisotropy according to the present invention. 本発明のラジアル異方性を有する円弧状永久磁石の製造方法において、板磁石形成工程および押出曲げ加工工程を連続して行った場合における、予備成形体から円弧状永久磁石までの断面形状および配向の変化を模式図として示したものである((I)~(IV))。なお、図中における「W」は押出曲げ加工工程前における板磁石の幅寸法を、「W1」は押出曲げ加工工程後における円弧状磁石の円弧内周寸法を、「W2」は押出曲げ加工工程後における円弧状磁石の円弧外周寸法を表す。In the method for manufacturing an arc-shaped permanent magnet having radial anisotropy of the present invention, the cross-sectional shape and orientation from the preform to the arc-shaped permanent magnet when the plate magnet forming step and the extrusion bending step are continuously performed ((I) to (IV)). In the figure, “W” is the width dimension of the plate magnet before the extrusion bending process, “W 1 ” is the arc inner circumference dimension of the arc-shaped magnet after the extrusion bending process, and “W 2 ” is the extrusion bending. It represents the arc outer circumference dimension of the arc-shaped magnet after the machining process. 本発明のラジアル異方性を有する円弧状永久磁石の一例を模式図として示したものである。なお、図中における「T」は円弧状永久磁石の厚みを、「D」は円弧状永久磁石の広がり角度を表す。1 is a schematic diagram showing an example of an arcuate permanent magnet having radial anisotropy according to the present invention. FIG. In the figure, "T" represents the thickness of the arcuate permanent magnet, and "D" represents the spread angle of the arcuate permanent magnet. 実施例における、円弧状永久磁石の周方向中心部試験片および周方向端部試験片の切り出しを模式図として示したものである。(a)は円弧状永久磁石の断面側から、(b)は円弧状永久磁石の上面側から試験片の切り出しを示した図であり、図中において、「A」は円弧状永久磁石の周方向中心部試験片を、「B」は円弧状永久磁石の周方向端部試験片を表す。FIG. 4 is a schematic diagram showing cutting out of a circumferential center test piece and a circumferential end test piece of an arc-shaped permanent magnet in an example. (a) is a view showing the cutout of the test piece from the cross-sectional side of the arc-shaped permanent magnet, and (b) is a view showing the cut-out of the test piece from the top side of the arc-shaped permanent magnet. The directional center specimen and "B" represent the circumferential end specimen of the arcuate permanent magnet.

まず、本発明のラジアル異方性を有する円弧状永久磁石の製造方法について説明する。
本発明のラジアル異方性を有する円弧状永久磁石の製造方法は、磁石用粉末に少なくとも圧密加工を施して予備成形体を得る成形工程と、この予備成形体に押出加工を施して、配向度0.90以上のパラレル配向板磁石を得る板磁石形成工程と、このパラレル配向板磁石に圧縮ひずみ(ε1)が0.5以下、伸長ひずみ(ε2)が0.2以下となるように応力を加えて曲げ加工を行う押出曲げ加工工程と、を備える円弧状永久磁石の製造方法である。以下では「本発明の製造方法」ともいう。
First, a method for manufacturing an arcuate permanent magnet having radial anisotropy according to the present invention will be described.
The method for producing an arcuate permanent magnet having radial anisotropy according to the present invention comprises a molding step of subjecting powder for magnets to at least compaction to obtain a preform, and an extrusion process of the preform to obtain a degree of orientation. A plate magnet forming step for obtaining a parallel-oriented plate magnet of 0.90 or more, and stress is applied to the parallel-oriented plate magnet so that the compressive strain (ε1) is 0.5 or less and the elongation strain (ε2) is 0.2 or less. and an extrusion bending process for bending. Hereinafter, it is also referred to as "the manufacturing method of the present invention".

この本発明の製造方法は、材料を加熱し、圧力により塑性変形を加えて結晶粒を配向させる加工法である熱間加工を利用した方法であり、以下において、その製造工程を図1を用いて詳細に説明する。 The manufacturing method of the present invention is a method that utilizes hot working, which is a processing method in which a material is heated and plastically deformed by pressure to orient crystal grains. The manufacturing process will be described below using FIG. will be explained in detail.

本発明の製造方法では、原料として磁石用粉末を使用する。この磁石用粉末の調製方法としては、溶解した母合金を回転ロール上に噴射し、超急冷することにより微細な結晶組織を持つ薄帯を得て、この薄帯を150μm以下程度に粉砕して磁石用粉末(原料粉)を得る方法が例示される。これは図1(a)の工程である。本発明においては、安価であり且つ高磁気特性(高残留磁束密度、高保磁力)を有するR-T-B系の磁石用粉末を使用するのが好ましいが、これに限定されるものではない。なお、R-T-B系とは、希土類元素(R)、遷移元素(T)およびホウ素(B)を主成分とすることを意味し、希土類元素としてはNd、Pr、Dy、Tbなど、遷移元素としてはFe、Co、Niなどが含まれるのが好適である。特に、Nd-Fe-B系の磁石用粉末を使用するのが、より高い磁気特性を有するR-T-B系磁石を得るという点において最も好ましい。ここで、本発明における「主成分」とは、合計含有率が90質量%以上であることを意味し、この合計含有率は95質量%以上であることがより好ましい。 In the manufacturing method of the present invention, magnet powder is used as a raw material. As a method for preparing this powder for magnets, the melted mother alloy is injected onto a rotating roll and rapidly cooled to obtain a ribbon having a fine crystal structure. A method for obtaining magnet powder (raw material powder) is exemplified. This is the step of FIG. 1(a). In the present invention, it is preferable to use RTB magnet powder which is inexpensive and has high magnetic properties (high residual magnetic flux density and high coercive force), but the present invention is not limited to this. The RTB system means that the main components are rare earth elements (R), transition elements (T) and boron (B), and the rare earth elements include Nd, Pr, Dy, Tb, etc. Preferably, the transition element includes Fe, Co, Ni, and the like. In particular, it is most preferable to use an Nd--Fe--B magnet powder in terms of obtaining an RTB-based magnet having higher magnetic properties. Here, the "main component" in the present invention means that the total content is 90% by mass or more, and the total content is more preferably 95% by mass or more.

次いで、成形工程において、磁石用粉末に圧密加工を施し、予備成形体を得る。特に、圧密加工として室温(20±15℃)における冷間圧粉成形を行い、矩形の予備成形体(例えば棒状など)を得る方法が、後の板磁石への加工のし易さという点から好ましい。これは、図1(b)の工程である。そして、後の熱間加工のし易さという点から、得られた予備成形体の表面に潤滑剤を塗布するのが好適である。これは、図1(c)の工程である。この予備成形体は、ハンドリングが可能な程度の強度を有する予備成形体であればよく、そのような予備成形体を得るために、冷間圧粉成形工程などの条件を適宜設定すればよい。また、潤滑剤は、脂肪酸エステルを主成分とするものなど公知の潤滑剤を使用でき、特段の限定はない。 Next, in the forming step, the magnet powder is subjected to compaction processing to obtain a preform. In particular, cold compaction is performed at room temperature (20±15° C.) as the consolidation process to obtain a rectangular preform (e.g., rod-like shape) from the viewpoint of ease of later processing into a plate magnet. preferable. This is the step of FIG. 1(b). From the viewpoint of facilitating subsequent hot working, it is preferable to apply a lubricant to the surface of the obtained preform. This is the step of FIG. 1(c). This preform may be a preform having a strength that allows handling, and in order to obtain such a preform, conditions such as the cold compaction step may be appropriately set. In addition, as the lubricant, a known lubricant such as one containing fatty acid ester as a main component can be used, and there is no particular limitation.

また、本発明においては、圧密加工として、例えば、冷間圧粉成形により得られた予備成形体に潤滑剤を塗布した後、さらに加熱して成形を行う熱間プレスを施し、より好ましい形状、密度および強度の予備成形体を得ても良い。 Further, in the present invention, as the consolidation process, for example, after applying a lubricant to the preform obtained by cold compaction, hot pressing is performed in which the preform is further heated and formed into a more preferable shape, A preform of density and strength may be obtained.

そして、このようにして得られた予備成形体に、700~900℃程度まで加熱した金型を使用した押出加工(熱間押出加工)を施して、配向度0.90以上のパラレル配向板磁石を形成する。この工程における加工時間は、300秒間以内が例示される。これは、図1(d)の工程である。この工程は大気中で行っても良いが、酸化抑制の観点からアルゴン等の不活性ガス雰囲気中、あるいは減圧下で行うのが好ましい。 Then, the preform obtained in this way is subjected to extrusion processing (hot extrusion processing) using a mold heated to about 700 to 900° C., and a parallel orientation plate magnet having a degree of orientation of 0.90 or more is obtained. to form The processing time in this step is exemplified within 300 seconds. This is the step of FIG. 1(d). Although this step may be performed in the atmosphere, it is preferably performed in an atmosphere of an inert gas such as argon or under reduced pressure from the viewpoint of suppressing oxidation.

本発明の製造方法では、この熱間押出加工工程において、上記予備成形体から直接円弧状永久磁石を形成するのではなく、まず、磁化容易軸方向に塑性変形を行い配向度0.90以上のパラレル配向板磁石を形成する。したがって、この熱間押出加工工程は、板磁石形成工程と言える。なお、熱間押出加工により、上記予備成形体から板磁石を形成する工程を経ずに直接円弧状永久磁石を形成する方法では、押出金型内において変形を制御することが難しく、磁気特性が均一なラジアル異方性を有する円弧状永久磁石を得ることが難しい。一方、上記予備成形体からパラレル配向板磁石を形成し、このパラレル配向板磁石を円弧状磁石に押出曲げ加工する本発明の製造方法によれば、残留磁束密度(Br)、保磁力(Hcj)および配合度(Br/Js)が周方向中心部と周方向端部の両方において同等に優れ、減磁し難い、ラジアル異方性を有する円弧状永久磁石を容易に取得することが可能となる。 In the manufacturing method of the present invention, in the hot extrusion process, instead of directly forming an arc-shaped permanent magnet from the preform, first, the preform is plastically deformed in the direction of the easy axis of magnetization so that the degree of orientation is 0.90 or more. A parallel orientation plate magnet is formed. Therefore, this hot extrusion process can be said to be a plate magnet forming process. In addition, in the method of forming arc-shaped permanent magnets directly from the preform by hot extrusion without going through the step of forming plate magnets, it is difficult to control deformation in the extrusion die, and magnetic properties are poor. It is difficult to obtain arcuate permanent magnets with uniform radial anisotropy. On the other hand, according to the manufacturing method of the present invention in which a parallel-oriented plate magnet is formed from the preform and the parallel-oriented plate magnet is extruded and bent into an arc-shaped magnet, residual magnetic flux density (Br) and coercive force (Hcj) It is possible to easily obtain an arc-shaped permanent magnet having radial anisotropy that is equally excellent in both the center portion in the circumferential direction and the end portion in the circumferential direction and is difficult to demagnetize. .

ここで、本発明において「配向度」とは、磁石の残留磁束密度(Br)を飽和磁束密度(Js)で除した値(Br/Js)を意味し、磁化容易軸の配向の程度を表す。また、「パラレル配向」とは、磁束が平行に配向している状態を意味し、この板磁石形成工程においては、板磁石の短手方向に向かって平行に磁束が配向している板磁石を形成する。 Here, in the present invention, the "orientation degree" means the value (Br/Js) obtained by dividing the residual magnetic flux density (Br) of the magnet by the saturation magnetic flux density (Js), and represents the degree of orientation of the axis of easy magnetization. . In addition, "parallel orientation" means a state in which magnetic fluxes are oriented in parallel. Form.

次いで、上記板磁石形成工程と同様の加工温度、加工時間、雰囲気条件において、形成したパラレル配向板磁石に圧縮ひずみ(ε1)が0.5以下、伸長ひずみ(ε2)が0.2以下となるように(例えばパラレル配向板磁石の配向方向へ)応力を加えて曲げ加工を行う押出曲げ加工工程(熱間押出曲げ加工工程)を施す。これは、図1(e)の工程である。このような圧縮ひずみおよび伸長ひずみ条件となるようにして加工を行うことで、パラレル配向板磁石からラジアル異方性円弧状永久磁石を容易に得ることができる。なお、本発明において「ラジアル異方性」とは、円弧状の内径側から外径側に向かって放射状に磁束が配向している状態を意味する。 Next, under the same processing temperature, processing time, and atmospheric conditions as in the plate magnet forming step, the formed parallel-oriented plate magnet has a compressive strain (ε1) of 0.5 or less and an elongation strain (ε2) of 0.2 or less. Then, an extrusion bending process (hot extrusion bending process) is performed in which bending is performed by applying a stress (for example, in the orientation direction of the parallel orientation plate magnet). This is the step of FIG. 1(e). A radially anisotropic arc-shaped permanent magnet can be easily obtained from a parallel-oriented plate magnet by carrying out processing under such compressive strain and elongation strain conditions. In the present invention, "radial anisotropy" means a state in which magnetic fluxes are oriented radially from the inner diameter side to the outer diameter side of an arc.

また、本発明において「圧縮ひずみ(ε1)」とは、上記押出曲げ加工工程前後における磁石の円弧内周側の寸法をそれぞれW(板磁石の幅寸法)、W1(円弧状磁石の円弧内周寸法)とした場合に、「ln(W/W1)」として定義される値を意味し、また、「伸張ひずみ(ε2)」とは、上記押出曲げ加工工程前後における磁石の円弧外周側の寸法をそれぞれW(板磁石の幅寸法)、W2(円弧状磁石の円弧外周寸法)とした場合に、「ln(W2/W)」として定義される値を意味する。なお、「ln」は自然対数を意味し、W、W1およびW2は、後述する予備成形体から円弧状永久磁石までの断面の形状変化の例を示した図2中に示される部分の寸法である。 In the present invention, "compressive strain (ε1)" refers to the dimensions of the inner circumference of the arc of the magnet before and after the extrusion bending step, respectively, W (width dimension of the plate magnet) and W 1 (inside the arc of the arc-shaped magnet). Circumferential dimension) means a value defined as “ln (W/W 1 )”, and “extension strain (ε2)” refers to the outer circumference of the arc of the magnet before and after the extrusion bending process is defined as "ln ( W2/W)", where W (the width of the plate magnet) and W2 ( the outer peripheral dimension of the arc-shaped magnet) are used. In addition, "ln" means the natural logarithm, and W, W1 and W2 are the parts shown in FIG . Dimensions.

本発明の製造方法においては、上記板磁石形成工程と上記押出曲げ加工工程とを、それぞれ別の金型を使用して別工程として行っても良いが、上記板磁石形成工程および上記押出曲げ加工工程を1つの金型を使用して連続的に行うのがより効率的である。
具体的には、予備成形体の断面(得ようとするパラレル配向板磁石の配向方向と平行な予備成形体の断面)と寸法が一致する矩形の投入口および円弧形状の排出口を有する金型を用意し、この投入口へ予備成形体を装入し、上記板磁石形成工程および上記押出曲げ加工工程を連続して行う。
In the production method of the present invention, the plate magnet forming step and the extrusion bending step may be performed as separate steps using separate molds. It is more efficient to perform the process continuously using one mold.
Specifically, a mold having a rectangular inlet and an arc-shaped outlet whose dimensions match the cross section of the preform (the cross section of the preform parallel to the orientation direction of the parallel orientation plate magnet to be obtained). is prepared, the preformed body is charged into the inlet, and the plate magnet forming step and the extrusion bending step are continuously performed.

このような、上記板磁石形成工程と上記押出曲げ加工工程とを1つの金型を使用して連続的に行った場合における、予備成形体から円弧状永久磁石までの断面(磁石の配向方向と平行な断面)の形状変化および配向変化の例を図2に示した。
なお、図2の(I)~(II)が板磁石形成工程における断面の形状変化を示し、板磁石が形成されたとき、その配向は、板磁石の短手方向に向かって平行に磁束が配向しているパラレル配向となる。また、図2の(III)~(IV)が押出曲げ加工工程における断面の形状変化を示し、円弧状磁石が形成されたとき、その配向は、ラジアル異方性となる。このような断面の形状変化および配向変化をして、予備成形体から板磁石を経て円弧状磁石が形成される。
In the case where the plate magnet forming step and the extrusion bending step are continuously performed using one mold, the cross section from the preform to the arc-shaped permanent magnet (magnet orientation direction and An example of shape change and orientation change in parallel cross-sections) is shown in FIG.
In addition, (I) to (II) of FIG. 2 show the shape change of the cross section in the step of forming the plate magnet. Oriented parallel orientation is obtained. In addition, (III) to (IV) of FIG. 2 show the shape change of the cross section in the extrusion bending process, and when the arc-shaped magnet is formed, its orientation becomes radially anisotropic. With such changes in cross-sectional shape and orientation, arc-shaped magnets are formed from the preform via plate magnets.

そして、最終加工工程として上記押出曲げ加工工程を行った後は、必要に応じて、得られた円弧状永久磁石の切断、研削、面取などの後加工(図1(f)の工程)を行い、最終製品であるラジアル異方性円弧状永久磁石とする。 After the extrusion bending step as the final processing step, post-processing such as cutting, grinding, chamfering, etc. (the step in FIG. 1(f)) is performed as necessary on the arc-shaped permanent magnet obtained. to produce a radially anisotropic arc-shaped permanent magnet, which is the final product.

このような本発明の製造方法によって、残留磁束密度(Br)、保磁力(Hcj)および配合度(Br/Js)が周方向中心部と周方向端部の両方において同等に優れ、減磁し難い、ラジアル異方性を有する円弧状永久磁石(特にR-T-B系のラジアル異方性を有する円弧状永久磁石)を容易に製造することができ、また、様々な曲率、厚さ、広がり角度を有するラジアル異方性円弧状永久磁石を製造することができる。 According to the manufacturing method of the present invention, the residual magnetic flux density (Br), the coercive force (Hcj) and the blending ratio (Br/Js) are equally excellent at both the circumferential center portion and the circumferential end portion, and demagnetization does not occur. Arc-shaped permanent magnets having radial anisotropy (particularly RTB-based arc-shaped permanent magnets having radial anisotropy), which are difficult to produce, can be easily manufactured. A radially anisotropic arcuate permanent magnet with a spread angle can be manufactured.

次に、本発明のラジアル異方性円弧状永久磁石について詳細に説明する。
本発明のラジアル異方性円弧状永久磁石は、R-T-B構造の主相を有する希土類熱間加工磁石であり、曲率が0.055以下且つ磁石半径方向の厚みが4.5mm以上の円弧形状からなり、周方向中心部および周方向端部における配向度が0.90以上であり、且つ、周方向中心部と周方向端部との配向度差が絶対値で0.05より小さい円弧状永久磁石である。以下では「本発明の磁石」ともいう。
Next, the radially anisotropic arcuate permanent magnet of the present invention will be described in detail.
The radially anisotropic arc-shaped permanent magnet of the present invention is a rare earth hot-worked magnet having a main phase of RTB structure, and has a curvature of 0.055 or less and a thickness of 4.5 mm or more in the magnet radial direction. It has an arc shape, the degree of orientation at the center in the circumferential direction and at the ends in the circumferential direction is 0.90 or more, and the difference in the degree of orientation between the center in the circumferential direction and the ends in the circumferential direction is smaller than 0.05 in absolute value. It is an arc-shaped permanent magnet. Hereinafter, it is also referred to as "the magnet of the present invention".

ここで、R-T-B構造とは、希土類元素(R)、遷移元素(T)およびホウ素(B)を主相とする結晶構造を意味し、希土類元素および遷移元素の好適例は前述と同様である。そして、本発明の磁石は、このR-T-B構造を主相とし且つ主相結晶粒のアスペクト比が2超であることが好ましい。この主相結晶粒のアスペクト比が2超であると、結晶粒の配向度(Br/Js)がより高く且つ残留磁束密度(Br)がより向上した、より減磁し難い永久磁石であると言える。
なお、本発明において「アスペクト比」とは、走査型電子顕微鏡(SEM)を用いて観察して得られる画像上において、1つの結晶粒の最大径を測定して、その値をdとし、また、その最大径を2等分する点を定め、それに直交する直線がこの結晶粒の外縁と交わる2点を求め、同2点間の距離を測定してtとした時、50個の結晶粒の各々についてd/tを求め、それらを単純平均した値を意味する。
Here, the RTB structure means a crystal structure in which the main phases are a rare earth element (R), a transition element (T) and boron (B). It is the same. The magnet of the present invention preferably has this RTB structure as a main phase and the aspect ratio of the main phase crystal grains is more than 2. When the aspect ratio of the main phase crystal grains is more than 2, the permanent magnet has a higher crystal grain orientation (Br/Js), a higher residual magnetic flux density (Br), and is more difficult to demagnetize. I can say
In the present invention, the "aspect ratio" means that the maximum diameter of one crystal grain is measured on an image obtained by observing using a scanning electron microscope (SEM), and the value is d. , determine a point that bisects the maximum diameter, find two points where a straight line orthogonal to the point intersects the outer edge of this crystal grain, measure the distance between the two points and set it to t, 50 crystal grains d/t is obtained for each of the values, and a simple average thereof is obtained.

また、本発明においては、X線回折法と走査型電子顕微鏡(SEM)を用いた二次電子像(1500倍)の観察、およびICP分析装置による主相の結晶粒と粒界相を含めた領域の分析によって、本発明の磁石の主相がR-T-B構造であるか否かを確認することができる。 In addition, in the present invention, observation of a secondary electron image (1500 times) using the X-ray diffraction method and a scanning electron microscope (SEM), and the crystal grains of the main phase and the grain boundary phase by an ICP analyzer are included. By area analysis, it can be confirmed whether the main phase of the magnet of the present invention is the RTB structure.

さらに、本発明の磁石は、曲率が0.055以下、好ましくは0.053以下、且つ磁石半径方向の厚みが4.5mm以上、好ましくは4.5~10mmである円弧形状からなり、周方向中心部および周方向端部における配向度(Br/Js)が0.90以上、好ましくは0.93以上であり、且つ、周方向中心部と周方向端部との配向度差が絶対値で0.05より小さい、好ましくは0.03より小さいラジアル異方性永久磁石である。
ここで、本発明における「曲率」とは円弧外周半径の逆数を意味し、「磁石半径方向の厚み」とは円弧外周半径と円弧内周半径との差を意味する。また、本発明における「周方向中心部」および「周方向端部」とは、図3および図4に示すように、円弧状磁石の広がり角度(D)を3等分する角度(D/3)の位置により円弧状磁石を3分割した場合において、円弧状磁石の広がり角度(D)をなす磁石側面を含む部分が「周方向端部」であり、広がり角度(D)を2等分する角度(D/2)の位置を含む部分が「周方向中心部」である。
Furthermore, the magnet of the present invention has an arc shape with a curvature of 0.055 or less, preferably 0.053 or less, and a thickness of 4.5 mm or more, preferably 4.5 to 10 mm in the radial direction of the magnet. The orientation degree (Br/Js) at the central portion and the circumferential end portions is 0.90 or more, preferably 0.93 or more, and the absolute value of the orientation degree difference between the circumferential central portion and the circumferential end portions is It is a radially anisotropic permanent magnet of less than 0.05, preferably less than 0.03.
Here, the "curvature" in the present invention means the reciprocal of the arc outer radius, and the "magnet radial thickness" means the difference between the arc outer radius and the arc inner radius. Further, as shown in FIGS. 3 and 4, the terms "circumferential center" and "circumferential end" in the present invention refer to an angle (D/3 ), the portion including the side surface of the magnet forming the spread angle (D) of the arc magnet is the “end in the circumferential direction” and divides the spread angle (D) into two equal parts. The portion including the position of the angle (D/2) is the "circumferential central portion".

そして、このような本発明の磁石は、曲率が0.055以下、および磁石半径方向の厚みが4.5mm以上、つまり曲率が低く、厚肉な円弧状永久磁石でありながら、残留磁束密度(Br)、保磁力(Hcj)および配合度(Br/Js)が周方向中心部と周方向端部の両方において優れている、減磁し難い永久磁石であると言える。また、この本発明の磁石は、前述した本発明の製造方法によって容易に取得することができる。 The magnet of the present invention has a curvature of 0.055 or less and a thickness of 4.5 mm or more in the radial direction of the magnet. Br), coercive force (Hcj), and compounding ratio (Br/Js) at both the circumferential center portion and the circumferential end portion, and are difficult to demagnetize. Also, the magnet of the present invention can be easily obtained by the manufacturing method of the present invention described above.

以下、本発明の実施例について説明する。なお、本発明は以下の実施例に限定されるものではなく、本発明の技術的思想内において様々な変形が可能である。 Examples of the present invention will be described below. The present invention is not limited to the following examples, and various modifications are possible within the technical concept of the present invention.

Nd、Fe、Bを主成分とする母合金を1500℃で溶解した後、その溶湯をオリフィスからCrめっきを施したCu製の回転ロールに射出(回転ロール周速度:30m/秒)し、急冷合金薄帯を作製した。この急冷合金薄帯をカッターミルで粉砕して篩分けし、最大粒径が150μm以下の原料粉を作製した。そして、この原料粉を冷間プレス機の金型に装填し、大気中において3ton/cm2の圧力を加え、3秒間保時して成形する圧密加工を行い、矩形(棒状)の予備成形体を作製した。 After melting a master alloy containing Nd, Fe, and B as main components at 1500°C, the molten metal is injected from an orifice onto a Cr-plated Cu rotating roll (rotating roll peripheral speed: 30 m/sec) and rapidly cooled. An alloy ribbon was produced. This quenched alloy ribbon was pulverized with a cutter mill and sieved to prepare raw material powder having a maximum particle size of 150 μm or less. Then, this raw material powder is loaded into a mold of a cold press machine, a pressure of 3 tons/cm 2 is applied in the atmosphere, and a compaction process is performed by holding for 3 seconds to form a rectangular (rod-shaped) preform. was made.

次いで、この予備成形体表面に脂肪酸エステルを主成分とする潤滑剤を塗布した。その後、熱間押出加工により配向度0.90以上のパラレル配向板磁石を成形してから、連続的に、圧縮ひずみ(ε1)が0.5以下、伸長ひずみ(ε2)が0.2以下となるように応力を加えて押出曲げ加工を行い円弧状磁石を成形することができる7種類の金型を使用して、アルゴンガス雰囲気中または減圧雰囲気中において、これらの金型を700~900℃に加熱し、それぞれに上記予備成形体をセットして加熱しながら最大で30ton/cm2の圧力を加えて300秒間以内で成形されるように連続的に加工を行い、9種類の円弧状永久磁石を作製した(実施例1~9(実施例6、8、9は同じ金型を使用))。 Then, a lubricant containing fatty acid ester as a main component was applied to the surface of the preform. After that, a parallel-oriented plate magnet having a degree of orientation of 0.90 or more is molded by hot extrusion, and then the compressive strain (ε1) is 0.5 or less and the elongation strain (ε2) is 0.2 or less. Using seven types of molds that can be extruded and bent to form an arc-shaped magnet, these molds are placed in an argon gas atmosphere or a reduced pressure atmosphere at 700 to 900 ° C. Then, the preforms are set in each, and while heating, a maximum pressure of 30 tons/cm 2 is applied and continuously processed so as to be formed within 300 seconds, and nine types of arc-shaped permanent Magnets were produced (Examples 1 to 9 (Examples 6, 8 and 9 used the same mold)).

また、これとは別に、潤滑剤を塗布した上記予備成形体について、熱間押出加工により板磁石を成形する金型(比較例1)、熱間押出加工により板磁石を形成する工程を経ずに直接円弧状永久磁石を成形する金型(比較例2)、および熱間押出加工により板磁石を成形してから、連続的に、応力を加えて押出曲げ加工を行うが、押出曲げ加工時の圧縮ひずみおよび伸長ひずみが本発明の条件を満たさない2種類の金型(比較例3~4)を使用して、アルゴンガス雰囲気中または減圧雰囲気中において、これらの金型を700~900℃に加熱して、それぞれに上記予備成形体をセットして加熱しながら最大で30ton/cm2の圧力を加えて300秒間以内で成形されるように加工を行い、4種類の永久磁石を作製した(比較例1~4)。 Separately from this, the above preform coated with a lubricant was subjected to a mold for forming a plate magnet by hot extrusion (Comparative Example 1), and was not subjected to the step of forming a plate magnet by hot extrusion. A die (Comparative Example 2) that directly forms an arc-shaped permanent magnet in the mold (Comparative Example 2), and after forming a plate magnet by hot extrusion, continuously apply stress and perform extrusion bending. Using two types of molds (Comparative Examples 3-4) whose compressive strain and elongation strain do not satisfy the conditions of the present invention, these molds were heated at 700 to 900 ° C. in an argon gas atmosphere or in a reduced pressure atmosphere. , and the preformed bodies were set in each of them, and while heating, a maximum pressure of 30 tons/cm 2 was applied and processed so as to be formed within 300 seconds, thereby producing four types of permanent magnets. (Comparative Examples 1 to 4).

この実施例1~9および比較例1~4の各磁石の最終工程、形状、曲げ加工条件および磁石組織を下記表1に示した。なお、下記データの測定および算出については、3次元形状測定機(倍率12倍:VR-3000、キーエンス社製)により、得られた各磁石の円弧外周半径、円弧内周半径および磁石側面間の角度を測定し、円弧外周半径と円弧内周半径との差を磁石半径方向の厚み(図3のT)とし、円弧外周半径の逆数を曲率とし、磁石側面間の角度を広がり角度(図3のD)とした。また、押出曲げ加工における圧縮ひずみおよび伸張ひずみは、使用した金型の設計から、板磁石形成時の幅寸法と得られる円弧状磁石の円弧外周寸法および円弧内周寸法により算出した。 Table 1 below shows the final process, shape, bending conditions and magnet structure of the magnets of Examples 1 to 9 and Comparative Examples 1 to 4. For the measurement and calculation of the following data, the arc outer circumference radius, the arc inner circumference radius, and the distance between the magnet side surfaces were obtained by a three-dimensional shape measuring machine (magnification: 12 times: VR-3000, manufactured by Keyence Corporation). The angle is measured, the difference between the arc outer radius and the arc inner radius is defined as the thickness in the magnet radial direction (T in FIG. 3), the reciprocal of the arc outer radius is defined as the curvature, and the angle between the magnet side surfaces is the spread angle (Fig. 3 D). Compressive strain and tensile strain in extrusion bending were calculated from the width dimension at the time of forming the plate magnet and the arc outer circumference dimension and arc inner circumference dimension of the obtained arc magnet from the design of the mold used.

さらに、各磁石における主相結晶粒のアスペクト比は、走査型電子顕微鏡(SEM)を用いて観察する方法により測定した。具体的には、まず、以下の条件により走査型電子顕微鏡による各磁石の観察を行った。
観察倍率:20,000倍
装置:S-4700、日立ハイテクノロジーズ社製
観察条件:2次電子像
観察方向:配向方向に垂直な方向
粒径確認方法:画像処理(winROOF、三谷商事株式会社)
画像処理条件:針状比
画像処理領域:約740nm×640nm
Furthermore, the aspect ratio of the main phase crystal grains in each magnet was measured by an observation method using a scanning electron microscope (SEM). Specifically, first, each magnet was observed with a scanning electron microscope under the following conditions.
Observation magnification: 20,000 times Apparatus: S-4700, manufactured by Hitachi High-Technologies Corporation Observation conditions: Secondary electron image Observation direction: Direction perpendicular to orientation direction Particle size confirmation method: Image processing (winROOF, Mitani Shoji Co., Ltd.)
Image processing conditions: acicular ratio Image processing area: about 740 nm x 640 nm

そして、このような条件にて観察して得られる画像上における、その1つの結晶粒の最大径を測定して、その値をdとした。また、その最大径を2等分する点を定め、それに直交する直線がこの結晶粒の外縁と交わる2点を求め、同2点間の距離を測定してtとした。そして、d/tを求め、これをその結晶粒のアスペクト比とした。
このようにして50個の結晶粒の各々についてアスペクト比を測定し、これを単純平均して得た値をその磁石のアスペクト比とした。
Then, the maximum diameter of one crystal grain on the image obtained by observation under such conditions was measured, and the value was defined as d. Also, a point that bisects the maximum diameter is determined, two points where a straight line perpendicular to the point intersects with the outer edge of the crystal grain are determined, and the distance between the two points is measured as t. Then, d/t was obtained and used as the aspect ratio of the crystal grains.
The aspect ratio of each of the 50 crystal grains was measured in this way, and the value obtained by simple averaging was taken as the aspect ratio of the magnet.

Figure 0007155971000001
Figure 0007155971000001

次に、得られた実施例1~9および比較例1~4の各磁石から、図4の(a)および(b)に示すように、それぞれ周方向中心部(A)および周方向端部(B)の試験片を切り出した。そして、これらの試験片についてパルス励磁型磁気特性測定装置(TPM-2-08s25VT、東英工業社製)を用いて測定温度(RT)23℃の条件において測定を行い、反磁界補正をして残留磁束密度(Br)、保磁力(Hcj)および飽和磁束密度(Js)を求めた。さらに、配向度(Br/Js)を算出するとともに、各磁気特性データについて、周方向中心部試験片と周方向端部試験片との差(絶対値)も算出した。これらの結果を下記表2に示した。 Next, from the obtained magnets of Examples 1 to 9 and Comparative Examples 1 to 4, as shown in FIGS. A test piece of (B) was cut out. Then, these test pieces were measured using a pulse excitation type magnetic property measuring device (TPM-2-08s25VT, manufactured by Toei Kogyo Co., Ltd.) at a measurement temperature (RT) of 23 ° C., and corrected for the demagnetizing field. Residual magnetic flux density (Br), coercive force (Hcj) and saturation magnetic flux density (Js) were determined. Furthermore, the degree of orientation (Br/Js) was calculated, and the difference (absolute value) between the circumferential center test piece and the circumferential end test piece was also calculated for each magnetic property data. These results are shown in Table 2 below.

Figure 0007155971000002
Figure 0007155971000002

これらの結果から、本発明の磁石である実施例1~9は、曲率が低く、厚肉な、広がり角度が大きい円弧形状でありながら、周方向中心部と周方向端部との残留磁束密度(Br)、保磁力(Hcj)および配合度(Br/Js)の差が小さく、つまり板磁石(比較例1)と同じように磁気特性が均一であり、且つ結晶粒のアスペクト比が2超であることが示された。一方、熱間押出加工により板磁石を形成する工程を経ずに直接円弧状永久磁石とした比較例2は周方向端部の保磁力(Hcj)が大きく低下していた。さらに、押出曲げ加工時の加工量が大きい比較例3および4は、円弧状永久磁石の外周側周方向中心部に微小なヒビが発生し、そのため、周方向中心部の残留磁束密度(Br)と保磁力(Hcj)が大きく低下し、また、円弧状永久磁石の内周側周方向中心部に加わる圧縮ひずみが大きいため、結晶粒の配向が乱れ、周方向中心部の配向度(Br/Js)も低下していた。 From these results, the magnets of Examples 1 to 9, which are the magnets of the present invention, have a circular arc shape with a low curvature, a thick wall, and a large spread angle, but the residual magnetic flux density between the circumferential center and the circumferential ends (Br), coercive force (Hcj), and blending ratio (Br/Js) are small, that is, the magnetic properties are uniform like the plate magnet (Comparative Example 1), and the aspect ratio of the crystal grains is more than 2. was shown to be On the other hand, in Comparative Example 2, in which the arc-shaped permanent magnet was directly formed without going through the step of forming the plate magnet by hot extrusion, the coercive force (Hcj) at the circumferential end portion was greatly reduced. Furthermore, in Comparative Examples 3 and 4, in which the amount of work during extrusion bending is large, a minute crack occurs in the circumferential center on the outer peripheral side of the arc-shaped permanent magnet, and as a result, the residual magnetic flux density (Br) The coercive force (Hcj) is greatly reduced when the Js) was also lowered.

したがって、本発明の製造方法によれば、曲率が0.055以下且つ磁石半径方向の厚みが4.5mm以上であり、残留磁束密度(Br)、保磁力(Hcj)および配合度(Br/Js)が周方向中心部と周方向端部の両方において同等に優れた、結晶粒のアスペクト比が2超であるラジアル異方性R-T-B系円弧状永久磁石を容易に得られることが明らかとなった。そして、この磁気特性が均一なラジアル異方性R-T-B系円弧状永久磁石は、減磁し難く、モータ等の永久磁石として好適に使用することができる。 Therefore, according to the manufacturing method of the present invention, the curvature is 0.055 or less, the thickness in the magnet radial direction is 4.5 mm or more, the residual magnetic flux density (Br), the coercive force (Hcj), and the compounding ratio (Br/Js ) is equally excellent both at the center in the circumferential direction and at the ends in the circumferential direction. It became clear. A radially anisotropic RTB arc-shaped permanent magnet with uniform magnetic properties is difficult to demagnetize and can be suitably used as a permanent magnet for motors and the like.

Claims (3)

磁石用粉末に少なくとも圧密加工を施して予備成形体を得る成形工程と、
前記予備成形体に押出加工を施して、配向度0.90以上のパラレル配向板磁石を得る板磁石形成工程と、
前記パラレル配向板磁石に圧縮ひずみ(ε1)が0.5以下、伸長ひずみ(ε2)が0.2以下となるように応力を加えて曲げ加工を行う押出曲げ加工工程と、
を備える、ラジアル異方性を有する円弧状永久磁石の製造方法。
a forming step of subjecting the magnet powder to at least compaction to obtain a preform;
a plate magnet forming step of extruding the preform to obtain a parallel-oriented plate magnet having a degree of orientation of 0.90 or more;
an extrusion bending step of bending the parallel-oriented plate magnet by applying stress so that the compression strain (ε1) is 0.5 or less and the extension strain (ε2) is 0.2 or less;
A method for manufacturing an arc-shaped permanent magnet having radial anisotropy, comprising:
前記予備成形体の断面と寸法が一致する矩形の投入口および円弧形状の排出口を有する金型を用意し、前記投入口へ、前記予備成形体を装入し、前記金型にて前記板磁石形成工程および前記押出曲げ加工工程を連続して行う、請求項1に記載のラジアル異方性を有する円弧状永久磁石の製造方法。 A mold having a rectangular inlet and an arc-shaped outlet having the same dimensions as the cross section of the preform is prepared, the preform is inserted into the inlet, and the plate is placed in the mold. 2. The method for producing an arc-shaped permanent magnet having radial anisotropy according to claim 1, wherein the magnet forming step and the extrusion bending step are performed continuously. R-T-B構造の主相を有する希土類熱間加工磁石であって、
曲率が0.055以下且つ磁石半径方向の厚みが4.5mm以上の円弧形状からなり、
周方向中心部および周方向端部における配向度が0.90以上であり、且つ、前記周方向中心部と前記周方向端部との配向度差が絶対値で0.05より小さい、
ラジアル異方性円弧状永久磁石。
A rare earth hot-worked magnet having a main phase of RTB structure,
It has an arc shape with a curvature of 0.055 or less and a thickness of 4.5 mm or more in the magnet radial direction,
The degree of orientation at the center in the circumferential direction and at the ends in the circumferential direction is 0.90 or more, and the absolute value of the difference in the degree of orientation between the center in the circumferential direction and the ends in the circumferential direction is less than 0.05.
Radial anisotropic arc-shaped permanent magnet.
JP2018228401A 2018-12-05 2018-12-05 Arc-shaped permanent magnet and manufacturing method thereof Active JP7155971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228401A JP7155971B2 (en) 2018-12-05 2018-12-05 Arc-shaped permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228401A JP7155971B2 (en) 2018-12-05 2018-12-05 Arc-shaped permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020092167A JP2020092167A (en) 2020-06-11
JP7155971B2 true JP7155971B2 (en) 2022-10-19

Family

ID=71013106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228401A Active JP7155971B2 (en) 2018-12-05 2018-12-05 Arc-shaped permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7155971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324976B2 (en) 2019-07-01 2023-08-14 パナソニックIpマネジメント株式会社 LASER PROCESSING HEAD, LASER PROCESSING APPARATUS, AND LASER PROCESSING CONTROL METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957415B2 (en) 2006-09-06 2012-06-20 大同特殊鋼株式会社 Method for manufacturing permanent magnet and permanent magnet
JP2015015381A (en) 2013-07-05 2015-01-22 大同特殊鋼株式会社 Method for manufacturing permanent magnet
JP2017050396A (en) 2015-09-01 2017-03-09 大同特殊鋼株式会社 Rare-earth magnet and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02297910A (en) * 1989-05-12 1990-12-10 Fuji Elelctrochem Co Ltd Manufacture of radially oriented magnet
JPH02308512A (en) * 1989-05-24 1990-12-21 Hitachi Metals Ltd R-fe-b permanent magnet having biased anisotropy and manufacture thereof
JP3084748B2 (en) * 1991-04-25 2000-09-04 セイコーエプソン株式会社 Manufacturing method of rare earth permanent magnet
JPH06188120A (en) * 1992-12-17 1994-07-08 Hitachi Metals Ltd Circular arc-shaped magnet and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957415B2 (en) 2006-09-06 2012-06-20 大同特殊鋼株式会社 Method for manufacturing permanent magnet and permanent magnet
JP2015015381A (en) 2013-07-05 2015-01-22 大同特殊鋼株式会社 Method for manufacturing permanent magnet
JP2017050396A (en) 2015-09-01 2017-03-09 大同特殊鋼株式会社 Rare-earth magnet and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324976B2 (en) 2019-07-01 2023-08-14 パナソニックIpマネジメント株式会社 LASER PROCESSING HEAD, LASER PROCESSING APPARATUS, AND LASER PROCESSING CONTROL METHOD

Also Published As

Publication number Publication date
JP2020092167A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
KR101632853B1 (en) Rare-earth-magnet production method
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
US5039292A (en) Device for manufacturing magnetically anisotropic magnets
KR101513824B1 (en) Method producing rare earth magnet
KR101690896B1 (en) Manufacturing method for rare-earth magnet
EP1898432B1 (en) Process of producing permanent magnet and permanent magnet
JP2013149862A (en) Method of manufacturing rare earth magnet
JP7155971B2 (en) Arc-shaped permanent magnet and manufacturing method thereof
JP2017050396A (en) Rare-earth magnet and manufacturing method therefor
JP2012044021A (en) Anisotropic magnet manufacturing method
KR101813427B1 (en) Method of manufacturing rare earth magnet
JP7294347B2 (en) Manufacturing method of Sm-Fe-N magnet, Sm-Fe-N magnet and motor provided with Sm-Fe-N magnet
JP5057211B2 (en) Amorphous metal molded body and method for producing the same
EP2099039A1 (en) Material for magnetic anisotropic magnet
KR20160041790A (en) Method for manufacturing rare-earth magnets
JP7342706B2 (en) Permanent magnet and its manufacturing method
JPH02297910A (en) Manufacture of radially oriented magnet
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPH04162503A (en) Magnetically anisotropic magnet and its manufacture
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JP2003253304A (en) Member for magnetic core and its manufacturing method
JPH0349961B2 (en)
JPH0226006A (en) Manufacture of anisotropic permanent magnet
JPH04321202A (en) Manufacture of anisotropic permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7155971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150