JPH0226006A - Manufacture of anisotropic permanent magnet - Google Patents

Manufacture of anisotropic permanent magnet

Info

Publication number
JPH0226006A
JPH0226006A JP17547288A JP17547288A JPH0226006A JP H0226006 A JPH0226006 A JP H0226006A JP 17547288 A JP17547288 A JP 17547288A JP 17547288 A JP17547288 A JP 17547288A JP H0226006 A JPH0226006 A JP H0226006A
Authority
JP
Japan
Prior art keywords
molded body
upper punch
permanent magnet
plastic deformation
anisotropic permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17547288A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Teruo Watanabe
渡辺 輝夫
Shinichiro Yahagi
慎一郎 矢萩
Yukihiro Isogawa
幸宏 五十川
Yutaka Yoshida
裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17547288A priority Critical patent/JPH0226006A/en
Publication of JPH0226006A publication Critical patent/JPH0226006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain sufficient magnetic anisotropy with a small compression force by a method wherein an upper punch having a pressing plane which is inclined from its center to circumference is pressed against a molded unit and the molded unit is compressed by the pressing plane. CONSTITUTION:A molded unit 2 of magnetic powder is put on the top surface of a lower punch 1 and an upper punch 3 is pressed against the top of the molded unit 2. The pressing plane 3a of the upper punch 3 is so formed as to be inclined along all the radial directions from its center to circumference. In this state, the center axis (a) of the punch 3 is rotated around a vertical axis (b) with the center axis (a) as a fulcrum, i.e., the precession of the upper punch 3 is performed, the molded unit 2 is compressed and metal flow is induced and plastic deformation is made to progress. With this constitution, excellent magnetic anisotropy can be obtained with a small compression force.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、塑性変形加工を施して、磁気異方性の永久磁
石を製造する方法に関し、更に詳しくは、小さい加工圧
であっても優れた異方性が得られ、しかも加工時に側面
でのバレリングや割れ等が発生しない異方性永久磁石の
製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing magnetically anisotropic permanent magnets by plastic deformation processing, and more specifically, to a method for producing magnetically anisotropic permanent magnets using plastic deformation processing. The present invention relates to a method for manufacturing an anisotropic permanent magnet that provides a high degree of anisotropy and that does not cause barreling or cracking on the side surface during processing.

(従来の技術) 磁性材料に塑性変形加工を施し、その材料組織を異方化
して特定方向に優れた磁気特性を発現させるという方法
は、圧延によるケイ素鋼板の集合tIIi織の形成とし
てよく知られている。
(Prior art) A method of plastically deforming a magnetic material to make its material structure anisotropic and exhibit excellent magnetic properties in a specific direction is well known as the formation of aggregated tIIi weave in silicon steel sheets by rolling. ing.

永久磁石においても、例えばMn−A11−C系の材料
に対する押出し加工、Nd−Fe−B系材料に対するア
ップセット加工などで上記効果が確認されている。
The above effect has also been confirmed in permanent magnets, for example, in extrusion processing for Mn-A11-C-based materials, upset processing for Nd-Fe-B-based materials, and the like.

このような塑性変形加工は、加工時の応力または歪の方
向と結晶の磁化容易軸とが特定の方位関係を形成すると
いう性状を利用するものである。
Such plastic deformation processing utilizes the property that the direction of stress or strain during processing and the axis of easy magnetization of the crystal form a specific orientation relationship.

ところで、この塑性変形加工、特にアプセット時には、
磁性粉の成形体またはインゴットをプレスの下パンチ上
に置き、上パンチで前記成形体を加圧して、成形体の周
縁部は拘束しない状態で塑性変形させている。
By the way, during this plastic deformation process, especially during upsetting,
A molded body or an ingot of magnetic powder is placed on a lower punch of a press, and the molded body is pressed by an upper punch to plastically deform the molded body without restraining the peripheral edge of the molded body.

この場合、成形体を加圧する上パンチのプレス面は、平
滑な水平面として形成され、それゆえプレス面はその全
面において成形体と接触しているのが通例である。そし
て、上パンチからの加工圧により成形体はその周縁部方
向にメタルフローして塑性変形する。
In this case, the press surface of the upper punch that presses the compact is formed as a smooth horizontal surface, and therefore the press surface is usually in contact with the compact over its entire surface. Then, due to the processing pressure from the upper punch, the molded body undergoes metal flow toward its periphery and is plastically deformed.

(発明が解決しようとする課題) しかしながら、上記した形状の上パンチを用いた場合、
そのプレス面の全面は成形体と接触しているため両者間
の摩擦抵抗は大きくなる。それゆえ、成形体のメタルフ
ローも抵抗を受けることになる。その結果、成形体を充
分に塑性変形するためには、それだけ大きな加圧力を必
要とすることになる。
(Problem to be solved by the invention) However, when using the above-described upper punch,
Since the entire press surface is in contact with the compact, the frictional resistance between the two becomes large. Therefore, the metal flow of the compact will also be resisted. As a result, in order to sufficiently plastically deform the molded body, a correspondingly large pressing force is required.

一般に、優れた磁気異方性を得るためには、成形体を強
加工して加工率を高め、材料組織の塑性変形を大たらし
めればよいが、しかし、加圧力との関係におけるプレス
機の能力の問題または材料の変形能の問題などから、無
制限に加工率を大とすることはできない。
Generally, in order to obtain excellent magnetic anisotropy, it is sufficient to strongly work the molded body to increase the processing rate and increase the plastic deformation of the material structure. It is not possible to increase the processing rate indefinitely due to problems such as the ability of the material or the deformability of the material.

また、塑性変形は、そのときの加工温度を高くするほど
増大せしめることが可能である場合が多い、しかしなが
ら、Nd−Fe−B系の永久磁石のように、その結晶粒
の細かさが保持力などの磁気特性を規定するような材料
の場合には、塑性変形加工時の温度を高くすると、結晶
粒の粗大化が進行して磁気特性の劣化を招くことになる
。それゆえ、このような磁石の製造時には、加工時の温
度を高(設定することができない。
In addition, plastic deformation can often be increased by increasing the processing temperature.However, as with Nd-Fe-B permanent magnets, the fineness of the crystal grains increases the holding force. In the case of materials that define magnetic properties such as, if the temperature during plastic deformation processing is increased, crystal grains will become coarser and the magnetic properties will deteriorate. Therefore, when manufacturing such magnets, it is not possible to set a high processing temperature.

その結果、このような磁石においては、低温下において
大なる加圧力で塑性変形加工を施すことが必要となり、
容量の大きなプレス機を使用せざるを得なくなる。
As a result, it is necessary for such magnets to undergo plastic deformation under high pressure at low temperatures.
It is necessary to use a press machine with a large capacity.

しかし、低温であるため材料の変形能は小さい。However, since the temperature is low, the deformability of the material is small.

その結果、成形体の周縁部に発生する引張り応力により
、その周縁部には加圧方向にバレリングや割れ等が発生
し、製品歩留りが著しく低下することになる。
As a result, the tensile stress generated at the periphery of the molded body causes barreling, cracking, etc. to occur in the periphery in the pressurizing direction, resulting in a significant decrease in product yield.

また、従来の上パンチを使用して塑性変形加工を行なっ
た場合、成形体に加わる加圧力は中心部で大で、周縁部
では小となるような圧力分布を示す、それゆえ、得られ
た加工品の中心部と周縁部における磁気特性にばらつき
が発生しやすく、均一な特性の永久磁石の製造という点
で不満足な状態にあった。
In addition, when plastic deformation is performed using a conventional upper punch, the pressure applied to the molded body shows a pressure distribution such that it is large at the center and small at the periphery. Variations in magnetic properties tend to occur between the center and periphery of the processed product, making it unsatisfactory in terms of producing permanent magnets with uniform properties.

本発明は上記した問題を解消し、小さな加圧力によって
も充分な磁気異方性を付与す゛ることかでき、しかも周
縁部にバレリングや割れ等を発生させることがなく、ま
た中心部と周縁部の特性ばらつきも小さい異方性永久磁
石の製造方法の提供を目的とする。
The present invention solves the above-mentioned problems, makes it possible to provide sufficient magnetic anisotropy even with a small pressing force, and does not cause barreling or cracking at the periphery. The purpose of the present invention is to provide a method for manufacturing an anisotropic permanent magnet with small variations in characteristics.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、磁
性粉またはインゴツトの成形体に塑性変形加工を施す異
方性永久磁石の製造方法において、前記塑性変形加工が
、前記成形体に、その中心点から周縁にむかって傾斜す
るプレス面を有する上パンチを当接し、前記プレス面で
前記成形体を加圧する方法であることを特徴とする異方
性永久磁石の製造方法が提供される。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for manufacturing an anisotropic permanent magnet in which a molded body of magnetic powder or an ingot is subjected to plastic deformation. is an anisotropic permanent magnet characterized in that the molded body is contacted with an upper punch having a press surface that is inclined from the center point toward the periphery, and the molded body is pressurized by the press surface. A manufacturing method is provided.

本発明の塑性変形加工を施す磁性粉またはインゴットの
成形体は次のようにして製造される。
The molded body of magnetic powder or ingot to be subjected to plastic deformation according to the present invention is manufactured as follows.

まず、用いる磁性粉としては、希土l1(R)−鉄(F
e)系の合金粉、とりわけR−Fe−B系合金粉、Mn
−A11−C系合金粉、Fe−Cr−Co系合金粉、A
l−N1−Co系合金粉をあげることができる。
First, the magnetic powder to be used is rare earth l1(R)-iron (F
e) alloy powder, especially R-Fe-B alloy powder, Mn
-A11-C alloy powder, Fe-Cr-Co alloy powder, A
Examples include l-N1-Co alloy powder.

とくに、R−Fe−B系合金粉の場合は、所定組成のR
−Fe’−B系合金に常用の溶湯急冷法を適用して該合
金組成を有する非晶質またはそれと結晶質の混合質から
成る薄帯またはフレークを調製したのち、二〇薄帯また
はフレークを粉砕して製造される。
In particular, in the case of R-Fe-B alloy powder, R of a predetermined composition is
-By applying a common molten metal quenching method to a -Fe'-B alloy to prepare a ribbon or flake consisting of an amorphous material or a mixture of amorphous and crystalline material having the alloy composition, 20 ribbons or flakes are prepared. Manufactured by crushing.

このような磁性粉を所定の型内に充填し、真空または非
酸化性雰囲気下において、500〜800°Cの温度で
ホットプレスまたは静水圧ホットプレスを行ない、緻密
に圧縮成形した成形体とする。また、磁性粉の成形体だ
けでなく、適当な条件で鋳造された上記合金のインゴッ
トに対しても、後述する塑性加工により異方性が付与さ
れる。
Fill such magnetic powder into a predetermined mold and perform hot pressing or isostatic hot pressing at a temperature of 500 to 800°C in a vacuum or non-oxidizing atmosphere to obtain a compact compression molded product. . Furthermore, anisotropy is imparted not only to the molded body of magnetic powder but also to an ingot of the above-mentioned alloy cast under appropriate conditions through plastic working, which will be described later.

本発明方法においては、このようにして製造された成形
体に後述のような塑性変形加工を施す。
In the method of the present invention, the molded body thus produced is subjected to plastic deformation processing as described below.

本発明の塑性変形加工に用いるプレス機の概略を第1・
図に示す0図において、下パンチ1の上面は平滑な水平
面になっていて、この上に前述した磁性粉の成形体2が
裁置されている。この成形体2の上には上パンチ3が当
接される。
The outline of the press machine used for plastic deformation processing of the present invention is explained in the first part.
In Figure 0 shown in the figure, the upper surface of the lower punch 1 is a smooth horizontal surface, on which the molded body 2 of magnetic powder described above is placed. An upper punch 3 is brought into contact with the molded body 2.

上パンチ3は、そのプレス面3aが中心点から周縁への
全方位に亘り傾斜する形状をしている。
The upper punch 3 has a pressing surface 3a that is inclined in all directions from the center to the periphery.

したがって、ある個所のプレス面3aと成形体3が接触
すると、上パンチ3の中心軸aは全体の鉛直軸すに対し
、図中の角度:Tだけ傾斜することになる。
Therefore, when the press surface 3a and the molded body 3 come into contact at a certain location, the central axis a of the upper punch 3 is inclined by an angle T in the figure with respect to the overall vertical axis.

この状態で、中心軸aを支点にして上バンチ3の中心軸
を鉛直軸すの周りに回転させる、すなわち上バンチ3に
歳差運動を行なわせれば、上バンチ3のプレス面3aと
成形体との接触面(図中、斜線で示した個所)は成形体
上を順次回転移動していく、そしてその過程で成形体2
は加圧されてメタルフローを起し、塑性変形が進むこと
になる。
In this state, if the center axis of the upper bunch 3 is rotated around the vertical axis using the center axis a as a fulcrum, that is, if the upper bunch 3 is caused to precess, the pressing surface 3a of the upper bunch 3 and the formed object The contact surface (the shaded area in the figure) rotates sequentially over the molded body, and in the process, the molded body 2
is pressurized, metal flow occurs, and plastic deformation progresses.

なお、上バンチ3の運動は中心軸aを支点とした上記歳
差運動に限定されることなく、その中心軸aを成形体の
上において螺旋運動、直線ピボット運動、デイジ−パタ
ーン運動などを行なわせるような運動であってもよい。
Note that the movement of the upper bunch 3 is not limited to the above-mentioned precession movement with the center axis a as a fulcrum, but may also perform spiral movement, linear pivot movement, daisy pattern movement, etc. with the center axis a above the formed body. It may be an exercise that makes you feel better.

このように、本発明方法においては、上パンチのプレス
面3aと成形体2との接触面は、成形体2の表面の一部
分であり、従来に比べて小さい。
As described above, in the method of the present invention, the contact surface between the pressing surface 3a of the upper punch and the molded body 2 is a part of the surface of the molded body 2, and is smaller than that in the conventional method.

それゆえ、上パンチ3の歳差運動時においては、上パン
チのプレス面3aと成形体2との摩擦抵抗は大幅に低減
する。その結果、小さな加圧力で成形体2のメタルフロ
ーを進めることができるので、加圧力を適宜に選定する
ことにより成形体2の塑性変性を大にすることができる
Therefore, during the precession of the upper punch 3, the frictional resistance between the pressing surface 3a of the upper punch and the compact 2 is significantly reduced. As a result, the metal flow of the molded body 2 can be promoted with a small pressing force, so that the plastic deformation of the molded body 2 can be increased by appropriately selecting the pressing force.

また、上パンチ3との接触面が成形体表面の一部である
ということからして、成形体材料のメタルフローは比較
的自由に進行するので、従来のアップセット時には成形
体2の側面で多発するバレリングや割れ等も殆んど発生
しなくなる。なお、この組成変形加工は、真空または非
酸化性雰囲気下において、温度500〜800℃で行な
われる。
In addition, since the contact surface with the upper punch 3 is a part of the surface of the compact, the metal flow of the compact material progresses relatively freely, so during conventional upset, the side surface of the compact 2 Barreling and cracking, which occur frequently, almost no longer occur. Note that this compositional modification processing is performed at a temperature of 500 to 800° C. in a vacuum or a non-oxidizing atmosphere.

本発明方法においては、上記した成形体または磁性粉そ
れ自体を耐酸化性の材料、例えばステンレス鋼、Ni合
金、銅、チタンのような材料から成る缶体の中に封入し
て、上記操作を行なうこともできる。このようにすれば
、従来成形体製造のために行なっていたホットプレスや
静水圧ホットプレスなどの緻密化処理を省略することも
でき(磁性粉を缶体に封入したとき)るし、また全体の
塑性変形を大気中で行なうこともできる。
In the method of the present invention, the above-mentioned compact or magnetic powder itself is encapsulated in a can made of an oxidation-resistant material, such as stainless steel, Ni alloy, copper, or titanium, and the above operations are carried out. You can also do it. In this way, it is possible to omit the densification treatment such as hot pressing or isostatic hot pressing that was conventionally performed for manufacturing molded objects (when magnetic powder is enclosed in the can body), and the overall Plastic deformation can also be carried out in the atmosphere.

また、この缶体を、純鉄、ケイ素鉄、パーメンジュール
のような高い飽和磁化、高透磁率を有する材料で構成し
、しかも塑性変形加工後もこの缶体(変形後の)を除去
しないでおけば、このものは、ヨーク材が一体成形され
たものとして、そ−タ用ロータ、ステータとしてそのま
ま使用することができる。
In addition, this can body is made of a material with high saturation magnetization and high magnetic permeability, such as pure iron, silicon iron, and permendur, and the can body (after deformation) is not removed even after plastic deformation processing. If so, this product can be used as it is as a rotor or stator for a motor, with the yoke material being integrally molded.

また、磁性粉の成形体の表面に、例えばNiメツキのよ
うな耐酸化性被膜を形成しておけば、そのまま大気中に
おいても本発明の塑性変形加工を行なうことができる。
Furthermore, if an oxidation-resistant coating such as Ni plating is formed on the surface of the molded body of magnetic powder, the plastic deformation process of the present invention can be performed as it is even in the atmosphere.

更に、表面にBNや水ガラスのような潤滑剤を塗布すれ
ば、−層スムースに塑性変形を進めることができる。
Furthermore, by applying a lubricant such as BN or water glass to the surface, plastic deformation of the layer can proceed smoothly.

なお、第2−A図、第2−B図に示したように、成形体
2を上パンチ1によって、矢線のように、前方押出しく
第2−A図)または後方押出しく第2−B図)すること
もできる、前者の場合は、押出し軸と垂直な面内にラン
ダムに磁化容易軸を有する面内異方性の永久磁石を得る
ことができ、また後者の場合は、半径方向に磁化容易軸
が揃ったラジアル異方性の永久磁石を得ることができる
In addition, as shown in FIG. 2-A and FIG. 2-B, the molded body 2 is extruded forward (FIG. 2-A) or backward as shown by the arrow with the upper punch 1. In the former case, it is possible to obtain an in-plane anisotropic permanent magnet with the axis of easy magnetization randomly in the plane perpendicular to the extrusion axis, and in the latter case, the radial direction It is possible to obtain a radially anisotropic permanent magnet in which the axis of easy magnetization is aligned.

(発明の実施例) Nd:30重量%、Fe561重量%、B:1重量%、
Co:2重量%から成る合金に溶湯急冷法を適用し、得
られたフレークを粉砕して平均結晶粒径0.03.um
の磁性粉を得た。
(Example of the invention) Nd: 30% by weight, Fe561% by weight, B: 1% by weight,
A molten metal quenching method was applied to an alloy consisting of Co: 2% by weight, and the obtained flakes were crushed to obtain an average crystal grain size of 0.03. um
Magnetic powder was obtained.

この磁性粉を700℃で真空ホットプレスし、密度7.
5g/c−で、直径20mm厚み20mの成形体を得た
This magnetic powder was vacuum hot pressed at 700°C, and the density was 7.
A molded article having a diameter of 20 mm and a thickness of 20 m was obtained at 5 g/c-.

この成形体を、第1図に示したプレス機にセットし、温
度700 ’C1真空中において加工率が80となるま
でアップセット加工を行なった。なお、上パンチの中心
軸aと鉛直軸すとが成す角度Tは2度であった。
This molded body was set in the press machine shown in FIG. 1, and upset processing was performed at a temperature of 700' C1 in a vacuum until the processing rate reached 80. Note that the angle T formed between the central axis a of the upper punch and the vertical axis was 2 degrees.

なお比較のために、プレス機の上パンチが従来構造のも
のであったことを除いては、実施例の場合と同様の条件
下でアップセット加工を施した。
For comparison, upset processing was performed under the same conditions as in the example, except that the upper punch of the press had a conventional structure.

得られた磁石(直径44.7■厚み4m)につき、側面
の割れの状況、圧縮方向における残留磁束密度(Br)
、保持力(ムHc) 、最大エネルギー積((B H)
wax)などの磁気特性を測定した。なお、磁気特性は
、中心部と端部の2ケ所からサンプルを切出し、それら
について測定した。また、Br値からB r/// (
B r// +B r土)として異方化率(%)を算出
した0以上の結果を一括して第1表に示した。なお、加
工に必要とした最大加圧力も表に併記した。
Regarding the obtained magnet (diameter 44.7×thickness 4m), the state of cracks on the side surface and the residual magnetic flux density (Br) in the compression direction
, holding force (Mu Hc), maximum energy product ((B H)
wax) and other magnetic properties were measured. Note that the magnetic properties were measured by cutting samples from two locations, the center and the ends. Also, from the Br value, B r/// (
Table 1 shows the results of the anisotropy rate (%) calculated as 0 or more as Br//+Br soil). The maximum pressure required for processing is also listed in the table.

4゜ (発明の効果) 以上の説明で明らかなように、本発明方法は、同じ加工
率の塑性変形加工を行なう場合でも、従来に比べて、加
圧力が小さくてすむ、別言すれば、小さい加圧力によっ
て良好な塑性変形加工を行なうことができる。しかも、
メタルフローが自由になるので加工時における側面の割
れは少なくなって全体の歩留りが高くなり、また、部位
による磁気特性のばらつきも小さい0本発明方法は、通
常の方法に比べて低温下での強加工を行なうことができ
るので、!Hcの低下が少ない範囲内で異方化率を高め
ることができ、その結果(BH)waxが増大した永久
磁石を製造することができてその工業的価値は大である
4゜ (Effects of the Invention) As is clear from the above explanation, the method of the present invention requires less pressing force than the conventional method even when performing plastic deformation processing at the same processing rate. Good plastic deformation can be performed with a small pressing force. Moreover,
Since the metal flow is free, there are fewer cracks on the sides during processing, resulting in a higher overall yield, and the variation in magnetic properties depending on the location is also small.The method of the present invention can be used at lower temperatures than conventional methods. Because it can perform heavy machining! The anisotropy rate can be increased within a range in which the decrease in Hc is small, and as a result, a permanent magnet with increased (BH)wax can be manufactured, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるプレス機の概略図、第2−A図
は本発明にかかる上パンチを用いた前方押出しを示す図
、第2−B図は同じく後方押出しを示す図である。 !・・・下パンチ、2・・・磁性粉の成形体、3・・・
上パンチ、 3a・・・上バンチのプレス面。
FIG. 1 is a schematic diagram of a press machine used in the present invention, FIG. 2-A is a diagram showing forward extrusion using an upper punch according to the present invention, and FIG. 2-B is a diagram similarly showing backward extrusion. ! ...Lower punch, 2...Molded body of magnetic powder, 3...
Upper punch, 3a...Press surface of upper bunch.

Claims (4)

【特許請求の範囲】[Claims] (1)磁性粉の成形体または磁性材料のインゴットに塑
性変形加工を施す異方性永久磁石の製造方法において、
前記塑性変形加工が、前記成形体に、その中心点から周
縁にむかって傾斜するプレス面を有する上パンチを当接
し、前記プレス面で前記成形体を加圧する方法であるこ
とを特徴とする異方性永久磁石の製造方法。
(1) In a method for manufacturing an anisotropic permanent magnet in which a molded body of magnetic powder or an ingot of magnetic material is subjected to plastic deformation processing,
A method characterized in that the plastic deformation process is a method in which an upper punch having a press surface that slopes from the center point toward the periphery is brought into contact with the molded body, and the molded body is pressurized by the press surface. Method for manufacturing oriented permanent magnets.
(2)前記磁性粉またはインゴットが、希土類−鉄系合
金である請求項(1)記載の異方性永久磁石の製造方法
(2) The method for manufacturing an anisotropic permanent magnet according to claim (1), wherein the magnetic powder or ingot is a rare earth-iron alloy.
(3)前記成形体が、缶体内に封入されている請求項(
1)または(2)記載の異方性永久磁石の製造方法。
(3) Claim (
The method for producing an anisotropic permanent magnet according to 1) or (2).
(4)前記缶体が、高い飽和磁化、高透磁率および耐酸
化性を備えた材料で構成されている請求項(3)記載の
異方性永久磁石の製造方法。
(4) The method for manufacturing an anisotropic permanent magnet according to claim (3), wherein the can body is made of a material having high saturation magnetization, high magnetic permeability, and oxidation resistance.
JP17547288A 1988-07-14 1988-07-14 Manufacture of anisotropic permanent magnet Pending JPH0226006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17547288A JPH0226006A (en) 1988-07-14 1988-07-14 Manufacture of anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17547288A JPH0226006A (en) 1988-07-14 1988-07-14 Manufacture of anisotropic permanent magnet

Publications (1)

Publication Number Publication Date
JPH0226006A true JPH0226006A (en) 1990-01-29

Family

ID=15996656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17547288A Pending JPH0226006A (en) 1988-07-14 1988-07-14 Manufacture of anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JPH0226006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738205U (en) * 1993-12-22 1995-07-14 川崎重工業株式会社 Compaction machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738205U (en) * 1993-12-22 1995-07-14 川崎重工業株式会社 Compaction machine

Similar Documents

Publication Publication Date Title
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
JPH0420242B2 (en)
US4710239A (en) Hot pressed permanent magnet having high and low coercivity regions
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
CA1244322A (en) Hot pressed permanent magnet having high and low coercivity regions
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH0226006A (en) Manufacture of anisotropic permanent magnet
JPH0444301A (en) Manufacture of rare-earth permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
CA2034632C (en) Hot worked rare earth-iron-carbon magnets
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
CN107546025B (en) Shearing force thermal deformation mold and preparation method of neodymium iron boron magnet
JPH02138706A (en) Anisotropic permanent magnet
JP3128993B2 (en) Arc-shaped magnet and method of manufacturing the same
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS63213317A (en) Rare earth iron permanent magnet
JPH02297910A (en) Manufacture of radially oriented magnet
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof
JPH06140224A (en) Circular arc-shaped magnet and manufacture thereof
JPH06140223A (en) Manufacture of annular magnet material
JPH04218903A (en) Manufacture of anisotropic rare earth magnet or anisotropic rare earth magnet powder
JPH0617104A (en) Production of permanent magnet
JPS63213322A (en) Rare earth iron permanent magnet
JPS61290701A (en) R-fe-b permanent magnet and manufacture thereof
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet