JPH05290865A - Fuel cell type power generation device - Google Patents

Fuel cell type power generation device

Info

Publication number
JPH05290865A
JPH05290865A JP4096336A JP9633692A JPH05290865A JP H05290865 A JPH05290865 A JP H05290865A JP 4096336 A JP4096336 A JP 4096336A JP 9633692 A JP9633692 A JP 9633692A JP H05290865 A JPH05290865 A JP H05290865A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat
heat exchange
fuel cell
exchange means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4096336A
Other languages
Japanese (ja)
Other versions
JP2920018B2 (en
Inventor
Tamotsu Itoyama
保 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4096336A priority Critical patent/JP2920018B2/en
Publication of JPH05290865A publication Critical patent/JPH05290865A/en
Application granted granted Critical
Publication of JP2920018B2 publication Critical patent/JP2920018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell type power generation device in which heat recovery of mixed exhaust gas can be performed sufficiently, and with which a necessary heat quantity can be supplied even to an absorption type refrigerating device. CONSTITUTION:Air introduced from an air blower 3 is preheated through a first and a second air preheaters 4, 5 to be supplied to a combustion part 2a of a reformer 2 and an air electrode 1b of a fuel cell 1. Combustion exhaust gas discharged from the combustion part 2a of the reformer 2 and air exhaust gas discharged from the air electrode 1b of the fuel cell are supplied to the first and the second air preheaters 4, 5 respectively. The combustion exhaust gas and the air exhaust gas become mixed exhaust gas to be discharged from open air discharge pipings 13 through a first calorifier 20 and a second calorifier 21. The heat quantity of the mixed exhaust gas is taken out at two-stage temperature levels at the first and the second calorifiers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は燃料電池の空気極の排
出ガス側および改質器の排出燃焼ガス側に熱回収装置を
取り付けた燃料電池式発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell type power generator having a heat recovery device attached to the exhaust gas side of an air electrode of a fuel cell and the exhaust combustion gas side of a reformer.

【0002】[0002]

【従来の技術】燃料電池式発電装置は発電効率か高いと
共に、環境保全性が良好で、かつ、排出ガスの熱利用も
可能であることから、都市部に適合した優れた発電装置
として市場への導入が進められている。例えば都市ガス
を使用した燃料電池式発電装置では、都市ガスを水素を
主成分とする改質ガスに変換する改質器や、改質ガス中
の水素と空気中の酸素とを反応させて直流電力を取り出
す燃料電池等を有しているが、この場合、改質器はその
内部温度が例えば800℃に保持され、燃料電池はその
内部温度が例えば200℃に保持されて反応の促進が図
られている。したがって、改質器および燃料電池から排
出される排出ガスは高温で大きな熱エネルギーを有して
おり、熱交換器等を介してその熱が種々に回収され、利
用されている。
2. Description of the Related Art A fuel cell power generation system has high power generation efficiency, good environmental protection, and is capable of utilizing heat of exhaust gas. Therefore, it is marketed as an excellent power generation system suitable for urban areas. Is being introduced. For example, in a fuel cell power generator using city gas, a reformer that converts city gas into a reformed gas containing hydrogen as a main component or a direct current by reacting hydrogen in the reformed gas with oxygen in the air Although it has a fuel cell or the like for extracting electric power, in this case, the internal temperature of the reformer is maintained at, for example, 800 ° C, and the internal temperature of the fuel cell is maintained at, for example, 200 ° C to promote the reaction. Has been. Therefore, the exhaust gas discharged from the reformer and the fuel cell has a large amount of heat energy at high temperature, and the heat thereof is variously recovered and used through the heat exchanger and the like.

【0003】図5は例えばエネルギー・資源学会第9回
研究発表会講演論文集(3ー1ホテルプラザ・オンサイ
ト型燃料電池の運転研究P67〜P69)にて報告され
た従来の熱回収装置付き燃料電池式発電装置を示してい
る。
FIG. 5 shows the conventional heat recovery device reported in, for example, the 9th research presentation of the Japan Society for Energy and Resources (3-1 Hotel Plaza on-site fuel cell operation research P67-P69). 1 shows a fuel cell power generator.

【0004】図において、1は燃料極1a、空気極1b
および冷却器1cを積層して構成され、電気化学反応に
より電力を取り出す燃料電池、2は燃焼部2aとこの燃
焼部2aによって加熱される反応部2bとを有する改質
器、3は改質器2の燃焼部2aおよび燃料電池1の空気
極1bにそれぞれ空気を供給する空気ブロア、4は改質
器2の燃焼部2aから排出される燃焼排ガスでこの燃焼
部2aに供給する燃焼用空気を予熱する第1の熱交換手
段としての第1空気予熱器、5は燃料電池1の空気極1
bから排出される空気排ガスでこの空気極1bに供給さ
れる空気を予熱する第2の熱交換手段としての第2空気
予熱器、6は空気ブロア3から第1および第2空気予熱
器4,5までの空気供給配管、7および8は予熱空気配
管である。
In the figure, 1 is a fuel electrode 1a and an air electrode 1b.
And a cooler 1c are stacked, and a fuel cell for extracting electric power by an electrochemical reaction, a reformer 2 having a combustion section 2a and a reaction section 2b heated by the combustion section 2a, and 3 a reformer 2 is an air blower for supplying air to the combustion section 2a of the fuel cell 1 and the air electrode 1b of the fuel cell 1, and 4 is combustion exhaust gas discharged from the combustion section 2a of the reformer 2 for supplying combustion air to the combustion section 2a. A first air preheater 5 serving as a first heat exchange means for preheating is an air electrode 1 of the fuel cell 1.
A second air preheater as second heat exchange means for preheating the air supplied to the air electrode 1b with the air exhaust gas discharged from b, 6 is the air blower 3 to the first and second air preheaters 4, Air supply pipes up to 5, and 7 and 8 are preheated air pipes.

【0005】9は改質器2の燃焼部2aから排出された
燃焼排ガス用の燃焼排ガス配管、10は燃料電池1の空
気極1bから排出された空気排ガス用の空気排ガス配
管、11は第1空気予熱器4から排出された燃焼排ガス
と第2空気予熱器5から排出された空気排ガスとの混合
したガス(以下混合排ガスという)を流す混合排ガス配
管、12は混合排ガスの有する熱を温水として回収する
第3の熱交換手段としての温水器、13は混合排ガスの
大気放出配管、14は温水器12にて凝縮した混合排ガ
ス中の凝縮水回収用の配管、15は温水器12へ水を供
給する水供給配管、16は温水器12から温水を取り出
す温水配管、17は温水配管16にて供給される温水を
利用する熱利用設備、18は温水器12にて回収した混
合排ガス中の水を処理してこの水を発電装置の必要箇所
に供給する水処理装置である。
Reference numeral 9 is a combustion exhaust gas pipe for combustion exhaust gas discharged from the combustion section 2a of the reformer 2, 10 is an air exhaust gas pipe for air exhaust gas discharged from the air electrode 1b of the fuel cell 1, and 11 is a first A mixed exhaust gas pipe through which a mixed gas of the combustion exhaust gas discharged from the air preheater 4 and the air exhaust gas discharged from the second air preheater 5 (hereinafter referred to as mixed exhaust gas) flows, 12 uses heat of the mixed exhaust gas as hot water A water heater as a third heat exchange means for recovering, 13 is an exhaust gas discharge pipe for the mixed exhaust gas, 14 is a pipe for collecting condensed water in the mixed exhaust gas condensed by the water heater 12, and 15 is water for the water heater 12. Water supply pipe to be supplied, 16 is a hot water pipe for taking out hot water from the water heater 12, 17 is a heat utilization facility using the hot water supplied by the hot water pipe 16, and 18 is water in the mixed exhaust gas collected by the water heater 12. To To a water treatment device for supplying the necessary portions of the generator to the water.

【0006】つぎにこの燃料電池式発電装置の動作を説
明する。改質器2の燃焼部2aでは第1空気予熱器4に
て予熱された空気ブロア3からの空気が供給されること
により所定の燃料が燃焼され、この燃焼によって、反応
部2bの温度が改質に適した所定温度に保持されてい
る。そしてこの燃焼部2aから排出される例えばその温
度が500℃の燃焼ガスは燃焼排ガス配管9を通って第
1空気予熱器4に送られて、例えばその温度が300℃
になるまで熱が回収される。なお、反応部2bにおいて
都市ガス等から作られた所定の改質ガスは所定の処理が
なされた後、燃料電池1の燃料極1aに供給される。
Next, the operation of this fuel cell type power generator will be described. The combustion unit 2a of the reformer 2 is supplied with air from the air blower 3 preheated by the first air preheater 4 to burn a predetermined fuel, and this combustion changes the temperature of the reaction unit 2b. It is maintained at a predetermined temperature suitable for quality. Then, the combustion gas whose temperature is, for example, 500 ° C. discharged from the combustion section 2a is sent to the first air preheater 4 through the combustion exhaust gas pipe 9, and the temperature is, for example, 300 ° C.
Heat is recovered until. It should be noted that a predetermined reformed gas produced from city gas or the like in the reaction part 2b is subjected to a predetermined treatment and then supplied to the fuel electrode 1a of the fuel cell 1.

【0007】また、燃料電池1の空気極1bには第2空
気予熱器5にて予熱された空気ブロア3からの空気が供
給され、この空気中の酸素と燃料極1a中の改質ガスと
の電気化学反応によりこの燃料電池1から電力が取り出
されると共に、空気極1b側には水が生成される。そし
て空気極1bから排出された一部酸素が消費された空気
と生成水(スチーム)とからなる例えばその温度が20
0℃の空気排ガスは空気排ガス配管10を通って第2空
気予熱器5に送られて、例えばその温度が90℃になる
まで熱が回収される。そして燃焼排ガスと空気排ガスと
は混合排ガス配管11内に集められて約160℃の混合
排ガスとなる。なお、この混合排ガス中には改質器2の
燃焼部2aでの燃焼反応と燃料電池1での電気化学反応
とによって生成された約30%のスチームを含んでい
る。
Air from the air blower 3 preheated by the second air preheater 5 is supplied to the air electrode 1b of the fuel cell 1, and oxygen in the air and reformed gas in the fuel electrode 1a are supplied. Electric power is taken out from the fuel cell 1 by the electrochemical reaction and the water is generated on the air electrode 1b side. Then, the temperature of the air, which is exhausted from the air electrode 1b and consists of partially consumed oxygen and generated water (steam), is 20
The 0 ° C. air exhaust gas is sent to the second air preheater 5 through the air exhaust gas pipe 10, and heat is recovered until the temperature reaches 90 ° C., for example. Then, the combustion exhaust gas and the air exhaust gas are collected in the mixed exhaust gas pipe 11 to become a mixed exhaust gas of about 160 ° C. The mixed exhaust gas contains about 30% steam generated by the combustion reaction in the combustion section 2a of the reformer 2 and the electrochemical reaction in the fuel cell 1.

【0008】そして上記混合排ガスは混合排ガス配管1
1を通って温水器12に送られて温水側に熱が回収さ
れ、大気放出配管13から外部に放出されると共に、混
合排ガス中のスチームは凝縮され水処理装置18側に回
収される。ここで、混合排ガスの温度を下げれば下げる
ほど混合排ガスから回収できる熱量および凝縮水の量を
増加させることができるが、この場合、熱利用設備17
との関係上、混合排ガスの温水器12出口温度は約50
℃(約12%のスチームを含有)まで下げられ、外部か
ら水を補給することなく、水処理装置18で回収した水
のみを使用してこの燃料電池式発電装置の運転ができる
ようになっている。なお、水供給配管15により温水器
12に供給される給水温度は約25℃であり、温水器1
2から温水配管16側に取り出される温水温度は約70
℃となる。そしてこの約70℃の温水が熱利用設備17
において給湯用等の熱源として利用される。
The mixed exhaust gas is mixed exhaust gas pipe 1
1 is sent to the water heater 12 to recover the heat to the hot water side and is discharged to the outside from the atmosphere discharge pipe 13, and the steam in the mixed exhaust gas is condensed and collected to the water treatment device 18 side. Here, as the temperature of the mixed exhaust gas is lowered, the amount of heat recoverable from the mixed exhaust gas and the amount of condensed water can be increased, but in this case, the heat utilization facility 17
Therefore, the outlet temperature of the mixed exhaust gas water heater 12 is about 50
The temperature can be lowered to ℃ (containing about 12% steam), and this fuel cell power generator can be operated using only the water recovered by the water treatment device 18 without replenishing water from the outside. There is. The water supply temperature supplied to the water heater 12 through the water supply pipe 15 is about 25 ° C.
The temperature of the hot water taken from 2 to the hot water pipe 16 side is about 70
℃. And this hot water of about 70 ℃ is used for heat utilization equipment 17
Is used as a heat source for hot water supply.

【0009】一方、このような燃料電池式発電装置にお
いては混合排ガスからの回収熱を利用して熱利用設備1
7の吸収式冷凍装置等を作動させ装置内の空調(冷房)
を行なうことが望まれる。この場合、吸収式冷凍装置等
では80℃〜90℃以上の熱源が要求されるため、前記
混合排ガスにより80℃で供給された温水を90℃以上
に加熱する必要が生じる。なお、吸収式冷凍装置は、例
えば、アンモニア蒸気を冷却しつつこれをアンモニア水
に吸収させる吸収器と、このアンモニア水を加圧するポ
ンプと、加圧されたアンモニア水を加熱して高圧のアン
モニアガスを発生させる発生器と、このアンモニアガス
を冷却してアンモニア液として凝縮させる凝縮器と、ア
ンモニア液の膨張弁と、アンモニア液を蒸発させこのア
ンモニア液に冷凍効果を発揮させる蒸発器等とから構成
されるもので、例えば吸収器の加熱用熱源として混合排
ガスからの回収熱が利用される。
On the other hand, in such a fuel cell type power generator, the heat utilization facility 1 is utilized by utilizing the heat recovered from the mixed exhaust gas.
Air conditioning (cooling) inside the equipment by operating the absorption type refrigeration equipment, etc.
Is desired. In this case, a heat source of 80 ° C. to 90 ° C. or higher is required in the absorption refrigerating apparatus, etc., and therefore it is necessary to heat the warm water supplied at 80 ° C. by the mixed exhaust gas to 90 ° C. or higher. In addition, the absorption refrigerating apparatus is, for example, an absorber that cools ammonia vapor while absorbing it in ammonia water, a pump that pressurizes this ammonia water, and a high-pressure ammonia gas that heats the pressurized ammonia water. And a condenser for cooling the ammonia gas to condense it as ammonia liquid, an expansion valve for the ammonia liquid, and an evaporator for evaporating the ammonia liquid to exert a refrigerating effect on the ammonia liquid. For example, the heat recovered from the mixed exhaust gas is used as a heat source for heating the absorber.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
燃料電池式発電装置の混合排ガス配管11中に吸収式冷
凍装置等の熱源となる熱回収装置を設けると、この熱回
収装置出口の混合排ガス温度が上昇し、この混合排ガス
から充分に熱回収ができないという課題があった。この
ため、混合排ガスから充分に凝縮水を回収できず、装置
内に補給水が必要になってくると共に、大気放出配管1
3から放出される混合排ガスが大気に触れて白煙を生じ
させるという課題があった。また、この白煙を防止する
ため例えば冷却塔等の冷却設備を設ければ設備費が上昇
してしまうという課題があった。
However, if a heat recovery device serving as a heat source for an absorption refrigerating device is provided in the mixed exhaust gas pipe 11 of the conventional fuel cell type power generator, the temperature of the mixed exhaust gas at the outlet of the heat recovery device is increased. However, there was a problem that heat could not be sufficiently recovered from this mixed exhaust gas. For this reason, condensed water cannot be sufficiently recovered from the mixed exhaust gas, make-up water is required in the device, and the atmosphere discharge pipe 1
There was a problem that the mixed exhaust gas discharged from No. 3 comes into contact with the atmosphere and produces white smoke. In addition, there is a problem in that if a cooling facility such as a cooling tower is provided to prevent this white smoke, the facility cost will increase.

【0011】この発明は、上記のような課題を解決する
ためになされたものであり、混合排ガスの熱回収を充分
になすことができ、かつ、熱利用設備の吸収式冷凍装置
等にも必要な熱量が供給できる燃料電池式発電装置を提
供することを目的とする。
The present invention has been made in order to solve the above problems, and is capable of sufficiently recovering heat of mixed exhaust gas, and is also required for an absorption refrigerating device of heat utilization equipment. It is an object of the present invention to provide a fuel cell power generation device that can supply a large amount of heat.

【0012】[0012]

【課題を解決するための手段】この発明の第1の発明に
係る燃料電池式発電装置は、燃料電池と、前記燃料電池
に改質ガスを供給する改質器と、改質器から排出される
燃焼排ガスから熱を回収する第1の熱交換手段と、燃料
電池の空気極から排出される空気排ガスから熱を回収す
る第2の熱交換手段と、第1および第2の熱交換手段か
ら排出される燃焼排ガスと空気排ガスとの混合排ガスか
ら熱を回収する第3の熱交換手段と、前記第3の熱交換
手段での混合排ガスから生じる凝縮水を処理して回収す
る水処理装置とを有する燃料電池式発電装置において、
第3の熱交換手段を、混合排ガスの高温側に設けられた
高温側熱交換手段と低温側に設けられた低温側熱交換手
段とから構成するものである。
According to a first aspect of the present invention, there is provided a fuel cell type power generator, a fuel cell, a reformer for supplying a reformed gas to the fuel cell, and an exhaust gas from the reformer. From the first heat exchange means for recovering heat from the combustion exhaust gas, the second heat exchange means for recovering heat from the air exhaust gas discharged from the air electrode of the fuel cell, and the first and second heat exchange means. Third heat exchange means for recovering heat from the exhaust gas mixed exhaust gas of the combustion exhaust gas and air exhaust gas, and a water treatment device for processing and recovering condensed water generated from the mixed exhaust gas in the third heat exchange means In a fuel cell power generator having
The third heat exchange means is composed of a high temperature side heat exchange means provided on the high temperature side of the mixed exhaust gas and a low temperature side heat exchange means provided on the low temperature side.

【0013】この発明の第2の発明に係る燃料電池式発
電装置は、第3の熱交換手段を、混合排ガスの高温側に
設けられた高温側熱交換手段と低温側に設けられた低温
側熱交換手段とから構成すると共に、第1の熱交換手段
の燃焼排ガス側に流量調整手段を有するバイパス通路を
設けたものである。
In the fuel cell type power generator according to the second aspect of the present invention, the third heat exchange means includes the high temperature side heat exchange means provided on the high temperature side of the mixed exhaust gas and the low temperature side provided on the low temperature side. In addition to the heat exchanging means, a bypass passage having a flow rate adjusting means is provided on the combustion exhaust gas side of the first heat exchanging means.

【0014】この発明の第3の発明に係る燃料電池式発
電装置は、第3の熱交換手段を、混合排ガスの高温側に
設けられた高温側熱交換手段と低温側に設けられた低温
側熱交換手段とから構成すると共に、第1の熱交換手段
の燃焼排ガス側および第2の熱交換手段の空気排ガス側
にそれぞれ流量調整手段を有するバイパス通路を設けた
ものである。
In the fuel cell type power generator according to the third aspect of the present invention, the third heat exchanging means includes a high temperature side heat exchanging means provided on the high temperature side of the mixed exhaust gas and a low temperature side provided on the low temperature side. In addition to the heat exchanging means, a bypass passage having flow rate adjusting means is provided on each of the combustion exhaust gas side of the first heat exchanging means and the air exhaust gas side of the second heat exchanging means.

【0015】この発明の第4の発明に係る燃料電池式発
電装置は、第1の熱交換手段の燃焼排ガス側に流量調整
手段を有するバイパス通路を設け、改質器の反応部の温
度を検出する温度検出器を設け、かつ、温度検出器の検
出温度により流量調整手段を制御してバイパス通路を流
通する燃焼排ガス流量を調整する制御手段を設けたもの
である。
In the fuel cell power generator according to the fourth aspect of the present invention, a bypass passage having a flow rate adjusting means is provided on the combustion exhaust gas side of the first heat exchange means to detect the temperature of the reaction section of the reformer. And a control means for controlling the flow rate adjusting means according to the temperature detected by the temperature detector to adjust the flow rate of the combustion exhaust gas flowing through the bypass passage.

【0016】[0016]

【作用】まず、この発明の第1の発明の作用を説明す
る。第1の熱交換手段により冷却された改質器から排出
される燃焼排ガスと、第2の熱交換手段により冷却され
た燃料電池の空気極から排出される空気排ガスとは、混
合排ガスとして合流される後、第3の熱交換手段により
熱が回収されて冷却される。そして第3の熱交換手段に
おいてはこの混合排ガスから凝縮水が生じるが、この凝
縮水は水処理装置に回収され、装置内で利用される。こ
の場合、凝縮水のみで装置の運転を行なうために混合排
ガスは所定の低温度まで冷却する必要があると共に、第
3の熱交換手段で得られた回収熱で高温の熱源が必要と
される吸収式冷凍装置等を運転する必要がある。
First, the operation of the first invention of the present invention will be described. The combustion exhaust gas discharged from the reformer cooled by the first heat exchange means and the air exhaust gas discharged from the air electrode of the fuel cell cooled by the second heat exchange means are combined as a mixed exhaust gas. After that, the heat is recovered and cooled by the third heat exchange means. Then, in the third heat exchange means, condensed water is generated from the mixed exhaust gas, and this condensed water is recovered by the water treatment device and used in the device. In this case, since the mixed exhaust gas needs to be cooled to a predetermined low temperature in order to operate the apparatus only with condensed water, a high-temperature heat source is required with the recovered heat obtained by the third heat exchange means. It is necessary to operate absorption refrigeration equipment.

【0017】そこで第3の熱交換手段を高温側熱交換手
段と低温側熱交換手段との2つから構成し、高温側熱交
換手段により高温側の混合排ガスから吸収式冷凍装置等
用の熱源となる高温の熱を回収し、低温側交換手段によ
り低温側の混合排ガスから充分に熱を回収して混合排ガ
スの温度を所定の低温度まで下げ、混合排ガスから必要
な凝縮水を回収し、混合排ガスのもつ熱量を2段階で取
り出すようにした。
Therefore, the third heat exchange means is composed of two parts, a high temperature side heat exchange means and a low temperature side heat exchange means. The high temperature heat that becomes, the heat of the low temperature side mixed exhaust gas is sufficiently recovered by the low temperature side exchange means to lower the temperature of the mixed exhaust gas to a predetermined low temperature, and the necessary condensed water is recovered from the mixed exhaust gas, The heat quantity of the mixed exhaust gas was taken out in two steps.

【0018】次に、この発明の第2、第3、第4の発明
の作用を説明する。これらの発明では第3の熱交換手段
の高温側熱交換手段にて混合排ガスから一時的に多量の
熱量を得ることができるようにして、吸収式冷凍装置等
の起動時に要求される熱量を確保できるようにした。
Next, the operation of the second, third and fourth aspects of the present invention will be described. In these inventions, a large amount of heat can be temporarily obtained from the mixed exhaust gas by the high temperature side heat exchanging means of the third heat exchanging means, and the heat quantity required at the time of starting the absorption refrigerating device is secured. I made it possible.

【0019】すなわち、第2の発明では、第1の熱交換
手段の燃焼排ガス側のバイパス通路に設けられた流量調
整手段を開き、冷却されない燃焼排ガスを第3の熱交換
手段の高温側交換手段に導入して、混合排ガスの温度を
上げることにより、この高温側熱交換手段により多量の
熱量を得ることができる。また、第3の発明では、第1
の熱交換手段の燃焼排ガス側のバイパス通路に設けられ
た流量調整手段とともに、第2の熱交換手段の空気排ガ
ス側のバイパス通路に設けられた流量調整手段をも開
き、冷却されない燃焼排ガスおよび空気排ガスを第3の
熱交換手段の高温側熱交換手段に導入して、混合排ガス
の温度を上げることにより、この高温側熱交換手段によ
り多量の熱量を得ることができる。
That is, in the second aspect of the invention, the flow rate adjusting means provided in the bypass passage on the combustion exhaust gas side of the first heat exchange means is opened, and the uncooled combustion exhaust gas is exchanged with the high temperature side of the third heat exchange means. Introduced into the above and raising the temperature of the mixed exhaust gas, a large amount of heat can be obtained by this high temperature side heat exchange means. In the third invention, the first
Of the heat exchanging means, the flow rate adjusting means provided in the bypass passage on the combustion exhaust gas side and the flow rate adjusting means provided in the bypass passage on the air exhaust gas side of the second heat exchanging means are also opened, and the combustion exhaust gas and air not cooled By introducing the exhaust gas into the high temperature side heat exchange means of the third heat exchange means and raising the temperature of the mixed exhaust gas, a large amount of heat can be obtained by the high temperature side heat exchange means.

【0020】さらに、第4の発明では、温度検出器の検
出温度に基づいて、制御手段により第1の熱交換手段の
燃焼排ガス側のバイパス通路に設けられた流量調整手段
を開け、燃焼排ガスを第1の熱交換手段を介さずに第3
の熱交換手段の高温側交換手段に導入して、混合排ガス
の温度を上げることにより、高温側熱交換手段により多
量の熱量を得ることができる。なお、流量調整手段を制
御手段により開ける方法としては例えばこの温度検出器
の反応部の温度の設定値を下げてやればよい。
Further, according to the fourth aspect of the invention, based on the temperature detected by the temperature detector, the control means opens the flow rate adjusting means provided in the bypass passage on the combustion exhaust gas side of the first heat exchanging means to remove the combustion exhaust gas. The third without the first heat exchange means
By introducing into the high temperature side exchange means of the heat exchange means and raising the temperature of the mixed exhaust gas, a large amount of heat can be obtained by the high temperature side heat exchange means. As a method of opening the flow rate adjusting means by the control means, for example, the set value of the temperature of the reaction part of the temperature detector may be lowered.

【0021】[0021]

【実施例】以下、この発明の実施例を図について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】実施例1.図1はこの発明の第1の発明に
係る一実施例を示す燃料電池式発電装置の系統図であ
り、図において図5に示した従来の燃料電池式発電装置
と同一または相当部分には同一符号を付し、その説明を
省略する。
Example 1. FIG. 1 is a system diagram of a fuel cell type power generator showing an embodiment according to the first invention of the present invention. In the figure, the same or corresponding portions as those of the conventional fuel cell type power generator shown in FIG. 5 are the same. The reference numerals are given and the description thereof is omitted.

【0023】図において、20は第3の熱交換手段の高
温側熱交換手段として第1温水器であり、混合排ガス配
管11の上流側を流れる高温の混合排ガスを有する熱を
高温温水側に熱回収し、この高温温水を熱利用設備17
に供給するものである。21は第3の熱交換手段の低温
側熱交換手段としての第2温水器であり、混合排ガス配
管11の下流側を流れる低温の混合排ガスが有する熱を
低温温水側に熱回収し、この低温温水を熱利用設備17
に供給するものである。22は第1温水器20に温水を
供給する温水供給配管、23は第1温水器20にて加熱
された温水を高温温水として取り出す高温温水配管、2
4は第2温水器21にて凝縮した混合排ガス中の水の回
収用配管、25は第2温水器21へ水を供給する水供給
配管、26は第2温水器21にて加熱された水を低温温
水として取り出す低温温水配管である。
In the figure, 20 is a first water heater as the high temperature side heat exchange means of the third heat exchange means, and heats the heat having the high temperature mixed exhaust gas flowing upstream of the mixed exhaust gas pipe 11 to the high temperature hot water side. This high-temperature hot water is recovered and used for heat utilization equipment 17
To supply. Reference numeral 21 is a second water heater as a low temperature side heat exchanging means of the third heat exchanging means, which recovers the heat of the low temperature mixed exhaust gas flowing on the downstream side of the mixed exhaust gas pipe 11 to the low temperature hot water side. Facility for utilizing hot water as heat 17
To supply. 22 is a hot water supply pipe for supplying hot water to the first water heater 20, 23 is a high temperature hot water pipe for taking out the hot water heated by the first water heater 20 as high temperature hot water, 2
4 is a pipe for collecting water in the mixed exhaust gas condensed in the second water heater 21, 25 is a water supply pipe for supplying water to the second water heater 21, and 26 is water heated by the second water heater 21. Is a low temperature hot water pipe for taking out as low temperature hot water.

【0024】つぎに上記燃料電池式発電装置の動作につ
いて説明する。改質器2の燃焼部2aでは第1空気予熱
器4にて予熱された空気が供給されて燃焼が行なわれ、
この燃焼によって、反応部2bの温度が改質に適した所
定温度に保持される。そしてこの燃焼部2aから排出さ
れる燃焼排ガスは第1空気予熱器4により例えば500
℃から300℃まで冷却される。また、燃料電池1の空
気極1bには第2空気予熱器5にて予熱された空気が供
給され、この空気中の酸素と改質器2から供給された燃
料極1a中の改質ガスとにより燃料電池1から電力が取
り出されると共に、空気極1b側には水が生成される。
そして空気極1bから排出される空気排ガスは第2空気
予熱器5により例えば200℃から90℃まで冷却され
る。そして燃焼排ガスと空気排ガスは混合排ガス配管1
1内に集められて約30%のスチームを含む約160℃
の混合排ガスとなる。
Next, the operation of the fuel cell type power generator will be described. In the combustion section 2a of the reformer 2, the air preheated by the first air preheater 4 is supplied to perform combustion,
By this combustion, the temperature of the reaction section 2b is maintained at a predetermined temperature suitable for reforming. The combustion exhaust gas discharged from the combustion unit 2a is, for example, 500 by the first air preheater 4.
Cooled from ℃ to 300 ℃. Further, the air preheated by the second air preheater 5 is supplied to the air electrode 1b of the fuel cell 1, and the oxygen in the air and the reformed gas in the fuel electrode 1a supplied from the reformer 2 are supplied. As a result, electric power is taken out from the fuel cell 1 and water is generated on the air electrode 1b side.
The air exhaust gas discharged from the air electrode 1b is cooled by the second air preheater 5 to, for example, 200 ° C to 90 ° C. Combustion exhaust gas and air exhaust gas are mixed exhaust gas piping 1
Approximately 160 ℃ with about 30% steam collected in 1
It becomes a mixed exhaust gas.

【0025】次に上記混合排ガスは第1温水器20に送
られ、この第1温水器20に温水供給配管22を介して
供給される約80℃の温水を約90℃以上の高温温水に
加熱して、そのガス温度が160℃から例えば100℃
まで下げられる。すなわち、熱利用設備17側に高温温
水配管23を介して90℃以上の温水が供給できること
となり、熱利用設備17側ではこの高温温水を利用して
吸収式冷凍装置等の運転が可能となる。さらに、上記混
合排ガスは第2温水器21に送られ、この第2温水器2
1に水供給管25を介して供給される約25℃の水を約
65℃の低温温水に加熱して、そのガス温度が100℃
から約50℃まで下げられて、大気放出配管13から低
温状態で放出される。
Next, the mixed exhaust gas is sent to the first water heater 20, and the hot water of about 80 ° C. supplied to the first water heater 20 via the hot water supply pipe 22 is heated to high temperature hot water of about 90 ° C. or more. And the gas temperature is 160 ° C to 100 ° C, for example.
Can be lowered to. That is, hot water of 90 ° C. or higher can be supplied to the heat utilization facility 17 side through the high-temperature hot water pipe 23, and the heat utilization facility 17 side can operate the absorption refrigerating device or the like using the high-temperature hot water. Further, the mixed exhaust gas is sent to the second water heater 21, and the second water heater 2
1. Water of about 25 ° C. supplied to the No. 1 through the water supply pipe 25 is heated to low temperature hot water of about 65 ° C., and its gas temperature is 100 ° C.
To about 50 ° C. and is discharged from the atmosphere discharge pipe 13 in a low temperature state.

【0026】したがって、この第2温水器21により、
混合排ガス中のスチームが凝縮水として水処理装置18
側に回収され、この凝縮水により燃料電池式発電装置に
必要な水が補給水無しで確保できることとなると共に、
低温温水配管26を介して熱利用設備17側に供給され
た約65℃の低温温水により、熱利用設備17側では給
湯用の熱源等が確保できることとなる。
Therefore, with this second water heater 21,
Steam in the mixed flue gas is condensed water as water treatment device 18
It is recovered to the side, and by this condensed water it is possible to secure the water necessary for the fuel cell power generator without makeup water,
The low temperature hot water of about 65 ° C. supplied to the heat utilization equipment 17 side through the low temperature hot water pipe 26 enables the heat utilization equipment 17 side to secure a heat source or the like for hot water supply.

【0027】実施例2.図2はこの発明の第2の発明に
係る一実施例の燃料電池式発電装置の系統図である。
Example 2. FIG. 2 is a system diagram of a fuel cell power generator of one embodiment according to the second invention of the present invention.

【0028】熱利用設備17側の吸収式冷凍装置等は一
般に起動時に定格運転中の1.2〜1.5倍の熱量を必
要とするため、起動時の一時的な熱量を確保できないと
定格容量の小さな装置しか設置できない。そこでこの実
施例2では第1空気予熱器4の燃焼排ガス配管9側に混
合排ガス配管11と連通するバイパス配管27を設け、
このバイパス配管27を流れる燃焼排ガスの流量を調整
できる流量調整手段としての第1調整弁28をバイパス
配管27に設けて、第1温水器20により吸収式冷凍装
置等の起動時に一時的に多量に要求される熱量を確保で
きるようにした。なお、他の構成機器は実施例1の燃料
電池式発電装置と同一である。
Since the absorption type refrigerating device on the side of the heat utilization facility 17 generally requires 1.2 to 1.5 times the amount of heat at the time of start-up, it is necessary to secure a temporary amount of heat at start-up. Only devices with small capacity can be installed. Therefore, in the second embodiment, a bypass pipe 27 communicating with the mixed exhaust gas pipe 11 is provided on the combustion exhaust gas pipe 9 side of the first air preheater 4,
The bypass pipe 27 is provided with a first adjusting valve 28 as a flow rate adjusting means capable of adjusting the flow rate of the combustion exhaust gas flowing through the bypass pipe 27, and the first water heater 20 temporarily increases a large amount at the time of starting the absorption refrigeration system or the like. The required amount of heat can be secured. The other components are the same as those of the fuel cell power generator of the first embodiment.

【0029】改質器2の燃焼部2aから排出される例え
ば500℃の燃焼排ガスは、通常運転時にはすべて第1
空気予熱器4に通されその温度が例えば300℃まで下
げられた後、混合排ガス配管11に供給されるが、吸収
式冷凍装置等の起動時等の必要な場合には第1調整弁2
8を明けて、500℃の燃焼ガスの一部を第1空気予熱
器4を介さずに混合排ガス配管11に供給して混合排ガ
スの温度を上げ、第1温水器20の高温温水の温度を上
げることができるようにして、吸収式冷凍装置等の起動
時の熱量をまかなうことができるようにした。したがっ
て、定格容量の大きな吸収式冷凍装置等の使用が可能と
なる。
The combustion exhaust gas of, for example, 500 ° C. discharged from the combustion section 2a of the reformer 2 is the first exhaust gas during normal operation.
After being passed through the air preheater 4 and the temperature thereof is lowered to, for example, 300 ° C., it is supplied to the mixed exhaust gas pipe 11. The first regulating valve 2 is supplied when necessary when starting the absorption refrigeration system or the like.
After 8 pm, a part of the combustion gas at 500 ° C. is supplied to the mixed exhaust gas pipe 11 without passing through the first air preheater 4 to raise the temperature of the mixed exhaust gas, and the temperature of the high temperature hot water of the first water heater 20 is increased. By making it possible to raise the temperature, it is possible to cover the heat amount at the time of starting the absorption refrigerating device and the like. Therefore, it is possible to use an absorption refrigerating device or the like having a large rated capacity.

【0030】実施例3.図3はこの発明の第3の発明に
係る一実施例の燃料電池式発電装置の系統図である。
Example 3. FIG. 3 is a system diagram of a fuel cell power generator of one embodiment according to the third invention of the present invention.

【0031】この実施例3では、実施例2と同様に、第
1空気予熱器4の燃焼排ガス配管9側に混合排ガス配管
11と連通するバイパス配管27を設け、このバイパス
配管27に燃焼排ガスの流量を調整できる流量調整手段
としての第1調整弁28を設けると共に、第2空気予熱
器5の空気排ガス配管10側に混合排ガス配管11と連
通するバイパス配管29を設け、このバイパス配管29
に空気排ガスの流量を調整できる流量調整手段としての
第2調整弁30を設けて、この第2調整弁30と第1調
整弁28とにより、吸収式冷凍装置等の起動時に一時的
に多量に要求される熱量を第1温水器20により確保で
きるようにした。なお、他の構成機器は実施例1の燃料
電池式発電装置と同一である。
In the third embodiment, similarly to the second embodiment, a bypass pipe 27 communicating with the mixed exhaust gas pipe 11 is provided on the combustion exhaust gas pipe 9 side of the first air preheater 4, and the bypass pipe 27 is provided with a bypass exhaust gas. A first adjusting valve 28 as a flow rate adjusting means capable of adjusting the flow rate is provided, and a bypass pipe 29 communicating with the mixed exhaust gas pipe 11 is provided on the air exhaust gas pipe 10 side of the second air preheater 5, and the bypass pipe 29 is provided.
A second adjusting valve 30 is provided as a flow rate adjusting means capable of adjusting the flow rate of the air exhaust gas, and the second adjusting valve 30 and the first adjusting valve 28 temporarily increase a large amount at the time of starting the absorption refrigerating device or the like. The required amount of heat can be secured by the first water heater 20. The other components are the same as those of the fuel cell power generator of the first embodiment.

【0032】燃料電池1の空気極1bから排出される例
えば200℃の空気排ガスは通常運転時にはすべて第2
空気予熱器5に通されその温度が例えば90℃まで下げ
られた後、混合排ガス配管11に供給されるが、必要時
に、第2調整弁30を開けて、200℃の空気排ガスの
一部を第2空気予熱器5を介さずに混合排ガス配管11
に供給すれば混合排ガスの温度を上げることができる。
したがって、吸収式冷凍装置等の起動時に、バイパス配
管27に設けられた第1調整弁28を開けると共に、こ
の第2調整弁30を開ければ、実施例2の場合より混合
排ガスの温度を上げることができ、第1温水器20で回
収される高温温水の温度もこれに見合った分だけ上げる
ことができるようになる。したがって、この実施例3に
おいても実施例2の燃料電池式発電装置と同様な効果が
得られる。
The air exhaust gas of, for example, 200 ° C. discharged from the air electrode 1b of the fuel cell 1 is secondarily generated during normal operation.
After being passed through the air preheater 5 and the temperature thereof is lowered to, for example, 90 ° C., it is supplied to the mixed exhaust gas pipe 11. However, when necessary, the second adjusting valve 30 is opened to remove a part of the 200 ° C. Mixed exhaust gas pipe 11 without the second air preheater 5
Can be raised to raise the temperature of the mixed exhaust gas.
Therefore, when the absorption refrigerating device or the like is activated, the temperature of the mixed exhaust gas can be raised more than in the second embodiment by opening the first adjusting valve 28 provided in the bypass pipe 27 and opening the second adjusting valve 30. As a result, the temperature of the high-temperature hot water recovered by the first water heater 20 can be raised by an amount commensurate with this. Therefore, also in the third embodiment, the same effect as that of the fuel cell power generator of the second embodiment can be obtained.

【0033】実施例4.図4はこの発明の第4の発明に
係る一実施例の燃料電池式発電装置の系統図である。
Example 4. FIG. 4 is a system diagram of a fuel cell type power generator of one embodiment according to the fourth invention of the present invention.

【0034】この実施例4では実施例1の燃料電池式発
電装置のバイパス配管27中に設けられた第1調整弁2
8を、改質器2の反応部2bの温度にしたがって開閉制
御可能とするために、改質器2の反応部2bに反応部温
度を検知する温度検出器31を設けると共に、この温度
検出器31からの温度信号に基づいて第1調整弁28を
開閉制御する制御手段としての温度コントローラ32を
設けた。なお、他の構成機器は実施例1の燃料電池式発
電装置と同一である。
In the fourth embodiment, the first regulating valve 2 provided in the bypass pipe 27 of the fuel cell power generator of the first embodiment
In order to control the opening and closing of the reactor 8 according to the temperature of the reaction section 2b of the reformer 2, a temperature detector 31 for detecting the reaction section temperature is provided in the reaction section 2b of the reformer 2 and this temperature detector A temperature controller 32 is provided as a control means for controlling the opening / closing of the first adjusting valve 28 based on the temperature signal from 31. The other components are the same as those of the fuel cell power generator of the first embodiment.

【0035】温度コントローラ32は改質器2の反応部
2bの温度が設定値より上がけば第1調整弁28を開け
させ、改質器2の反応部2bの温度が設定値より下げれ
ば第1調整弁28を閉じさせて反応部2bの温度を調整
するためものである。すなわち、改質器2の反応部2b
の温度が上がり第1調整弁28が開いてバイパス配管2
7を通る燃焼排ガス量が増加すれば、第1空気予熱器4
に導入される燃焼排ガス量が減少し、第1空気予熱器4
にて改質器2の燃料部2bに供給される空気側に回収さ
れる熱量が減少し、燃焼部2aにおける熱発生量が減少
して、反応部2bの温度は下降することとなり、逆に、
反応部2bの温度が下がり第1調整弁28が閉じてバイ
パス配管27を通る燃焼ガスが遮断されれば、第1空気
予熱器4にて空気側に回収される熱量が増加し、燃焼部
2aにおける熱発生量が増加して、反応部2bの温度は
上昇することとなる。
The temperature controller 32 opens the first adjusting valve 28 if the temperature of the reaction section 2b of the reformer 2 exceeds the set value, and opens the first control valve 28 if the temperature of the reaction section 2b of the reformer 2 drops below the set value. This is for closing the first adjusting valve 28 and adjusting the temperature of the reaction part 2b. That is, the reaction section 2b of the reformer 2
Temperature rises, the first regulating valve 28 opens and the bypass pipe 2
If the amount of combustion exhaust gas passing through 7 increases, the first air preheater 4
The amount of combustion exhaust gas introduced into the first air preheater 4 decreases
At this time, the amount of heat recovered on the side of the air supplied to the fuel portion 2b of the reformer 2 is reduced, the amount of heat generated in the combustion portion 2a is reduced, and the temperature of the reaction portion 2b is lowered. ,
If the temperature of the reaction section 2b decreases and the first regulating valve 28 closes to block the combustion gas passing through the bypass pipe 27, the amount of heat recovered to the air side in the first air preheater 4 increases, and the combustion section 2a The amount of heat generated at the temperature of the reaction section 2b increases, and the temperature of the reaction section 2b rises.

【0036】したがって、吸収式冷凍装置等の起動時に
は、温度コントローラ32の温度設定値を反応部2bの
温度の下限値まで下げ、この温度設定値を温度検出器3
1で検出される実際の反応部2bの温度の指示値より小
さくして第1調整弁28を開けるようにすれば、混合排
ガス配管11中に約500℃の高温燃焼ガスの一部が流
入して混合排ガスの温度が上昇し、第1温水器20で回
収される高温温水の温度を上げることができるようにな
って、この第1温水器20により吸収式冷凍装置等の起
動時の熱量をまかなうことができるようになる。したが
って、この実施例4においても実施例2の燃料電池式発
電装置と同様が得られる。
Therefore, at the time of starting the absorption refrigerating apparatus or the like, the temperature set value of the temperature controller 32 is lowered to the lower limit value of the temperature of the reaction section 2b, and this temperature set value is set to the temperature detector 3.
If the first regulating valve 28 is opened by setting the temperature of the reaction portion 2b detected at 1 to be smaller than the indicated value, a part of the high temperature combustion gas of about 500 ° C. will flow into the mixed exhaust gas pipe 11. As a result, the temperature of the mixed exhaust gas rises, and it becomes possible to raise the temperature of the high-temperature hot water recovered by the first water heater 20. You will be able to cover. Therefore, also in the fourth embodiment, the same as the fuel cell power generator of the second embodiment can be obtained.

【0037】[0037]

【発明の効果】この発明は、以上のように構成されてい
るので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0038】この発明の第1の発明によれば、燃料電池
と、燃料電池に改質ガスを供給する改質器と、改質器か
ら排出される燃焼排ガスから熱を回収する第1の熱交換
手段と、燃料電池の空気極から排出される空気排ガスか
ら熱を回収する第2の熱交換手段と、第1および第2の
熱交換手段から排出される燃焼排ガスと空気排ガスの混
合排ガスから熱を回収する第3の熱交換手段と、第3の
熱交換手段での混合排ガスから生じる凝縮水を処理して
回収する水処理装置とを有する燃料電池式発電装置にお
いて、第3の熱交換手段を、混合排ガスの高温側に設け
られた高温側熱交換手段と低温側に設けられた低温側熱
交換手段とから構成しているので、混合排ガスの排熱を
2段階の温度レベルで取り出せ、必要な凝縮水を得るこ
とができる所定の低温度まで混合排ガスの熱回収を充分
になすことができ、かつ、所定の高温熱源が要求される
吸収式冷凍装置等にも必要な熱量を供給できる。
According to the first aspect of the present invention, the first heat for recovering heat from the fuel cell, the reformer for supplying the reformed gas to the fuel cell, and the combustion exhaust gas discharged from the reformer. An exchanging means, a second heat exchanging means for recovering heat from the air exhaust gas discharged from the air electrode of the fuel cell, and a mixed exhaust gas of the combustion exhaust gas and the air exhaust gas discharged from the first and second heat exchanging means. In a fuel cell power generation device having a third heat exchange means for recovering heat and a water treatment device for treating and recovering condensed water generated from the mixed exhaust gas in the third heat exchange means, Since the means is composed of the high temperature side heat exchange means provided on the high temperature side of the mixed exhaust gas and the low temperature side heat exchange means provided on the low temperature side, the exhaust heat of the mixed exhaust gas can be extracted at two temperature levels. Predetermined, which can obtain the necessary condensed water Temperature until it is possible to sufficiently make heat recovery of mixed exhaust gases, and can supply heat required in the absorption refrigerating apparatus such as a predetermined high-temperature heat source is required.

【0039】また、この発明の第2の発明によれば、第
3の熱交換手段を、混合排ガスの高温側に設けられた高
温側熱交換手段と低温側に設けられた低温側熱交換手段
とから構成すると共に、第1の熱交換手段の燃焼ガス側
に流量調整手段を有するバイパス通路を設けたので、第
3の熱交換手段の高温側熱交換手段にて混合排ガスから
一時的に多量の熱量を得ることができるようになり、吸
収式冷凍装置等の起動時に要求される熱量を高温側熱交
換手段にて確保でき、定格値の大きな排熱機器が使用で
きるという効果も得ることができる。
Further, according to the second aspect of the present invention, the third heat exchange means is the high temperature side heat exchange means provided on the high temperature side of the mixed exhaust gas and the low temperature side heat exchange means provided on the low temperature side. Since the bypass passage having the flow rate adjusting means is provided on the combustion gas side of the first heat exchanging means, a large amount of the mixed exhaust gas is temporarily increased by the high temperature side heat exchanging means of the third heat exchanging means. The heat quantity required for starting the absorption refrigeration system, etc. can be secured by the heat exchanging means on the high temperature side, and the effect of being able to use exhaust heat equipment with a large rated value can also be obtained. it can.

【0040】さらに、この発明の第3の発明によれば、
第3の熱交換手段を、混合排ガスの高温側に設けられた
高温側熱交換手段と低温側に設けられた低温側熱交換手
段とから構成すると共に、第1の熱交換手段の燃料排ガ
ス側および第2の熱交換手段の空気排ガス側にそれぞれ
流量調整手段を有するバイパス通路を設けたので、第3
の熱交換手段の高温側熱交換手段にて混合排ガスから一
時的に多量の熱量を得ることができるようになり、吸収
式冷凍装置等の起動時に要求される熱量を高温側熱交換
手段にて確保できるという効果も得ることができる。
Furthermore, according to the third aspect of the present invention,
The third heat exchange means is composed of a high temperature side heat exchange means provided on the high temperature side of the mixed exhaust gas and a low temperature side heat exchange means provided on the low temperature side, and at the same time the fuel exhaust gas side of the first heat exchange means. Since the bypass passages having the flow rate adjusting means are provided on the air exhaust gas side of the second heat exchange means and the third heat exchange means,
It becomes possible to temporarily obtain a large amount of heat from the mixed exhaust gas in the high temperature side heat exchanging means of the heat exchanging means. The effect that it can be secured can also be obtained.

【0041】また、この発明の第4の発明によれば、第
1の熱交換手段の燃焼排ガス側に流量調整手段を有する
バイパス通路を設け、改質器の反応部の温度を検出する
温度検出器を設け、かつ、この温度検出器の検出温度に
より流量調整手段を制御してバイパス通路を流通する燃
焼排ガス流量を調整する制御手段を設けたので、第3の
熱交換手段の高温側熱交換手段にて混合排ガスから一時
的に多量の熱量を得ることができるようになり、吸収式
冷凍装置等の起動時に要求される熱量を高温側熱交換手
段にて確保できるという効果も得ることができる。
According to the fourth aspect of the present invention, a temperature detecting means for detecting the temperature of the reaction part of the reformer is provided by providing a bypass passage having a flow rate adjusting means on the combustion exhaust gas side of the first heat exchange means. Since the control unit is provided and the flow rate adjusting unit is controlled by the temperature detected by the temperature detector to adjust the flow rate of the combustion exhaust gas flowing through the bypass passage, the heat exchange on the high temperature side of the third heat exchanging unit is performed. It becomes possible to temporarily obtain a large amount of heat from the mixed exhaust gas by the means, and it is also possible to obtain the effect that the high-temperature side heat exchange means can secure the amount of heat required at the time of starting the absorption refrigeration system or the like. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す燃料電池式発電装置
の系統図である。
FIG. 1 is a system diagram of a fuel cell type power generator showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す燃料電池式発電装置
の系統図である。
FIG. 2 is a system diagram of a fuel cell type power generator showing Embodiment 2 of the present invention.

【図3】この発明の実施例3を示す燃料電池式発電装置
の系統図である。
FIG. 3 is a system diagram of a fuel cell type power generator showing Embodiment 3 of the present invention.

【図4】この発明の実施例4を示す燃料電池式発電装置
の系統図である。
FIG. 4 is a system diagram of a fuel cell type power generator showing Embodiment 4 of the present invention.

【図5】従来の燃料電池式発電装置の一例を示す系統図
である。
FIG. 5 is a system diagram showing an example of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料電池 1a 燃料極 1b 空気極 2 改質器 4 第1空気予熱器(第1の熱交換手段) 5 第2空気予熱器(第2の熱交換手段) 17 水処理装置 20 第1温水器(高温側熱交換手段) 21 第2温水器(低温側熱交換手段) 27 バイパス配管(バイパス通路) 28 第1調整弁(流量調整手段) 29 バイパス配管(バイパス通路) 30 第2調整弁(流量調整手段) 31 温度検出器 32 温度コントローラ(制御手段) 1 Fuel Cell 1a Fuel Electrode 1b Air Electrode 2 Reformer 4 First Air Preheater (First Heat Exchange Means) 5 Second Air Preheater (Second Heat Exchange Means) 17 Water Treatment Device 20 First Water Heater (High temperature side heat exchange means) 21 Second water heater (low temperature side heat exchange means) 27 Bypass piping (bypass passage) 28 First adjusting valve (flow rate adjusting means) 29 Bypass piping (bypass passage) 30 Second adjusting valve (flow rate) Adjusting means) 31 Temperature detector 32 Temperature controller (control means)

【手続補正書】[Procedure amendment]

【提出日】平成4年11月2日[Submission date] November 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】温度コントローラ32は改質器2の反応部
2bの温度が設定値より高ければ第1調整弁28を開け
させ、改質器2の反応部2bの温度が設定値より低け
ば第1調整弁28を閉じさせて反応部2bの温度を調整
するためものである。すなわち、改質器2の反応部2b
の温度が上がり第1調整弁28が開いてバイパス配管2
7を通る燃焼排ガス量が増加すれば、第1空気予熱器4
に導入される燃焼排ガス量が減少し、第1空気予熱器4
にて改質器2の燃料部2bに供給される空気側に回収さ
れる熱量が減少し、燃焼部2aにおける熱発生量が減少
して、反応部2bの温度は下降することとなり、逆に、
反応部2bの温度が下がり第1調整弁28が閉じてバイ
パス配管27を通る燃焼ガスが遮断されれば、第1空気
予熱器4にて空気側に回収される熱量が増加し、燃焼部
2aにおける熱発生量が増加して、反応部2bの温度は
上昇することとなる。
The temperature controller 32 let open the first control valve 28 is higher than the temperature of the reaction portion 2b of the reformer 2 is a set value, only low than the temperature of the reaction portion 2b of the reformer 2 is set value lever This is for closing the first adjusting valve 28 and adjusting the temperature of the reaction part 2b. That is, the reaction section 2b of the reformer 2
Temperature rises, the first regulating valve 28 opens and the bypass pipe 2
If the amount of combustion exhaust gas passing through 7 increases, the first air preheater 4
The amount of combustion exhaust gas introduced into the first air preheater 4 decreases
At this time, the amount of heat recovered on the side of the air supplied to the fuel portion 2b of the reformer 2 is reduced, the amount of heat generated in the combustion portion 2a is reduced, and the temperature of the reaction portion 2b is lowered. ,
If the temperature of the reaction section 2b decreases and the first regulating valve 28 closes to block the combustion gas passing through the bypass pipe 27, the amount of heat recovered to the air side in the first air preheater 4 increases, and the combustion section 2a The amount of heat generated at the temperature of the reaction section 2b increases, and the temperature of the reaction section 2b rises.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】したがって、吸収式冷凍装置等の起動時に
は、温度コントローラ32の温度設定値を反応部2bの
温度の下限値まで下げ、この温度設定値を温度検出器3
1で検出される実際の反応部2bの温度の指示値より小
さくして第1調整弁28を開けるようにすれば、混合排
ガス配管11中に約500℃の高温燃焼ガスの一部が流
入して混合排ガスの温度が上昇し、第1温水器20で回
収される高温温水の温度を上げることができるようにな
って、この第1温水器20により吸収式冷凍装置等の起
動時の熱量をまかなうことができるようになる。したが
って、この実施例4においても実施例2の燃料電池式発
電装置と同様の効果が得られる。
Therefore, at the time of starting the absorption refrigerating apparatus or the like, the temperature set value of the temperature controller 32 is lowered to the lower limit value of the temperature of the reaction section 2b, and this temperature set value is set to the temperature detector 3.
If the first regulating valve 28 is opened by setting the temperature of the reaction portion 2b detected at 1 to be smaller than the indicated value, a part of the high temperature combustion gas of about 500 ° C. will flow into the mixed exhaust gas pipe 11. As a result, the temperature of the mixed exhaust gas rises, and it becomes possible to raise the temperature of the high-temperature hot water recovered by the first water heater 20. You will be able to cover. Therefore, also in the fourth embodiment , the same effect as that of the fuel cell power generator of the second embodiment can be obtained.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 1 燃料電池 1a 燃料極 1b 空気極 2 改質器 4 第1空気予熱器(第1の熱交換手段) 5 第2空気予熱器(第2の熱交換手段) 17 熱利用設備 20 第1温水器(高温側熱交換手段) 21 第2温水器(低温側熱交換手段) 27 バイパス配管(バイパス通路) 28 第1調整弁(流量調整手段) 29 バイパス配管(バイパス通路) 30 第2調整弁(流量調整手段) 31 温度検出器 32 温度コントローラ(制御手段)[Explanation of reference numerals] 1 fuel cell 1a fuel electrode 1b air electrode 2 reformer 4 first air preheater (first heat exchange means) 5 second air preheater (second heat exchange means) 17 heat utilization equipment 20 1st water heater (high temperature side heat exchange means) 21 2nd water heater (low temperature side heat exchange means) 27 Bypass piping (bypass passage) 28 1st adjustment valve (flow rate adjustment means) 29 Bypass piping (bypass passage) 30th 2 adjusting valve (flow rate adjusting means) 31 temperature detector 32 temperature controller (control means)

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池と、前記燃料電池に改質ガスを
供給する改質器と、前記改質器から排出される燃焼排ガ
スから熱を回収する第1の熱交換手段と、前記燃料電池
の空気極から排出される空気排ガスから熱を回収する第
2の熱交換手段と、前記第1および第2の熱交換手段か
ら排出される前記燃焼排ガスと前記空気排ガスとの混合
排ガスから熱を回収する第3の熱交換手段と、前記第3
の熱交換手段での前記混合排ガスから生じる凝縮水を処
理して回収する水処理装置とを有する燃料電池式発電装
置において、前記第3の熱交換手段は、前記混合排ガス
の高温側に設けられた高温側熱交換手段と低温側に設け
られた低温側熱交換手段とから構成され、前記混合排ガ
スからの熱回収を、前記高温側熱交換手段と前記低温側
熱交換手段とにより行うことを特徴とする燃料電池式発
電装置。
1. A fuel cell, a reformer for supplying reformed gas to the fuel cell, first heat exchange means for recovering heat from combustion exhaust gas discharged from the reformer, and the fuel cell. Second heat exchanging means for recovering heat from the air exhaust gas discharged from the air electrode, and heat from the mixed exhaust gas of the combustion exhaust gas and the air exhaust gas discharged from the first and second heat exchanging means. A third heat exchange means for recovering, and the third heat exchange means
And a water treatment device for treating and recovering condensed water generated from the mixed exhaust gas in the heat exchange means, the third heat exchange means is provided on a high temperature side of the mixed exhaust gas. A high temperature side heat exchange means and a low temperature side heat exchange means provided on a low temperature side, and heat recovery from the mixed exhaust gas is performed by the high temperature side heat exchange means and the low temperature side heat exchange means. Characteristic fuel cell power generator.
【請求項2】 燃料電池と、前記燃料電池に改質ガスを
供給する改質器と、前記改質器から排出される燃焼排ガ
スから熱を回収する第1の熱交換手段と、前記燃料電池
の空気極から排出される空気排ガスから熱を回収する第
2の熱交換手段と、前記第1および第2の熱交換手段か
ら排出される前記燃焼排ガスと前記空気排ガスとの混合
排ガスから熱を回収する第3の熱交換手段と、前記第3
の熱交換手段での前記混合排ガスから生じる凝縮水を処
理して回収する水処理装置とを有する燃料電池式発電装
置において、前記第3の熱交換手段を、前記混合排ガス
の高温側に設けられた高温側熱交換手段と低温側に設け
られた低温側熱交換手段とから構成すると共に、前記第
1の熱交換手段の前記燃焼排ガス側に流量調整手段を有
するバイパス通路を設けたことを特徴とする燃料電池式
発電装置。
2. A fuel cell, a reformer for supplying reformed gas to the fuel cell, first heat exchange means for recovering heat from combustion exhaust gas discharged from the reformer, and the fuel cell. Second heat exchanging means for recovering heat from the air exhaust gas discharged from the air electrode, and heat from the mixed exhaust gas of the combustion exhaust gas and the air exhaust gas discharged from the first and second heat exchanging means. A third heat exchange means for recovering, and the third heat exchange means
And a water treatment device for treating and recovering condensed water generated from the mixed exhaust gas in the heat exchange means, wherein the third heat exchange means is provided on a high temperature side of the mixed exhaust gas. A high temperature side heat exchange means and a low temperature side heat exchange means provided on a low temperature side, and a bypass passage having a flow rate adjusting means is provided on the combustion exhaust gas side of the first heat exchange means. Fuel cell power generator.
【請求項3】 燃料電池と、前記燃料電池に改質ガスを
供給する改質器と、前記改質器から排出される燃焼排ガ
スから熱を回収する第1の熱交換手段と、前記燃料電池
の空気極から排出される空気排ガスから熱を回収する第
2の熱交換手段と、前記第1および第2の熱交換手段か
ら排出される前記燃焼排ガスと前記空気排ガスとの混合
排ガスから熱を回収する第3の熱交換手段と、前記第3
の熱交換手段での前記混合排ガスから生じる凝縮水を処
理して回収する水処理装置とを有する燃料電池式発電装
置において、前記第3の熱交換手段を、前記混合排ガス
の高温側に設けられた高温側熱交換手段と低温側に設け
られた低温側熱交換手段とから構成すると共に、前記第
1の熱交換手段の前記燃焼排ガス側および前記第2の熱
交換手段の前記空気排ガス側にそれぞれ流量調整手段を
有するバイパス通路を設けたことを特徴とする燃料電池
式発電装置。
3. A fuel cell, a reformer for supplying reformed gas to the fuel cell, first heat exchange means for recovering heat from combustion exhaust gas discharged from the reformer, and the fuel cell. Second heat exchanging means for recovering heat from the air exhaust gas discharged from the air electrode, and heat from the mixed exhaust gas of the combustion exhaust gas and the air exhaust gas discharged from the first and second heat exchanging means. A third heat exchange means for recovering, and the third heat exchange means
And a water treatment device for treating and recovering condensed water generated from the mixed exhaust gas in the heat exchange means, wherein the third heat exchange means is provided on a high temperature side of the mixed exhaust gas. A high temperature side heat exchange means and a low temperature side heat exchange means provided on a low temperature side, and is provided on the combustion exhaust gas side of the first heat exchange means and on the air exhaust gas side of the second heat exchange means. A fuel cell type power generator comprising a bypass passage each having a flow rate adjusting means.
【請求項4】 燃料電池と、前記燃料電池に改質ガスを
供給する改質器と、前記改質器から排出される燃焼排ガ
スから熱を回収する第1の熱交換手段と、前記燃料電池
の空気極から排出される空気排ガスから熱を回収する第
2の熱交換手段と、前記第1および第2の熱交換手段か
ら排出される前記燃焼排ガスと前記空気排ガスとの混合
排ガスから熱を回収する第3の熱交換手段と、前記第3
の熱交換手段での前記混合排ガスから生じる凝縮水を処
理して回収する水処理装置とを有する燃料電池式発電装
置において、前記第1の熱交換手段の前記燃焼排ガス側
に流量調整手段を有するバイパス通路を設け、前記改質
器の反応部の温度を検出する温度検出器を設け、かつ、
前記温度検出器の検出温度により前記流量調整手段を制
御して前記バイパス通路を流通する燃焼排ガス流量を調
整する制御手段を設けたことを特徴とする燃料電池式発
電装置。
4. A fuel cell, a reformer for supplying a reformed gas to the fuel cell, a first heat exchange means for recovering heat from combustion exhaust gas discharged from the reformer, and the fuel cell. Second heat exchanging means for recovering heat from the air exhaust gas discharged from the air electrode, and heat from the mixed exhaust gas of the combustion exhaust gas and the air exhaust gas discharged from the first and second heat exchanging means. A third heat exchange means for recovering, and the third heat exchange means
A water treatment device for treating and recovering condensed water generated from the mixed exhaust gas in the heat exchanging means, and a flow rate adjusting means on the combustion exhaust gas side of the first heat exchanging means. A bypass passage is provided, and a temperature detector that detects the temperature of the reaction portion of the reformer is provided, and
A fuel cell power generator comprising control means for controlling the flow rate adjusting means according to the temperature detected by the temperature detector to adjust the flow rate of combustion exhaust gas flowing through the bypass passage.
JP4096336A 1992-04-16 1992-04-16 Fuel cell power generator Expired - Lifetime JP2920018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096336A JP2920018B2 (en) 1992-04-16 1992-04-16 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096336A JP2920018B2 (en) 1992-04-16 1992-04-16 Fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH05290865A true JPH05290865A (en) 1993-11-05
JP2920018B2 JP2920018B2 (en) 1999-07-19

Family

ID=14162178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096336A Expired - Lifetime JP2920018B2 (en) 1992-04-16 1992-04-16 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2920018B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment
US6692853B2 (en) 2000-12-22 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Recovery system of heat energy in a fuel cell system
US7037616B2 (en) 2000-12-27 2006-05-02 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system having drain for condensed water stored in reforming reactor
JP2014010895A (en) * 2012-06-27 2014-01-20 Kyocera Corp Fuel cell device
JP2014010896A (en) * 2012-06-27 2014-01-20 Kyocera Corp Fuel cell device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385183C (en) * 2006-11-09 2008-04-30 上海交通大学 Natural gas proton exchange membrane fuel cell and internal combustion engine united drive type air conditioning system
CN100424445C (en) * 2006-11-09 2008-10-08 上海交通大学 Combined driving air conditioning system by proton exchange film fuel battery and internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325982A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Combined system of fuel cell apparatus and hot-water supply equipment
JP4513168B2 (en) * 2000-05-15 2010-07-28 トヨタ自動車株式会社 Combined system of fuel cell device and hot water supply device
US6692853B2 (en) 2000-12-22 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Recovery system of heat energy in a fuel cell system
US7037616B2 (en) 2000-12-27 2006-05-02 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system having drain for condensed water stored in reforming reactor
JP2014010895A (en) * 2012-06-27 2014-01-20 Kyocera Corp Fuel cell device
JP2014010896A (en) * 2012-06-27 2014-01-20 Kyocera Corp Fuel cell device

Also Published As

Publication number Publication date
JP2920018B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JPS59141406A (en) Rapid starting type methanol reactor
JPH086608B2 (en) Heat recovery device and operating method thereof
WO2012090517A1 (en) Heat recovery and utilization system
KR20160032172A (en) System for generating power from fuel cell waste heat
JP4358338B2 (en) Fuel cell combined power plant system
JP2920018B2 (en) Fuel cell power generator
JP4195974B2 (en) Fuel cell cogeneration system
JP2006318750A (en) Fuel cell system
JPH04169073A (en) Exhaust heat recovery method and device for fuel cell
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP3331576B2 (en) Fuel cell power generation equipment
JP4751589B2 (en) Fuel cell power generation system
JP3137143B2 (en) Temperature control method for fuel cell power plant and fuel cell power plant equipped with temperature control device
JP3670467B2 (en) Fuel cell power generation system
JP3461909B2 (en) Fuel cell surplus steam condensation type steam separator
JP3467759B2 (en) Control method of outlet temperature of reformer
JP3350164B2 (en) Fuel cell cogeneration system and cooling water waste heat recovery method
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP2004119239A (en) Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
JPH0541229A (en) Fuel cell power generating system
JPH06103996A (en) Fuel cell power generating exhaust heat recovery system
JPH06283184A (en) Fuel cell indirect steam extracting type steam separator of fuel cell power generation system
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JPH0821409B2 (en) Fuel cell generator